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Abstract

A constituent feature of adaptive complex systems are non-linear feedback

mechanisms between actors. This makes it often difficult to model and

analyse them. Agent-based Computational Economics (ACE) uses com-

puter simulation methods to represent such systems and analyse non-linear

processes.

The aim of this thesis is to explore ways of modelling adaptive agents in

ACEmodels. Its major contribution is of a methodological nature. Artificial

intelligence and machine learning methods are used to represent agents and

learning processes.

In this work, a general reinforcement learning framework is developed

and realised in a simulation system. This system is used to implement

three models of increasing complexity in two different economic domains.

One of these domains are iterative games in which agents meet repeatedly

and interact. In an experimental labour market, it is shown how statistical

discrimination can be generated simply by the learning algorithm used. The

results resemble actual patterns of observed human behaviour in laboratory

settings. The second model treats strategic network formation. The main

contribution here is to show how agent-based modelling helps to analyse

non-linearity that is introduced when assumptions of perfect information



and full rationality are relaxed. The other domain has a Health Economics

background. The aim here is to provide insights of how the approach might

be useful in real-world applications. For this, a general model of primary

care is developed, and the implications of different consumer behaviour

(based on the learning features introduced before) analysed.
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Chapter 1

Introduction

Economies can be seen as complex dynamics systems: Many autonomous

agents interact locally, giving rise to global phenomena such as price levels,

growth rates, etc. As Tesfatsion (2006) notes, the study of these macro phe-

nomena require strong abstractions and simplifications, which, if removed,

quickly make the system intractable. For example, what would happen

if the Walrasian Auctioneer would be removed in a standard Walrasian

model? Because of this ‘small’ perturbation, the modeller now has to ‘come

to grips with challenging issues such as asymmetric information, strategic

interaction, expectation formation on the basis of limited information, mu-

tual learning, social norms, transaction costs, externalities, market power,

predation, collusion, and the possibility of coordination failure (convergence

to a Pareto-dominated equilibrium)’ (Tesfatsion 2006). Agent-based com-

putational economics (ACE) is a method that has emerged as a novel way

to look at the evolution of such equilibria and global phenomena by gen-

erating, or ‘growing’ them endogenously (Epstein and Axtell 1996). It is

a way to computationally study artificial worlds modelled as dynamic sys-

tems of interacting entities. The entities are typically individuals or social

1



CHAPTER 1. INTRODUCTION 2

groups such as consumers, firms or players in games. Furthermore, physi-

cal entities such as infrastructure or spatial settings might be represented

in a computational model. Models are analysed by simulating them in a

computer, and interpreting the results that are generated.

A system is called complex if it is composed of interacting units and if

has emergent properties, that is, properties arising from the interactions of

the agents. Following Tesfatsion (2006), a system is complex adaptive if the

units of the system have some form of pro- and reactive capabilities. There

are basically three definitions of complex adaptive systems:

Definition 1. A complex adaptive system is a complex system that in-

cludes reactive units, i.e., units capable of exhibiting systematically different

attributes in reaction to changed environmental conditions.

Definition 2. A complex adaptive system is a complex system that includes

goal-directed units, i.e., units that are reactive and that direct at least some

of their reactions towards the achievement of built-in (or evolved) goals.

Definition 3. A complex adaptive system is a complex system that includes

planner units, i.e., units that are goal-directed and that attempt to exert

some degree of control over their environment to facilitate achievement of

these goals.

Essentially, economic systems can be defined as complex adaptive sys-

tems, composed of intelligent agents. Some form of cognition and goal-

directedness is essential to most models. However, the degree of goal-

direction and cognitive capabilities of agents varies strongly. The simplest

models, for example, represent only reactions to neighbouring agents’ states

(e.g. Schelling 1971). In game theory, simple reinforcement learning (RL),

as well as mixed systems, combining cognitive learning mechanisms with
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experience-based learning, have been widely applied (for details, see chap-

ter 3; for an overview see Brenner (2006)). There is no simple rule which

models should use which sort of learning; this typically depends on the na-

ture of the domain. For example, in environments where habitualisation

is a prominent feature, e.g. in repeated game situations, simple reinforce-

ment learning matches actual behaviour usually reasonably well. On the

other hand, if decisions are less frequent and more important, simple learn-

ing mechanisms are not accurate representations. For instance, it could

be argued that choosing a doctor (see chapter 4) is a very conscious deci-

sion, thus RL would be inappropriate and some mechanism for representing

beliefs and judgements would be the more natural choice.

While the role of ACE as a tool for simulating complex systems is

straightforward, its role as a paradigm for economic modelling is contro-

versial. Typical criticisms of ACE models regard the following points (e.g.

Fagiolo et al 2007; Leombruni and Richiardi 2005; Richiardi 2003):

– The lack of standardisation and formalism of ACE models. The sheer

mass and heterogeneity of models makes unclear what this approach

actually stands for. In general, there are almost no standardised tech-

niques to analyse agent-based models, for example, whether and when

sensitivity analyses should be conducted, how timing should be inter-

preted and so on.

– The lack or impossibility of empirical validation of many models.

Many simulations use some stylised facts to establish the validity of

the model. Calibration is typically an iterative process where the

modeller reduces the parameter space to smaller ranges which gen-

erate the most plausible results, or where detailed data exists, to a

dataset. However, since one of the advantages of ACE models is the
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integration of more ‘realism’ in the form of exact agent specifications,

there is always a trade-off between descriptive accuracy and analytical

tractability. Naturally, the more degrees of freedom a model has, the

more difficult it is to map it to available empirical evidence (due to

the number of parameters to calibrate).

– The lack of generality and unclear approach to handle results. Whereas

it is straightforward to estimate, say, reduced forms, or calculate tran-

sition probabilities on empirical data, artificial data can only be cal-

ibrated against some empirical benchmark. A result derived from

artificial data can only be as good as the underlying simulation is

able to replicate the actual real-world process. Furthermore, agent-

based models are likely to underidentify actual trends. ACE models

are richer, and therefore, create more noise. Another aspect of this

problem is ‘equifinality’. Equifinality describes the case when a num-

ber of different models may generate similar data, that is, they may

equally well explain the same phenomenon but by different processes.

Some ACE modellers view agent-based modelling as a new way of do-

ing science (Epstein and Axtell 1996). The main interest of researchers in

this area is to discover new rules, theories and test hypotheses about the

processes that generate certain phenomena, and only later derive analytical

better models that explain larger classes of phenomena (e.g. Edmonds and

Moss 2005). As these modellers typically use their simulations on a mere

qualitative basis, as thought-experiments or support for generating new hy-

potheses, there is no rationale for testing such models against empirical

data. Although immunised against empirical falsification, some forecast-

ing exercises might still be possible, but results have to be treated with

caution. More importantly, there is a danger that ’one ends up building
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auto-referential formalisations that have no link to reality’ (e.g. Fagiolo

et al 2007).

The aim of this thesis is to apply RL methods as a means to model

adaptive feedback processes. The overall contribution is of a methodological

nature. The models presented have the main purpose to demonstrate this

method and show how it can be applied to a range of problems. In that

sense, the models discussed in the thesis fall into the last category of models:

They are mainly of a qualitative nature; empirical validation is not the main

interest of the simulations.

The focus of this thesis is reinforcement learning. Reinforcement learn-

ing is a very simple experience based learning approach; agents learn by

trial and error. It has often been used in the ACE literature, but often

ad-hoc or in simple models. Moreover, there are only few approaches which

integrate experience-based learning with cognitive elements such as beliefs.

The objectives of the thesis are to

1. Develop a new computational approach that integrates RL with sim-

ple cognitive elements. It shall provide a new approach of modelling

human decision processes.

2. Apply RL to economic, mainly game-theory models and contribute to

the learning literature in this field. As the use of simulations allows

to build more complex models, an important aspect of this thesis is to

build a ’bridge’ between pure game theory and empirical results of ex-

perimental game theory. A recurring topic is therefore the comparison

with experimental evidence.

3. Analyse the impact of different learning approaches in more complex
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domains. Here, the question is how RL can be used to enrich the

analysis of more applied, real-world models.

As the methodological basis, chapter 2 reviews RL in the economic liter-

ature and develops a general learning framework, combining reinforcement

and rule learning. The motivation is to provide an alternative, generic way

of representing agent decision mechanisms in a unified framework for several

classes of models. It tries to go beyond simplistic fomalisations of adaptive

capabilities such as simple RL, but to keep computational complexity within

bounds. Chapter 3 applies this approach to a model of statistical discrimi-

nation. It is shown that the framework is capable of reproducing patterns

of actual human behaviour in game-theoretic experiments. Chapter 4 is an

application of RL to network formation. Results of the learning process are

compared with axiomatic results for perfectly rational players. A modified

version of the model is then used to reproduce an experiment and to com-

pare its behaviour with observed human behaviour. A very different model

is presented in chapter 5. While the purpose of the first chapters is to apply

and analyse learning in rather simple settings, the purpose of this chapter

is to use it in a complex setting with many influencing variables. The re-

quirements for adaptation in this application are very different from that

discussed before: In the model, doctors decide about treatment patterns,

quality and their own workload. Patients choose doctors based on their own

experience and recommendations of other consumers. Several simulations

using different learning and choice scenarios are compared.

The models have been implemented in their own software framework,

providing the learning features used in the thesis. Appendix A describes

the architecture and implementation of the software.

This work contributes in several ways to the ACE literature:
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– It adds a novel algorithm for representing learning in artificial agents.

This approach has been published in Schuster (2012).

– It applies RL to statistical discrimination games. It belongs thus to

the few dynamic models in this area, and is to the knowledge of the

author the first using an RL approach.

– It applies RL to strategic network formation games. So far, adaptation

in the strategic network formation literature has received almost no

attention. Here, adaptation is applied for the first time to the well-

known connections model of Jackson and Wolinsky (1996).

– It provides one of the first applications of ACE in the field of health

care system modelling. So far, only few agent-based models in this

area have been proposed, and in fact, there has been no ACE model

of primary care.



Chapter 2

A Computational Framework

for Modelling Learning

2.1 Introduction

The perfectly informed and rational homo oeconomicus has often been crit-

icised as too unrealistic - humans would not have the computational power

to calculate the best decisions, taking into account all information and all

possible outcomes. Already Simon (Simon 1956b) argued to use simpler,

psychologically more plausible algorithms. While the argument of bounded

rationality is frequently used as critique of the standard economic model, the

argument remains, however, vague (Simon 2000) - meaning usually every-

thing that is not classical economics, ranging, for example, from systematic

errors people make in judgements to the research on decision heuristics as

an alternative form of decision making.

Common to all critiques of perfect rationality is that humans are not

capable of doing the computations required by a homo oeconomicus, but are

bound to commit errors and misjudgements. As some psychologists (e.g.

8
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Gigerenzer and Goldstein 1996; Lopes 1994) point out, most alternative

models are still based on the fundamental assumption that expected utility

and Bayesian reasoning are the basis for all human decision making under

uncertainty. For example, subjective expected utility theory acknowledged

that individuals are not fully informed, and replaced objective probabilities

with subjective; however, the basis for reasoning remained the same.

In the sociological and psychological literature, a vast amount of evi-

dence has been collected to show experimentally how this classical model

can fail. Formalisation, however, is rare. An example is Prospect Theory

(Kahnemann and Tversky 1979). The main argument of Prospect Theory is

that people value future losses more highly than potential gains. Prospect

theory proposes an S-shaped value function that is concave for gains, and

convex for losses. That is, individuals become risk avoiding the higher the

potential losses, and risk seeking the greater the potential gains. Another

aspect of the value function has been characterised by loss aversion, which

is usually represented by a steeper slope of the curve in the loss area. These

aspects have been used to explain apparently irrational, as well as loss avoid-

ing behaviour in many psychological experiments. Psychologists have also

emphasised that humans process information not as the Bayesian paradigm

postulates, but rather crudely by using decision heuristics and cues from

their environment. In the field of cognitive psychology bounded rational-

ity became almost exclusively associated with this perspective in cognitive

psychology. The behavioural aspect of bounded rationality (like learning

by doing) has been neglected or not seen as a subject for this discipline

(Gigerenzer and Goldstein 1996).

In the economic literature, the most common way of modelling bounded

rationality is to postulate deviations from perfect rationality - for exam-

ple, by introducing an error term or some random noise (Auman 1997).
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With RL approaches a more behavioural dimension has become available in

(behavioural) game theory. In pure stimulus-response models, agents learn

by trial and error without any explicit knowledge representation (e.g Roth

and Erev 1995). Some authors combine experience learning with foresight

in mixed models as in fictitious play (Camerer and Ho 1999). Some ACE

models are based on similar concepts (see Brenner (2006) for an overview);

especially classifier systems have received interest to represent a simple form

of rule learning (e.g. Kirman and Vriend 2001a; LeBaron et al 1999).

Another angle of decision making can be seen in cognitive architectures.

Architectures such as ACT-R (e.g. Anderson 1993) and Soar (e.g. Lehman

et al 2003) try to simulate human decision-making as a computer program.

Most of them focus on the working of the mind when solving, say, math-

ematical problems and model in detail what processing steps are involved

in solving such problems. More recently, Sun showed how his cognitive ar-

chitecture CLARION (Sun and Slusarz 2005) can be connected with social

simulation. In this approach, the environment of an organism can, in con-

trast to the classical architectures, be represented in an agent’s mind (Sun

and Naveh 2007).

In this chapter, a computational model of bounded rationality is devel-

oped that addresses the tension between simplifying representations as pure

stimulus-response learning on the one end of the spectrum, and often com-

plex higher levels of cognition on the other end. It is most closely related to

mixed models and classifier systems, and has analogies with Sun’s applica-

tion of CLARION. However, there is no distinct social or economic approach

to individual learning. The algorithm described in this paper attempts to

fill this gap.

In the remainder of the chapter, the related literature is reviewed in
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some detail. Then, a simple conceptual framework based on Simon’s con-

cept of bounded rationality (Simon 1956b) is described, before outlining

concept and algorithm in more detail. The algorithm is then related to the

existing approaches in the literature. A simple simulation illustrates how

the algorithm works. The conclusion also outlines how the framework is

related to the learning problems in the applications in chapters 3 to 5.

2.2 Experience-based Learning

Humans learn through a variety of sources, such as own experience, ob-

servation, imitation or cognition. According to Brenner (2006), learning

in Economic models can be distinguished according to the degree of con-

sciousness in decisions. On the one end of the spectrum, humans learn in a

very simple way by reacting to stimuli. This type of learning happens au-

tomatically on an unconscious level; in routine situations, humans are often

incapable of explaining why they are doing things in a certain way. On the

other end, learning happens in a conscious way by reflecting, e.g. about own

experiences or about observations. Actions resulting from such deliberation

originate from the mental model humans have about the world, and is dis-

connected from immediate stimuli. In between, there are several modes of

learning, which can be characterised as routine learning. They have in com-

mon that they usually use some kind of experience. Brenner subsumes many

kinds of learning under experience-based learning: Reinforcement learning,

learning by imitation, satisficing (searching for satisfactory problem solu-

tions) or collecting and analysing experience. Fictitious play, a common

learning technique in game theory, is the typical example for the latter. In

fictitious play, players remember their payoffs and strategies and compare

them with payoffs and strategies of other players in the game. Using this

information, they compute what they would have earned if they played the
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other strategies. If the other strategies fare better, the player can then

switch his behaviour. While experience is necessary to learn in fictitious

play, it requires also a cognitive component, namely the reflection upon

other players’ actions. Pure belief-based approaches do not use the feed-

back coming from own activities. A typical example is Bayesian learning,

which updates beliefs about future states an agent will be in. Cognitive

architectures from Psychology can be seen as a similar example. These

approaches aim to model mental processes in the brain, and as such are

typically independent of concrete experience.

The aim of this chapter is to develop an algorithm that can be ap-

plied to a wide range of ACE modelling problems. Thus, approaches that

do not require prior knowledge about the domain are the most relevant.

Experience-based learning methods are a natural candidate for this, since

they acquire knowledge incrementally and base decisions on that knowl-

edge. The literature reviewed here looks therefore mainly at experience

learning, in particular reinforcement learning, but not pure belief-based

learning. Furthermore, throughout the thesis, RL will be used as a syn-

onym for any experience-based learning method that is based on RL.

In RL, agents learn to choose actions that were successful in the past

more often, while they avoid actions that led to unsatisfactory outcomes.

This is referred to as the ‘Law of effect’. A basic learning model was first

formalised by Bush and Mosteller (BM) (Bush and Mosteller 1955). Ac-

cording to BM, the choice probabilities p of an action at a given time can

be computed according to

Qp = p+ a(1− p)− bp (2.1)

where a, 0 ≤ a ≤ 1 describes rewards, and b, 0 ≤ b ≤ 1 punishments. Q
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is a mathematical operator that describes the new quantity of p after the

reward is applied. It is a short form to describe the stepwise update of

reinforcements. Most learning models generalise the BM idea to a time-

discounted version. The main components typically are:

– An action set A from which an action a is chosen, and payoffs π

associated with them;

– An action strength function that updates the experience over time.

The typical function is introduced in Roth and Erev (1995):

qk(t+ 1) = qk(t) + π(t) (2.2)

which updates the strength q of the k-th action with the current payoff

(Roth and Erev 1995).

– A selection function that selects successful actions based on the qk.

This selection function is usually based on Luce’s choice theorem (Luce

1959):

pk =
qk

∑

qj
(2.3)

This function computes the choice probability of action k relative to

its strength qk.

Thus, BM-type models accumulate experience. There exist several prob-

lems with this simple type of learning. For example, after long periods of

playing a single action, the learner will react to a change in payoffs extremely

slowly, and hence possibly play inferior actions. On the other hand, if the

learner reacts reasonably fast, it might be that it never locks in into opti-

mal choices. Several RL models have addressed these problems differently.

They can roughly be characterised as follows:
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– Cumulative RL without aspirations (Roth and Erev 1995; Erev and

Roth 1998; Laslier et al 2001; Laslier and Walliser 2005; Beggs 2005;

Rustichini 1999; Camerer and Ho 1999), which are all based on the

original BM model described above. Many analytical approaches

use the simple version in combination with simple decision problems

where adjustment to changing environments does not play a role; the

problem does not exist in this case. Other models, mainly of are

more empirical nature, vary the base model by adding forgetting and

experimentation parameters (Erev and Roth 1998) or simple beliefs

(Camerer and Ho 1999) to counterbalance the effect of excessive cu-

mulation.

– Averaging mechanisms (Karandikar et al 1998; Mookherjee and So-

pher 1994; 1997; Sarin and Vahid 2001; Gilboa and Schmeidler 1996).

In principle, average reinforcements can be interpreted as a form of be-

lief learning, namely as an expected future reward. The advantage is

that agents can adjust reasonably fast to changes in the environment.

– Aspiration level models with cumulative RL (e.g Boergers and Sarin

2000) or averaging mechanisms (e.g. Karandikar et al 1998; Bendor

et al 2001b; Napel 2003; Gotts et al 2007); see also Bendor et al

(2001a) for an overview. In models of this type, action strengths are

updated with respect to the difference to an exogenously set or en-

dogenously evolving aspiration level. If the payoff is below this level,

the reward is subtracted, otherwise added. Some models base the cal-

culation of action probabilities on the distance from the actual payoff

to the aspiration level. The probability distributions that determine

action selection can be skewed to choose an action with a probability

close to 1 if the reward is above, or close to 0 if the reward is below the

aspiration level. When payoffs decrease, agents tend to play strategies
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proportional to their expected payoffs, thereby achieving a similar ex-

ploration effect once their environment changes and payoffs decrease.

The advantage of this approach is that lock-in into optimal choices

is supported, at the same time not being deterministic if payoffs fall

below the aspiration level.

2.2.1 Experimental Games Using Simple RL Models

One main motivation of many models has been the search for learning rules

that predict experimental data better than the standard equilibrium predic-

tion under full information (e.g. Roth and Erev 1995; Erev and Roth 1998;

Mookherjee and Sopher 1994; 1997; Chen and Tang 1998).

In their seminal work, Erev and Roth (Roth and Erev 1995) consider

three variants of the base model (equations (2.2) and (2.3)); later referred to

as ER models). The first uses cutoff parameters for high and low selection

probabilities: Actions above the upper cutoff are played with probability

1, below the lower with probability 0. In the second model, a parameter ϵ

sets the probability with which a random action is chosen. This allows for

persistent experimentation. The third variant includes a recency parameter

ϕ, 0 < ϕ < 1, which weights the importance of past payoffs whenever the

action strengths are updated: qk(t + 1) = qk(t)ϕ + π(t). These models are

applied to a large number of games, as the main motivation for RL here is

to find a learning model that predicts well over as many classes of games

as possible. Erev and Roth use ultimatum games, bargaining (market)

games, and simplified best-shot games. Except for ultimatum games, they

find that all three RL models predict actual behaviour well, which also

happens to converge to equilibrium predictions. In the ultimatum games

however, subgame perfect equilibrium (where the first mover demands the

greatest possible share for himself) is not reached. Predicted as well as
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actual behaviour did not converge to equilibrium. Moreover, experimental

data showed differences in medium- and long-term outcomes. The RL model

could replicate such switches.

Later, in Erev and Roth (1998), they apply simple RL to a wider col-

lection of experimental data based on mixed-strategy games; this makes

convergence more difficult, since no player has an incentive to stick to a

pure strategy. Additional to the simple model, they allow for alternatives

with more sophisticated learning. Three models are compared: Model (1)

is simple RL as in equations (2.2) and (2.3). Model (2) combines forgetting

and generalisation, i.e. qk(t + 1) = (1− ϕ)qk(t) + Ek(j, π(t)), where E is a

function determining how playing strategy k affects similar strategies j. In

the considered 2-player games, they set Ek(j, π(t)) = π(1− ϵ) if j = k and

Ek(j, π(t)) = π(t)ϵ/(M − 1) (where M is the number of pure strategies)

otherwise. That is, depending on ϵ, players generalise rewards in a way

that leads to experimentation among similar strategies. In model (3) some

simple beliefs are integrated in the form of limited (only own payoffs are

known) and full information (also opponents’ payoffs are known) fictitious

play. In the first case, the update function is augmented by an expected

payoff parameter, in the latter the action probability is determined consid-

ering the value of alternative strategies. After fitting the data, they find

that adding more knowledge in the form of beliefs and expectations does

not add to the predictive power of RL. Usually, the simplest models pre-

dict behaviour accurately. Adding adaptation parameters like recency and

experimentation improves the fit of simple RL, but fictitious play does not.

Sarin and Vahid (1999) describe the Payoff Assessment learning model

(PA), which uses average payoffs instead of cumulative payoffs, and chooses

deterministically the action with the highest expected payoff. Applying it

in Sarin and Vahid (2001) to the same data as Erev and Roth did in Erev
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and Roth (1998), they find that this model predicts the data at least as well

as simple RL.

Mookherjee and Sopher (Mookherjee and Sopher 1994; 1997) conducted

experiments with constant sum games. In their early experiment only two

choices were available. Players learnt to play their minimax strategies. In

Mookherjee and Sopher (1997) they find that experimental results devi-

ate considerably from equilibrium predictions in games with at least four

strategies. Instead of cumulative payoffs, here qk is some average measure

of action k. Furthermore, they use the exponential selection function

pk(t+ 1) =
eλqk

∑

eλqj
(2.4)

(where λ is a choice parameter). After comparing also belief-based learn-

ing rules, they further conclude that the RL predictions match the reality

closest. Using different averaging mechanisms, their data suggest that play-

ers’ memory is rather short, and that they form expectations about future

payoffs.

Chen and Tang (1998) use a cumulative reinforcement function as in

equation 2.2 with an exponential selection rule as in equation 2.4. Ap-

plying it to public good provision games, they compare its performance in

predicting experimental data with fictitious play as well as the equilibrium

prediction. They find that the empirical results deviate from the equilib-

rium prediction, which predicts the data worst. The RL mechanism fits

data better than fictitious play.

Arthur (1993) proposes a model similar to the ER type of models. The

action strengths q are updated according to equation 2.2. Actions are chosen

according to 2.3. However, the sum of probabilities in the denominator is

normalised to a pre-chosen constant C. Let et be the random unit vector
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defined as

et =











1, x is played at t

0, x is not played at t,

. The cumulative update function in equation 2.2 can be written as

qk(t+ 1) = qk(t) + π(t)et (2.5)

.

Then, let the cumulative payoff until time t be vt =
∑

s<t πs. Let

∆p(t) = p(t + 1) − p(t) denote the incremental change in the probabil-

ity vector e at time t. Because of equations 2.5 and 2.3 one can write

∆p(t) = (πt/vt)(et−p(t)), that is the incremental impact of new experience

diminishes over time at a rate of the order of 1/t. Arthur proposed a model

of the form ∆p(t) = [π(t)/(Ctν+π(t))][etp(t)]. In that model, the incremen-

tal impact of the current payoffs on the action probabilities decreases over

time at a rate of the power of t, which is estimated from data. This is an-

other way of solving the problem of just accumulating experience over time

without possibilities to revise choices. Arthur fits the model to single person

multi-armed bandit experimental data and finds no systematic differences

between simulated and human learning (from Young (1993),pp.11-13).

2.2.2 Experimental Games Using Combined Belief and

RL models

Camerer and Ho (1999) argue that there are two fundamental types of learn-

ing, experience- and belief-based learning. They propose a more complex

approach to experience learning by combining fictitious play with RL. Their

experienced-weighted attraction model (EWA), is described by two central

equations:
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N(t) = ρ ∗N(t− 1) + 1 (2.6)

and

Aj
i (t) =

ϕN(t− 1)Aj
i (t− 1) + [δ + (1− δ)I(sji , si(t))]π(s

j
i , s i(t))

N(t)
(2.7)

N(t) denotes the experience weight, and Aj
i (t) the attraction of strategy

j for individual i. si(t) is i’s strategy at time t, and s i are the strategies

of all other players. The function I(sji , si(t)) is an indicator function and

equals 1 if sji = si(t), and 0 otherwise. The payoff π is obtained by player

i if he chooses sji , given the behaviour of the other players s i(t). ρ, ϕ, and

δ are the parameters of the model. The initial values of N(t) and Aj
i (t) are

priors and may be initialised with some experience level the players already

have.

For N(0) = 1 and ρ = δ = 0, the model reduces to pure cumulative

reinforcement learning. For δ > 0, experience collection is expanded to

actions not played by observing the other players in the game. If ρ = ϕ and

δ = 1, the model reduces to weighted fictitious play; for other parameters,

the learning represents a mix of RL and fictitious play.

The action selection function has an exponential form and is given by

P j
i (t+ 1) =

eλA
j
i (t)

∑mi

k=1 e
λAk

i (t)
(2.8)

where the choice parameter λ determines how strongly differences in the

attractions translate into choice probabilities, and mi is the number of pos-

sible actions player i can use. If λ is very large, small differences result in a

high probability relative to the smaller attractions. If λ is small, differences

are ignored until the distance becomes reasonably large.
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Camerer and Ho test this model with data from constant-sum games,

among them the games from Mookherjee and Sopher (1997), and com-

pare EWA with random, simple RL and belief-based outcomes. The results

show that belief-based learning predicts better than EWA in the simpler

4-strategies games, but worse in more complex 6-strategy games. Contrary

to Mookherjee and Sopher (1997), they find that belief-based learning con-

verges better than RL learning, which they attribute to differences in the

model. For example, Mookherjee and Sopher allowed similar strategies to

influence each other, and they used average instead of cumulative reinforce-

ments; both factors favour their RL rule, while in EWA, these aspects are

reflected in the belief component.

EWA has been criticised as being too complex and requiring overly many

parameters. Therefore, Camerer and Ho developed in Camerer et al (2007)

a simplified version of EWA, ‘self-tuning EWA’, by fixing most of the pa-

rameters and only estimating ϕ and δ with dynamic functions. If a player

detects a change in opponents’ play, ϕ is adjusted to allowing more experi-

mentation, and vice versa (becoming pure RL in stationary environments).

The attention function sets δ to 1 if the foregone payoffs are higher than

the actual received payoff, so that alternative strategies are reinforced, and

the agent eventually may switch to one of the superior actions. If there

is no better choice available, δ is set to 0, thereby supporting an RL-like

lock-in into the best response strategy. Comparing the predictive power of

full and simple EWA, they find that self-tuning EWA is not as good as the

original approach, but produces very similar results. This applies especially

if parameters are estimated for the same class of games. Self-tuning EWA

predicts better if parameters are estimated jointly for different games.

Chen and Khoroshilov (2003) compare different learning models - EWA,

the PA model and simple ER learning - in coordination and cost-sharing
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games with two players. They find that PA fits best to the data, followed by

EWA and RL. When estimating parameters over different games (pooling)

PA does best. An exception is cost-sharing games with an average-cost

distribution among players. Under this mechanism, the cost is distributed

evenly, and thus experimentation in one agent triggers experimentation in

the other players. None of the models converged to the observed data.

Stahl (2000) develops a model in which players learn to choose among

different strategies following simple decision rules. Players know the strate-

gies played by their opponents. Analogously to other learning models, rules

in the rule space that were successful in the past are more likely to be se-

lected. The rule space can be thought of as composed of basic, or ‘archetyp-

ical’, rules, from which more complex behaviour can be constructed. The

evidence of every rule is assessed, and the probability of choosing that rule

is derived using an exponential selection rule. This evidence is, e.g., the ex-

pected payoff given the opponent’s strategy in t-1. Based on such reasoning,

Stahl defines five strategies (e.g. strictly dominated vs. Nash equilibrium

strategies) which are first tested in experiments, and then fitted to the data.

He finds that the model fits the data better than the equilibrium prediction

and random outcomes. The model uses nine parameters, which is found to

be the required minimum to fit the data well. Furthermore, evidence from

the experiments suggests that real humans do not gather evidence about all

rules as proposed by the model, but rather focus on subsets.

2.2.3 Analytical Approaches with Simple RL Models

Many authors have analysed the properties of learning rules, and try to

establish conditions under which the actions of players converge to the op-

timal action (in single-player decision problems) or equilibrium (in games).

Typically, the proofs for convergence rely on stochastic approximation the-
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ory. Early work mostly established results for limited classes of games or

simple one-player decisions. Only more recent articles (e.g. Beggs 2005;

Hopkins and Posch 2005; Gotts et al 2007) could state more general results

for the boundary behaviour for the process, and larger classes of games.

ER models Some authors have analysed the ER learning rule (Rustichini

1999; Laslier and Walliser 2005; Beggs 2005; Rustichini 1999; Hopkins and

Posch 2005) in single decision and game contexts.

Rustichini (1999) considers optimal properties of selection rules under

full and partial information in a single player context. Under full infor-

mation the player knows opponents’ strategies, under partial information

only its own actions. He finds that with a linear rule (as in equation (2.3)),

convergence to the optimal choice is guaranteed. It is not with the exponen-

tial rule, which weights differences between payoffs higher and thus might

speed learning up. Moreover, exponential procedures (as in equation (2.4))

are best in the full information case, but not for partial information: Linear

learning is too slow in full information environments, so the process is more

likely to lock into sub-optimal interior points of the strategy space, rather

than the optimum.

According to Laslier et al (2001) the cumulative RL problem can be seen

as an urn model, from which balls are selected with unequal probability over

the repetitions of the game. Describing this process with ordinary differ-

ential equations (ODE), they first analyse the resulting stochastic process

for single player situations and show that the process converges to choosing

only payoff maximising actions. For 2x2 games they state that the ER rule

converges with positive probability to a Nash equilibrium. If the game has

two pure equilibria, the process converges with positive probability to any

one of them, but not to a mixed equilibrium. However, they cannot prove
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that the process converges with probability 1.

Building on stochastic approximation theory, Beggs (2005) considers 2x2

constant-sum games with unique pure or mixed equilibria and generalises

Laslier et al (2001). Players using RL cannot be forced permanently below

their minimax payoff, independent of their opponent’s strategy. Similarly,

dominated strategies are always eliminated over the course of time. If both

players play RL, the probability that both players converge to the unique

equilibrium, tends towards 1.

Hopkins and Posch (2005) provide more general results about the re-

lationship of the RL processes with the well-analysed replicator dynamics

approach from evolutionary game theory (Smith 1982). They find that

Arthur’s model (Arthur 1993) as well as ER-type models converge only to

boundary points which are a Nash equilibrium. This is easier to show for

the Arthur model because the action strength updates (step sizes) are of

the same size, while the reinforcements in ER can change at different rates.

They show that RL will not converge to boundary points that are linearly

unstable under the replicator dynamics.

Averaging models In PA, a decision maker faces for a number of times

an identical decision problem. The players assess expected payoffs myopi-

cally by estimating the expected payoff using average returns per actions.

They choose the action with the expected maximum payoff (i.e. choice is

deterministic). Sarin and Vahid (1999) show that this model converges to

choosing the objective maximin strategy if learning is slow. If players are

more likely to experiment, players converge to the strategy yielding the

maximum possible payoff.
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Aspiration level models The reinforcement problem in aspiration level

models has been also been studied by several authors, and has been sur-

veyed in-depth by Bendor et al (2001a). Here, some representatives of this

approach are described.

Gilboa and Schmeidler (1996) present a case-based reasoning (CBR) ap-

proach. The decision maker faces a number of different situations or ‘states’,

and must make a choice in such situations. In dynamic environments, aspi-

ration level (AL) updating rules have to be ambitious enough to search for

the best result in various situations. In more static environments, it must

be realistic, i.e. close to actual payoffs. Both properties must be combined,

as a way to search ambitiously for a best strategy, and then to stick to this

choice after the expected values of the strategies can be estimated. They

show that under these conditions, a case-based decision-maker can learn to

become an expected-utility maximiser.

Extending their work on RL with fixed AL, Boergers and Sarin (1997)

develop a model with endogenous aspirations and cumulative rewards. In

Boergers and Sarin (2000), a single player chooses between two strategies.

They show that the process can converge to the optimal choice. Endogenous

aspiration levels improve performance by avoiding high dissatisfaction with

even the best available strategies, but can lead to probability matching.

During probability matching, both strategies are played at the same proba-

bility at which they generate benefits, whereas optimal strategies should be

played with probabilities close to 1 for behaviour to be considered ‘rational’.

This can happen when the initial aspiration levels are too high, so that also

dynamic adaptation of the aspiration level cannot lead to a lock-in.

While Boergers and Sarin and Gilboa and Schmeidler establish results

for single player decision problems, other authors extend the results to
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games. Karandikar et al (1998) first analysed a prisoner’s dilemma. The

aspiration levels of both players are updated simultaneously with the re-

ceived reward, and approximate long-run averages. The main result is that

cooperation is sustained if there are no trembles (i.e., externally imposed

changes or noise on the AL’s) to the AL’s and the speed of updating the

AL’s is low. Introducing perturbations into the AL changes the process,

and may lead to different equilibria. However, in the long run, the process

returns to the cooperation path. The intuition behind these results is that

the mutual dissatisfaction with non-cooperative payoffs triggers experimen-

tation until some state is achieved that yields high enough satisfaction (the

point where AL and current payoff converge).

Karandikar et al (1998) is modified and extended to arbitrary games

and a larger class of learning rules in Bendor et al (2001b). Similarly, Napel

(2003) applies the model to an ultimatum game and shows that in the long

run players almost surely achieve the equilibrium state. Which equilibrium

depends on the initial conditions and the stability of aspirations, which are

allowed to vary randomly. If such trembles are rare and learning is slow,

the available surplus will be shared efficiently. If there are perturbations in

the aspiration level, any equilibrium is supported.

Gotts et al (2007) look at the behaviour of the BM rule with aspirations

in a prisoner’s dilemma, generalising earlier insights of Flache and Macy

(2002). They show that the system has two attractors - either a mixed

strategy equilibrium (a so-called self-correcting equilibrium SCE) or both

players cooperate with probability 1. If learning is slow, the system con-

verges in the long run to cooperation. In the medium run however, the

process moves towards the SCE. RL thus can exhibit very different results

depending on the length of the period considered.
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2.2.4 Cognitive Approaches

This section reviews two approaches of a more cognitive nature stemming

from Artifical Intelligence AI. Still being based on own experience, they

provide mechanisms to make the agent aware of different conditions in the

environment.

CLARION The cognitive architecture CLARION (e.g. Sun and Slusarz

2005) was designed to capture implicit and explicit learning processes in

humans. The main assumption is that there are two different levels of

learning: A subsymbolic ‘bottom’ level and a symbolic ‘top’ level. The

‘bottom’ level represents low-skill, often repetitive tasks for which learning

proceeds in a trial-and-error fashion. Knowledge on this level is typically

not accessible, and it is difficult to express such skills with language. On

the symbolic level, knowledge is directly accessible and can be expressed

with language. This level typically represents more complex knowledge. It

can be acquired by experience, but also by explicit teaching.

The input state is made up of a number of dimensions, and each di-

mension may specify a number of possible value or value ranges. Action

selection takes place using RL in the bottom level, or by firing production

rules on the top level. Which level is used is determined stochastically. Af-

ter the action was performed, top and bottom levels are updated with the

feedback received from the environment.

At the bottom level, the RL mechanism is implemented with a neural

net. The input layer is constituted of the values of the input state. Three in-

termediate layers are used to compute Q-values (allowing memory of action

sequences), while the fourth layer chooses an action according to standard

reinforcement learning (similar to equation (2.10)).
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At the top level, the rule conditions are constructed out of the input

dimensions, their consequents from actions available to the agent. The rules

are, for compliance with the bottom level, implemented as network. Rule

extraction, specialisation and generalisation are determined by feedback

from the subsymbolic level: If there is no rule matching the current state and

the action performed well according to some performance criterion, a new

rule is created with the current state as the condition, and the performed

bottom level action as consequent. If rules matching the current condition

exist and the action was successful, the matching rules are replaced by a

generalised version by adding another input element to the condition. The

covered rules are deactivated, but might become reactivated if specialisation

is applied to the new rule at a later stage. Conversely, specialisation means

the removal of an input value from the condition and is triggered when the

result of an action was not successful in the specified condition. Deactivated

rules are reactivated if the specialised rule does not cover them any more.

An information gain measure that estimates the performance of rules under

different conditions serves as the success criterion.

This model is applied in Sun and Naveh (2007) to a ‘stone-age economics’

simulation in which agents belonging to a group collect and contribute food.

An agent might cheat and not contribute, which is punished with some

probability. They show that their adaptive agents are able to reproduce

results of the same model with more deterministic strategies investigated

before (Cecconi and Parisi 1998). They also investigate the properties of

the emerged survival strategies. For example, it turns out that relying more

strongly on the top level enhances performance, and that higher probabil-

ities of rule generalisation are beneficial only when less importance rests

with the bottom layer.
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Learning Classifier Systems Learning Classifier Systems (LCS) also

aim at the extraction of rules. The basic idea is to start with a set of

initial rules (classifiers) and to evolve this set over time by application of

mechanisms for modification, deletion and addition of new rules. Whereas

earlier LCS, as introduced by Holland (1975), relied mostly on the Genetic

Algorithms paradigm, newer versions have more in common with RL ap-

proaches and so have also been described as generalised RL (Sigaud and

Wilson 2007).

An LCS consists of a population of classifiers. A classifier contains a

condition part, an action part, and an estimation of the expected reward.

Typically, the condition part consists of the three basic tests 0 (property

does not exist), 1 (property exists) and #. # represents a generalisation

and stands for both 0 or 1. A classifier has one action as a consequent,

but typically several classifiers match a condition in the environment and

hence compete with each other. The action to be executed is then selected

according to some RL mechanism (e.g., the ϵ-greedy policy, which selects

the best-performing action at a rate of ϵ, 0 < ϵ < 1 tries a random action).

Many LCS use a Genetic Algorithm to create new rules by selecting and

recombining the fittest classifiers from the population (where fitness is, e.g.,

the expected reward received from the environment). A covering operator is

called whenever the set of matching classifiers is empty. The operator adds

a classifier matching the current situation with a randomly chosen action to

the population. Sophisticated systems may limit the population size, and

add corresponding eviction and generalisation procedures.

Newer families of classifier systems, like anticipation-based classifier sys-

tems (ACS, Butz (e.g 2002)), do not rely on evolutionary methods. They

extend the classifier representation with the description of the next state and
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build a model of transitions. A specialisation mechanism is applied when

the classifier oscillates between correct and incorrect predictions, indicating

that a splitting of the condition might improve the match. Generalisation is

based on complex algorithms that estimate whether generalisation will re-

sult in an improvement (see also Sigaud and Wilson (2007) for an overview

of LCS).

Applications in Economics have usually used Holland-type classifiers.

Markets of different kinds have been modelled using LCS, for example, the

market for electricity (Bagnall and Smith 2005), for fish (Kirman and Vriend

2001b), or stock markets (e.g. LeBaron et al 1999).

In Bagnall and Smith (2005), the UK electricity market is modelled.

In the model, there are a number of electricity generating agents. Each

agent must produce an offer bid per day for the amount of electricity it

wants to produce. The strategies are determined by three factors - capacity

constraints, demand and capacity premiums (for particular time slots in

a trading period). By this, a 10-bit vector of states, denoting different

demand, constraint and premium situations is constructed. The model

is used to model various scenarios. For example, they reproduce actual,

observed bidding behaviour.

Kirman and Vriend (2001b)’s model represents a wholesale fish market,

in which buyers and sellers are matched. Buyers resell the fish, and their

payoff is given by the difference of the prices they pay and a fixed price they

receive. Analogously, sellers’ profit is determined by the difference of their

costs and the selling price. Classifiers are used for several decisions, such

as deciding stock levels, or buying and selling prices. Furthermore, buyers

may become loyal by choosing to return to a seller; sellers remember their

customers and may reward loyalty by lowering their ask price. It turns
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out that loyalty develops as buyers and sellers realise simultaneously the

benefits: Returning customers allow better planning of a seller’s stock and

continuous profit flow, for which lower prices are accepted; because of these,

customers learn to return.

The stock market model of LeBaron et al (1999) aims to reproduce actual

stock market behaviour in an artificial stock market. In the market, there

are trader agents whose task is to make forecasts about the future price of

assets. The expected price is used in their demand functions, which then

determines the amount of assets to purchase. The agents base their forecasts

on hypotheses or candidate rules, of which a single agent maintains 100.

These rules map conditions of the environment into forecasts. The state

vector is 12 bits long. The conditions are given by dividend/price ratios

and comparisons between current price and average prices, which describe

the value of an asset given the market conditions. LeBaron et al (1999) are

able to reproduce features of price time series taken from real markets.

Summarising, LCS are a way to represent learning where the environ-

ment is dynamic and unclear which possible rules are best for the agent’s

performance. They are, in principle, a directed search among candidate

rules: Starting from a large set of possible rules, those are selected that

perform best in the environment the agent is in. Weaknesses of LCS have

been handled in the newer approaches - for example, by modelling state

transitions. However, the mechanisms when to apply generalisation and

specialisation are complex. In this sense, LCS can become relatively ’heavy’

models of mental processes. It has been suggested that using simpler RL

methods is sometimes easier and better tractable (e.g. Holland et al 2000).
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2.3 Concept

As the literature overview in the previous section showed, there is substan-

tial literature, mainly in the area of simple games. Fewer authors attempted

to develop cognitive strategic models. Each approach has its limitations

with respect so ACE modelling. Thus, a cognitive architecture covers psy-

chological details social scientists are often not interested in. LCS are a

rather technical approach to learning. For some domains and problems, the

representation system might not be adequate (Schuurmans and Schaeffer

1989). In particular, the representation of knowledge as bit strings may

introduce problems. For example, it is difficult to represent more abstract

knowledge like relational operators such as greater, smaller etc. To cover

large value spaces, it would be necessary to represent each single value as

bit in the string. Thus, representing fish prices from 0 to 1000 in Kir-

man and Vriend (2001b) would become difficult, or at least require implicit

knowledge about the domain to set up the classifiers adequately.

The main contribution of the computational approach presented here

is the formulation of a learning model that covers simple as well as more

cognitive modes of learning. From a theoretical point of view, it should be

a mixed model. As a computer model, it should be valid in the sense of

reflecting simple, but realistic decision making, and simple in the sense that

it focuses only on decision mechanisms in social and economic contexts. It

should therefore be more specific as a cognitive architecture, and have more

natural and broader representation features as LCS.

A simple framework covering these goals is readily available since the

early contributions to bounded rationality (Simon 1956a;b) and actually

has not changed substantially since then. This framework is based on the

following components:
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– The set of behaviour alternatives A

– The set of choice alternatives A′ for bounded rational or computa-

tionally less powerful individuals; this set may be only a subset of

A.

– Possible future states S

– Payoffs connected with S, represented as a function of S, V (s).

– Probabilities for S. There is uncertainty which state occurs after a

particular behaviour, i.e. there may be more than one.

Bounded rational individuals do not typically know the mapping from be-

haviour alternatives A to future welfare V (s). A possible strategy to learn

about the occurrence and the desirability of these future states is accord-

ing to Simon: Start with a mapping of each action alternative a ∈ A to

the whole set of S. Using a utility function such as V (s) ∈ {−1, 0,+1},

find S ′ ⊂ S such that (expected) V (s) = 1. Then gather information to

refine the mapping A → S ′ (i.e., which actions lead to which result under

certain conditions) and search for feasible actions A′ ∈ A that map to S ′

(Simon 1956b). In other words, an agent’s goal is to find the states which

satisfy its needs, by exploring the state-action space by applying alternative

behaviours.

The translation of Simon’s framework into an executable algorithm can

be captured best with the concept of mental models. A mental model is

an internal representation of an external reality. The agent builds it using

experience, its perception, and its problem-solving strategies. A mental

model contains minimal information, is unstable and subject to change and

used to take decisions in novel circumstances. A mental model must be

‘runnable’ and able to provide feedback on the results. Humans must be
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able to evaluate the results of actions or the consequences of a change of state

(Markham 1999). It is assumed that an agent is only interested in its own

welfare, and its goal is to find suitable behaviour strategies that optimise

utility under different conditions. Information processing and memory are

costly, so that the internal model being built has to be minimal and efficient

with respect to the agent’s welfare. The main principles an algorithm has

to account for can roughly be summarised as follows:

Evaluating cognitive cues In any state of the environment, the agent

must be able to choose an action. If low or even negative rewards are

experienced, the agent can attempt to apply a different action. If this fails

to improve the agent’s welfare, this is a hint to pay attention to more cues

from the environment and distinguish better between situations.

Deciding what to know Paying attention to all cues is computation-

ally expensive and memory limited; humans must filter out certain aspects

of their perception in order to decide and act effectively. The agent has

to ‘decide what to know’ (Rubinstein 1998). What information is useful

depends on how it helps to improve the agent’s welfare. This can only be

tested by using the accessible information while acting. Since the usefulness

is unknown initially, the decision procedure can be seen as a search over all

possible state-action mappings. If the agent is satisfied with a mental model

containing a subset of these mappings, it might stop searching for a better

model or decrease its search intensity. As a rule of thumb the agent fol-

lows the most promising direction. If a certain configuration of mappings

increases welfare, it tries to improve this configuration, e.g. by specialising

the contained information.
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Updating a cognitive model If the environment changes, some aspects

of the internal model might become obsolete. The agent will then experience

a change in utility. In certain states, learning a new behaviour might be

sufficient. However, it might also be that the representation of the state is

not accurate anymore (e.g. a new type of agent appears). In this case, the

representation has to be changed, e.g. by removing old representations and

start the search process anew for certain parts of the model.

A similar idea has been used in Gifford (2005). In this model, agents

have limited information about future outcomes of opportunities (e.g. stock

returns), and have to decide whether to evaluate new, or to stick to old

behaviours (e.g. buying a new stock). Attention is a scarce resource, so

that evaluating alternatives becomes costly. It turns out that the higher

this cost is, the more ‘irrational’ the behaviour; if cost is neglected, and

agents can spend more effort on evaluating future expected states, behaviour

approximates more rational decision-making.

2.4 The Algorithm

The basic idea of the ‘Bounded Rationality Algorithm’ (BRA) is to build

an internal, flexible model of the environment the agent lives in. The en-

vironment is accessible by the input state s defining the current ‘situation’

the agent is in. The input state is matched with an internal symbolic rep-

resentation Ci ∈ C = {C1 . . . Cn} of the state. The agent then chooses an

action according to the general form ri : Ci → A. A is the action set, C

is the set of all possible conditions that can be generated from the input

dimensions, and Ci is a collection of conditions derived from C.

The next paragraphs develop the algorithm in detail.
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2.4.1 Reinforcement Learning

RL is used to implement the dynamic aspect of knowledge generation in the

model. In each state agents learn by trial and error which action to apply

in a given state. Successful actions are rewarded. Actions which yield a

higher reward are selected with a high probability in the future, whereas

bad actions, receiving a lower reward, are selected less often. The history

of these reinforcements is summarised as action strength q. Whenever an

action a has been applied, the strength is updated with the reward p(t)

observed for that action by the following equation (Sutton and Barto 1998):

q(at) = q(at−1) + γ(p(t)− q(at−1)) (2.9)

This action-value function updates the strength of the current action based

on the weight γ of previous experiences and the current reward. It is a

method to approximate the true value of q(a) out of a sample of values.

The smaller γ, the stronger the impact of past experiences; conversely, for

γ = 1 only the reward of the last action is considered, and all previous

experiences discarded. Thus γ determines the speed of updates.

In the next step, the action probability is calculated according to the

selection function:

pr(ai,t+1) =
eq(ai)/α

∑

j e
q(aj)/α

(2.10)

This exponential selection function determines each action’s selection prob-

ability depending on its own strength relative to the strengths of the alter-

native actions. The parameter α is a parameter that determines the rate of

exploration. The influence of the action strength on the selection probabil-

ity decreases as α grows. For large α, the selection probabilities approach

uniform values. Sutton and Barto (1998) report that for many problems,

α values of about 0.1 turned out to achieve a good balance between explo-

ration and exploitation of learnt behaviour. For many problems, α values
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approaching 1 translate into selection probabilities smaller than the original

action strengths, so that too large values quickly stop being useful for the

learner. Finally, as α→∞, each choice becomes equally likely.

2.4.2 State Space Partitioning

Learning by doing as described above happens for a given state s. This

section describes how states are represented and perceived in the agent’s

internal world model.

Representation The state s is represented internally as a collection of

attributes {att1 . . . atti}. Each attribute can have a number of possible

values, for example nominal values such as ‘low’ or ‘high’, or numerical

ranges, e.g. 0-1000. Attributes are connected by simple predicate logic.

For example the predicate ‘(profit=low or profit=medium or profit=high)

and (sales 0 < sales < 1000)’ could describe the situation of a firm in the

dimensions profit and sales. This representation is called a ‘state descriptor’,

and formally denoted Ci. To each state descriptor actions are bound from

which the action policy for this state can be learnt. In the firm example,

actions could be an array of price levels. This binding constitutes formally

the mapping ri : Ci → A.

The agent starts with a model covering all possible states. This ini-

tial model contains a root state description or a set of disjunct root state

descriptions; each root descriptor contains all attributes with their value

spaces relevant for this partition, thus the coarsest representation possi-

ble. In consecutive time steps, specialisations are developed stepwise by the

application of a heuristic search method. For this, the space of state descrip-

tions is represented as a tree, where nodes at higher levels contain coarser,

and nodes at a deeper level of the tree finer mappings. Finer grained descrip-



CHAPTER 2. A COMPUTATIONAL FRAMEWORK FOR MODELLING

LEARNING 37

tions are ‘expanded’ from the predicates at higher levels. Coarser grained

descriptors can be generalised again if the more detailed descriptors do not

perform better than the parent. Which descriptions are expanded depends

on a heuristic evaluation function, which here is the agent’s utility. Each

state descriptor has a value that describes this utility. The task of the search

process is thus to find the level of detail that describes the environment in

such a way that generates the highest welfare for the agent.

Depth-first search principle The path the expansion mechanism takes

follows a depth-first search paradigm. If finer grained descriptions increase

welfare this path is followed further, that is, the mechanism assumes that

the most accurate state descriptions are best. Using a tree-search approach,

this corresponds to a process in which a single node on level h is expanded

to level h + 1 according to some performance criterion, while the siblings

on level h are not taken into account. The path this process takes is rep-

resented by the ‘search path’. Each node the process expands is added to

this path, and removed when it is generalised. The search path is thus

a list which contains all nodes of the tree that are relevant for the model

specialisation and generalisation methods. These methods are described in

the next paragraphs.

State expansion mechanism Before the internal model is updated, the

agent acts in its environment over a period µ. During this period, the value

of existing state descriptions R = {r1 . . . rn} is updated using feedback from

the environment. After each µ steps, the state expansion mechanism is ap-

plied: First the node rexpand with the highest value on the search path is

selected. If the search path is empty, a root node is selected. From there,

the next level of the tree is expanded by partitioning the value spaces of

the attributes constituting the conditions of rexpand. For attributes having



CHAPTER 2. A COMPUTATIONAL FRAMEWORK FOR MODELLING

LEARNING 38

discrete values, one value is picked randomly. Attribute values representing

numeric ranges are split in half. For each partitioned attribute a new con-

dition is created containing the partitioned attribute values or value range,

and the remaining original attribute values (i.e. the number of successor

nodes equals the number of attributes × 2 in the original condition). The

conjunction of the predicates of the resulting level (after reduction) is equiv-

alent to the expression of the parent node. By mapping A to each newly

created condition set the new descriptors R′ are generated. The path from

each r′ ∈ R′ up to the root node is set as search path (without duplicates).

The conjunction of state descriptions with no children in the tree is then

equivalent to the initial state description. The RL mechanism selects ac-

tions only from the matching leaf descriptors. There might be, depending

on the paths that have been expanded, overlapping descriptors. In this

case, for deciding which state is activated some conflict resolution has to be

applied. This could be the selection of random node, or the node with the

highest value. In the implementation used for the models of the thesis (see

also appendix A.2.3), a random node is selected.

For example, going back to the firm example above, of the initial, exhaus-

tive description C ′
initial = (profit=low or profit=medium or profit=high) and

(0 < sales < 1000) the attribute profit is selected, and of its value range the

value ‘high’. The value space of the attribute is divided into the expression

‘profit=low or profit=medium’ and ‘profit=high’, respectively. The result-

ing specialised state descriptions are C ′
1 = (profit=low or profit=medium)

and (0 < sales < 1000) and C ′
2= (profit=high) and (0 <sales < 1000).

Analogously, the sales attribute is split in two intervals and two successor

descriptors generated, so that four successor descriptors are created. Figure

2.1 depicts how a search path is generated by this process.
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Figure 2.1: The agent’s representation of the state space after partitioning all
possible profit situations. Each state is described by a set of attributes and
an action set. Actions executed in this state are updated with strengths s and
selected with probabilities p, which are determined by rewards. The rewards also
determine the state value v.

Model specialisation and generalisation With the state expansion

mechanism it is possible to specialise the conditions in the state-action space

in many ways. A heuristic evaluation function determines the direction of

this process. This function is calculated as follows: First, the value of a

state at time t is calculated as

v(r, t) = v(r, t− 1) + λ(q(at)− v(r, t− 1)) (2.11)

where q(at) is the reward of the executed action in the state described by

r. The function approximates an average of the state description value; the
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speed of update is governed by the parameter λ ∗.

Before an expansion happens, some constraints have to be satisfied: The

parameter χ limits the maximum number of nodes the tree can have, i.e.

the maximum number of situations the agent can differentiate. New states

can only be evolved at the cost of ‘forgetting’ other state descriptions (see

below for deletion). Furthermore, since the deletion of nodes might occur,

it is possible that state descriptions that were deleted are expanded again,

so that endless cycles of generalisation and specialisation occur. The right

balance has to be found depending on the stability of the environment;

preventing many visits of identical descriptions too early can be harmful if

the environment changes; on the other hand, the agent should be allowed not

to become trapped into useless expansion/retraction cycles. So to speak, the

agent is taught that constantly trying the same without effect is worthless.

To tune this balance, a function with a cost parameter ζ, 0 < ζ ≤ 1 is used

to compute a value determining whether the successor description should be

developed or not: The better a state descriptor compared with the average

performance (measured by the average reward at time t, gt = κ(r(ai,t)−gt−1)

†) and the smaller ζ, the more frequent (recurrent) expansions beginning

from that state descriptor are allowed (equation (2.12)).

expand(r) =



























true, if expansions(r) = 0 or

ζ × expansions(r)× g < v(r, t)

false, otherwise

(2.12)

A state description might lead to a good solution strategy, but if only
∗In the implementation used for the models of this thesis, λ is fixed at 0.5. Since v

represents a part of the environment, updates should be not too fast. The medium value
has been chosen as the norm; reasons for adjusting this value in simulations might be
given, but did not arise in this thesis.

†Here again, the update speed parameter κ was set to 0.5 for the simulations in the
thesis. Since g is supposed to be a representative value of reasonably large sample, the
average value of the possible interval 0 . . . 1 has been chosen.
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rarely visited is of limited value (they only use up scarce memory space and

processing capabilities). Therefore, a heuristic function h used by the pro-

cess is the state-value weighted by the number of its activations to account

for the recency of the value:

h(r, t) = v(r, t)
activations(r)

t
(2.13)

The search process selects the node with the maximal heuristic h(r, t)

in the search path, if the expand condition is satisfied. In accordance with

depth-first principle described above, the expandable set of nodes in the

search path are the leaf nodes. h(·) is only applied to those nodes.

Before new states are developed after µ steps, the state descriptions of

the current level of the tree h may be deleted if they did not outperform

the value of their parent states (performance could be, e.g., the average

of the state description values). This is called rule generalisation. A rule

generalisation is the reversal of a finer grained state back to its original

parent state. Generalisations can thus only take place if at least one ex-

pansion has taken place, as the initial state is the all-encompassing state.

Analogously to rule specialisation, the generalisation process sets in after

a certain time ν. While ν is a parameter, the difference between ν and µ

should be reasonably large to allow some re-sampling the state values v(r, t)

of the parent node in case of a contraction. By this fine tuning feature, the

algorithm can correct a wrong search direction before deciding on the next

expansion at the higher level h − 1. If the |ν − µ| is too small, cycles are

more likely: Since the parent node has had the largest value in the past,

the same ‘wrong’ expansion will be made again if there are to few updates,

which possibly decrease the value to their current true value.

Figure 2.2 illustrates how the initial state is expanded and which states

are matched against s. For clarity, predicates are only indicated.
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Figure 2.2: Representation of the agent’s search space at a particular time. Leaf
nodes are active nodes which are matched against s. The hashed nodes represent
the search path along which generalisation and specialisation takes place. P. . .
represent the predicates describing the state.

As an example of the specialisation and generalisation process, figure

2.3 shows a possible path of expansion and retraction of nodes. For clarity,

only the values of the nodes are depicted.

Avoiding local search optima The search process proceeds in a certain

direction. On its way down to more specialised descriptions, it becomes

difficult to revert it. Since the environment is dynamic the search path

may become suboptimal. There is no back-propagation of values, e.g. an

update of the successor states with a discounted value of the current state,

so that more general descriptions higher up in the tree or in other partially

developed paths can have higher, although outdated values. To leave a

certain path and develop different directions in the tree might be difficult;

in the worst case, the current deepest level might decrease in value, become
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Figure 2.3: Example of the agent’s search space at particular time steps and
when nodes are specialised and generalised. The hatched nodes represent the
search path, the numbers describe the value of the state descriptions.



CHAPTER 2. A COMPUTATIONAL FRAMEWORK FOR MODELLING

LEARNING 44

deleted and developed again so that a circle develops. To get back to a

better expansion node can take a long time or even be almost impossible.

To prevent such situations, it is possible to switch the search path. Although

node values higher up in the tree might no longer be up-to date, the agent

uses these values as a hypothesis that they are more promising than the

current path. Switching happens with probability ρ, 0 ≤ ρ ≤ 1, in which

case the highest overall value in the tree is selected as the new expansion

point. The path from the root to this node becomes thereby the search

path.

Figure 2.4 illustrates the switching process. It shows that the result is

similar to generalisation and specialisation. The difference is that the new

path was not reachable because the deepest leaf nodes have a higher value

than their (unchanged) parent. With the switching procedure, there is a

chance that this trap is left.

The complete algorithm is summarised in pseudo-code in the next sec-

tion.
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Figure 2.4: Illustration of how BRA avoid local search optima. The hatched
nodes represent the search path, the numbers describe the value of the state
descriptions.
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2.4.3 The Complete Algorithm

This section summarises the algorithm in pseudo-code.

Table 2.1: Summary of notation

Name Description Value range

γ discount parameter for reward 0 . . . 1
ν interval at which underperforming rules

can be deleted 0 . . . µ
µ interval at which new rules can generated 0 . . .∞
ζ cost parameter determining the frequency

of re-exploring already visited paths 0 . . . 1
χ maximum number of nodes 1 . . .∞
ρ probability for switching the current search path 0 . . . 1
p payoff (reward) 0 . . .∞
gt average payoff (reward) until time t 0 . . .∞
A action set of actions a
qat strength of action a ∈ A 0 . . .∞
prai action selection probability of action ai 0 . . . 1
Ci conditions that can be generated from

input dimensions S
ri A state-action mapping Ci → A
v(r, t) The state value function
h(r, t) = f(v(r, t)) The heuristic selection function

{Setup and Initialisation}

Define the time discount for action updates γ
Define the update-cycle µ
Define the delete-cycle ν, ν < µ
Define the cost of expansion ζ
Define the maximum number of states descriptions χ
Define the probability of switching the search path ρ
Define the search path search path as a subset of R
Define expansions(r) as a function counting the number of expansions
from r
Define activations(r) as a function counting the times r matched a state

Define parent(n) as the parent of a node n in the state-tree T (R)



CHAPTER 2. A COMPUTATIONAL FRAMEWORK FOR MODELLING

LEARNING 47

Define children(n) as a function returning all children of a node n in
T (R)
Define uniform(x . . . y) as a uniform random distribution in the interval
x . . . y

q(a) = 0, ∀a ∈ A
C1 ←[ S
search path← r1 : {C1 → A}

repeat

{Reinforcement learning}

observe reward p(t− 1) received after executing at−1

gt = gt−1 +
1
2
(p(t)− gt−1)

q(at)← q(at−1) + γ(p(t)− q(at−1))

v(r, t)← v(r, t− 1) + 1
2
(q(at)− v(r, t− 1))

activations(r)← activations(r) + 1

compute situation s← [ S

find the most specific mapping ra ∈ search path matching s

prai,t+1
← eqai∗α∑

j,j ̸=i e
qaj∗α

, ∀a ∈ Ara

select action at from the resulting distribution and execute at

{State space partitioning}

{Expand}
if rest( t

µ
) = 0 and |R| < χ then

rexpand ← maxh(r, t), ∀r ∈ search path
if ζ × gt × expansions(rexpand) < v(rexpand)) then
partition rexpand according to expansion mechanism into R′ ←
{r′0 . . . r

′
n}

initialise the value of the new states with v(rexpand,t)
append R′ as children of rexpand
add R′ to search path, remove siblings of R
expansions(rexpand)← expansions(rexpand) + 1
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end if
end if

{Delete obsolete mappings}
if rest( t

ν
) = 0 then

{determine the most recent expanded mapping rexpanded and its
children CH}
CH ← {ch1, . . . chn} ⊂ search path, children(chi) = ∅
rexpanded ← parent(chi)

if v(rexpanded, t) >
1

|CH|

|CH|
∑

i=0

v(chi) then

delete CH
end if

end if

{Avoid local search optima}
if uniform(0, 1) > ρ then
clear search path
rmax ← max v(r, t), ∀r ∈ R, children(r = ∅)
add the path from r1 to rmax to search path

end if

until end of simulation

2.4.4 Compact Notation

After the various mechanisms have been described in detail, the following

conventions might be useful in describing the system in a more concise way:

An agent’s state of mind is represented by a set of state-action mappings

R. There can be k distinct sets of state-action-mappings. Each state-action

mapping Rk ⊆ R consists of a symbolic representation of the state, denoted

by Ck. C is a simple propositional system L of formulae Z and logical

operators Ω, Lk = L(Z,Ω), where a formula consists of terms (variables and

constants) and relational operators. The operation succ(Lk) partitions the

formulae in Lk intom subsets Lk(1 . . .m). By successive application of succ,

i new successors Ck can be generated, labelled Ck
i . The corresponding L

k is
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augmented by the index i to identify it uniquely: Ck
i := Lk

i . Denoting with l

the number of succ operations applied from the initial representation, from

each Ck
i,l=0 new symbolic representations can be generated until succ(Lk

i,l) =

∅. The action set remains constant per k.

Definition 4. A complete state-action-mapping during the process of state-

space partitioning can shortly be described with Rk
i,l : C

k
i,l → Ak. R denotes

the set of mappings, C the set of symbolic representations given by the sys-

tem L, and A the action set. There are k distinct sets of mappings. i denotes

the i-th representation generated by the application of operation succ(Lk
i ) at

the l-th level of successors of the root representation Ck
0,0.

For example: Omitting the index k for k = 1, the variables and constants

{a, b, 0, 1000} and operators {<,>} make up the set Z : {0 < a < 1000, 0 <

b < 1000} of formulae in L0,0. The logical connective ∧ defines the set

Ω. Thus C0,0 : L0,0 = (0 < a < 1000) ∧ (0 < b < 1000) for the initial

symbolic representation. The full mapping is described by R0,0 : C0,0 →

{action1, action2}

succ(L0,0) is given by

L1,1 = (0 < a < 500) ∧ (0 < b < 1000)

L1,2 = (0 < a < 1000) ∧ (0 < b < 500)

L1,3 = (500 < a < 1000) ∧ (0 < b < 1000)

L1,4 = (0 < a < 1000) ∧ (500 < b < 1000)

A corresponding successor representation would be denoted is simply

C1,1 : L1,1, and the mapping written shorthand asR1,1 : C1,1 → {action1, action2}.
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This definition will be useful in the following sections and chapters to

describe in a compact way the different modes of reasoning that can be

implemented with the algorithm.

2.5 Relation to Existing Approaches

To conclude the formal section, BRA is briefly compared put into context

with the existing models and methods given in section 2.2.

BRA attempts to provide a mixed approach to learning by combining

cognitive aspects (rule extraction) and learning by experience. With respect

to the game theory literature, models discussed as mixed models are most

closely related. In detail:

– BRA uses the concept of state-space partitioning to balance experi-

mentation and habitualisation. In new situations, agents find out by

trial-and-error situational adequate behaviour (if it exists). For known

situations, behaviour can become very stable. This is similar to CBR.

Gilboa and Schmeidler (1996) find that rules that experiment in un-

known cases and tend to habitual repetition in well-known situations

are most efficient.

– The update rule in BRA approaches the average reward; a discount

parameter determines the speed of this approximation. This can be

interpreted as calculating the expected payoff, and is thus similar to

the rules used by PA, or in the experiments of Mookherjee and Sopher

(Mookherjee and Sopher 1994; 1997).

– Most simple RL and mixed models discussed in this chapter are explic-

itly designed for (behavioural) game theory. As a computer algorithm,
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BRA is more general (rather a framework), and can be applied to any

sort of model.

As a computational method, BRA is closely related to CLARION and

LCS. As in CLARION and LCS, RL is the most important aspect for gener-

ating action-centred knowledge. Differences exist in the way such knowledge

is used to build the internal models of the environment:

– BRA does not start with a psychological model of skill acquisition

as CLARION or no explicit model at all as machine learning, but a

sociopsychological model of bounded rationality.

– BRA uses a pure symbolic representation of conditions with simple

first- order predicate logic. CLARION has to transform them in a

network structure, LCS in binary strings.

– CLARION modifies rules only after evaluation of bottom level actions;

ACS compares prediction errors. BRA is much less sophisticated here,

using a simple generate-and-test procedure to decide whether a rule

should be specialised or generalised. If the test phase fails (possibly

only after a long time when the environment changes), the generated

rule is deleted again. CLARION as well as ACS keep detailed statistics

and perform complex estimations to decide about generalisation and

specialisation of specific rules.

– BRA starts with a state description covering all possible states and

builds a model by searching heuristically through the space of these

state descriptions that can be expanded logically from the initial de-

scriptor. In CLARION as well as ACS, it is not necessary to describe

the state space fully. If new states are encountered, new rules are
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created on the fly. BRA is thus much more sensitive to characteristics

of the state space. For example, for state variables with large value

spaces, specialised rules would be discovered only at later stages of

the state expansion mechanism. Even if fine-grained differentiation is

useful, they might never be developed because descriptions generated

on the path might not be immediately more successful than more gen-

eral rules, so that the path is not further explored. However, BRA

could be extended to cover initially only a small range of conditions,

adding new attribute values dynamically as they appear in s.

2.6 An Example

To demonstrate the principle, a simple bargaining game was simulated using

the algorithm. The idea of bargaining games is that two players have to

agree on a share after a finite number of offerings. If haggling takes too long,

both players get nothing. A simplified version of such games with discrete

shares is simulated here. In the game, agents can demand a low, medium

or high share of a good. Table 2.2 shows the payoffs. This distribution

of payoffs leads to situation where demanding a low share guarantees a

certain, but low payoff, while demanding a high share may yield a higher,

but uncertain payoff.

In the first simulation, there are N + 1 agents: N/2 agents always de-

mand the highest share, N/2 always the lowest. One agent has no prede-

fined strategy, but learns what share to demand from encounters with other

players. Agents demanding a low share are green, agents demanding a high

share are blue. Each time step, agents are paired randomly and play their

strategy. With each encounter the learner is told which colour the opponent

has. The agent can then use this information to build the state-action tree.



CHAPTER 2. A COMPUTATIONAL FRAMEWORK FOR MODELLING

LEARNING 53

low medium high
low 0.3 (0.3) 0.3 (0.5) 0.3 (1)
medium 0.5 (0.3) 0.5 (0.5) 0,(1)
high 1,(0.3) 0,(0) 0,(0)

Table 2.2: Payoffs of the demand game. The first number in a cell is the payoff
of the row player, the second number the payoff of the column player.

In the second simulation, strategies are assigned randomly to the green and

blue agents. Simulations were run with N = 10 (i.e. the learner encoun-

tered with equal probability a green or blue agent) for 1000 steps. The

model parameters were set at γ = 1, ζ = 0.4, ρ = 0.3, µ = 25, ν = 19. The

parameter χ is not of interest here, because the question is which categories

do emerge; any restriction would be counterproductive. So, χ is set to the

arbitrary high value 100. γ is set to 1 to speed up learning since the en-

vironment is deterministic; ζ = 0.4, ρ = 0.3 are set to moderate values to

prevent excessive switching and cycling but still avoiding traps.

The aim of this simulation is to demonstrate the working of the algo-

rithm, not to explain bargaining behaviour. Therefore, only the evolution

of the state tree of the learner is analysed.

Figure 2.5 shows the result of the tree-building process: The agent has

learnt that it is beneficial to distinguish between the colours of opponents.

When it meets green agents, it demands over 80 % of the time a high share

of the good, while it demands a low share if blue agents are encountered.

The process thus converges to the optimal solution; in most encounters with

each type of agent, the maximum payoff is obtained. With only two possible

states, this distinction is easy to learn, and consequently discovered early

in the simulation. This is shown by the activation frequency of the state

descriptors: In just about 50 steps out of 1000 the initial state description

’opponent is blue or opponent is green’ is used. The deeper levels ’colour is
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Figure 2.5: BRA example 1. Colours correspond to actual strategies of the
agents. The values are fractions of total activations of actions and encounters of
state descriptions, respectively.

Figure 2.6: BRA example 2. Colours are assigned randomly to strategy types.
The values are fractions of total activations of actions, and encounters of state
descriptions, respectively.
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blue’ and ’colour is green’ is expanded quickly and remains stable.

Figure 2.6 shows the result if the colours are assigned randomly: Since

there is nothing to gain from a distinction of colours, the agent does not pay

attention to this attribute. As a result, the agent demands the low share

irrespective of the other player’s colour 80% of the time. Furthermore, the

most frequent state description is the initial state with no differentiation

between colours. Thus, the process converges to the dominant strategy.

Because it is impossible to use colour as an indicator for the opponent’s ex-

pected strategy, the learner chooses the action that yields always a positive

payoff.

2.7 Conclusion and Outlook

In this chapter, an algorithm aiming to replicate simple decision processes of

bounded rational actors has been described, formalised and demonstrated.

BRA contributes to reinforcement learning in social simulation and com-

bines elements of approaches already used by CLARION and learning clas-

sifier systems. However, it is different from these approaches as it is less

general than a cognitive architecture and explicitly built upon a sociopsy-

chological concept of learning. In that sense, the contribution is not the

provision of a better or more efficient problem solution method than, e.g.,

classifier systems. On the contrary, it allows to add cognitive limitations

and human mistakes to a learning agent. For an appropriate representation

of human learning, BRA can, thus, deliberately be suboptimal (if required).

Problem solving methods, however, are typically designed to be efficient. A

major difference and advantage to existing learning approaches is further-

more the use of symbolic state representations. This makes a model more

tractable than, e.g., a binary string representation or neural network. It
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becomes possible to look into the agent’s ‘mind’ and understand its mental

model. By the same means, BRA can also cover more abstract concepts in

an intuitive way.

The motivation of the example simulations was to assess the perfor-

mance of the algorithm from a perspective of verification. Being a simple

simulation, it was straightforward to verify that the algorithm performed

as specified in simple settings. Agents learnt to distinguish simple features

in the environment.

BRA is a very general way of representing learning. It attempts to

represent learning and bounded rationality in a more realistic way - neither

too ‘simple’ (pure stimulus-response), nor too ‘rational’ (full information

and deliberation). The solution in BRA is to combine a rule-based with

an RL-based approach. Being a framework, BRA allows the specification

of different learning models. More precisely, the following typical learning

cases in ACE scenarios can be represented:

1. Dynamic CBR: The agent learns to behave habitually depending on

the situation, without having full knowledge of all possible situations.

This is the most general case described by the previous sections, and

was demonstrated in the example. More formally, this case can be

described with k ≥ 1,
n
∩

k=1

Lk
l = ∅, |Ak| > 1, and succ(Lk

i ) ̸= ∅. For

example C1
0,0 = (0 < a < 1000), A1 = {x, y}, C2

0,0 = (0 < b < 1000),

A2 = {x, y, z}.

2. Static CBR: The agent does not learn rules, but simply learns to

behave habitually for a set of given situations. This case can be de-

scribed with k ≥ 1, |Ak| > 1,
n
∩

k=1

Lk
l = ∅ for k > 1 and succ(Lk

i ) = ∅.

It describes a simple CBR agent who learns optimal actions for a num-
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ber of fixed situations. The difference to the previous case is that the

successor operation returns an empty set of symbols (i.e. ‘nothing’).

3. Pure RL: This case is given by further simplification of CBR (2): k =

1, |Ak| > 1, L0
0 = ∅. There is only one situation, which is described

by an empty condition. The agent becomes a simple reinforcement

learner like those described in the game theory literature review.

4. Combining CBR and LCS: It is possible to combine the case-based

approach of BRA with the classifier idea used in LCS. This can be

described with k ≥ 1, |Ak| = 1 and
n
∩

k=1

Lk
l ̸= ∅. succ may be empty

or non-empty. For example C1
0,0 = (0 < a < 1000), A1 = {x},

C2
0,0 = (0 < a < 1000), A2 = {y}. Here, several mappings ‘compete’

to become the current node from which the single action is selected.

Initially, the competing mappings are likely to become activated with

similar probability (by cycles of generating, testing and deletion of

paths). Once true values of the state-descriptors are approached, the

agent should eventually apply some rules with higher probability even

if the conditions are overlapping. This type of learning is basically a

different form of representing case (1) - instead of deciding between

action x and y using RL, the state value is used as the decision crite-

rion.

5. Fully deterministic: A BRA agent can become fully deterministic by

allowing only one condition and one rule per k. In this case, k ≥ 1,

|Ak| = 1,
n
∩

k=1

Lk
0 = ∅ and succ(Lk

0) = ∅.

Being a configurable computer simulation framework, the features of the

algorithm always depend on the concrete problem modelled. The remaining

chapters 3, 4 and 5 are applications of this framework. More specifically,
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cases (1), (2) and (3) are represented. Case (4) is, in principle, a different

form of case (2) and not further treated. Also, case (5) is not treated since

it is not interesting for most models of human behaviour, but belongs to a

very subconscious mode of learning where nothing about the environment

is known or perceived. In detail, the chapter represent the cases in the

following way:

– The statistical discrimination model in chapter 3 is a representative

of case (1). The model variants treated have a two-dimensional state

space (test results and colours of workers). BRA works on these di-

mensions, expanding further state descriptions and learns the respec-

tive action policies.

– In chapter 4, a simple RL model of network formation is presented,

implementing case (2). The cases are given by the player names in

the simulations. Learning takes place only in the form of RL; there

is no expansion. However, a simple reference model representing case

(1) is compared with the simple RL version.

– In chapter 5, learning is further simplified, representing case (3): Pa-

tients choose between doctors; no additional cases are needed. From

an implementation point of view, RL is realised as case (2) with a sin-

gle condition - if a consumer is ill he becomes a patient; as a patient

he chooses a doctor. To represent this binary choice, a condition is

checked in the rule system of the agent before executing the behaviour.



Chapter 3

Statistical Discrimination

3.1 Introduction

Discrimination is the disadvantageous treatment of individuals based solely

on their membership of a certain group such as race, age or gender. Eco-

nomic discrimination occurs in different domains, e.g., in the housing, in-

surance or labour market. For example, insurance premiums frequently

differ among age groups or gender. Women or migrants more often work in

jobs below their actual qualification as comparably qualified white males.

In labour economics, one speaks of discrimination if members of a certain

group who have the same abilities and skills as other groups ‘are accorded

inferior treatment with respect to hiring, occupational access, promotion,

wage rate, or working conditions’ (McConnel et al 2006; p.428). Typical

forms of discrimination in labour markets are: wage discrimination, where

the disadvantaged group receives a lower wage; employment discrimination,

where the disadvantaged group is more likely to unemployed; job discrimi-

nation where certain groups are restricted from entering certain occupations

irrespective of ability; and human capital discrimination, meaning that the

disadvantaged group has less access to productivity-increasing opportunities

59
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such as schooling or vocational training (McConnel et al 2006; p.428).

In Economics, Becker (1957) first brought forward a theory of discrimi-

nation, which was based solely on preference. He defined employer discrim-

ination as a situation in which employers are prejudiced against a certain

group and prefer to employ members of group A but not members of the

prejudiced group B (the distinction of A for the advantaged and B for the

disadvantaged group will be kept for the remainder of this section). This

taste is assigned a monetary value. The strength of this value is called

discrimination coefficient d. Employers maximise a utility function that is

the sum of profits plus the value of employing members of the particular

groups. Prejudiced employers want to hire B workers at a wage rate of

wB. B workers are hired only if their wage is lower to compensate for the

discrimination coefficient, thus wA = wB + d. If the aggregate coefficient

d′ in the market is sufficiently large, this will create a wage gap between A

and B workers as long as labour supply exceeds demand. The model im-

plies that biased employers earn less due to their preferences, as unbiased

firms can hire more B workers with equal skills at the lower wage. In the

long run, this would eliminate the wage gap, because the number of more

profitable, non-discriminatory employers will increase to the point where

B workers do not have to work for discriminating employers. In reality,

however, differences in wages between groups have mostly persisted.

In the theory of statistical discrimination, on the other hand, inequality

between groups arises endogenously. The reason for discriminatory treat-

ment is based on believed or actual average differences between groups. The

average characteristic is then ascribed to individual members of each group.

When members of the disadvantaged group realise these beliefs and expect

to be treated negatively, they may actually adopt this behaviour, which

reinforces existing stereotypes.



CHAPTER 3. STATISTICAL DISCRIMINATION 61

There are two broad directions of statistical discrimination models. Phelps

(1972) and related approaches build models based on exogenously imposed

differences. The basis of such models are two groups of workers and employ-

ers who observe skills only as a noisy signal, e.g. by using an employment

test. Skill and signal are jointly normally distributed. The noisier the sig-

nal, a worker’s productivity is on average close to the group average. If the

signal is precise, it predicts productivity well. Discriminatory outcomes can

be generated in basically two ways: Either each group’s signal is equally in-

formative, but productivity is different. In this case, one group will receive

lower wages as employers expect productivity to be lower. In the other case

skills are distributed evenly, but signals are differently informative. Work-

ers belonging to the group with the more informative signal receive higher

wages than workers with the same skill belonging to the group with worse

signals.

At the same time, Arrow (1973) proposed a model in which initially

identical groups can evolve into groups with different productivity due to

co-evolving stereotypes on the employer side. In the model, workers invest

in human capital conditional on the expected wage. Employers pay a wage

depending on the skills of the worker, which they observe perfectly after

their hiring. Discrimination can exist if employers expect the skill level of

group B to be lower than that of group A. This reinforces wage expectations

of the workers of the respective groups. If investing in human capital is not

worth the effort for group B, the beliefs of the employers are reinforced,

leading to a self-fulfilling prophecy. The result is an equilibrium in which

one group does not invest and will consequently be assigned the less well-

paid jobs. Coate and Loury (1993) extend this model by making the ex-post

skill observation uncertain, which adds higher uncertainty with respect to

the observability of workers’ actual skill.
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Coate and Loury (1993) is the basis for many models, including dynamic

approaches and laboratory experiments. Also the model developed in this

chapter is based on it and will therefore be described in detail in section

3.2.

The purpose of this chapter is to develop a dynamic model of statistical

discrimination in labour markets using BRA as the learning method. There

already some dynamic models (e.g. Blume 2006); however they use belief

learning methods. Furthermore, the chapter also aims to reproduce the

experimental results of Fryer Jr. et al (2005). Using an agent-based model

has the advantage that not only the aggregate results, but also individual

behaviour can be compared. The research question thus becomes whether

and under which conditions statistical discrimination can emerge in an RL

model, and whether these mechanisms reflect actual human behaviour.

The outline is as follows: In section 3.2 the theoretical literature is dis-

cussed in some detail and in section 3.3 the experimental literature. Empha-

sis is put on the central approaches: The model of Coate and Loury (1993)

(CL); and the laboratory experiment of Fryer Jr. et al (2005), which is

based on CL. The RL model is described in section 3.4, which takes the ex-

periment as the starting point for its specification. The model is calibrated

for the learning and choice parameters of BRA in section 3.5.1. Then, sim-

ulations are run and the dynamics of statistical discrimination analysed in

more detail in sections 3.5.2 and .

3.2 Models of Statistical Discrimination

In this section the central approaches of statistical discrimination are dis-

cussed. For a more complete, recent review, see Fang and Moro (2011).



CHAPTER 3. STATISTICAL DISCRIMINATION 63

In the seminal model of Arrow (1973) groups are ex ante identical; actual

differences between groups are derived endogenously. In the model, firms

offer two types of jobs, skilled and unskilled. Firms have a production

function f(Lu, Ls), where Ls stands for skilled and Lu for unskilled labour.

Unskilled workers receive a wage of wu = f1(Ls, Lu) and skilled workers a

wage of ws = f2(Ls, Lu), where f1 and f2 denote the first derivative of the

first and second arguments of f . Skills are acquired through investment at

cost c, which is distributed according to a distribution function G(·), which

is independent of worker colour.

The proportion of skilled A workers πA and skilled B workers πB is de-

termined by the following process: If a worker is assigned to an unskilled

job, he receives wu, if he is assigned to the skilled group he gets ws, inde-

pendent of the colour. The firm conducts a test which determines the skill

with certainty. If the worker belongs to the skilled group j, j ∈ {A,B}, the

employer pays a wage > 0 and 0 otherwise. For this test, the firm must pay

a cost r. Arrow claims that competition among firms results in zero profits,

so that r can be written as

r = πA[f1(Ls, Lu)− wA],

r = πB[f1(Ls, Lu)− wB].

This implies that

wA =
πB

πA

wB + 1−

(

πB

πA

f1(Ls, Lu)

)

.

Thus, if πB < πA then wB < wA, and the resulting segregation between low-

and high-skilled jobs can be explained by beliefs instead of preferences.

In equilibrium, the fractions πA and πB might differ. Workers invest in

skills only if the expected gain exceeds the costs. The gains are given by

wj−wu for group j workers. The proportion of skilled workers is G(wj−wu),
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that is the fraction of workers whose investment cost is lower than the wage

gain.

Equilibrium is given by

πj = G(wj(πA, πB)− wu), j ∈ A,B.

While in the symmetric equilibrium πA = πB, in the asymmetric πA ̸= πB.

In a situation where most workers of a group invest little, the firms will

perceive the group on average as lower-skilled and assign the unskilled job

to members of that group. This in turn provides little incentive for the

workers to invest in the future, decreasing the average skill of the group.

By this mechanism, self-fulfilling prophecies become possible: Because B

workers are believed to be not qualified, they invest less so that in the end

B workers are indeed less qualified.

The most important difference in Coate and Loury (1993)’s model is that

wages are fixed, and that worker skills are not perfectly observable. In the

model, firms assign workers of type A and B either to a simple task for

which no qualification is required, or a complex task which requires a skill.

The wage for the complex task is w, while the wage for the simple task is

0. The firm’s return x depends on which task was assigned and the actual

qualification: If the worker is qualified and the task complex, the return is

xq > 0; if the worker is not qualified and the task complex, the return is

−xu. If the task is simple, the return is always 0. Workers decide ex-ante

whether to invest in a skill or not. The skill investment cost c is distributed

heterogeneous across workers according to a cumulative distribution func-

tion G(·). This function is independent of the worker group. G(c) is the

fraction of workers with investment costs not greater than c. Firms observe

a noisy signal θ of a worker’s qualification. The signal is drawn from a

uniform interval according to a probability distribution function fq(θ) if the
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worker is qualified, and fu(θ) is the worker is not qualified. fq and fu are

assumed to satisfy the monotone likelihood ratio property that l(θ) ≡ fq(θ)

fu(θ)

is strictly increasing and continuous in θ. This implies that workers who

invested in skills are more likely to receive a positive signal, and that the

ex-post probability that a worker was qualified is also increasing in θ.

The game has three stages. In stage 1, nature draws workers’ types and

investment cost c. In stage 2, workers make their investment decision given

c. As signal θ ∈ [0, 1], the firms observe a test result which is drawn from

the probability distribution functions fu or fq, respectively. In stage 3, firms

decide whether to assign workers to the complex or simple task.

A firm will hire a worker only if it believes the worker is qualified. Since

the signal is noisy and the probability of being qualified is increasing in θ,

a suitable hiring strategy is to set a threshold standard. Workers achieving

the standard are assigned to the qualified task, workers who fail to achieve

this threshold value are assigned to the unqualified task. More specifically,

the posterior probability ξ(π, θ) that a worker is qualified is given by:

ξ(π, θ) =
πfq(θ)

πfq(θ) + (1− π)fu(θ)
=

1

1 +
(

1−π)
π

)

fu(θ)
fq(θ)

The expected payoff is ξ(π, θ)xq−(1−ξ(π, θ))xu. The best policy is to assign

the worker to the complex task only if xq/xu ≥ (1− ξ(π, θ)) / (ξ(π, θ)),

which is equivalent to xq/xu ≥ (1− π/π) (fu(θ)/fq(θ)). The threshold s∗(π)

is given by

s∗(π) = min{θ ∈ [0, 1]|
xq

xu

≥

(

1− π

π

)

fu(θ)

fq(θ)
}.

Employers set the standard sj = s∗(πj), j ∈ A,B, before observing the

actual signal. More optimistic beliefs will lead to lower standards, more

pessimistic beliefs to higher. Thus, if a group is believed to be less qualified,



CHAPTER 3. STATISTICAL DISCRIMINATION 66

investing workers from that group are less likely to get a signal exceeding

s∗.

Rational workers invest only if the cost does not exceed the expected

benefit. The expected benefit depends on the probability that the worker

gets the qualified job, which in turn depends on the standard s∗, and the

gross return from the wage of this job. The probability of getting assigned

to the qualified job is 1 − Fq(s) if the worker invested, and 1 − Fu(s) if

not. The expected benefit can then be defined as β(s) = ω (Fu(s)− Fq(s)),

where ω is the gross return from being assigned to the complex task. Thus,

the worker invests only if c ≤ β(s). The fraction of workers that become

qualified is G(β(s)). β(s) is a single-peaked function of s∗, increasing when-

ever fu(s)/fq(s) > 1, and decreasing if fu(s)/fq(s) < 1, which reflects the

monotone-likelihood property. There is little incentive to invest if standards

are very high or very low. Either the chance to get the qualified job is always

high independent of investment behaviour, or too small to make investment

beneficial.

In equilibrium, employers choose standards that induce workers to be-

come qualified at the rate postulated by the beliefs. Formally:

πj = G(β(s∗(πj))), j ∈ {A,B} (3.1)

A discriminatory equilibrium can exist whenever equation 3.1 has mul-

tiple solutions. Employers may have the belief that a group is less qualified

than the other and consequently, will set higher standards for this group. As

this lowers the incentive to invest, the outcome is a self-fulfilling prophecy.

Figure 3.1 shows the equilibrium graphically. Coate and Loury (1993)

note that not all solutions of equation 3.1 are locally stable under the im-

plicit adjustment process πt+1 = G(β(s∗(tt)). An initial belief close to π∗
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Figure 3.1: Equilibrium in Coate and Loury’s statistical discrimination model.
The x-axis represents the assignment standards s that need to be fulfilled to be
assigned to the qualified task, on the y-axis, π measures the belief how many
workers invest in skills. WW depicts pairs of standards and proportions of a
group investing consistent with optimal worker behaviour (the graph {(s, π)|π =
G(β(s))}). EE depicts the standard-belief pairs consistent with optimal employer
behaviour (the graph {(s, π)|s = s ∗ (π)}). A point s and π that lies on both
curves solves equation 3.1.

converges only to π∗ if the slope of the EE curve exceeds that of WW at π∗.

An unstable self-confirming belief is not robust to small errors in employers’

perceptions, as the resulting standards will not induce workers to engage

into the ’required’ investment behaviour.

Coate and Loury (1993) analyse the implications of this model with

respect to the question whether discriminatory equilibria can be changed

by imposing hiring quotas. They show that there are conditions under
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which negative stereotypes can be eliminated. The idea is that in a non-

discriminatory equilibrium, an employer assigns the complex task to a ran-

domly selected worker with equal probability. This equality is achieved

via an adjustment process of the assignment thresholds sj, j ∈ A,B that

changes the skill investment incentives of both groups. For qualified workers

it becomes more difficult to get assigned to the complex task, while unquali-

fied workers are motivated to increase their skills. Note that in the resulting

equilibrium sA must not necessarily be sB; the concrete value depends on

the initial discriminatory equilibrium. CL illustrate how this process works

by the following example: Consider a situation where the employment test

can take three outcomes: A pass result, a fail result, and an unclear re-

sult. The unclear result corresponds to a signal which can originate both

from investing and not-investing workers. Without affirmative action, firms

assign with probability 1 workers with bad test results to the unqualified

task, and workers with a good result with probability 1 to the qualified

task. If the result is unclear, firms can either follow a liberal or conservative

strategy. Under the liberal strategy, workers are assigned to the complex

task, under the conservative strategy to the simple task. Without interven-

tion, the expected return from the liberal strategy must be large enough to

assign the qualified task. If B workers coordinate on the conservative equi-

librium because employers have low expectations about B productivity, and

A analogously on the liberal equilibrium because of higher expectations, the

outcome is discriminatory. If a quota is introduced in such a state, the em-

ployer must decide whether to assign more B workers, possibly with a bad

test result, to the complex task, or more A workers with ambiguous results

to the simple task. If the expected loss of assigning qualified workers to

unqualified jobs is greater than the expected gain from assigning unquali-

fied workers to the complex task, the firms will assign all B workers with

unclear results, and a fraction of B workers with failed tests to the complex
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task, until the employment quota requirement is achieved. The employ-

ers thus patronise B workers because the assign them the skilled jobs even

though they failed the test. As a consequence, the investment incentives

for B workers might be lower as for A workers. Employers continue to view

members of group B as less qualified.

Most models of statistical discrimination are static models and state only

that discriminatory equilibria might exist. However, how discrimination

comes about is not considered and usually attributed to historical circum-

stances. Only some dynamic models exist, of which the Blume (2006)’s is

described in some detail in what follows.

Blume (2006) considers a stochastic model using ideas from evolutionary

game theory based on the CL model. There are three types of workers: The

common type c can acquire skills at cost c > 0; workers of type 0 have no

cost of investment; and an ’unteachable’ type ∞ with infinite investment

costs. The total number of workers is fixed at M , but the size of each

subgroup may vary. A worker is of type 0 with probability ρ0, type∞ with

probability ρ∞, and of type c with probability 1− ρ0 − ρ∞. ρ0 and ρ∞ are

small. The skill level of the common type is endogenous, while the level of

groups 0 and ∞ is fixed at the beginning (always/never skilled). Workers

believe to get a skilled job with probability ν. On the employer side, there

are two types of firms. Both types value unskilled workers with 0. Type

τ firms value a skilled worker at τ > 0, type σ firms with σ > 0. The

probability that a firm is of type σ is ϵ. The cost of hiring an unskilled

worker is η > 0.

Workers have no opportunity to signal their skill; group membership is

the only marker. Employers have a common expectation π that a worker is

skilled. In each discrete time step, one employer is matched with a worker.
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The probability that this happens is given by q = min{N/M, 1}. The wage

rate for skilled workers is fixed at w; costs are c < w < τ . If a skilled worker

is matched with a firm, he earns w; a worker who is not offered a job goes

to the unskilled labour market and earns 0.

In equilibrium, workers maximise their expected return with respect to

skill acquisition. Firms maximise their profits depending on the expecta-

tions about the skill level of the labour force. Type τ firms hire a worker

only if expected profits are not negative:

πτ − (πw + (1− π)η) ≥ 0

The reservation belief π∗ that a worker is skilled is given by: π∗ = η
τ+η−w

;

this value makes the firm indifferent about hiring or not. It is assumed for

τ -firms that ((1− ρ0)η + ρ0w)/ρ0 > 0, which implies π∗ > 0. Similarly, for

type-σ firms ((1− ρ0)η + ρ0w)/ρ0 < σ. From this follows that type σ firms

will always hire a worker from the disadvantaged group. Whether type τ

firms do so, depends upon its beliefs.

Type c workers believe with probability ν that they will be offered a job,

so that the return to skill investment is νw − c. The reservation belief at

which c workers are indifferent whether to acquire skills or not is given by:

vw − c = 0

The equilibrium is determined by two probabilities: ρf , the probability that

a type τ firm offers a worker a job, and ρw, the probability that a type c

workers acquires skills. Thus, equilibrium is a pair ρf , ρw such that

1. ρf maximises ρf (πτ − πw − (1− π)η)

2. ρw maximises ρw(vw − c)



CHAPTER 3. STATISTICAL DISCRIMINATION 71

3. π = ρ0 + (1− ρ∞)ρw

4. ν = (1− ϵ)qρf = ϵq

Hence, analogously to CL, the beliefs π and ν determine the equilibrium.

Two possible pure equilibria exist: First, full-employment exists when all

workers who can acquire jobs are offered skilled jobs (ρf = 1, ρw = 1, π =

1, ν = q). An underemployment equilibrium is given if type c workers choose

not to acquire skills, and only type σ firms offer jobs (ρf = 0, ρw = 0, π =

ρ0, ν = qϵ). In the full-employment state, all workers find a job, even the

unteachable ones; in the under-employment state, only the workers with

zero investment costs get a job. Statistical discrimination exists if both

full- and underemployment pure equilibria exist. This happens if qϵ < ν∗

assuming that τ > w > c, vu∗ < q, ρ0 < π∗ < 1 − ρ∞. Similarly, if ν∗ < qϵ

then the only pure equilibrium is the full-employment state. The typical

case is ρ0 < π∗ < 1 − ρ∞, as the fractions ρ0 and ρ∞ are assumed to be

small. This is the basis for the dynamic analysis which is described next.

In the dynamic perspective, I workers enter the labour market at each

discrete timestep t. A worker’s lifetime has two periods. In the first period

at t, they acquire skills. In the second period at t+1 they are matched with

an employer. Employers hire workers according to their beliefs. Of the M

workers at time t, Kt will receive jobs, and Jt of the workers with jobs have

in fact skills. Normalising these numbers as fractions defines kt = Kt/M and

jt = Jt/M . From the fractions jt and kt firms and all workers update their

beliefs to πt+1 and νt+1. All knowledge is public. The newly arrived workers

at t = 1 make then their skill investment decision based on νt+1. Since all

information is public, workers can predict firms’ expectations accurately,

so that vt+1 = q if πt+1 ≥ π∗, or νt+1 = qϵ otherwise. If πt ≤ π∗ then

only type-σ firms offer jobs, resulting in the underemployment equilibrium
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(beliefs in the ‘low regime’). If beliefs are πt ≥ π∗, the full-employment

equilibrium results (beliefs are in the ‘high regime’).

The market outcome jt, kt is the result of the belief formation in the

preceding time steps. The stochastic process (jt, kt)
∞
t=0 thus describes the

evolution of the market outcomes. The learning procedure based on public

information described above makes the process Markovian with two tran-

sition regimes. The probability that πt+1 is in low regime depends on the

joint distribution of jt and kt. Blume shows that there are only two such

distributions, leading either the to the high or the low regime. Analysing

the long run behaviour reveals that for most parameter values the process

remains in one of the two regimes most of the time. More specifically, the

parameters π and ϵ determine equilibrium selection. As ϵ → 1 and π → 1

the probability of the high regime goes to 1, and vice versa. As the size of

the market grows, the process is more likely to remain in one of the two

states permanently.

Blume (2006) discusses a number of policy implications. For example,

imposing a hiring quota has the effect of raising ϵ, the probability of being

hired in the low regime. If this change is large enough, the underemployment

equilibrium will disappear. However, also the opposite might happen, and

the probability of the high regime fall to 0: With higher ϵ more workers’

true skills are observed, which makes it more difficult to transit from the

low-regime if the skill level is low. This is the same conclusion as in Coate

and Loury (1993), but there the reason was too low incentives to become

qualified; here the reason lies in employers’ learning abilities.

Levin (2009) presents a similar stochastic model. The main difference is

that time is continuous with workers arriving at a constant flow rate. In the

model, employers observe the noisy test signal ’Good’ or ’Bad’. As in the
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preceding models, workers invest only if expected returns exceed a certain

threshold. The process depends on the probability θ of receiving a positive

signal. As this probability increases, the process moves to a high regime.

Steady states with discriminatory equilibria may evolve. Levin (2009) shows

that even if θ increases for the disadvantaged group, this may still not result

in higher investment so that negative expectations and discrimination will

persist. He also shows that not any increase in θ by, e.g., better access

to resources shifts the equilibrium to high state, but only changes that are

large enough.

The purpose of this short review was to discuss the major models of

statistical discrimination, looking at the dynamics where possible. These

concepts provide the basis of the RL model presented in section 3.4. The

main features of these models are:

– Discriminatory equilibria can exist if the beliefs of both employers and

workers are mutually reinforced.

– Whether a group invests or not depends on employers’ beliefs and the

probability θ of a positive test result.

– Once discrimination exists, it might take strong interventions to shift

the equilibrium from an under-employment state to a full-employment

state.

Further extensions of CL or alternative models are not further treated here.

For reviews see, e.g., Fang and Moro (2011) or Altonji and Blank (1999).

Before presenting the RL model, the next sections looks at statistical dis-

crimination experiments.
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3.3 Experiments with Statistical Discrimina-

tion

Statistical discrimination has been tested in a series of experiments. Before

discussing the experiment of Fryer Jr. et al (2005) in detail, some earlier

experiments are summarised based on the review of Anderson et al (2005).

Davis (1987) studied an experimental labour market in which worker

groups were of different size. If more observations can be drawn from one

group, then it is more likely to produce a higher maximum observation.

If employers focus on this higher draw, this may result in a bias towards

the larger group. In the experiment, the employer group was in the first

period confronted with 80 % of draws from the majority population, in the

second they chose themselves how intensively the respective groups should

be sampled. Still, 60 % of the employers sampled the majority group,

pointing to a mechanism with which a bias towards one group might arise

simply induced by population properties (Anderson et al 2005; p.105).

In the experiment of Anderson and Haupert (1999), workers were divided

into green and yellow groups. The productivity of each worker in each

group was assigned exogenously. Before making a decision, employers could

interview the workers at a certain cost. Anderson and Haupert (1999)

observed that in markets with lower average productivity of one colour,

employers tended to hire fewer workers of that group. They claim that in

the absence of an interview, employers focus on the population average.

This is supported by the fact that employment levels rose after the cost of

interviewing was reduced (Anderson et al 2005; p.106)

Whereas in the previous experiments differences were exogenous, Fryer Jr.

et al (2005) conducted a classroom experiment where productivity and hir-
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ing decision could evolve simultaneously as in the model of Coate and Loury

(1993).

The experiment is set up as follows: Half of the players are employers,

the other workers. Half of the workers are green, the other purple. Workers

are told that their investment cost is drawn from an interval between $0

and $1, and that costs are independent and vary randomly. Workers make

their investment decision after observing their cost. After the decision, a

test result is generated. If a worker invests and gets hired, he gets a wage

of $3.00. If he is not hired, he gets a low-skill job at a wage of $1.50. The

net gain for an investing worker is the wage minus his investment cost. Two

draws of the test are made to determine the final test result. Test results are

represented as marbles in an urn. A blue marble (B) represents a positive

test result, a red one (R) a negative result. The probability that a result

is good is 0.5 if the worker invested, or 0.2 if not. A test result of BB thus

means that the chance that a worker invested is high, a result of RR means

he probably did not invest, whereas in the event of BR (or RB), the result

is unclear. An employer only knows the worker’s colour and test result. An

employer earns $4.00 if a worker who invested is hired; $0.00 if a worker

who did not invest was hired, and $2.00 if the worker was not hired. To

both workers and employers, the hiring rates of each colour are presented,

i.e. information about the market outcome is public.

Two treatments are presented: In the first treatment, investment costs

are drawn for both worker groups over 20 periods from the interval [$0.00,

$1.00]. The second treatment was conducted to ‘investigate the effects of

historical discrimination’ Fryer Jr. et al (2005; p.166). In this treatment,

for the first five periods investment costs for purple workers were drawn

from the interval [$0.5, $1.00], whereas for green workers from [$0.00, $0.5],

so that green workers had higher incentives to invest. For the remainder 15
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rounds, the cost distributions were equal.

In general, Fryer Jr. et al (2005) observe that discrimination emerges

only in some experiments. Of these they present two instances.

In the first experiment discrimination against purple workers emerged

quickly. Around 80-90% of green workers were hired most of the time,

whereas purple workers were hired at around 40-50%. Hiring rates remained

almost constant for green, and slightly improved for purple workers. Invest-

ment rates for both groups increased for some periods, after which they

fell again. Investment costs in the first two rounds was (by chance) higher

for purple workers. This ‘may have been a factor that kept investment

rates much higher for green workers in most periods’ (Fryer Jr. et al (2005;

p.165)). Employers hired always when the test result was BB. Employers

were more liberal with green workers: If the test result was unclear, they

were hired invariably, but only 78% of purple workers. If the result was RR,

employers still hired 64% of green, but only 15% of purple workers. In the

following discussion, it emerged that beliefs that purple workers would not

invest formed quickly, as well as the corresponding belief that this group

is unlikely to get hired. This lead most workers of that colour to decrease

their efforts. Moreover, the consistent liberal treatment of green workers

encouraged most of them in their investment behaviour, while some players

stopped investing because they expected to get hired anyway. Thus, invest-

ment rates for both groups declined in the second half of the game, but for

different reasons.

In the second experiment, it emerged that investment rates of green

and purple workers were similar, although the costs for purple workers were

much higher. They were hired at an only slightly lower rate than green

workers. After step 5, the cost distributions became equal again. Pur-
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ple workers continued to invest at similar rates, while investment rates for

greens dropped quickly, resulting in higher employment for purples (raising

from about 60% to 90%), and lower employment for greens (decreasing from

about 65% to 50%).

Summarising, these results highlight some driving factors in experimen-

tal environments:

– Negative stereotypes can form quickly and are persistent. It might

only take some random perturbations (here, initial cost asymmetries)

to generate these stereotypes.

– Decisions are not independent. The belief that one group is more pro-

ductive leads to the belief that this still holds if bad or mixed outcomes

occur, while the opposite is true for the disadvantaged group.

– The height of the cost does not necessarily have a large impact on the

investment decisions, as long as the return to investment is positive.

3.4 A Reinforcement Learning Model of Sta-

tistical Discrimination

There are n worker agents and m employer agents. Workers are assigned

the colours green and purple with equal probability. Each round, workers

and employers are paired randomly. Employers must decide to hire or not to

hire a worker depending on the result of an employment test and the colour

of the worker. If no investment is made, the worker incurs no cost. The test

outcome might be either good (+) or bad (-). Two draws are made. The

probability of a positive test signal are drawn from two distributions; fq(θ)

if the worker invested, and fu(θ) if not. Table 3.1 shows the payoffs. In the
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following simulations, investment cost c is fixed at 0.1 throughout, so that

there is never a negative payoff.

hire not hire

invest 0.3-c (0.4) 0.15-c (0.2)

not invest 0.3 (0) 0.15 (0.2)

Table 3.1: Payoffs for the RL statistical discrimination model (employer payoffs
in brackets)

This model setup is with minor variations identical to Fryer Jr. et al

(2005). The main difference is that all information is private. Employers

and workers have no information about the employment levels of the respec-

tive groups as in the original game. Another difference is the magnitude of

rewards, which was divided by 10 for this experiment (simply to standardise

values between 0 and 1), and the distribution of players. Furthermore, in

the Fryer experiment, there were as many employers as workers and work-

ers were split exactly half in green, and half in purple. In the simulation,

workers’ groups are partitioned randomly, so that one worker group is often

larger than the other. Moreover, there are only half as many employers as

workers. The reason is to support learning: The smaller the worker group,

the more likely there will be similar behaviour simply by chance, and thus

it is ‘easier’ to discriminate. Similarly, with fewer employers, variation may

decrease by chance, and feed back into worker decisions As a consequence,

only half of the worker population is matched each round, while all employ-

ers act. However, as the simulation results below will illustrate, this seems

not to be necessary for generating discrimination.

Using the BRA approach developed in chapter 2, the agents are imple-

mented as follows: Workers have a simple state-action mapping with an

empty state description and invest/not-invest as action set. Employers, on
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the other hand, may use the different test outcomes and colours of the agents

to construct rules according to BRA. The action set consists of hire/not-

hire. Different ways are possible to generate rules that constitute beliefs

about the relationship between colour and productivity. If the majority

of generated rules are based on colour alone, statistical discrimination is

clearly observable; if rules are only based on test only, there is meritocracy.

Three different setups are considered. Using the convention of definition

4, they can be described as follows:

Variant I In this variant, there is only limited learning. Only if test

results are ambiguous (+- or -+; since both events are equivalent +- is used

as the representative for both from here on) agents may learn; otherwise

employers always hire if the result is good (++), or never hire if the result

is bad (- -). This corresponds to the example constructed by Coate and

Loury (1993) described above. Employers can learn a conservative or liberal

strategy, depending on their beliefs about the productivity of each group -

if in doubt they can either believe that the test comes from a productive

worker or the opposite. The deterministic rules can be described by r10,1 :

C1
0,1 →hire with C1

0,1 :(test-result = ++) and r20,1 : C2
0,1 →not-hire with

C2
0,1 :(test-result = - -). The corresponding initial state-action mapping for

the learning problem is r30,1 : C3
0,1 → A with C3

0,1 : (test-result = +-) and

(colour = purple or colour = green). Using definition 4, the decision model

can hence be described by k = 3, |Ak| = 2,
3
∩

k=1

Lk
l = ∅ and the symbols

in table 3.2. The table describes all possible rules the search process can

expand.

Variant II In this variant, three different sets of state-action mappings

are specified. The first set contains only one initial rule r10,1 : C1
0,1 → A

with C1
0,1 : (test-result = ++) and (colour = purple or colour = green), the
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L1
0 = {test-result = - -}

L2
0 = {test-result = ++}

L3
0 = {(test-result = +- ∧ (colour = purple ∨ colour = green))}

L1
1 = L

2
1 = succ(L1

0) = succ(L2
0) = ∅

L3
1,1 = succ(L3

0) = {test-result = +- ∧ colour = purple}

L3
1,2 = succ(L3

0) = {test-result = +- ∧ colour = green}

succ(L3
2) = ∅

Table 3.2: Description of all possible rules in Model Variant I. The events +-
and -+ are summarised as +-.

second set contains r20,1 : C
2
0,1 → A with C0,1

2 : (test-result = - -) and (colour

= purple or colour = green), and the third set is given by r30,1 : C3
0,1 → A

with C3
0,1 : (test-result = +-) and (colour = purple or colour = green).

Based on definition 4, the model can be decribed by k = 3, |Ak| = 2,
3
∩

k=1

Lk
l = ∅ and the symbols described in table 3.3, which again describes all

possible mappings.

This specification pre-wires some knowledge about the relationship be-

tween test-result and productivity by restricting the possible combinations

of the condition elements. Per mapping, only two rules can be generated,

limiting the maximum number of rules to six. Subjects observe test result

and colour, and based on the test result they start deliberating how to treat

the worker from the respective groups.

Variant III This variant finally poses the most challenging learning task.

The initial rule can be described correspondingly with r10,1 : C
1
0,1 → A with

C1
0,1 : (test-result = ++ or test-result = - - or test-result = +-) and (colour

= purple or colour = green). Agents start with no prior knowledge or

categories at all.
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L1
0 = {(test-result = ++ ∧ (colour = purple ∨ colour = green))}

L2
0 = {(test-result = - ∧ (colour = purple ∨ colour = green))}

L3
0 = {(test-result = +- ∧ (colour = purple ∨ colour = green))}

L1
1,1 = succ(L1

0) = {test-result = ++ ∧ colour = purple}

L1
1,2 = succ(L1

0) = {test-result = ++ ∧ colour = green}

L2
1,1 = succ(L2

0) = {test-result = - - ∧ colour = purple}

L2
1,2 = succ(L2

0) = {test-result = - - ∧ colour = green}

L3
1,1 = succ(L3

0) = {test-result = +- ∧ colour = purple}

L3
1,2 = succ(L3

0) = {test-result = +- ∧ colour = green}

succ(L1
1) = ∅;

succ(L2
1) = ∅

succ(L3
1) = ∅

Table 3.3: Description of all possible rules in Model Variant II. The events +-
and -+ are summarised as +-.

Based on definition 4, this variation of the model can be described with

k = 1, |Ak| = 2 and the symbols in table 3.4.

L1
0 = {(test-result = ++ ∨ test-result = - - ∨ test-result = +-)

∧ (colour = purple ∨ colour = green)}

L1
1,1 = succ(L1

0) = {(test-result = ++) ∧ (colour=green ∨ colour = purple)}

L1
1,2 = succ(L1

0) = {(test-result = +-) ∧ (colour=green ∨ colour = purple)}

L1
1,3 = succ(L1

0) = {(test-result = - -) ∧ (colour=green ∨ colour = purple)}

L1
1,4 = succ(L1

0) = {(test-result = - - ∨ test-result = +-)

∧ (colour=green ∨ colour = purple)}

L1
1,5 = succ(L1

0) = {(test-result = ++ ∨ test-result = - -)

∧ (colour=green ∨ colour = purple)}

L1
1,6 = succ(L1

0) = {(test-result = +- ∨ test-result = ++)

∧ (colour=green ∨ colour = purple)}
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L1
1,7 = succ(L1

0) = {(test-result = ++ ∨ test-result = - - ∨ test-result = +-)

∧ (colour = purple)}

L1
1,8 = succ(L1

0) = {(test-result = ++ ∨ test-result = - - ∨ test-result = +-)

∧ (colour = green)}

L1
2,1 = succ(L1

1,1) = {test-result = ++ ∧ colour = green}

L1
2,2 = succ(L1

1,1) = {test-result = ++ ∧ colour = purple}

L1
2,3 = succ(L1

1,2) = {test-result = +- ∧ colour = green}

L1
2,4 = succ(L1

1,2) = {test-result = +- ∧ colour = purple}

L1
2,5 = succ(L1

1,3) = {test-result = - - ∧ colour = green}

L1
2,6 = succ(L1

1,3) = {test-result = - - ∧ colour = purple}

L1
2,7 = succ(L1

1,4) = succ(L1
7) =

{(test-result = - - ∨ test-result = +-)∧ colour = green }

L1
2,8 = succ(L1

1,4) = succ(L1
8) =

{(test-result = - - ∨ test-result = +-) ∧ colour = purple}

L1
2,9 = succ(L1

1,5) = succ(L1
8) =

{(test-result = ++ ∨ test-result = - -) ∧ (colour = purple)}

L1
2,10 = succ(L1

1,5) = succ(L1
7) =

{(test-result = ++ ∨ test-result = - -) ∧ (colour = green)}

L1
2,11 = succ(L1

1,6) = succ(L1
8) =

{(test-result = +- ∨ test-result = ++) ∧ (colour = purple)}

L1
2,12 = succ(L1

1,6) = succ(L1
7) =

{(test-result = +- ∨ test-result = ++) ∧ (colour = green)}

L1
2,13 = succ(L1

1,7) = {test-result = +- ∧ colour = green}

L1
2,14 = succ(L1

1,8) = {test-result = +- ∧ colour = purple}

succ(L1
2,1) = succ(L1

2,2) = succ(L1
2,3) = succ(L1

2,4) = succ(L1
2,5) =

succ(L1
2,6) = succ(L1

2,3) = succ(L1
2,13) = succ(L1

2,3) = succ(L1
2,14) = ∅

L1
3,1 = succ(L1

2,7) = L
1
2,3

L1
3,2 = succ(L1

2,7) = L
1
2,5
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L1
3,3 = succ(L1

2,8) = L
1
2,4

L1
3,4 = succ(L1

2,8) = L
1
2,6

L1
3,5 = succ(L1

2,9) = L
1
2,2

L1
3,6 = succ(L1

2,9) = L
1
2,6

L1
3,7 = succ(L1

2,10) = L
1
2,1

L1
3,8 = succ(L1

2,10) = L
1
2,5

L1
3,9 = succ(L1

2,11) = L
1
2,2

L1
3,10 = succ(L1

2,11) = L
1
2,4

L1
3,11 = succ(L1

2,12) = L
1
2,1

L1
3,12 = succ(L1

2,12) = L
1
2,3

succ(L1
3) = ∅

Table 3.4: Description of all possible rules in Model Variant III. The events +-

and -+ are summarised as +-.

3.5 Simulations

Simulations are run in three steps:

1. First, the model is explored to find the RL parameter settings for

α and γ that are capable of generating discrimination. The other

parameters are fixed. The results of the optimisation procedure are

looked at in some illustrative simulations.

2. Using the results of these exploratory simulations, the RL parameters

are fixed and more simulations with a larger number of agents and

more repetitions are run. The key statistical discrimination parameter

θ is varied. The aim is to obtain representative samples of the model

behaviour.
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3. Some more specific scenarios modelling existing negative stereotypes,

taste-based discrimination and variation in investment costs are run to

analyse further which features are responsible for generating statistical

discrimination.

3.5.1 Exploration

The aim of this section is to find out which model setups under which

parameter settings are able to generate statistical discrimination. For this,

many simulations with few agents and many α and γ parameter settings

are run and optimised using a Genetic Algorithm (GA) as a stochastic

optimisation method. The following paragraphs describe the procedure used

and the outcome of these simulations.

3.5.1.1 Finding Optimal Learning Parameters

GA’s (Holland 1975) are often used in stochastic optimisation problems. An

optimisation problem is, for instance, the approximation of a function that

estimates some empirical observable value. GA’s are, in principle, a directed

search process. At the start of the process, a pool of candidate solutions

called chromosomes is initialised. A chromosome contains a number of

genes. The genes represent, for example, parameter values of a function to

be approximated. A chromosome is initialised with a number of typically

randomly initialised genes. A gene is represented as a binary string. The

bits of the string can encode different things such as the digits of a number.

The task of the algorithm is to evolve and select the best solutions from

the chromosome pool by applying genetic operators such as mutation or

crossover. These operators change and recombine the bits of the fittest

genes. Mutation switches a bit of the string with a certain probability;

crossover selects a fraction of the chromosomes and recombines genes of



CHAPTER 3. STATISTICAL DISCRIMINATION 85

the same type from the resulting sample at a randomly selected point in

the string. The new pool of chromosomes constitutes the next generation.

Fitness is determined by a fitness function, which computes the distance

from the candidate solution to the problem solution. While a subset of the

fittest genes is reproduced in the next generation using the operators, unfit

genes are removed from the population. The process stops after a certain

criterion, e.g., after a maximum number of generations has been computed,

or some fitness threshold has been reached (for an introduction, see, for

example, Goldberg (1989).

Here, the GA is initialised with chromosomes containing four genes. The

genes represent the parameters αemployer, γemployer, αworker and γworker. The

population size of a generation is limited to 20 chromosomes; the maximum

number of evolutions is bound to 25. The probability that mutation occurs

is set at 0.35. The crossover rate is 12%. The framework used for imple-

mentation is JGAP (2011). The fitness function is given by the resulting

employment discrimination after a simulation run of 5000 time steps. For

this, the average difference between employment levels between green and

purple workers over all time steps is computed. The larger the difference,

the ‘fitter’ the candidate parameter set. The time scale has no relation to

the classroom game. The reason is that this model is of an exploratory

nature and unknown whether the necessary agent learning can be achieved

in ‘real time’. Moreover, large time scales can inform about the stability of

the model in the long run.

Applying this algorithm to each model variant produces for each vari-

ant a set of different optimal parameter values. Before looking at some

example runs in the next sections, the parameters and the outcome of the

optimisation procedure are shown.
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Table 3.5 summarises the relevant parameters for each model variant.

χ is set to an arbitrary high value (100 in this case), because the goal is

to find out whether it is possible to generate discrimination at all. There-

fore, a limitation of state descriptions provides no benefit at this stage. ζ

is set to a small value to allow frequent re-evaluation of mappings and con-

sequently, adjustment in the beliefs. That is, it is easier to revise negative

stereotypes. If discriminatory outcomes emerge, they are likely to be based

on co-evolution and not ignorance on the employer side. Similarly, the pa-

rameters ν and µ are set at intervals that allow reasonable large samples of

rewards for single rules (about 100), but can be changed frequently enough

over the 5000 time steps to allow reasonable variation in the expanded state-

action mappings. Finally, ρ was fixed at a value > 0 to prevent traps in the

search process, but not too large to prevent excessive switching.
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Parameter value meaning

Discrimination parameters

fqθ 0.5 Probability of good test result if invested

fuθ 0.2 Probability of good test result if not invested

c 0 - 0.1 Investment cost interval

BRA parameters

ζ 0.05 Weight for revisiting expanded nodes

ρ 0.3 Weight for switching paths in the tree

µ 75 Interval for deleting inferior expansions

ν 100 Interval for creating new expansions

χ 100 Maximum numbers of nodes

Variant I

αemployer,r1 0.01 - 0.15
choice parameter for r1 - action set bound to
descriptor L1

0 (test-result is ambiguous and
(colour is green or colour is purple))

γemployer,r1 0.01 - 0.5 discount parameter for r1

αworker 0.01 - 0.2 choice parameter for worker rule

γworker 0.01 - 0.5 discount parameter for worker rule

Variant II

αemployer,r1 0.01 - 0.1
choice parameter for r1 - action set bound
to descriptor L1

0 ((test-result=+-) and
(colour=green or colour=purple))

γemployer,r1 0.01 - 0.5 discount parameter for r1

αemployer,r2 0.01 - 0.1
choice parameter for r2 - action set bound
to descriptor L2

0 ((test-result= ++) and
(colour=green or colour=purple))

γemployer,r2 0.01 - 0.5 discount parameter for r2

αemployer,r3 0.01 - 0.1
choice parameter for r3 - action set bound
to descriptor L3

0 ((test-result=- -) and
(colour=green or colour=purple))

γemployer,r3 0.01 - 0.5 discount parameter for r3

αworker 0.01 - 0.2 choice parameter for worker rule

γworker 0.01 - 0.5 discount parameter for worker rule

Variant III

αemployer,r1 0.01 - 0.15

choice parameter for r1 - action set
bound to descriptor L1

0 ((test-result=++
or test-result=+- or test-result=- - ) and
(colour=reen or colour=purple))

γemployer,r1 0.01 - 0.5 discount parameter for r1

αworker 0.01 - 0.2 choice parameter for worker rule

γworker 0.01 - 0.5 discount parameter for worker rule

Table 3.5: Simulation parameters for finding optimal RL parameters.



CHAPTER 3. STATISTICAL DISCRIMINATION 88

Figure 3.2: Model fit for various parameter settings in model variant I.

Figures 3.2 to 3.4 summarise the different parameter settings that have

been visited by the GA. The figures display all samples which were run

and are sorted by the largest difference in the employment levels of the two

groups. The x-axis represent simulation runs while the y-axis displays the

various parameters of the model and the fitness criterion, which all vary

between 0 and 1. On the right end of the graph are those simulations that

produce the strongest discrimination.

In general, settings with small αworker (early lock-in into investment/non-

investment behaviour) have the best chances to produce the discrimination.

Thus, if worker behaviour is relatively stable and differs, for some reason,

between groups (here due to the variation of choice and learning behaviour),

then employers discriminate between them accordingly.

3.5.1.2 Variant I

In this scenario, learning happens only when test results are ambiguous. In

the case of - - employers never hire, in the case of ++ they always hire.

Figure 3.2 shows that discriminatory outcomes emerge mostly in case
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Figure 3.3: Model fit for various parameter settings in model variant II

Figure 3.4: Model fit for various parameter settings in model variant III.

where workers’ α is small. The reason for this is that the workers act as an

‘environment’ for the employers. The more stable workers’ behaviour, the

easier it becomes for the employers to learn. When the initial configuration

is such that sufficient members of each group play almost exclusively one

of the two possible strategies, discrimination can emerge very quickly and

remain stable. As soon as workers’ α increases, the employers are increas-

ingly unable to use colour as a decision hint, and the hiring rates for both

groups become similar.

The sample simulation shown in figures 3.5 and 3.6 illustrates this dy-

namic. Discrimination persists, but investment behaviour of the workers is
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Figure 3.5: Hiring rates of an example run for model variant I (5 purple workers,
5 green workers). Parameters: αemployer = 0.13, γemployer = 0.17, αworker = 0.01,
γworker = 0.17

non-deterministic. There were also simulations with even greater discrimi-

nation; however in these simulation workers never changed their strategies,

i.e. no experimentation occurred any more, and the result was determined

fully by the matching of the first time step.

The sample simulation generates discrimination, but stays short of the

simulation reported by Fryer et al.: In both cases, there is persistent dis-

crimination, and this behaviour emerges very early. However, in the class-

room experiment, discrimination was, with employment rates of 0.8 and

0.4, much larger. In the simulation, rates are on average about 0.48 and

0.36, in the most extreme case the rates reached 0.55 and 0.24. A simple

calculation reveals that the hiring rates in the simulations reflect a liberal

strategy independent of worker colour: For investing workers, the test out-

come probabilities are ++ = 0.5 ∗ 0.5 = 0.25, −− = 0.5 ∗ 0.5 = 0.25,

and +− = 2(0.5 ∗ 0.5) = 0.5 (since event +− and −+ are equivalent,
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Figure 3.6: Investment rates of an example run for model variant I (5 pur-
ple workers, 5 green workers). Parameters: αemployer = 0.13, γemployer = 0.17,
αworker = 0.01, γworker = 0.17

they are denoted only with +−); for non-investing workers these prob-

abilities are ++ = 0.02 ∗ 0.02 = 0.04, −− = 0.8 ∗ 0.8 = 0.64, and

+− = 2(0.016 ∗ 0.016) = 0.032. In the simulation, purple workers invest

with a relative frequency of 0.6 and green workers with a relative frequency

0.4. In case of a liberal strategy independent of colour (represented by the

rule ‘if test result is ambiguous, always hire’), the expected employment

level is 0.6 ∗ 0.75 = 0.45 for purple workers, and 0.4 ∗ 0.75 = 0.3 for green

workers. This is, by and large, reflected by the simulation results. Employ-

ers hire fewer green workers because their test results are usually worse. If

employers were biased against green workers because they invest less, the

employment rate of greens should be lower (for a pure conservative strategy,

the rate would be 0.1 only).

This means that difference in employment levels can be generated and

persist in this model. However, it seems likely that it is not the type of
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discrimination observed in the classroom game, where decisions were biased

towards ‘hire’ in case the worker belonged to the group with higher expected

investments and towards ‘not-hire’ in the opposite case. In the RL model,

discrimination reflects actual differences in worker productivity.

3.5.1.3 Variant II

The example run of model variant I indicates that employer decisions reflect

actual investment behaviour. This resulted into a colour-independent liberal

strategy. Possibilities for discrimination were limited, as employers could

use colour as decision criterion only if the test result was ambiguous. In the

second setup, employers have the capability to favour workers even if their

result was bad, and to discriminate even if the test result was good.

Looking at the fitness of simulations with different parameter settings,

figure 3.3 shows analogous behaviour as Variant I.

However, the employment level is higher and as figure 3.7 shows, the

difference in employment levels is much stronger. Moreover, it seems that

this equilibrium state can collapse quickly for no or only very little changes

in investment behaviour (figure 3.8).

This result comes closer to the empirical results of Fryer Jr. et al (2005),

who observed that if in doubt, workers expected to invest are hired at a

higher rate than if expected not to invest. Discrimination is persistent;

however, the level of employment and the extent of discrimination may

change quickly. As it can be seen from figure 3.8, this is due to a preceding

change in investment behaviour.

Calculating the hiring rates for a liberal strategy in the same way as

in variant I results in expected employment levels of 0.44 for purple and
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Figure 3.7: Hiring rates for an example run of model variant II (6 purple workers,
4 green workers). Parameters: αemployer = 0.08, γemployer = 0.21 (for all initial
mappings), αworker = 0.01, γworker = 0.3

Figure 3.8: Investment rates for an example run of model variant II (6 purple
worker, 4 green workers) . Parameters: αemployer = 0.08, γemployer = 0.21 (for all
initial mappings), αworker = 0.01, γworker = 0.3
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0.4 for green workers. The actual average hiring rates are 0.79 for purple

and 0.45 for green workers. This means that employers hire purple workers

most of the time even if the test result is bad, whereas the test outcome

plays a more important role for green workers (even though they are hired

more frequently than even the liberal strategy would suggest). Which beliefs

exactly form during simulations with such outcomes is shown in more detail

in section 3.5.2.

3.5.1.4 Variant III

Figure 3.4 illustrates that there is no parameter setting supporting discrim-

ination. At most, if at all, it seems that large choice parameters (α ≈ 0.1)

on the employer side, together with small choice parameters (α ≈ 0.05) on

the worker side generate differences in hiring levels.

The simulation with the largest average difference in hiring rates em-

phasises this result (Figures 3.9 and 3.10). Hiring rates in general are much

lower (on average 0.31 for purple and 0.23 for green agents) as in the previ-

ous examples. It is difficult for employer agents to distinguish between the

benefits of a good and a bad test result, so that they tend to rather not hire

anybody. Although there are differences in hiring rates across both groups,

this variation does not follow a stable pattern; the green workers simply

experience more erratic phases of hiring and investment. This does lead to

short cycles of discrimination (e.g. between steps 2000 and 3000), but the

pattern does not persist.

3.5.2 Average Results

After finding out appropriate learning parameters, this section presents sim-

ulations with more agents, samples of different θ values and more runs,
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Figure 3.9: Hiring rates for an example run of model variant III (4 purple
workers, 6 green workers). Parameters: αemployer = 0.05, γemployer = 0.07,
αworker = 0.12, γworker = 0.15

Figure 3.10: Investment rates for an example run of model variant III (4 pur-
ple workers, 6 green workers). Parameters: αemployer = 0.05, γemployer = 0.07,
αworker = 0.12, γworker = 0.15
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keeping the RL parameters constant.

The distribution of θ determines the outcome of the test result, depend-

ing on whether an agent has invested or not. If fu(θ) and fq(θ) is similar,

investing does not make a big difference - the outcome is mostly random.

If the difference δf(θ) = fq(θ)− fu(θ) is large (fq(θ) > fu(θ); see also section

3.2), investing increases the chance of a good test result strongly. If there is

a positive relationship between θ and investment level and, consequently, in

the hiring rate in the RL model, then the employment level can be expected

to increase with δf(θ). The medium range of δf(θ) reflects a similar setup

as in the previous section. The chance of a positive test result is slightly

higher for investing workers. This setting can also be expected support dis-

crimination the most: It depends crucially on employers’ response whether

investment pays. If the standards are very high (e.g., never hire a worker

with a bad test result if coming from a certain group), investing becomes a

costly choice for workers. Conversely, it becomes expensive to turn around

such beliefs once they exist for the same reason. In the RL model, this

could turn into reinforcing the non-investment choice.

To fix α and γ, the averages of simulations producing an average discrim-

ination rate of 10% were selected, ensuring the possibility of discrimination

in subsequent runs. This boundary is set arbitrary to pick not only one,

possibly unrepresentative, parameter value of, e.g., the most discrimina-

tory outcome. Furthermore, only model variants I and II are followed up,

since variant III was not capable of producing discrimination. The following

section will analyse both models further.

Simulations are run for 50 samples of θ, drawn from uniform distribu-

tions fqθ and fuθ. Each simulation is repeated 5 times. Table 3.6 sum-

marises the parameters.
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Parameter value meaning

Discrimination parameters

fqθ 0.5 - 1.0 Probability of good test result if invested

fuθ 0.0 - 0.5 Probability of good test result if not invested

c 0 - 0.1 Investment cost interval

Variant I

αemployer,r1 0.13
learning parameter for r1 - action set bound
to descriptor L1

0 (test-result is ambiguous
and (colour is green or colour is purple))

γemployer,r1 0.15 discount parameter for r1

αworker 0.0107 learning parameter for worker rule

γworker 0.16 discount parameter for worker rule

Variant II

αemployer,r1 0.05
learning parameter for r1 - action set
bound to descriptor L1

0 ((test-result=+-) and
(colour=green or colour=purple))

γemployer,r1 0.43 discount parameter for r1

αemployer,r2 0.05
learning parameter for r2 - action set
bound to descriptor L2

0 ((test-result=++)
and (colour=green or colour =purple))

γemployer,r2 0.43 discount parameter for r2

αemployer,r3 0.05
learning parameter for r3 - action set bound
to descriptor L3

0 ((test-result is bad) and
(colour is green or colour is purple))

γemployer,r3 0.43 discount parameter for r3

αworker 0.0107 learning parameter for worker rule

γworker 0.27 discount parameter for worker rule

Table 3.6: Simulation parameters for obtaining average results.
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3.5.2.1 Variant I

Figure 3.11 shows simulation results averaged over different parameter set-

tings θ. On the x-axis the difference δf(θ) = fq(θ) − fu(θ) is displayed. To

compare the employment levels over all the runs, the members of green and

purple groups are relabelled into advantaged and disadvantaged depend-

ing on which group had the higher or lower employment in a particular

simulation. Figure 3.12 displays the results for all simulations.

Figure 3.11 shows that the difference between the groups is small; the

largest average difference between employment rates is 0.16. The chance

to generate a positive test-result has thus, on average, no influence on dis-

crimination. Moreover, employment does not rise with δf(θ). If discrim-

ination evolves, it is again an isolated event without any relationship to

the parameter θ (estimating the linear regression function in the form of

discrimination = α+ βδf(θ) did not result in significant coefficients). This

is also underlined by a look at the distribution of single runs in figure 3.12

- runs with the same δf(θ) can result in very different employment levels.

Summary measures of the simulation samples given in appendix B illustrate

that higher average discrimination is due to single runs with discrimination,

whereas most samples show little difference between the groups.

Figures 3.13a to 3.13d show the simulations with the highest difference

between employment levels (0.1603 and 0.1604). The pattern is similar to

the simulation presented in the previous section 3.5.1.2. Discrimination and

investment behaviour evolves at the same time early in the simulation and

persists.

Tables 3.7 and 3.8 show the rules that emerged. Since only the rule for

ambiguous test results was not fixed, there are just three possible outcomes.

Using the exponential selection rule (equation 2.4), the table displays the
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Figure 3.11: Average hiring rates for model variant I across different values of
θ. The x-axis is given by δf(θ) = fq(θ) − fu(θ). Discrimination is the difference
between the high and low employment group.

Figure 3.12: Hiring rates for model variant I across different values of θ. The
x-axis is given by δf(θ) = fq(θ)− fu(θ)
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(a) Hiring rates variant I (23 purple, 27
green workers), fu(θ) = 0.26, fq(θ) = 0.59

(b) Investment rates variant I (23 purple, 27
green workers), fu(θ) = 0.26,
fq(θ) = 0.59

(c) Hiring rates variant I (30 purple, 20
green workers), fu(θ) = 0.48, fq(θ) = 0.55

(d) Investment rates variant II (30 purple,
20 green workers), fu(θ) = 0.48,
fq(θ) = 0.55

Figure 3.13: Statistical discrimination - 2 sample simulation runs of model vari-
ant I, nemployer = 25, nworker = 50. Each graph shows moving averages over 10
time steps.
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choice propensity p(hire) for action ‘hire’ and the number of rule activa-

tions. The propensity for action ‘not hire’ is 1 − p(hire). The table shows

that the original rule (test result is ambiguous and (colour = green colour

= purple)) is activated only a few times, while the successor rules are ac-

tivated more often. Thus, most of the time the discriminatory behaviour

persists. However, the differences between the two groups is small. In the

first simulation, for example, purple workers are hired with a probability of

0.86, whereas green workers with probability 0.61. This reflects the obser-

vation made in section 3.5.1.2 - discrimination comes about due to different

investment behaviours alone.

state description p(hire)
rel.
act.

abs.
act.

Test-result is ambiguous and (colour =
purple or colour = green)

0.61 0.03 3

Test-result is ambiguous and colour =
green

0.61 0.47 45

Test-result is ambiguous and colour =
purple

0.78 0.49 47

Table 3.7: Rules generated in a sample simulation of model variant I (23 purple
workers, 27 green workers), fu(θ) = 0.26, fq(θ) = 0.59 and their relative (rel.
act.) and absolute (abs. act.) activation frequency in the employer population.
Measurements were taken every 100 time steps.

3.5.2.2 Variant II

Figure 3.14 shows again simulation results averaged over different parameter

settings θ. Figure 3.15 displays the results for all simulations.

Discrimination is on average higher as compared to setup I. The dif-

ference between high and low employment groups moves up to about 0.3.

Estimating a linear regression of the form discrimination = α + βδf(θ)

results in a small, however significant relationship with discrimination =
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state description p(hire)
rel.
act.

abs.
act.

Test-result is ambiguous and (colour =
purple or colour = green)

0.67 0.06 19

Test-result is ambiguous and colour =
green

0.68 0.49 152

Test-result is ambiguous and colour =
purple

0.86 0.45 141

Table 3.8: Rules generated in a sample simulation of model variant I (30 purple
workers, 20 green workers), fu(θ) = 0.48, fq(θ) = 0.55 and their relative (rel.
act.) and absolute (abs. act.) activation frequency in the employer population.
Measurements were taken every 100 time steps.

0.03467 + 0.03617δf(θ). However, large differences in average employment

levels are again mainly due to extreme values in the samples, as shown in

appendix B. A large average discrimination comes usually with a high stan-

dard deviation. Figure 3.15 illustrates this graphically. Thus, also here one

cannot assume a relationship between θ and discrimination.

Figures 3.16a to 3.16d show the two single simulation runs with the

highest discrimination (0.31 and 0.28). In both examples, investment levels

are relatively stable from the beginning, while employment levels adjust only

after some 1000 time steps. This points to a pattern where first some actual

difference between worker group behaviour exists, which is then followed by

an adjustment of the beliefs on the employer side.

Tables 3.9 and 3.10 show the rules that emerged for the two sample

simulations. In the first simulation, employers developed no rule for the

ambiguous test case. They trust most of the time that green workers’ good

test results lead to high productivity, while they believe the opposite of

purple workers. If the test result is bad or ambiguous employers tend not

to hire. In the second simulation - reflecting the Fryer results - employers
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Figure 3.14: Average hiring rates for model variant II across different values of
θ. The x-axis is given by δf(θ) = fq(θ) − fu(θ). Discrimination is the difference
between high and low employment group.

Figure 3.15: Average hiring rates for model variant II across different values of
θ. The x-axis is given by δf(θ) = fq(θ)− fu(θ)
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(a) Hiring rates variant II (28 purple, 22
green workers), fu(θ) = 0.01, fq(θ) = 0.99

(b) Investment rates variant II (28 purple,
22 green workers), fu(θ) = 0.01,
fq(θ) = 0.99

(c) Hiring rates variant II (26 purple, 24
green workers), fu(θ) = 0.35, fq(θ) = 0.98

(d) Investment rates variant II (26 purple,
24 green workers), fu(θ) = 0.35,
fq(θ) = 0.98

Figure 3.16: Statistical discrimination - 2 sample simulations runs of model
variant II, nemployer = 25, nworker = 50. Each graph shows moving averages over
10 time steps.
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tend to favour the green workers even in the event of a bad test result; they

behave similarly if the result is unclear. Purple workers are always believed

to be less productive: If their test result is negative, they get almost never

hired; if the result is positive, they are hired only with a chance of 0.2.

Likewise, their chances to get hired in case of an ambiguous test result are

worse.

The difference between the two samples is the impact of δf(θ). While in

the first simulation, employers can be certain that an investing worker has a

positive test result (fq(θ) = 0.99) and a non-investing worker most likely has

a negative result (fq(θ = 0.06)), this is not so clear in the second simulation.

In the latter, the chance of a good test result if not investing is closer to

the chance of a good result if investing. Consequently, the variety of rules

emerging is greater: In the first simulation, the parent state-descriptions

‘test-result is good and (colour=green or colour=purple)’ and ‘test-result

is bad and (colour=green or colour=purple)’ are activated almost as many

times as their children, indicating that the coarser grained descriptions are

(on average) nearly as good as the more detailed successors. The expected

value of the parent approaches the payoffs in table 3.1. Since the test-result

is a certain indicator of productivity, there is no need to consider colour

as a hint. In the second simulation, the difference between the expected

values of the parent state-descriptions cannot be so large as in table 3.1,

because non-investing workers of the same colour will more often get a

positive test result. So it becomes more likely that the algorithm evolves

(or switches between) more branches, using colour as an additional hint. As

the new rules match worker behaviour, they remain stable. As a result, the

employers in model variant II follow clearly a discriminatory pattern that

makes it difficult for purple workers to escape their situation - even if they

achieve good test results, employers are unlikely to believe them.
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state description p(hire)
rel.
act.

abs.
act.

Test-result is ambiguous and (colour =
purple or colour = green)

0.05 0.02 90

Test-result is bad and (colour = purple
or colour = green)

0.16 0.18 1040

Test-result is good and (colour = pur-
ple or colour = green)

0.33 0.12 698

Test-result is bad and colour = green 0.1 0.2 1152

Test-result is bad and colour = purple 0.05 0.24 1387

Test-result is good and colour = green 0.9 0.12 691

Test-result is good and colour = purple 0.11 0.11 607

Table 3.9: Rules generated in a sample simulation run of model variant II (28
purple workers, 22 green workers), fu(θ) = 0.06, fq(θ) = 0.99 and their rela-
tive (rel. act) and absolute (abs. act.) activation frequency in the employer
population. Measurements were taken every 100 time steps.

3.5.3 How Persistent is Discrimination?

So far, the simulations showed that discrimination in the RL model can

emerge. However, there is no general rule when this might happen. Fur-

thermore, looking at the details of variant I, clearly this candidate does

not match the empirical results of Fryer Jr. et al (2005). Variant II has

more parallels in aggregate results as well as in the behaviour patterns that

emerge. In what follows, model variant I is, therefore, not considered any

further.

The purpose of this section is to find out whether there are conditions

that support statistical discrimination on the average, that is, whether it

is possible to make some general statements about why and when discrim-

ination emerges in the RL model. For example, the existence of negative

stereotypes towards one worker group could discourage this group from in-

vesting from the beginning and persist over time. Such scenarios can be
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state description p(hire)
rel.
act.

abs.
act.

Test-result is ambiguous and (colour =
purple or colour = green)

0.31 0.07 447

Test-result is bad and (colour = purple
or colour = green)

0.1 0.06 794

Test-result is good and (colour = pur-
ple or colour = green)

0.35 0.13 365

Test-result is ambiguous and colour =
green

0.63 0.08 482

Test-result is ambiguous and colour =
purple

0.33 0.07 447

Test-result is bad and colour = green 0.18 0.19 1170

Test-result is bad and colour = purple 0.06 0.2 1256

Test-result is good and colour = green 0.86 0.11 662

Test-result is good and colour = purple 0.2 0.09 591

Table 3.10: Rules generated in a sample simulation run of model variant II
(26 purple workers, 24 green workers), fu(θ) = 0.35, fq(θ) = 0.98 and their
relative (rel.act.) and absolute activation (abs. act.) frequency in the employer
population. Measurements were taken every 100 time steps.

modelled by starting with situations in which discrimination exists, for ex-

ample, negative stereotypes or uneven cost distributions. Then, it can be

observed in which direction the simulation develops further.

Three scenarios are considered to investigate this question. First, taste-

based discrimination is introduced. In this scenario, the share of firms never

hiring green workers is increased. In the second scenario, heterogeneous

conditions for green workers are introduced by increasing their investment

cost for an initial, but limited period. In the third scenario, employers are

confronted with always investing purple and never investing green workers

for an initial, limited period. After this period, the deterministic workers

are replaced with the original, homogenous agents. The third scenario can

also be thought of as an extreme case of the second where investment cost
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at the beginning is prohibitive for green workers, and 0 for purple workers.

Taste-based discrimination In this scenario, inequality is generated by

fixing firm behaviour, similar as the preference model of Becker (1957)).

For this purpose, simulations are run with a proportion of firms never hir-

ing green workers; for purple workers, the same rules as in variant II apply.

Figures 3.17 and 3.18 shows the hiring rates of green and purple workers

as the number of these firms (labelled p-firms) increases. In this scenario,

the employment chances of green workers worsen deterministically. The

question is how they react to these conditions and how this influences the

remaining firms hiring green workers. If statistical discrimination is en-

couraged, one would expect an over-proportional decrease in hiring levels

of green workers: Green workers invest less due to worsening conditions on

the labour market, which induces the remaining liberal employers not to

hire them because of expected lower investments. If the liberal employers

continue to hire greens at the same rate, then worker behaviour reflects just

the increasing number of p-firms.

Figure 3.17 shows a slight sigmoid shape of the hiring level graph of green

workers, that is, hiring levels decrease slightly over-proportionally while the

number of p-firms increases linearly. An estimate of the logit function with

employment as dependent and share of p-firms as independent variable (in-

terpreting the employment levels as categories) shows graphically a closer

approximation than the linear model (coefficient estimates are significant).

That is, in the medium region workers are discouraged strongly from invest-

ing, resulting in over-proportionally lower hiring levels. However, the effect

is small.

Furthermore, as figure 3.18 shows, the discrimination of the green group

has also an effect on the hiring level of purple workers. The effect is linear.



CHAPTER 3. STATISTICAL DISCRIMINATION 109

Figure 3.17: Hiring rates of green workers if increasing numbers of firms deter-
ministically discriminate against them. The x-axis depicts the number of firms
that never hire green workers. The dotted line indicates the linear model esti-
mated from the data, the hatched line the estimated logit function.

In the beginning, purple workers manage to free-ride on the expectations

of the employer population and invest at lower rates as they get hired.

Firms expect higher average investment rates (independent of which colour

invests more), which makes riskier firm decisions, such as hiring workers with

a bad test result, more profitable. With increasing p-firms, the chance of

generating high payoffs on average decreases as green workers invest less and

less, so the average payoff of hiring (any) workers with a bad or ambiguous

test result will also decrease.

Unequal investment costs In this scenario, there is initially an unequal

distribution of costs similar as described above in the experiment of Fryer Jr.

et al (2005). For a starting period, the cost distribution of green workers is

drawn from the higher interval 0.1 - 0.3, so that investing is always more

expensive than for the purple group (interval 0 - 0.1). This could repre-
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Figure 3.18: Hiring rates of purple workers if increasing numbers of firms deter-
ministically discriminate against green workers. The x-axis depicts the number
of firms that never hire green workers. The dotted line indicates the linear model
estimated from the data, the hatched line the estimated logit function.

sent a situation where entry barriers into certain vacations are high for the

discriminated group. The question is whether this leads to different invest-

ment behaviour and if yes, whether this persists after the barrier is removed.

The scenario implemented by setting back the cost distribution to normal

after step 1000. Simulations are run again for fu(θ) = 0.35, fq(θ) = 0.98

and fu(θ) = 0.06, fq(θ) = 0.99; that is, with the same settings as for the

two sample simulations with the highest discrimination from the preceding

section 3.5.2. Figures 3.19a to 3.19d show the results.

In both scenarios, green workers invest less up to time step 1000, and

employers hire them at a corresponding lower rate. The hiring rate dif-

fers according to the distributions of θ. In the simulation with less noise

(fu(θ) = 0.06, fq(θ) = 0.99), the employment level of both groups is higher.

The pattern in both simulations is similar. In both simulations, green work-
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(a) Hiring rates variant II), fu(θ) = 0.01,
fq(θ) = 0.99

(b) Investment rates variant II, fu(θ) =
0.01,fq(θ) = 0.99

(c) Hiring rates variant II, fu(θ) = 0.35,
fq(θ) = 0.98

(d) Investment rates variant II, fu(θ) = 0.35,
fq(θ) = 0.98

Figure 3.19: Effect of cost heterogeneity in model variant II, nemployer =
25, nworker = 50, 25 repetitions. Each graph shows moving averages over 10
time steps.

ers are hired at a similar rate as purple workers after the barrier is removed.

That is, cost heterogeneity leads to discrimination, but the effect on em-

ployer beliefs is not permanent. Whether this is because the difference is

too small can be checked in the next paragraph.

Negative stereotypes In the last scenario, inequality is generated by

creating negative stereotypes on the employer side. To achieve this situ-

ation, the two sample simulations of variant II are set up with the same

parameters as before. The simulation is split in two parts: For 1000 steps,
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(a) Hiring rates variant II, fu(θ) = 0.06,
fq(θ) = 0.99

(b) Investment rates variant II, fu(θ) =
0.01,fq(θ) = 0.99

(c) Hiring rates variant II, fu(θ) = 0.35,
fq(θ) = 0.98

(d) Investment rates variant II, fu(θ) = 0.35,
fq(θ) = 0.98

Figure 3.20: Effect of prior negative stereotypes in model variant II, nemployer =
25, nworker = 50, 25 repetitions. Each graph shows moving averages over 10 steps.

employers are confronted with purple workers who always, and green work-

ers who never invest. After that, all deterministic worker agents are removed

and replaced by learning worker agents as in the original setup. The simu-

lation is then run for another 4000 time steps. Figures 3.20a to 3.20d shows

average results for 25 repetitions.

As the figures illustrate, employers discriminate on average when worker

behaviour is deterministic. They hire purple workers at a rate of almost 0.35

and green workers at a rate of about 0.1. However, after exchanging the

worker agents, both hiring rates converge to the same rate in between the
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extremes. The only difference between the two samples is the employment

level: For the setting fu(θ) = 0.35, fq(θ) = 0.98, the level is higher for

purple and lower for green workers as compared to the first simulation.

Furthermore, there is a slightly lower investment. So it seems that the

smaller chance of getting a positive test result discourages green workers

from investing. This effect is small and only temporary. In the longer run,

both hiring and investment rates converge.

Tables 3.11 and 3.12 show the rules responsible for this result. In the first

simulation (fu(θ) = 0.06, fq(θ) = 0.99), the relative frequency of activations

of the general rule ‘if test-result is bad and (colour=green or colour=purple)’

increased from 0.13 to 0.24, whereas the share of its children decreased.

Thus, after switching worker behaviour, employers generalised some rules.

For simulation fu(θ) = 0.35, fq(θ) = 0.98, the share of the general rule

‘if test-result is good and (colour=green or colour=purple)’ increased only

slightly from 0.1 to 0.15. Thus, employers generalise existing discriminating

rules to some extent. However, the adaptation process works mainly over

adjusting the selection probabilities.

Some more simulations were run to verify the observation that initial

beliefs do not influence the result in the longer run. Figure 3.21 shows

the discrimination between green and purple workers for different δf(θ). On

average, discrimination is low; maximum values are at most around 0.1.

Averaged over all steps, there was no simulation with discrimination larger

than 0.06. The extent of discrimination varies; this variation, however,

does not occur between simulations, but over time. In most simulations,

green workers even get hired more often at some stage. For example, for

f(θq) = 0.71 and f(θu) = 0.21 discrimination is close to -0.15 at t = 1500,

but close to 0.05 at t = 2000 and t = 4500.
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state description p(hire)
rel.
act.

abs.
act.

for t < 1000

Test-result is ambiguous and (colour =
purple or colour = green)

0.41 0.02 20

Test-result is ambiguous and colour =
green

0.5 0.01 11

Test-result is ambiguous and colour =
purple

0.5 0.01 11

Test-result is bad and (colour = purple
or colour = green)

0.33 0.13 119

Test-result is bad and colour = green 0.13 0.21 185

Test-result is bad and colour = purple 0.84 0.2 184

Test-result is good and (colour = pur-
ple or colour = green)

0.34 0.15 131

Test-result is good and colour = green 0.19 0.13 118

Test-result is good and colour = purple 0.78 0.13 119

for t = 1000 to t = 5000

Test-result is ambiguous and (colour =
purple or colour = green)

0.15 0.02 136

Test-result is ambiguous and colour =
green

0.45 0.02 121

Test-result is ambiguous and colour =
purple

0.54 0.02 124

Test-result is bad and (colour = purple
or colour = green)

0.39 0.24 1791

Test-result is bad and colour = green 0.13 0.18 1353

Test-result is bad and colour = purple 0.14 0.18 1375

Test-result is good and (colour = pur-
ple or colour = green)

0.37 0.11 815

Test-result is good and colour = green 0.16 0.12 866

Test-result is good and colour = purple 0.16 0.12 877

Table 3.11: Rules generated for model variant II with negative stereotypes, 25
repetitions, fu(θ) = 0.06, fq(θ) = 0.99, and their relative (rel. act.) and absolute
(abs. act.) activation frequency in the employer population before and after
time=1000. Measurements were taken every 100 time steps.
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state description p(hire)
rel.
act.

abs.
act.

for t < 1000

Test-result is ambiguous and (colour =
purple or colour = green)

0.35 0.08 74

Test-result is ambiguous and colour =
green

0.34 0.07 61

Test-result is ambiguous and colour =
purple

0.63 0.07 63

Test-result is bad and (colour = purple
or colour = green)

0.37 0.13 121

Test-result is bad and colour = green 0.25 0.1 93

Test-result is bad and colour = purple 0.7 0.1 94

Test-result is good and (colour = pur-
ple or colour = green)

0.36 0.1 93

Test-result is good and colour = green 0.16 0.17 160

Test-result is good and colour = purple 0.8 0.17 160

for t = 1000 to t = 5000

Test-result is ambiguous and (colour =
purple or colour = green)

0.31 0.07 613

Test-result is ambiguous and colour =
green

0.32 0.06 553

Test-result is ambiguous and colour =
purple

0.32 0.06 560

Test-result is bad and (colour = purple
or colour = green)

0.4 0.12 1075

Test-result is bad and colour = green 0.28 0.1 864

Test-result is bad and colour = purple 0.3 0.1 855

Test-result is good and (colour = pur-
ple or colour = green)

0.44 0.15 1271

Test-result is good and colour = green 0.17 0.17 1430

Test-result is good and colour = purple 0.19 0.16 1419

Table 3.12: Rules generated for model variant II with negative stereotypes, 25
repetitions, fu(θ) = 0.35, fq(θ) = 0.98, and their relative (rel. act.) and absolute
(abs. act.) activation frequency in the employer population before and after
time=1000. Measurements were taken every 100 time steps.
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Figure 3.21: Discrimination rates of green workers if firms are biased nega-
tively against green workers. Discrimination is the difference between green and
purple employment levels. Each line represents averages of 10 simulation runs
for a particular combination of fq(θ) / fu(θ) (The legend displays the concrete
realisations).

3.5.4 Summary of the Simulation Results

Besides presenting more detailed figures about the behaviour of the RL

model, the purpose of the preceding two sections was to test under which

conditions it is possible to generate discrimination. Varying the exogenous

parameter θ produced similar results as already obtained in the exploration

section. Discrimination can occur, but cannot be explained by θ alone. In

the simulations that resulted in discrimination, a certain independence of

worker and employer behaviour was observed. Thus, an important reason

for discrimination in the RL model can be seen in different investment levels

on the worker side, if they are discovered only later during the simulation

by the employers.

In the next step, three scenarios where simulated. These scenarios intro-
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duced systematic biases in the simulation setup in the form of determinis-

tically discriminating firms, different investment cost distributions, and the

introduction of negative beliefs about green workers on the employer side.

The simulation results show a slight tendency of mutually stabilising ex-

pectations. So, for example, there is a non-linear relationship between the

number of deterministically discriminating firms and investment behaviour.

The more firms discriminate one group, the stronger this group is discour-

aged from investing, and the more unbiased firms tend not to hire members

of that group. The next scenario showed that the effect of increasing the

investment costs of green workers was not significant enough to establish

a persistent negative employer bias. A similar picture exists if firms have

negative stereotypes about green workers. Thus, even an initial prohibitive

entry cost did not lead to persistent discrimination of the disadvantaged

group. In the longer run, discrimination disappears.

Thus, the RL model shows a weak interdependency between employer

expectations and worker behaviour. However, the main driving force in

the RL model is the stickiness of investment behaviour. This dynamic is

closer to the approach of Phelps (1972), where employers adjust to existing

differences in worker productivity. In the RL model, this can only occur

if the simulation takes a certain path. A favourable condition can be seen

in free-riding behaviour of worker agents. If firms treat workers equally in

the beginning, but investment behaviour is different, members of the free-

riding group have no incentives to increase investments. Nevertheless, as

their behaviour is flexible enough, employers will adjust their hiring levels.

On the other hand, workers in the model are less flexible, and so they

remain with their initial choices. So to speak, initial ‘liberal’ behaviour in

favour of less productive workers can turn into persistent discrimination, but

negative beliefs usually do not discourage otherwise homogenous workers
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from investing.

3.6 Conclusion

This chapter presented a RL model of statistical discrimination using the

BRA algorithm developed in chapter 2. It aimed to reproduce experimental

results and asked whether these results could be generalised with an RL-

based model. Thus, the question was, whether, starting from empirical

observation, there is a general mechanism that could explain the emergence

of statistical discrimination.

The RL model was compared with both theoretical and empirical re-

sults from statistical discrimination games. Several model variants were

simulated to find out which setup and parameter setting can reproduce the

patterns of Fryer Jr. et al (2005)’s classroom experiment best. One model

(variant II) reproduced with a relative large discrimination the aggregate

as well as behavioural patterns. Using this setup, some more scenarios were

simulated to analyse the properties of the model further.

Similar to game-theoretic and experimental results, the RL model shows

that statistical discrimination can exist. Whether it occurs is, however,

path-dependent. The scenarios simulated in this chapter were not capable of

creating a setting in which statistical discrimination emerges on the average.

Some differences to the theoretical as well as experimental literature can

be highlighted:

– The relationship between θ and employment level could not be ob-

served. Increasing the likelihood of a positive test result does not

increase the number of investing workers and thus their hiring rates.
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– Initial beliefs do not necessarily influence the outcome in the long

run. That is, employer behaviour can adjust very quickly if worker

behaviour changes, e.g. due to an intervention such as increasing

access to human capital.

– In the RL model, discrimination emerged although no knowledge

about market outcomes was available, whereas in the experiment

knowledge about market outcomes was public. Thus, for a belief to

emerge it may require even less publicly shared information. By look-

ing closer at the rules that emerged during the simulations, it could be

shown that the behavioural patterns of the RL model are nevertheless

similar as in the classroom experiment: If in doubt, hire a worker if he

or she comes from the group that is believed to be more productive;

do not hire if he or she comes from the group that is assumed to be

less productive. In some simulation runs, this results in a state in

which workers of the preferred group get hired even if they signal low

productivity.

– In the RL model, worker behaviour is the driving factor for generating

discrimination. Discrimination can only emerge if the groups stick to

different investment behaviour after employer change their policies.

In summary, the RL model was shown to be a good approximation of

actual human behaviour in the experiments. While results of experiments

and simulations are similar, the RL model cannot confirm all the relation-

ships postulated by theory. Furthermore, a general rule capable of creating

discrimination could not be found.



Chapter 4

Network Formation

4.1 Introduction

Networks are an important paradigm for modelling social and economic

relationships. How members of a society are connected to each other de-

termines behaviour and welfare. Through connections to other persons,

important resources can be accessed and used for one’s own purpose.

A useful distinction is between social and personal networks. Personal

networks are comprised of the relations an individual has, e.g. relatives,

friendships, acquaintances. Social networks are an aggregation of individual

networks.

The structural properties of networks have long been the topic of network

analysis in Sociology. The following stylized facts about empirical personal

networks can be drawn from this literature:

– Personal networks are small; the closer the contact, the smaller the

network. In personal relationships, these contacts are usually family

and a few very close friends. Building on existing research, Hamill

120
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and Gilbert (2009) also note that maintaining close relationships is

costly, requiring resources as time and effort. This naturally limits

the extent of close relationships a person can maintain.

– The distribution of the degree (the number of links a node in the net-

work has) of personal networks is unequal. Some individuals are more

sociable, and so have more relationships than most other people in the

network. Empirically, distributions of personal networks are typically

right-skewed, or ’fat-tailed’. This has been observed, for example, for

co-authorship data: There are some economists who appear in many

co-authored papers, while the majority has only few co-author rela-

tionships (Jackson 2008; p.60).

– Members of personal networks tend to share the same characteristics

(homophily). Contacts between similar people are more likely than

among dissimilar people. This can be described by the cluster coeffi-

cient. This coefficient determines, in principle, the likelihood that two

nodes share the same links. Thus, personal networks have characteris-

tically large cluster coefficients, as compared to, say, a social network.

This phenomenon has already been observed by Granovetter (1973).

Social networks, on the other hand, are much less connected than indi-

vidual networks, i.e. they have a low overall network density (the ratio of all

links relative to all possible links). In larger groups, it is simply impossible

to know most other people. Nevertheless, most individuals in a society can

be reached within a few steps. This property of small average path lengths

(the number of nodes between any pair of nodes in the network) and small

diameters (the largest distance between any two nodes in the network) has

been captured in the notion of small worlds. This phenomenon became

widely known by Milgram’s experiments (e.g. Watts 2004; Milgram and
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Travers 1969). In these experiments, persons had to route letters to per-

sons in other states whom they did not directly know, passing the letter

to the target themselves or to someone they thought is likely to know that

person. About a quarter of the letter reached their targets. Drawing on

such insights, Milgram suggested that there are in general six degrees of

separation, i.e. anyone in a society is linked to anyone else with just six

intermediaries.

While a large literature about the structural properties of networks exists,

much less has been written about the dynamic aspects. Many concepts of

how and why people relate to each other are based on chance (homophily,

social or regional closeness, etc.), but they do not conceptualise the cre-

ation and maintenance of relationships as choice. For example, Barabasi’s

preferential attachment model (Barabasi and Albert 1999) simply assumes

a higher probability of linking to already well-connected persons in the so-

ciety. However, if links, as stated above, are assumed to be costly, persons

have to make implicit or explicit decisions about who they want to be friends

with.

The concept of strategic network formation models the decisions on the

micro-perspective explicitly. Strategy should here be understood not liter-

ally, but in the sense that individuals tend to form mutually beneficially

relationships and drop relationships that are not (Jackson 2008; p.153).

Viewing the formation of connections in such a way allows to model

networks as the outcome of a game. Goyal (2007) summarises the main

features of strategic network formation as follows:

– Strategic network formation can be modelled as a game in which play-

ers decide to link or not to link to each other, depending on some
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value function of the network and an allocation rule that distributes

the value among the players.

– It is based on assumptions of complete information (players know each

other and the payoff structure).

– Networks have some form of externality; that is, for individual players

the structure of the network itself influences their utility.

Communication networks represent a commonly used network model in

Economics. Communication networks model relationships among individ-

uals that exhibit some benefit to the members of the network, typically in

the form of information flows. The benefit depends on the number of other

persons a member is linked to; the more persons in the network, the higher

its value to the individual. In its simple form, utility is a linear function of

the number of other players in the personal network. A more realistic form

assumes decay in value the more distant the source of information is. Es-

tablishing and maintaining direct links is costly because it typically involves

some effort. Individual utility depends, then, on the relationship between

costs and benefits. On the aggregate, then, this relationship determines the

shape of the networks that can form. Such a general model can cover many

interesting social and economic settings where the structure of the networks

influences the well-being of the members, for example, friendships, work re-

lationships, but also research partnerships between firms.

Although strategic network formation focuses on the micro perspective,

it is also possible to generate large-scale networks. Jackson and Rogers

(2005), for instance, present a spatial variation of a communication net-

work game. In this model, players are distributed on islands. Costs for

connecting to near-by players are low and high for connecting to distant
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players. Jackson and Rogers (2005) show that with certain cost settings,

the resulting network exhibits small world properties. The intuition is that

players form links with most of their close neighbours, but economise on dis-

tant links. It is, nevertheless, still beneficial to maintain the distant links

which provide the only chance to access the benefits of more players. Simi-

larly, the residential segregation model of Schelling (1971) could be seen as a

prototype of a network model combining chance and choice: Green and red

members of a society move randomly and meet other members. Depending

on their preference for living in a same-colour neighbourhood, they decide

to relocate or stay. The result is a society that is clustered into same colour

neighbourhoods.

In recent years, several experiments with strategic network formation

have been conducted in order to compare the theoretic predictions with

empirical data. Few of them are based on the partially cooperative network

model of Jackson and Wolinsky (1996; JW). In this model, links are formed

only if both involved players agree. More research is related Bala and Goyal

(2000)’s non-cooperative version, where links can also be established uni-

laterally.

As this overview illustrates, strategic network formation can be seen as

a different and complementary way for generating personal and social net-

works dynamically. There have also been experiments to evaluate the pre-

dictive power of network formation models. So far, however, no experience-

based model of network formation exists. In general, RL models have been

found to predict experimental data better (see chapter 2). The purpose of

this chapter is to provide such a model for network games in order to bridge

the gap between theory and experimental evidence. It focuses on the level

of personal networks alone.
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Section 4.2 first introduces notation and definitions. Section 4.3 shortly

discusses the relevant theoretical, section 4.4 the experimental literature.

The RL model is then described in section 4.5. The simulations are analysed

in section 4.6. In section 4.8, a modified version of the RL model is used to

compare the results to the laboratory experiments conducted by Conte et al

(2009). The main question is whether the RL model can predict the outcome

of network formation processes better than the equilibrium prediction.

Relating the RL network model to the general learning approach as

discussed in chapter 2, it represents the case-based variant of BRA. Using

definition 4 developed in section 2.4.4, it can be described with: k > 1,

|Ak| > 1,
n
∩

k=1

Lk
l = ∅ and succ(Lk

0) = ∅ for a number k of cases. It is

assumed that all players know each other, so that k players represent the

k cases. There is no dynamic extraction of rules. A variant of BRA where

the case distinctions are allowed to evolve dynamically is shortly presented

in section 4.7.

4.2 Definitions and Notation

4.2.1 Graphs

Definition 5. Graphs. A graph g, g ⊆ G, consists of a nonempty set

of elements, called vertices and denoted vi, v ⊆ V , and a list of pairs of

vertices, called edges. Edges connecting two vertices vi and vj directly are

denoted ij. A weighted graph is a graph in which weights are attached to the

edges. The cardinality of a graph is the number of edges it contains, and is

denoted with cg.

N denotes the set of all possible graphs that can be generated from V.
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g+ij denotes the graph that can be obtained by adding the edge ij to

graph g. Conversely, g-ij denotes the graph obtained by deleting this link.

Graphs that are obtained by adding or deleting links are called ‘adja-

cent’.

For simplifying the description of networks, an undirected, unweighted

graph can be defined as follows:

Definition 6. Network density. Network density measures how strongly

the vertices of a graph are interconnected by dividing the number of existing

edges by the number of possible edges. In the directed graph it is defined

as D = 1
n∗(n−1)

n
∑

i=0

n
∑

j=0

ij, for the undirected graph it simplifies to D =

1
0.5(n∗(n−1))

n
∑

i=0

n
∑

j>i

ij. The fully connected graph has a density of 1, the empty

graph a density of 0.

Definition 7. Shortest path. Let Pxy be a nonempty path in a weighted

graph g from vertex x to vertex y, consisting of k edges xv1, v1v2...vk−1y.

The weight of Pxy, denoted as W (Pxy), is the sum of the weights,

W (xv1),W (v1v2), ...W (vk−1y). If x=y, the empty path is considered to be a

path from x to y. The weight of the empty path is zero. If no path between x

and y has weight less than W (Pxy), then Pxy is called a shortest path between

x and y, and is denoted as SPxy.

Definition 8. Average path length. The average path length is the average

of all shortest paths in the graph g and denoted as L: L = 1
n

n
∑

i ̸=j

SPij

While the above definitions are taken from standard graph theory (e.g.

Bondy 2008), the following notation is simply a short way of describing

network structures in small networks:
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Definition 9. Network patterns. Let the vector a be the ordered in- or

out-degree of all vertices. The in-degree is the number of edges arriving

at vertex i,the out-degree is the number leaving from it, the sum of both is

called in-out degree. In an undirected graph the in-degree equals the out-

degree, since for all edges arriving at i, there must be one leading back. If

the labels of the nodes are interchangeable, a describes the structure of the

network completely.

For example, the structure 1,1,1,1,4 represents a star with 5 vertices,

four vertices having one link, denoted by ‘1’, and one vertex having four

links to all other vertices, denoted by ‘4’.

4.2.2 Games on Graphs

In a network game, the vertices vi represent players, and the edges the

relationships they can engage in.

Network games further include value and allocation functions on the

set of possible graphs G. Value functions specify how the total utility is

generated by the network, and the allocation rule defines how this value is

distributed among the individual players.

Definition 10. Value functions (see Jackson and Wolinsky (1996)).

(i) A value function vf is a mapping vf : {g|g ⊂ gN} → R

(ii) The value function cvf is defined as the sum of individual utilities of

the players: cvf(g) =
∑

i ui(g)

Definition 11. Allocation function (see Jackson and Wolinsky (1996)).

An allocation function Y : {g | g ⊂ gN} distributes the value generated by

vf . The ‘equal split rule’ (Jackson and Wolinsky 1996) distributes the value

evenly among the players and is defined as: Ye(g, v) = cvf(g)/n.
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4.2.3 Stability definitions

Definition 12. Pairwise Stability (Jackson and Wolinsky 1996). A network

is pairwise stable if

(i) for all edges ij ∈ g, Yi(g, v) ≥ Yi(g − ij, v) and Yj(g, v) ≥ Yi(g − ij, v)

(ii) for all edges ij ̸∈ g, Yi(g, v) < Yi(g + ij, v) then Yj(g, v) > Yi(g + ij, v)

In words: If a link between two players is stable, then there cannot

be an adjacent network with higher value obtainable by deleting this link.

Conversely, for any player not being part of the network, the value that can

be added by this player must be smaller than the current value, otherwise

the link would be formed.

The concept of pairwise stability requires that at most two players act at

the same time, and that the players look only one step ahead. The concept

of strong stability extends pairwise stability to coalition of players:

Definition 13. Strong Stability (Jackson and van den Nouweland 2005).

A network g is strongly stable with respect to Y and vf if for H ⊆ V and g’

obtainable from g via deviations by H, and vi ∈ H such that Yvi(g
′, vf) >

Yvi(g, vf), there exists j ∈ S such that Yj(g
′, vf) < Yj(g, vf).

That is, a network can only be stable if a subset H of players has no

incentive to alter it.

For dynamic models of network formation, Jackson and Watts (2002)

adapted the concept of stochastic stability (Young 1993). In the dynamic

version of the game, at each time step two randomly selected players decide

to form or sever a link. The players act myopically and base their decision

on whether they are better off with the alteration in t+1. That is, they

do not consider the possible consequences that may follow by changing the
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utility of other players. After the decision is taken, with some probability

ϵ > 0 the alteration is applied, or with 1 − ϵ not. This is a Markov chain

with the states being the respective networks that are formed during the

process. With ϵ → 0 the stationary distribution converges to a unique

limiting stationary distribution. From this follows the next definition:

Definition 14. Stochastic stability (Jackson and Watts 2002). A network

in the support of the limiting stationary distribution of the dynamic process

is stochastically stable.

Jackson and Watts present methods that allow the identification of

stochastically stable networks. The main idea is to identify paths between

adjacent networks leading with the smallest possible resistance to a pair-

wise stable network. Resistance describes whether there exists an improving

path from a given network (i.e. with every step all players have to be better

off), and if not, how often some deviation from the individual rational choice

(described by ϵ) has to be made. More details follow in the next section.

4.3 Models of Network Formation

The JW model is essentially a proof of the existence of stable and efficient

networks. Subsequent work based on this model (Watts 2001; Jackson and

Watts 2002; Hummon 2000; Doreian 2006) as well as related work (Bala

and Goyal 2000; Beal and Querou 2007) provide a dynamic perspective.

In the JW model, players are fully informed, perfectly rational and my-

opic. Two players can choose at a time to link to each other. The link

is only formed if both players agree. The links are undirected since both

ends are involved in establishing it. Links can be severed unilaterally; the

game is hence partially cooperative. After their decision, the network value
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is computed, and the value distributed among the agents according to the

equal-split allocation rule. Direct links are costly, and both agents bear the

costs of the link. Then, the next two players are selected, who take their

decisions based on the current value of the network and the value that would

result by their respective actions. As they are myopic they only consider the

next state of the network. This process goes on until pairwise equilibrium

is reached. Depending on the cost of links, three different equilibria can be

sustained: the fully connected network, a sparsely connected network, and

the empty network.

The utility function is given by:

ui(g, t) = wii +
∑

j ̸=i

δtijwij −
∑

j:ij∈g

cij (4.1)

tij is the number of links in the shortest path between individuals i and j.

Links between players have a certain value wij, plus a constant ’intrinsic’

value wii that each player perceives (so that, say, remaining unconnected

can have its own utility). 0 < δ < 1 is a decay factor by which the value

of connections may decrease. δtij captures the fact that the longer the path

between the two nodes, the smaller its benefit becomes. If i is not connected

to j, δ is set to 0. Direct links are the most valuable, but they come at a

cost: cij denotes the costs of maintaining direct relationships (e.g. time and

effort); for all indirect connections, it is set to 0.

For simplicity, Jackson and Wolinsky set wii to zero and wij to 1, so

that the network depends only on the rate of decay and the cost of direct

links. Furthermore, cost and value are dependent on links, not players.

Therefore, the indices are left out, and only c and δ is written. They prove

the following properties of the network game:

– c < δ − δ2: The complete graph is the only unique stable solution.
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Players will choose to connect with each other directly provided that

the cost of a link is lower than the value gained from it: The value of

the highest valued indirect link δ2 is smaller than the net-value δ − c

gained from a direct link.

– δ−δ2 < c < δ: Many solutions are possible, namely all those benefiting

from indirect links. In this case a direct link has positive utility, but

as δ − c < δ2 it is more beneficial to be indirectly linked. One of the

stable solutions is star, as this structure minimises the number of links

and the distance between the nodes.

– δ < c: The only feasible solution is the empty network. No player

would be willing to create a connection, even if there exists a network

that yields positive payoffs.

They also show that for all n, a unique efficient network exists:

– If c < δ − δ2 then the complete network is efficient, as the utility of

any direct link exceeds the benefit of an indirect link.

– for δ − δ2 < c < δ + (n − 2)/2 ∗ δ2 the star is efficient. It minimises

the number of direct links while connecting all players with a minimal

distance.

– for δ + (n− 2)/2 ∗ δ2 < c only the empty network is efficient; that is.

For any situation where costs exceed the value that can be generated

by the star.

Watts (2001) analyses the actual process of forming the network in the

connection model. The static model only identified the equilibria and con-

firms that stable network states exist, but does not reveal whether and how
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these can actually be reached. In the dynamic version, two players are

selected randomly and given the opportunity to form a link. Players are

myopic, and thus anticipate in their decision only the utility of the network

that forms in the next step. The process stops if a stable network results.

She finds that two main attractors are possible: The formation of a stable

network, or a cycle of adjacent networks (an adjacent network is a network

that is obtainable by adding or deleting one link) without any sustainable

equilibrium. A network can only be pairwise stable if it can be reached over

a path of adjacent networks. Where there is no such path, after some time

all feasible networks have been visited, and the process must cycle along

those networks. In more detail, the main results are:

– δ − c > δ2 > 0: The fully connected network forms. In each period

utility strictly increases for any two players not yet directly connected.

Since breaking any link an agent reduces his payoff, no links will ever

be broken, as in the static model.

– 0 < δ − c < δ2: Stable non-empty networks can form. The star

is efficient and is also a pairwise stable network, although not the

unique one. The probability that a star develops decreases as n goes

to infinity, because its formation depends on the order in which players

meet: Some agent must be the centre agent. If the centre agent

C meets another agent A not yet linked to it, then C will agree to

establish the connection only if A is not linked to anyone else already

connected to C. Otherwise, C would lose the benefit of the indirect

link. Thus, the star can only form if all agents meet the centre agent

first. The link will be established because with 0 < δ − c, any direct

link between isolated players will be formed. The larger n, the more

likely that unconnected players meet each other before meeting the
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same (centre) agent. As a consequence, the likelihood of cycles or

the convergence to sub-optimal solutions increases. Especially in the

higher cost regions, agents prefer to connect to players who already

have a link. As the chance to meet the centre agent first decreases

with n, the process is likely to converge to a network with only one

path connecting every pair of players (i.e. a ‘line network’).

– δ − c < 0: No link is formed. Myopic agents cannot form any links,

since there is no benefit in establishing the first link, even if connected

networks with a utility > 0 do exist.

Jackson and Watts (2002) generalise this approach by modelling it as a

stochastic process, Again, two players are selected randomly, but their deci-

sion to form or not form a link is only carried out with a certain probability

1 − ϵ, whereas with probability ϵ nothing is done. The parameter ϵ may

be thought of as errors individuals make in their calculations, or deliberate

deviations in order to explore different paths. The smaller ϵ, the more likely

the results converge to that of Watts (Watts 2001). However, with larger

random perturbations, the myopic nature of the players can be overcome

by visiting networks that would not result by rational, myopic decisions.

Thereby, a new path of adjacent networks can be reached, possible leading

to a pairwise stable network. As already indicated (see definition 14), the

dynamics can be formalised as a Markov process on the random variable ϵ.

As ϵ → 0, stable networks that cannot be reached are excluded, and the

process selects those solutions that can actually be reached by myopic play-

ers. An application to the co-author model (Jackson and Wolinsky 1996)

demonstrates that the complete network is selected as the unique stochas-

tically stable network out of several possible solutions. This means other

stable solutions might exist, but are not reachable. However, they also
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demonstrate that there are examples where all pairwise stable networks are

equally stochastically stable.

Hummon (2000) uses the same model specification as Watts (2001), but

he simulates the model computationally to obtain his results for n=3, 5

and 10 (see also Doreian (2006) for a detailed, but purely descriptive follow

up for n=5 and n=6). The most important observation in this context is

that on average in all cost ranges either a star or a ring emerges as the

most frequent solution. Which formation occurs depends solely on n and

the order in which actors meet. As Watts (2001) derived theoretically, the

simulations show that with increasing n the frequency of the star decreases.

Only in the lower cost ranges the star still forms.

Bala and Goyal (2000; BG) analyse the formation of communication

networks as a non-cooperative game. In the BG model, links can be formed

and severed unilaterally. Agents who initiate links have to bear all the costs.

They consider two variants of the model, on in which benefits accrue only

to the linking agent (1-way-flow model), and one where benefits are shared

between players (2-way-flow model).

Using a payoff function without decay, the payoff of a player is given

by the benefit received of direct and indirect links minus the cost of direct

links in network g:

πi(g) = µi(g)− cµd
i (g) (4.2)

The marginal benefit of being connected to another agent is normalised to

1. c is the cost, µ is the number of all players player i is connect to, and µd
i

is the number of direct links the agent maintains.

In any setting where the benefits exceed the costs, it is a best response

to link to at least one other player. Bala and Goyal show that in the 1-



CHAPTER 4. NETWORK FORMATION 135

way-flow model the Nash equilibrium network is either empty or minimal

connected. A minimal connected network is a network in which all nodes

are connected and splits apart into more than one component as soon as one

link is severed. In the 2-way-flow model, the equilibrium network is either

empty or minimally bi-connected, meaning that agents are connected in the

form a directed graph, and no redundant links exist.

This equilibrium definition includes a large number of networks as the

number of player grows. For example, for three players there are already five

Nash networks in the 1-way-flow model. As a refinement, Bala and Goyal

define strict Nash equilibrium networks. A strict Nash equilibrium exists if

there is no other strategy available for all players i that is a best response

given a strategy profile of the other players i. For the 1-way-flow model,

Bala and Goyal show that the Strict Nash equilibrium is either the empty

network or a wheel (a directed graph in form of a ring). More specifically,

if c < 1 the ring is the unique equilibrium; if 1 < c < n − 1 both empty

and wheel network are stable; if c > n− 1, the empty network is the unique

stable network. In the 2-way-flow model, the equilibrium network is either

the empty or the centre-sponsored star network (a star where the centre

player pays all the links). If c < 1, the centre-sponsored star is the unique

equilibrium; if c > 1, then the empty network is the unique strict Nash

equilibrium.

To investigate the question whether these static games actually converge

to strict Nash networks in a dynamic setting, the game is specified as a

repeated one. The start is a random network, and each player plays his

strategy sequentially. All players observe the resulting network as well as the

strategies played. Players remain with their last strategy with a probability

p, or decide to play new action with probability 1 − p. In the latter case

they decide on a best-response given the actions played by the other players
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in the previous round of the game. Bala and Goyal then identify limiting

cases of strict Nash equilibria by looking at the changes that are induced

when exactly one player adapts his strategy. Simulations are used to test

whether the game converges to these limits for different p and to determine

the speed of convergence. They find that in the 1-way-flow model, the rate

of convergence is rapid, reaching one of the predicted networks in less than

20 rounds. In the 2-way-flow model, convergence takes longer. The smaller

p, that is, the closer behaviour to pure best-response, the quicker strict

Nash equilibrium is reached. The intuition behind this is that with p = 0,

the network will oscillate between full and empty networks (assuming an

initially empty network) as all agents move. In the first step, linking to any

player is the best response. When the network is fully connected, severing

all but one link is optimal. With p close to 1, at some stage only one agent

will not move, leaving it at the centre of a centre-sponsored star with some

positive probability (see also Bernasconi and Galizzi (2005)).

Beal and Querou (2007) model a network game with a notion of bounded

rationality. They begin with a one-shot game. In the model, forming a link

requires the consent of both players. Players incur costs for offering the link;

consequently, players only offer links if they know that their opponents do

the same. This results in the empty network as unique Nash equilibrium if

players are fully rational. In their dynamic version of the game, players have

limited memory, but are otherwise perfectly informed about other players’

past actions. The game is repeated over a finite number of time steps

larger than players’ memory. Players maximise their average payoff. Beal

and Querou show that with this form of bounded rationality, non-empty

networks can exist. Any deviation must be weighted by the players against

the potential harm that results from deleting links, as the other players will

never link once it has been revealed that the other player does not link until
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they forget the deviation until they forget the deviation. As a result, the

costs of establishing new links cannot be too high, or the potential value

gained from a link must be large enough before any link can emerge.

More recent BG-type models look at the role heterogeneity plays for

equilibrium selection. Although heterogeneity is out of scope of this chap-

ter’s model, these models are noteworthy because of some experimental

results related to them (discussed in section 4.4). McBride (2006) focuses

on value heterogeneity and partial information. Value heterogeneity is given

if the value of connections is different among players; partial information

means that a player observes only the actions of his direct neighbours. In

such cases, inefficient outcomes might emerge, whereas under perfect in-

formation, the efficient minimal connected networks are also equilibrium

networks. Other authors analyse the role of heterogeneous cost for estab-

lishing links (e.g. Galeotti et al 2006). They find that in equilibrium state,

cost-heterogeneous players form either empty or centre-sponsored star net-

works; if value varies as well, a strict equilibrium is either the empty network

or a minimal connected network with components being connected in the

form of centre-sponsored stars.

Models with farsighted players (Watts 2002; Deroian 2003) or coalition

formation (Dutta and Mutuswami 1997; Jackson and van den Nouweland

2005; Slikker and van den Nouweland 2000) are related to the network for-

mation game, but use different assumptions about agent behaviour and co-

operation among agents. When players are allowed to form coalitions, con-

ditions for equilibrium are stronger and thus reduce the number of possible

equilibria since deviations require the consent of all concerned players in the

coalition. Using definition 13, Jackson and van den Nouweland (2005) show

that strongly stable networks are efficient. When players are farsighted,

situations where the costs of links formed exceeds the benefits, but the re-
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sulting (non-empty) network has a positive payoff for the connected players,

can be overcome. However, although efficient networks could be formed in

such cost ranges, this does not happen because each player wants to pre-

vent to become the centre of a star-like structure. Rather, circle networks

distributing costs and benefits equally are likely to form.

There have been no applications of RL to strategic network formation

games in particular. Using the stag hunt game, only Pemantle and Skyrms

(Pemantle and Skyrms 2000; 2004) provide an RL approach of link forma-

tion. In the stag hunt game, there are two types of hunters, stag hunters

and hare hunters. Both receive a higher utility from hunting with the same

types, a lower utility of being in a group with hunters of the other type, and

a zero payoff if they stay alone. At each time step, hunters can propose to

form a group with two other hunters. Hunters who receive a proposal always

accept the offer, so that the group will form if a proposal is made. Starting

with equal propensities to form cliques with any type of hunters, the pro-

cess converges to cliques of the same types if recent experience is weighted

higher. On the other hand, if agents remember all their experiences, the

process is much more unstable or converges very slowly.

4.4 Experiments with Network Formation

Several network game experiments have been conducted. Most experiments

are based on the BG model; only few follow a similar specification as the

JW model, which is the focus of the RL model analysed later. However,

also for the (partial) cooperative JW model some conclusions can be drawn

from the experimental literature.

Vanin (2002) conducts an exploratory experiment of the JW model with

four players. The cost setting is δ < c < N−2
2

δ2, that is, in the medium
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range where the star is efficient, but not stable. The value of linking to

other players j, wij, is set to 1000; the cost of a link is 1000; δ was set

to 0.8. Pairwise stable is any minimal connected network. Three different

groups played the game cooperatively by discussing possible solutions and

agreeing on the links they form. A first treatment allows for side-payments

to compensate those players bearing larger costs; the second is without side

payments. With side-payments two groups coordinate on efficient outcomes,

while the third group forms a ring. In the second treatment, there are no

side-payments. The first two groups coordinated on the line network. The

other group, however, did not consider to agree on an unequal outcome and

coordinated on a ring, splitting the cost equally. This result is remarkable

insofar as the line is the pareto-optimal outcome: While the ring provides

an equal payoff of 240 to all players, the line provides a payoff of 240 to the

players with 2 links, but the two extreme players get 952. This agreement

was reached tossing a coin. Such an outcome requires that players accept

inequality that the players distinguish between the opportunity to gain more

before the game starts, and the actual outcome.

Falk and Kosfeld (2003) consider the BG game with 1-way and 2-way

flows of benefit and no decay. There are four players in the game. The

cost settings cover empty, minimal and star networks as the equilibrium

prediction. The game is played for five rounds. Links are formed simulta-

neously. After a step, players are informed about the network, costs and

the connected players. They find that

– In 1-way flow models many outcomes are Nash strict Nash equilibria

(between 40 and 60 %). However, for the 2-way flow model, there is

no strict Nash equilibrium, and fewer Nash equilibria (between 10 and

30 %).
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– If there is more than one unique stable network, subjects solve the

coordination problem by opting for the efficient network.

– Higher costs support the selection of both Nash and strict Nash so-

lutions in the 1-way flow model, but have a negative impact on the

selection in the 2-way flow model.

Falk and Kosfeld (2003) provide two possible explanations for the unequal

results in the 1-way and 2-way flow models. The first possibility is the asym-

metry in payoffs: In the 1-way flow model, the ring is the stable network, as

each player has to create a link to participate in the value of the network.

Costs and benefits are distributed equally. In the 2-way flow model, the sta-

ble solution is the centre-sponsored star, but no rational player wants to be

in this position. Their data support this hypothesis, as they find that when

such solutions are reached, they are unstable, i.e. the disadvantaged players

sever their links. The other possible explanation offered are social prefer-

ences. This hypothesis is supported by their finding that the frequency of

Nash outcomes decreases the more unequal the payoffs are - this becomes

especially apparent in the low frequency of the centre-sponsored star. Using

a regression model, they find that individuals are more likely to revise their

strategy if outcomes were unequal.

Using a similar setup as Falk and Kosfeld (2003), Bernasconi and Galizzi

(2005) find very different results. They consider four treatments with low

and high costs and one- and bi-directional flow of benefits. The main differ-

ence to the former experiment is a more neutral labelling. Bernasconi and

Galizzi (2005) claim that the use of ordered labels A,B,C,D in Falk and Kos-

feld’s experiment serves as a coordinating device, as they find in their own

experiments that the ring from A to D can be observed significantly more

often than when random labels are used. They therefore choose instead
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more neutral labels like ’&’ or ’%’. They find that in the one-directional

treatments almost no Nash networks emerge (between 1% and 3%). In the

bi-directional experiments sometimes Nash networks form, but also with

comparatively low frequency (between 13% and 17%).

Callander and Plott (2005) consider a BG model with 1-way flow of

benefits with no decay. They consider different treatments with homogenous

and heterogeneous cost settings. Cost settings are such that the wheel is

strict Nash. For the homogenous case, they find that

– The empty network never occurs.

– If networks converge, it is usually a Nash equilibrium, however, not

strict.

– Not all Nash equilibria are stable, often an equilibrium state collapsed

again.

Looking at how players take decisions and the dynamics of behaviour, they

find that

– Players do typically not play myopic best-responses as in the BG

model. They often use simple strategies considering the future out-

comes of the game. Agents make more sophisticated decisions antici-

pating future outcomes.

– Agents using such simple strategic behaviour follow their strategy

more consistently.

– Convergence depends on the behaviour of all agents. The more agents

switch to simple strategic behaviour, the more likely the network con-

verges.
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– The more agents remain committed to their behaviour, the more likely

other agents will adopt this behaviour as well.

Conte et al (2009) investigate a link formation game where links are

formed only if both players agree. In each round of the game players bid

for links simultaneously. The main interest is not whether networks con-

verge, but which individual strategies are responsible for the result. There

are six players, no decay, and cost settings are such that the equilibrium

prediction is a minimal connected network. Subjects have full information

about the network. In total, there were 54 participants. Nine experimental

sessions were run with six players per session. A session lasts at least 15

rounds, after which a random generator determined to stop the session. In

the experiments, minimally connected networks emerge; however, stability

is low. Conte et al (2009) attribute this to the fact that many equilibria

are possible, so that it is difficult to coordinate on a certain outcome. They

also observe that when a minimal connected network is established, some

players are tempted to experiment with alternative strategies. As a result,

a network might come out of equilibrium again. From the individual per-

spective, they find that 40 % of strategies are best-response strategies. The

remaining 60% strategies are not very far from best-response behaviour.

Distance is determined by calculating an index based the difference be-

tween profits of actual and best response behaviour. Common alternative

strategies are reciprocator and opportunistic behaviour. The first behaviour

maximises direct connections by always offering links to those players who

offered links in the previous round. The second behaviour tries to maximise

indirect links by removing direct links whenever possible. Best response

behaviour is strongly group driven, i.e. the more players adopt this strat-

egy the more likely that the remaining agents follow. There is an overlap

between best response and the other strategies. Conte et al (2009) estimate
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econometrically that 42% of players belong to the opportunistic, 31% to the

best response type and 27% to the reciprocator type. The high portion of

the opportunistic type thus points, similar as the previous studies, to more

complex than myopic best response behaviour.

Goeree et al (2009) test whether heterogeneous players manage better

to agree on efficient networks. They consider three treatments: A base-

line treatment with homogenous agents, a treatment with a low-cost agent

(experiencing lower costs for maintaining a link), and a treatment with a

high-value agent (experiencing and providing higher utility per direct or in-

direct link). They find that with homogeneous agents, formation of equilib-

rium networks fails. Introducing cost heterogeneity supports the emergence

of equilibrium networks in the form of minimal connected or star-networks.

When agents receive different value from linking the chance to observe equi-

librium networks is highest.

Summarising the main results of the experimental literature, the follow-

ing conclusions can be drawn:

– The frequency of equilibrium networks differs strongly between the

experiments. Some authors find no Nash networks at all. Maximum

rates observed go up to 40%.

– Even where Nash networks are found as good predictors, it becomes

apparent that the actual individual decisions deviate from the myopic

best response (Callander and Plott 2005). Basic strategies like oppor-

tunistic linking, reciprocating behaviour or simple strategic-decision

making are more common.

– The more agents commit to a certain behaviour, the more likely con-

vergence.
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– Some authors further mention an equality norm, i.e. a preference of

the players for equal distributions of cost (e.g. Vanin 2002).

4.5 A Reinforcement Learning Model of Net-

work Formation

One conclusion of the literature review is that actual human behaviour in

the experiments differs often from the equilibrium condition. This section

describes the RL based model of network formation and asks how the out-

come differs from the theoretic predictions.

A dynamic version of the connections model is considered, similar to

Watts (2001) and Jackson and Watts (2002), but adapted to a setting with

RL agents. As a benchmark, the original analysis of Jackson and Wolinsky

(1996) for the static, and Watts (2001) for the dynamic model can be used.

The game proceeds as follows:

– Two agents are picked randomly.

– Both agents decide whether to offer a link or not.

– If both agents offer a link, the connection is added, otherwise not.

– The new network is computed.

– The two agents who acted receive their rewards, calculated with equa-

tion 4.1.

If a link was formed, it exists as long as the two agents do not meet again.

When they meet another time, the link is maintained if both agents offer a

link again, otherwise it is severed.
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Learning In the reviewed network games literature bounded rationality

was described as an injection of ‘irrationality’, for example, as error term

ϵ as in Jackson and Watts (2002) or Bala and Goyal (2000), or a limited

memory as in Beal and Querou (2007).

In the model presented here, RL can be seen as a form of limited ratio-

nality. Agents start with no information at all and learn by trial and error

about the game and the application of the appropriate actions. Players

know only the name of the other players and may choose from the action

set A ={a0 . . . ai . . . an} given by {offer link, not-offer link}.

Using the concepts of BRA introduced in chapter 2, the internal choice

model for agent i is given by rku,v : Ck,k ̸=i
u,v → {offer, not-offer}. There are

k − 1 mappings and the initial conditions contain only one attribute with

one value (player-name=k), so no further expansion is possible. BRA thus

reduces to disjoint sets of simple RL rules. For each rk agent i updates the

action strengths, that is, ∀rk, using

q(aj(t, k)) = q(aj(t− 1, k)) + γ(ui(g, t)− q(aj(t− 1, k)))

Using the exponential selection rule in equation 2.10, agent i chooses at the

next encounter with agent j his action.

Parameter settings The model has four parameters of interest, α and

γ, cost c and value δ. As in the original JW model, wij is set to 1, and wii

to 0. Agents are homogenous; cost and value are the same for all players.

In the simulations, the parameters c and α are varied. c can be seen

as the structural parameter influencing the opportunities for the players; α

determines the rate of exploration. The greater α, the more likely explo-

ration in the action selection process and the selection propensities for both

actions become more similar; the smaller α, the faster the agents stick to
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a reasonably good solution. The central question for the adaptive network

model is whether it is possible to generate stable and efficient solutions, and

how the properties of the learning rule have to be for this. The influence of

randomness on the outcome has led to the choice of stochastic stability as

the benchmark stability definition for the RL model.

The discount parameter γ is only of minor importance for the analysis.

γ sets the rate at which the reward is updated. The smaller this weight, the

faster the experienced reward approximates the true reward. Experiments

with various γ values were used to select the best model for a more detailed

analysis of α. A short overview of different γ settings is given in section

4.6.4.

The value of δ, 0 < δ < 1 is fixed at a value larger > 0. Since there are

no requirements or other substantial reasons for a particular value except

that decay exists, it has been set to 0.5. For each cost range, the values

for c are drawn randomly in order to obtain some samples within each cost

range. α is incremented by 0.01 from 0.01 to 1.

Table 4.1 shows the parameters in summary.

cost range α δ γ
c < 0.25 (low cost range) 0.01 . . . 1 0.5 0.1, 0.25, 0.75, 1

0.25 < c ≤ 0.5 (medium cost range) 0.01 . . . 1 0.5 0.1, 0.25, 0.75, 1
c > 0.5 (high cost range) 0.01 . . . 1 0.5 0.1, 0.25, 0.75, 1

Table 4.1: RL network model parameter settings

Measurements for the simulations Networks and network formation

can be described in a variety of ways. In section 4.2.1 the measures D (den-

sity) and L (average path length) were already introduced. Three additional

measures are defined here:
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A stability measure is computed to assess how robust the solutions are.

It might occur that a simulation result comes very close to the theoretic

equilibrium in settings where agents explore enough and discover better

solutions. Since exploration comes at the cost of more random decisions in

the process, the whole system can become unstable.

Definition 15. Stability. St = 1− 1
2

n(g,t−1)−n(g,t−1)

(n(n−1))

Stability is simply the difference in the number of links between two time

steps, divided by the number of maximum possible links to standardise the

measure. For a single simulation step, the value can be either 0 or 1. Over

a sample of simulations, St can be interpreted as the probability that a link

changes at t. It thus varies between 0 and 1 and the closer it is to 0 the

more stable the network is.

To compare the results with the game-theoretic prediction, a fitness

measure is defined as follows:

Definition 16. Fitness / Efficiency. Let the vector gstable be the stochas-

tic stable network (efficient network), and gactual a simulated network. Let

stepsmax be the maximum number of modifications starting from any net-

work to gstable, and stepsactual the number of modifications to reach gstable

from gactual. Define the fitness at time t as: fitt =
1
2
(
stepsactual,t
stepsmax

+
stepsactual,t
stepsmax

St)

The resulting measure varies between 0 and 1 and tends towards 1 the

closer the network structure to the stochastic stable network, and the more

stable the simulation result (multiplying the distance with St and adding it

in the enumerator has the effect that stable states are weighted higher as

St = 0 if a linked changed, 1 otherwise).
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To determine the stochastic stable network, the procedure in Jackson

and Watts (2002) has been implemented as a computer program. The

program computes the set of all possible networks, and finds out the pairwise

stable network with the minimal resistance from all other networks in the

set.

4.6 Simulations

4.6.1 Overview

Simulations were run for at least 10.000 time steps per α and γ combination

for each cost range in samples of up to 4000 steps with several repetitions

per simulation, giving a reasonably large sample. Figure 4.1 shows how

fitness values vary depending on α and γ.

Figure 4.1: Fit of simulations for simulated α and γ values.
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Across all γ, the fit of the simulation develops analogously - starting

with a high fit of up to 0.6 for small α, then decreasing to values of about

0.35. Furthermore, results fit better for γ = 0.25 and γ = 0.75; that is, for

values close to very long memory and no memory at all. The reason for this

behaviour lies in the different role of adjustment speeds to other agents’

behaviour depending on the cost range. This is discussed in section 4.6.4.

Analysis revealed that the γ and α combinations maximising fitness in

each cost range are α = 0.1 and γ = 0.75 for the low, α = 0.01 and γ = 0.25

for the medium, and α = 0.07 and γ = 1.0 for the high cost range (in the

high cost range several combinations achieve a fit of 1. Out of the top

20 results, the simulation belonging to the most frequent γ value and the

highest α was chosen). Some more samples for these specific values were

simulated to look closer at the behaviour for various cost values. Using net-

work density as an indicator, figure 4.2 illustrates connectivity as a function

of cost.

In the high cost range (c > 0.5) the empty network emerges as solu-

tion. In the low cost range (c < 0.25), connectivity is high (almost fully

connected structures). In the medium cost range (0.25 < c ≤ 0.5) networks

become sparser (density between 0.4 and 0.5). For the ‘border’ regions be-

tween low and medium, as well as medium and high cost range connectivity

changes gradually; for example, for cost=0.54, density was 0.28. In the RL

process, no threshold function between cost ranges emerges as stated in the

benchmark model.

The following sections analyse the behaviour of the simulation in more

detail. It is analysed how the shape of networks changes when α changes.

The question is how the exploration and exploitation affect the connectivity

and stability of small networks. γ is held constant at the value maximising
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Figure 4.2: Network density over all cost samples.

the fitness in each cost range.

4.6.2 Network Properties for Different α

Figures 4.3, 4.4 and 4.5 show how density, stability and fit develop in the

low, medium and high cost ranges.

Low cost range (c < δ− δ2) The optimal solution is the fully connected

network (D = 1). Figure 4.3 shows that for small α(/ 0.07) the network

is strongly connected (D ≈ 0.7) without reaching the complete network,

and stability tends towards 1. As could be expected, for small α, agents

tend to stick to first-best solutions, which are those providing the largest

increase in marginal utility. With α increasing towards ≈ 0.11, the network

is developing towards the fully connected network (D ≈ 0.8). However,

this comes at the cost of stability, i.e. some agents keep switching. Finally,
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Figure 4.3: Network density, stability and fit for the low cost range.

for α > 0.6, connectivity and variability approach a limit in an asymptotic

manner with density about 0.35. The random limit is given by the probabil-

ity that offered links are accepted. Assuming total randomness, the chance

of offering a link is 0.5, the chance that the other player offers a link at the

same time is equally 0.5. Thus, the probability that a link can actually be

formed by pure chance is 0.25. This indicates that RL performs better than

randomness, even if the distance between the action propensities becomes

smaller.

Medium cost range (δ2 < c ≤ δ) According to the static as well as the

dynamic model, minimal connected networks should form (i.e. D ≈ 0.5).

Computations showed that the star is the efficient as well as stochastic

stable pairwise network. In the simulations, agents end up very close to

a minimal connected network (D ≈ 0.5) for α < 0.06. These networks
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Figure 4.4: Network density, stability and fit for the medium cost range.

are very stable. For 0.07 < α < 0.15 there is a decrease in density to

≈ 0.4, with a sharp drop in stability and corresponding decreases in fit. For

0.15 ≤ α < 0.3 density decreases further. For α ' 0.3 the connectivity of the

network settles asymptotically near to the random limit; similar to the low

cost range the RL process performs also here (slightly) better than random.

The density of ≈ 0.4 in the range 0.07 < α < 0.15 indicates that networks

are not over-connected, but may be rather efficient. The sharp decrease in

stability points, however, to coordination failure (random switching) rather

than reinforcements. In principle, optimal network structures can develop

simply because they are closer to a random outcome.

High cost range (c > δ) Here, the empty network is expected. Although

for some agents positive utility could be generated by indirect links, there

is always at least one agent for whom the costs exceeds the value it receives
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Figure 4.5: Network density, stability and fit for the high cost range.

and thus motivates the deletion of direct links. Figure 4.5 shows that the

simulation converges to the equilibrium prediction if agents explore little

(α <≈ 0.15). For α > 0.25, at least two agents are linked (D = 0.1).

The random limit is approached for α values > 0.3. the model approaches

quite fast a situation where at least two agents are linked. At α ≈ 0.6 the

simulation converges to the random limit (D ≈ 0.2). Here again RL clearly

performs better than a random process.

4.6.3 Network Structure and Dynamics

Tables 4.2, 4.3 and 4.4 show the results for the three cost ranges for the

measures density (D), stability (S), and match (fit). A cluster analysis

for α has been performed on the variables D and S to group the results.

These variables have been chosen because they describe the dimensions

structure as well as time. For the resulting clusters, the emerging networks
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are characterised by network structure, and the summary measures density

D, average path length L, fitness fit, S and efficiency E. The choice of three

cluster centres reflects roughly the main dynamics observed in figures 4.3,

4.4 and 4.5: A good fitness in the lower α regions, then decrease in fitness

(which may mean a decrease or increase in density), finally approximation

of the random limit. The tables illustrate the most network architectures

which result during this process. For readability, only the upper quartile

is represented. The share of each network is based on the frequency in the

quartile (not the overall occurrences).

Low cost range (c < δ − δ2) Table 4.2 shows the following: In clus-

ter 1 (the cluster with the best fit), the most common visited networks are

2,3,3,4,4; 2,2,2,3,3 and 2,2,3,3,4 with a relatively high connectivity (D = 0.6

- 4 missing links to the complete network; and 0.8 - 2 missing links to the

complete network). The path lengths of 1.5-1.75 indicate that most net-

works are connected in a way that each player can be reached directly or

with one intermediary at maximum. In the second α range, the most fre-

quent networks 2,2,2,3,3; 2,2,3,3,4 and 1,2,2,2,3 are still connected more

densely than sparse networks, but are also quite unstable (S ≈ 0.7 as com-

pared to ≈ 0.9 in the first cluster). Finally, cluster 3 illustrates that with

α → 1, network density approaches its random limit 0.25, with frequent

unconnected networks (i.e, L = 0).

Medium cost range (δ2 < c ≤ δ) In the medium cost range, relatively

stable networks close to minimal connected networks form. The network

1,2,2,2,3 is the most common one, with an average path length of 2.04,

meaning that now often at least one intermediary connects two different

players. This is close to a ring (only one player has more links), which

is the structure minimising the costs, at the same time distributing them
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Cluster Network D L S Fit Share

α 0.01− 0.24 1,2,3,3,3 0.6 1.88 0.92 0.58 0.07
avg(D) 0.68 1,2,2,2,3 0.5 2.05 0.92 0.48 0.09
avg(L) 1.67 2,3,3,3,3 0.7 1.63 0.93 0.67 0.1
avg(S) 0.93 3,3,4,4,4 0.9 1.38 0.93 0.87 0.11
avg(Fit) 0.66 1,2,2,3,4 0.6 1.75 0.93 0.58 0.12
avg(E) 0.66 2,3,3,4,4 0.8 1.5 0.92 0.77 0.15

2,2,2,3,3 0.6 1.75 0.94 0.58 0.17
2,2,3,3,4 0.7 1.63 0.93 0.68 0.18

α 0.25− 0.46 1,1,2,2,2 0.4 2.22 0.66 0.33 0.08
avg(D) 0.59 2,3,3,4,4 0.8 1.5 0.75 0.7 0.1
avg(L) 1.84 1,1,2,3,3 0.5 2 0.7 0.42 0.1
avg(S) 0.71 1,2,3,3,3 0.6 1.88 0.71 0.51 0.11
avg(Fit) 0.51 1,2,2,3,4 0.6 1.75 0.72 0.52 0.14
avg(E) 0.51 2,2,2,3,3 0.6 1.75 0.73 0.52 0.15

2,2,3,3,4 0.7 1.63 0.74 0.61 0.15
1,2,2,2,3 0.5 2.06 0.69 0.42 0.18

α 0.47− 1.0 1,2,2,2,3 0.5 2.06 0.62 0.4 0.07
avg(D) 0.26 1,1,1,2,3 0.4 2.25 0.62 0.32 0.08
avg(L) 0.51 1,1,1,1,2 0.3 0 0.61 0.24 0.08
avg(S) 0.63 1,1,2,2,2 0.4 2.18 0.62 0.32 0.09
avg(Fit) 0.21 0,1,1,1,1 0.2 0 0.63 0.16 0.1
avg(E) 0.21 0,1,1,2,2 0 0 0.62 0.24 0.17

0,0,0,1,1 0.1 0 0.65 0.08 0.19
0,0,1,1,2 0.2 0 0.64 0.16 0.21

Table 4.2: Low cost range network structures

evenly so that no incentives for deviation exist. This is similar to the results

of Watts (2001), and - for the non-cooperative game - of Bala and Goyal

(2000). For example, in cluster 1, the ring has a share of 0.09. More

efficient structures (1,1,2,2,2; 1,1,1,2,3) are more common. Unconnected

networks occur already in cluster 1, and become more frequent in clusters

2 and 3; thus indicating that any equilibrium-like state in this cost range

is more unstable and difficult to sustain. Whereas D indicates a relatively

close match with pairwise stable networks (these are: 1,1,1,1,4; 1,2,2,3,4;
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Cluster Network D L S Fit Share

α 0.01− 0.2 1,2,2,3,4 0.6 1.75 0.85 0.62 0.07
avg(D) 0.46 1,1,2,3,3 0.5 2 0.78 0.44 0.07
avg(L) 1.78 2,2,2,2,2 0.5 1.88 0.94 0.16 0.09
avg(S) 0.83 2,2,2,3,3 0.6 1.75 0.85 0.31 0.14
avg(Fit) 0.44 0,1,1,2,2 0.3 0 0.72 0.43 0.14
avg(E) 0.44 1,1,2,2,2 0.4 2.37 0.81 0.3 0.15

1,1,1,2,3 0.4 2.25 0.88 0.63 0.17
1,2,2,2,3 0.5 2.04 0.85 0.46 0.22

α 0.21− 0.4 1,2,2,2,3 0.5 2.06 0.54 0.39 0.09
avg(D) 0.24 1,1,1,2,3 0.4 2.25 0.57 0.52 0.09
avg(L) 0.43 1,1,1,1,2 0.3 0 0.59 0.4 0.09
avg(S) 0.5 0,1,1,1,1 0.2 0 0.62 0.27 0.1
avg(Fit) 0.38 1,1,2,2,2 0.4 2.16 0.56 0.26 0.11
avg(E) 0.38 0,0,0,1,1 0.1 0 0.66 0.41 0.14

0,1,1,2,2 0.3 0 0.6 0.4 0.19
0,0,1,1,2 0.2 0 0.63 0.54 0.19

α 0.41− 1.0 0,1,2,2,3 0.4 0 0.56 0.52 0.07
avg(D) 0.25 1,1,1,2,3 0.4 2.25 0.56 0.52 0.07
avg(L) 0.32 1,1,2,2,2 0.4 2.15 0.55 0.26 0.08
avg(S) 0.62 1,1,1,1,2 0.3 0 0.59 0.34 0.08
avg(Fit) 0.35 0,1,1,1,1 0.2 0 0.63 0.27 0.11
avg(E) 0.35 0,1,1,2,2 0.3 0 0.6 0.4 0.17

0,0,0,1,1 0.1 0 0.68 0.42 0.19
0,0,1,1,2 0.2 0 0.64 0.55 0.22

Table 4.3: Medium cost range network structures

1,3,3,3,4; 2,3,3,3,3; 2,2,2,3,3; 1,1,2,2,4; 2,2,2,2,2 for cost closer to the low

cost limit, plus the more sparse structures 1,2,3,3,3; 1,1,2,3,3; 1,2,2,2,3;

1,1,1,2,3 for costs closer to the high cost range), the distance to the unique

stochastic stable network 1,1,1,1,4 is larger as compared to the low cost

range. That is, while rational myopic players according to the stochastic

process of Jackson and Watts (2002) are most likely to end up with a star

network, the RL process diverges strongly from this result.
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Cluster Network D L S Fit Share

α 0.01− 0.27 1,1,1,2,3 0.4 2.25 0.41 0.42 0.01
avg(D) 0.05 0,1,1,1,1 0.2 0 0.76 0.7 0.02
avg(L) 0.09 0,1,1,2,2 0.3 0 0.7 0.59 0.03
avg(S) 0.91 1,1,2,2,2 0.4 2.39 0.65 0.5 0.04
avg(Fit) 0.9 0,0,1,1,2 0.2 0 0.77 0.71 0.04
avg(E) 0.9 0,0,0,1,1 0.1 0 0.88 0.85 0.14

0,0,0,0,0 0 0 0.99 0.99 0.72

α 0.28− 0.51 0,1,1,1,3 0.3 0 0.65 0.58 0.02
avg(D) 0.08 1,1,1,1,2 0.3 0 0.64 0.57 0.02
avg(L) 0 0,1,1,2,2 0.3 0 0.64 0.57 0.04
avg(S) 0.75 0,1,1,1,1 0.2 0 0.72 0.69 0.07
avg(Fit) 0.76 0,0,1,1,2 0.2 0 0.72 0.69 0.16
avg(E) 0.76 0,0,0,0,0 0 0 0.89 0.95 0.31

0,0,0,1,1 0.1 0 0.81 0.81 0.38

α 0.51− 1.0 1,1,2,2,2 0.4 2.13 0.55 0.47 0.03
avg(D) 0.16 0,1,1,1,3 0.3 0 0.62 0.57 0.04
avg(L) 0.05 1,1,1,1,2 0.3 0 0.61 0.56 0.05
avg(S) 0.71 0,1,1,2,2 0.3 0 0.62 0.67 0.1
avg(Fit) 0.72 0,1,1,1,1 0.2 0 0.68 0.91 0.11
avg(E) 0.72 0,0,0,0,0 0 0 0.82 0.57 0.15

0,0,1,1,2 0.2 0 0.68 0.67 0.22
0,0,0,1,1 0.1 0 0.75 0.79 0.32

Table 4.4: High cost range network structures

High cost range (c > δ) In the first, cluster the most frequent network

is the empty network with a share of 0.73. In the most frequent non-empty

network only two players are connected. In the other clusters, non-empty

networks are more frequent. In the second cluster, two players link most

of the time; in the third cluster it might happen that even more than two

players connect.
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Cost range γ D L S fit

0.1 0.68 1.66 0.95 0.66
0.25 0.61 1.78 0.96 0.6

(c < δ − δ2) 0.5 0.64 1.67 0.83 0.59
0.75 0.79 1.5 0.92 0.75
1 0.72 1.6 0.89 0.63
0.1 0.51 2.05 1 0.44
0.25 0.47 2.08 1 0.61

(δ2 < c <= δ) 0.5 0.51 1.8 1 0.48
0.75 0.51 1.88 0.99 0.46
1 0.46 1.93 0.99 0.51
0.1 0 0 0 0.99
0.25 0 0 1 0.99

(c > δ) 0.5 0 0 1 1
0.75 0 0 0.99 0.99
1 0 0 1 1

Table 4.5: Simulation results for various γ

4.6.4 Memory Effects

To round up the analysis, summary measures are reported for simulation

runs with different γ values while holding α constant. For each cost range,

the optimal α values were chosen: 0.1 in the low, 0.01 in the medium, and

0.02 in the high cost range.

Table 4.5 shows that in the low cost range fitness and connectivity are

best for the higher γ values. Moreover, a γ value of 1 increases connectivity

as compared to smaller values. It also affects the stability of the network, as

the probability of deviations is the highest. γ = 0.75 seems to compromise

well between exploration, on the one hand, and stability on the other.

In the medium cost range, γ = 0.25 is optimal. Higher γ values, but also

γ = 0.1, are also here responsible for higher density - which is inefficient in

this scenario. Furthermore, γ = 0.1 and γ = 0.25 both maximise the path
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length, which means they are support networks that connect the players in

the sparsest way. As noted above, in the medium cost range utility might

strongly decrease after a certain threshold is reached. If agents react very

quickly, this could lead to a collapse of the network. More tolerance on the

other side might support experimentation on the fringes.

In the high cost range there seems to be no influence of γ (at least not

for the chosen α values) - all solutions are typically empty and very stable

networks.

4.6.5 Summary of the Simulation Results

Low cost range (c < δ − δ2) The likely reason that the network does

not approach full connectivity is the decreasing rate of utility the more

connected the network becomes. At the beginning of the process, the first

links provide the highest marginal utility and reinforce the highest action

strengths. After agents are connected directly or indirectly to all other

agents (i.e. via flower networks contracting the distance with very few

additional links), the marginal utility of exchanging an indirect for a direct

link is small. Consequently, the selection probabilities for forming and not

forming the link become for certain players more equal the later they interact

in the formation process. As a result, the decisions would switch between

offering and not offering a link for some of the players, irrespective of α.

The situation can, nevertheless, stabilise early in the simulation if a player

first experiences either linking or not linking as negative (or 0), but benefits

from an indirect link added by another pairing of players. If the distance

becomes small enough, the particular action played at that time becomes

reinforced, and with α sufficiently small, will be repeated. If α is large,

this could result in a cycle where most of all players are at some stage the

‘marginal’ agent that is not worth linking to. This can be inferred from
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the trends in density and stability: For the smallest α values stability is

highest, but not density. As α increases, stability decreases stronger than

density increases. Moreover, the distribution of visited network structures

does not change very much, which means that similar network structures

exist during the whole run, but with more frequently changing links. The

optimal γ value of 0.75 indicates, furthermore, that agents have a short

memory and so react quickly to changes in the network structure.

Medium cost range (δ2 < c ≤ δ) Up to the level where the utility of

not being linked is smaller than being linked, the learning process follows

the same marginal utility dynamics as in the low cost range. Once utility

becomes negative, the average rewards decrease strongly and prevents fur-

ther linking. Thus, the cost settings act as a natural cut-off to the reward

perceived by the agents. In the low cost range, there is no such bound,

but the additional utility becomes very small, leading to random switching.

The closer cost to δ − δ2, the more similar behaviour in the medium cost

range becomes to behaviour in the lower cost range - density increases. Note

furthermore, that the optimal γ is with 0.25 very low as compared to the

other cost ranges, which means that agents are more tolerant of deviations.

A plausible reason for this is that agents must not be ‘too’ myopic, since

for stable networks in this range agents have usually to link to two other

agents. The utility of just one link is small and thus the motivation to alter

that link is large. Allowing some tolerance for such behaviour ensures that

the network does not collapse quickly as a consequence of a single agent

severing a link.

Moreover, fit in the medium ranges is worst as the star is the stochastic

stable network, but the emerging structures are ring-like. This coincides

with Watts (2001)’s prediction that the formation of stars becomes unlikely
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the larger n, but conflicts with the stochastically stable star that was com-

puted using the approach in Jackson and Watts (2002).

High cost range (c > δ) There is nothing surprising in the high cost

range; it largely reflects the equilibrium prediction. Here, the learning task

for the agents is extremely simple because there are very few non-empty

networks in which an agent can experience a positive reward. Thus, the only

deviation in this case from the prediction is induced solely by the increased

randomness in the action probabilities with increasing α. Furthermore,

the optimal γ value of 1 shows that the best performing agents react very

quickly with no memory at all to alterations in the network structure. This

is plausible, since independent of the history, any addition of a link has

always a negative impact for at least one agent - which was also stated in

the dynamic benchmark model.

Thus, the networks evolving from the learning model differ with the ex-

ception of the high cost range quite considerably from the equilibrium pre-

diction. A closer look at the data showed that for the optimal α and γ

values (0.1/0.75, 0.01/0.25 and 0.07/1), the pairwise and stochastic stable

outcome was met with a rate of 0.01 in the low range (4,4,4,4,4 the only

pairwise/strongly and stochastic stable network) as compared to a rate of

0.13 of the most frequent network 2,2,3,3,4; in the medium cost range 51%

of all visited networks were pairwise stable, but only 19% stochastic stable;

only in the high cost range 71% of all networks were the predicted empty

network. Looking at the structure of the networks that evolved, it is more

accurate to speak of two characteristic cost ranges, one with c < δ and

one with c > δ. In the ranges where positive utility is achievable, agents

form sparsely connected networks, adding some shortcuts contracting the

distance between them (flower networks). The smaller cost, the closer the
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resulting networks are to the complete network. The higher the cost the

more sparse the resulting network will be - independent of whether the cost

is in the low or medium range. The shorter the distance between agents in

the network, the more undecided agents become whether to connect to some

other player directly or not. If δ2− δ < c < δ, the RL process matches pair-

wise stable networks more often because utility is increasing with the first

additional links, but later decreasing (i.e. marginal utility is in the very

low cost range convex, whereas in the second case, it is decreasing after

reaching its maximum). Another factor is simply chance - sparse networks

are simply closer to the random limit of 0.25.

4.7 Applying BRA

In the base model, knowledge is pre-wired - agents maintain a state-action

mapping per player and form expectations about the behaviour of each

player. The implicit assumption was that learning is simplified by saving

the necessary specialisation and generalisation procedure. It thus helped to

reduce complexity, and concentrate on the effects of pure RL in a network

game context. Applying BRA as described in chapter 2 and allowing to

evolve this internal model dynamically can be seen as a further test of

robustness - is it possible to perceive player-specific behaviour (similar to

the discrimination game), and if not, does this impact the result at all?

In the BRA network model, agents develop the state-action mappings

themselves. The initial rule has the form r0,1 : C0,1 → A where the

condition can be described with: (player-name=2 or player-name=3 or

player-name=4 or player-name=5) for the first player, for the second player

(player-name=2 or player-name=3 or player-name=4 or player-name=5)

and so on. During the process of the simulation, agents expand this initial
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rule into finer grained mappings, for example C1,1 → A with C1,1 (player-

name=2 or player-name=3) and C1,2 → A with C1,2 (player-name=4 or

player-name=5). The idea is that with this mechanism the base model can

be learnt if the distinction per player label is useful.

Three simulations, one for each cost range, were run for 5000 time steps

each. Parameters where set as follows: χ = 100, ν = 50, µ = 40, ζ = 0.3,

ρ = 0.2. The parameter setting follows a similar logic as the simulations

in chapter 3. χ is unreachable, because limited cognitive capacities impose

restriction in this exploratory simulation. The other parameters are set in a

way that allows the computation of action and state values from reasonably

large samples (ν, µ), and the revisiting of generalised nodes(ζ), since the

environment is very dynamic.

Using the measures D, S and fit, figure 4.6 shows the networks obtained

with this method. In the low cost range, density is 0.62, similar to the

average base network model result. The same holds for the other cost ranges

- density is 0.35 in the medium, and 0.04 in the high cost range. Thus, BRA

generates the same outcome as the base model. In general, stability is lower

than in the base model due to the increased amount of experimentation.

Figures 4.7 to 4.9 show the rules that were created during the process

and how often they were activated. As useless rules are deleted by BRA,

these appear with a lower frequency, rules that survived longer have a high

frequency.

As all three figures show, there was no value in developing finer grained

rules during the process. This is no surprise for the low or high cost range -

in these scenarios utility is always increasing or mostly negative independent

of the current state of the network. In the medium cost range, more rule

experimentation is happening. For example, 36 mappings were generated
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Figure 4.6: Network density, stability and fit for the BRA version of the model.

Figure 4.7: Rule extractions in the BRA network model for the low cost range.
The labels denote the mappings, e.g. 1 2 3 4 represents the condition (player-
name=1 or player-name=2 or player-name=3 or player-name=4).
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Figure 4.8: Rule extractions in the BRA network model for the medium cost
range. The labels denote the mappings, e.g. 1 2 3 4 represents the condition
(player-name=1 or player-name=2 or player-name=3 or player-name=4).

Figure 4.9: Rule extractions in the BRA network model for the high cost range.
The labels denote the mappings, e.g. 1 2 3 4 represents the condition (player-
name=1 or player-name=2 or player-name=3 or player-name=4).
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as compared to 27 in the low cost range. The low frequencies, however,

show that this does not lead to any sustainable mappings.

From this result, it can be concluded that the outcome in the medium

cost range is similarly generated by a simple decrease in the selection prob-

ability, irrespective of the players who meet. It explains why the stability

and fitness values are worse in the medium cost range; and it also shows

that no specific model is necessary to generate the result. Simply decreasing

the chance of offering a link is enough - at the price of higher instability.

4.8 Comparison with Empirical Results

After describing the structure of the networks resulting from the RL model,

this section asks whether the presented RL model can explain empirical

networks better than the equilibrium prediction.

However, with existing empirical results, comparison is not straightfor-

ward. As described in section 4.4, results in experimental game theory vary

considerably. In the BG models, Nash networks emerge with a frequency

of 0% to up to 40%. An evaluation of how well the RL model performs

based on this data is difficult. In particular, except Vanin (2002) there is

no experiment of the JW model. This model was, however, a first explo-

ration where the co-operative nature of the game was investigated, but little

quantitative data produced.

To gain some intuition how well the RL model does in predicting actual

outcomes, here the experiment of Conte et al (2009) is simulated: The model

is closest to a JW-type model as it requires mutual consent to establish and

maintain a link. The following modifications were made to the RL model: δ

is set to 1, i.e., there is no decay. All agents act simultaneously, so that all
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possible parings happen at the same time step, so each agent has to make

n-1 choices each round. This leads to much higher variability in the game,

as from a single agent’s perspective, the environment changes much more

erratic as if only two agents moved at a time.

The remaining parameters are set as in Conte et al (2009)’s experiment

described above. Table 4.6 summarises the parameter settings.

cost benefit α δ γ
90 100 0.01 . . . 0.25 1.0 0.1, 0.25, 0.75, 1

Table 4.6: Adaptive network model parameter settings for the simultaneous
linking game.

Simulations were run for α values up to 0.25 and some γ values. Each

simulation is run for 100 steps and repeated 10 times. This is longer than the

original 20 rounds, but was chosen deliberately to gain more representative

results (whereas the variation in the experimental results is high due to the

small numbers). To compare the result to the original model, the average

payoff (over all simulations and time steps) is used. In Conte et al (2009),

this value is given as 175.056 (standard error 7.901). The most similar

values fall into simulations with γ = 0.75 (see figure 4.10).

From these runs, the simulation with the smallest difference from the

experimental result in average profits and standard variation is selected ∗.

This turns out to be the setting γ = 0.75 and α = 0.19. Table 4.7 compares

the average payoff from the experiments with the payoff resulting from the

theoretically derived Nash equilibrium and the simulated results. While also

the simulations do not match perfectly, they are with an expected value of

∗This was the only aggregated figure available at the time of writing. It was not
possible to obtain the results from the authors as their paper was under review at that
time.
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Figure 4.10: Average payoff for various α and γ values in Conte et al (2009)’s
simultaneous linking game.

about 172 much closer to the actual result than the equilibrium prediction

(a line network) with 296.67.

Payoffexperimental (s.d.) Payoffsimulated (s.d.) Payoffnash

175.056 (86.55) 171.62 (125.45) 296.97

Table 4.7: Comparison of payoffs of equilibrium prediction, experimental and
simulated results in the simultaneous linking game(γ=0.75, α = 0.19, 10 repeti-
tions

.

Figure 4.11 illustrates the dynamic of the simulation using a measure of

stability, fitness and density for illustration. Stability is defined as above

in definition 15, that is, as the likelihood that an agent changes a link.

The share of Nash networks indicates how often the agents formed Nash

networks (i.e. minimal connected networks) in the simulations. Although

the simulations achieve quickly their final state with a Nash frequency of

up to about 20% (average: 14%), it is also obvious that stability is not
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Figure 4.11: Density, stability and frequency of Nash networks over time in
the simultaneous linking game (α = 0.19, γ = 0.75, 10 repetitions). Values are
computed as moving averages over 10 time steps.

very high. A value of only slightly about 0.6 means that almost every

second agent chooses a different strategy each time step. The share of Nash

networks increases slightly the longer the simulation runs.

Table 4.8 shows the Nash networks that emerged. The most frequent

network is 1,1,1,2,2,3 with a share of 0.078. The efficient star occurs only

three times during the simulations. Moreover, the most frequent network

was the unconnected network 0,1,1,2,2,2, which appeared only slightly more

often (share: 0.08) than 1,1,1,2,2,3. Thus, similar as Falk and Kosfeld (2003)

observe, if a network is connected, there is a high chance that it is a Nash

network.
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pattern stability share count
1,1,1,1,1,5 0.71 0.0004 3
1,1,1,1,3,3 0.56 0.0086 58
1,1,1,1,2,4 0.65 0.0108 73
1,1,2,2,2,2 0.55 0.0422 286
1,1,1,2,2,3 0.54 0.0771 522

Table 4.8: Nash networks visited in the simultaneous linking game. share rep-
resents the share of the network of all networks visited during the simulations.
The number of total observations is 6773.

Although no exact comparison between the RL network model and the

empirical studies are possible, the following parallels and differences between

the RL model and actual human behaviour emerge:

– Nash networks are a good predictor for outcomes of the network game.

It is not necessarily myopic, rational behaviour that causes this result.

The frequency in the RL model is, however, low (about 15%). Many

experiments of BG models report similar figures, but variation is high

(from 0% to 40%).

– The RL model matches the empirical outcome (measured by the av-

erage payoff) much closer than the static equilibrium prediction.

– The RL model is very unstable. This holds, to some extent, also for the

empirical results; some authors report a tendency to experiment after

a stable solution emerged for some time steps. Many experiments

never converged to a stable state. However, variation is lower, as

for example observed in Conte et al (2009). There, in one instance

convergence was observed. Following most authors, this is due to

the tendency of real players to behave strategically. So, Callander

and Plott (2005) find that some subjects take into account future
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outcomes, which is of course impossible to capture with a simple RL

model.

4.9 Conclusion

In this chapter, a reinforcement-learning version of Jackson/Wolinsky’s con-

nections model was presented and studied with simulations. The simulation

results have been compared with the equilibrium predictions using the con-

cept of stochastic stability as developed in Jackson and Watts (2002). The

patterns (high connectivity in the low, medium connectivity in the medium,

and low connectivity in the low cost ranges) are similar, but that there is

some considerable distance between the equilibrium and RL model predic-

tions.

The outcome of the RL process is driven by marginal utility, which has

very different forms depending on the cost range. In the low range utility is

convex but always positive; in the medium cost range, it slopes downwards

after a certain density of the network is reached; in the high cost range, it

is strictly negative. For a probabilistic choice model, this results in random

switching in the low cost range the more connected the network becomes;

low rates of experimentation in the medium range once utility starts to

decrease; and punishment of any links in the high cost range. Moreover,

the emerging structures in the medium ranges are most likely to be ring-

like, as was stated by other authors like Watts (2001) or Bala and Goyal

(2000); but this does not correspond to the outcome that was computed

based on the stochastic stability approach in Jackson and Watts (2002),

which resulted in a star.

Simulations with the BRA approach (chapter 2) showed that the same

results can be generated with a simpler rule. The outcome of the algo-
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rithm was that agents did not differentiate between players, but apply the

same linking probability to any player they meet. This suggests that the

more elaborated mental model of section 4.5 (remembering each player sep-

arately) does not add anything to an agent’s utility. This is similar to results

stated for two-player games in the experimental game theory literature (e.g

Erev and Roth 1998).

In behavioural game theory, experiments with network formation are

mostly based on non-cooperative network formation. Equilibrium out-

comes with homogeneous agents are difficult to obtain with human sub-

jects. At most about 40% of experiments converge to equilibrium. To find

out whether the RL model predicts actual human behaviour better than

the equilibrium prediction, another set of simulations with a modified setup

based on the experiment of Conte et al (2009) was conducted. In the simu-

lations, about 15% of the emerging networks were Nash. Using payoffs as a

criterion for comparison, the RL model predicts much better. However, the

stability of the simulated networks is lower than in the experiments. More-

over, in the RL model as well as in some of the reviewed literature, most

connected networks were Nash. That is, this equilibrium concept describes

empirical results well if the network becomes connected. However, it does

not reveal anything about its frequency. This is estimated more accurately

by the RL model.

Concluding, simple RL can be seen as a better predictor for actual hu-

man behaviour in network formation situations than the equilibrium pre-

diction. It reproduces both theoretical patterns (although not to the same

degree) as well as empirical phenomena. Thus, the RL network formation

model contributes by adding an experience-based learning approach, which

is situated between both strands of the literature. It provides a possibility

to find out how likely a theoretic prediction is; while Nash equilibrium is a
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useful concept for the type of result to be expected, the RL approach is a

useful way to estimate the chance that this occurs in reality.



Chapter 5

The Market for Primary Care

5.1 Introduction

Health Economics typically treats health systems as linear systems that

can be tested with statistical tools. Often, however, reality is more com-

plex. Heavy interventions may cause only small changes, or compromise

policy goals in different dimensions. In Kernick (2006)’s view, one could

also characterise health care as a complex system, and argue that the con-

struction of linear models leads to the omitting of system elements that

are in the end the driving factors for the response of the system to policy

interventions based on these linearised models. In complex systems, heavy

interventions may have negligible influence, or small interventions may have

a large effect. Interactions on different levels might produce unanticipated

consequences, because on the macro-level these interactions cannot be ac-

curately modelled. For example, a reform that allows patients a choice

of health providers might remain without consequences if the doctors are

reluctant to support their patients’ decisions because they, say, see their

influence and prestige in danger. The system can remain in an unchanged

174
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state. Other interventions might change the system only in the short run

because other factors restore the original state. For instance, higher patient

mobility might first reduce waiting lists as patients search and so distribute

more evenly across providers. However, in the long run waiting times might

increase again, because, for example, some providers become highly sought

after due to their reputation, while others are underemployed.

On the more specific level of general practice patterns, Scott (2000)

points out that on the micro-level not much is known about doctors’ decision

making. There are, however, other, non-economic factors important for

decision making. For example, doctors refer their patients to specialists out

of uncertainty, or follow the pressure of their patients for certain treatments

or prescriptions. However, economic models so far have not considered the

possibility of such interactions on the individual level and their consequences

on the aggregate level.

To find out whether complex systems theory provides an answer to the

limitations of current research methodologies is, according to Kernick, a

matter of years. In his view, a research program is needed that encour-

ages the development of new statistical tools, experimental work to support

theoretical constructs and demonstrate their usefulness, tools that promote

systematical thinking about healthcare and a more widespread application

of models that encourage dialogue between the stakeholders in the health

economy.

The purpose of this chapter is to develop an agent-based model of pri-

mary care and to add a computational model to such a research agenda. A

distinctive feature is the modelling of different assumptions about consumer

behaviour on the individual level. Consumer behaviour in general has often

been described as routine or habitual behaviour. This fits a special case
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in the BRA learning framework presented in chapter 2. RL will here be

applied to model patient choice of the general practitioner (GP). If a con-

sumer knows n doctors, each doctor can be represented as a choice or action

alternative. Using definition 4 this case is represented in BRA by: k = 1,

|Ak| = n, and succ(Lk
0) = ∅, with A = {choose(GP1) . . . choose(GPn)}. k

represents here the situation that a consumer is feeling ill, i.e. becomes a

patient. Thus, patients are faced with a single condition (being ill), under

which they choose among different GP alternatives.

The plan of this chapter is as follows: In the next section 5.2, the health

economic background is briefly outlined, before describing GP and patient

behaviour in some more detail in sections 5.3 and 5.4 based on the available

literature. Section 5.6 specifies the RL model. Section 5.7 presents simula-

tions. First, the model is simulated with a large range of parameters to gain

more understanding of its overall behaviour. Then, section 5.7.2 provides

more detailed, dynamic results.

5.2 Background

The efficient provision of health care and its quality are central objectives

of government policy. Especially in gate-keeping systems as in the UK,

‘general (or family) practice and its role is increasingly regarded as the

key to achieving efficiency and equity in many health care systems’, as

Scott (2000) notes. GPs influence the total cost of health provision; for

example, they generate direct costs by referring patients to secondary care

or prescribing medication. More indirectly, GPs may influence health costs

by raising the health standard in general, e.g. by supporting preventative

care.

To influence the way health care is delivered, primary care can be either
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managed and controlled directly by, e.g., employing GPs as salaried person-

nel; or indirectly by setting financial and other incentives for self-employed

practitioners. Direct control is difficult to achieve because it is expensive

and difficult to implement, and because professional organisations try to

preserve the independence of their members. Only in recent years, with the

advance of information technology has performance-based pay become more

common. The typical and by far most important approach is, however, to

set financial incentives and modify political and organisational constraints.

The function of designing incentive systems has been described as a way to

align the government’s objectives with the physician’s interests, and implies

that governments as principals may have different interests than health care

providers. The common assumption is that GPs are income maximisers, an

objective which may conflict with the efficient provision of health care (e.g.

by providing more services than necessary). Consequently, the design of

such systems is closely related to the principal-agent problem. Since in the

majority of countries with public health policies the main instrument to

shape the way health services are delivered is their reimbursement, most

attention has been paid to the setting of financial incentives. Furthermore,

many empirical studies find evidence that GPs do react to financial incen-

tives. Another dimension of shaping GP behaviour, which has received more

interest recently, is the promotion of patient choice. Here, the idea is to in-

crease competition among GPs by increasing patient mobility. Where health

providers are able to set prices, this may lead to increased cost-efficiency

and/or quality; where prices are regulated, competition can motivate GPs

to provide better quality services in order to attract and bind their patients.

Scott (2000) points out that to understand and judge policy interven-

tions better, more attention has to be paid to the context of GP decisions.

Factors such as patience’s health status are important variables in doctors’
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decisions; doctors might be pressed by some patients to refer them and

so on. Most principal-agent and econometric models tend to neglect such

factors, and for the sake of analytical clarity or lack of data treat them as

a residual category. The ACE model presented in this chapter will try to

better account for these contextual factors by using its own concept of ‘ap-

propriate treatment’ that is assumed to be an important decision variable

of doctors.

5.3 GP Behaviour

A central problem in designing incentive systems in health care is informa-

tional asymmetry. The patient is no health expert and has to trust that the

GP acts in his or her best interest. This increases the discretionary power

of the GP (Grignon et al 2002). The GP has also an information advantage

over the public insurer or government, e.g. with respect to the expected case

mix, the necessity of certain treatments, prescriptions and so on. This makes

it difficult to monitor and control behaviour directly or indirectly. However,

although information asymmetry points towards problems of moral hazard,

there are characteristic differences to a principal-agent relationship: Health

outcomes are difficult to measure; usually not the patient pays for the ser-

vice, but a third party; the utility functions of patient and doctor are, to

some extent, interdependent (Mooney and Ryan 1993) - an important de-

viation from classical agency theory, which assumes independence of utility

functions (Ryan 1994). Another often mentioned factor inhibiting moral

hazard is the trust characteristic of the relationship. The doctor-patient re-

lationship is usually long-term, in which patients invest trust. For the GP,

trust is capital, and he or she has an incentive to maintain it by avoiding

obvious profit-maximising behaviour and safeguarding the interests of the

patient. If the patient gets a feeling of too many unnecessary treatments
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or consultations, he or she may lose trust and search for a new doctor (e.g

Scott 2000; Arrow 1963).

Despite these constraining factors, the economic literature typically fo-

cuses on the principal-agent nature of the GP-patient and GP-regulator

relationship. Under the assumption of self-interest and opportunistic be-

haviour, the question becomes which incentive system encourages the GP

to behave in the best interest of the patient (welfare and quality), as well as

the interest of the regulator (cost efficiency, patient welfare, and quality).

Several authors have analysed models of health care provision in the con-

text of a principal-agent problem (e.g. Marinoso and Jelovac 2003; Zweifel

et al 2005; Scott 2005; Jelovac 2001; Ma 1994; Chalkley and Malcomson

1998a;b; McGuire and Rickman 1999), of which the most relevant will be

shortly reviewed here.

Numerous econometric studies building on assumptions posited by the

principal-agent literature have been conducted to test hypotheses about how

GPs react to financial incentives. The main results of these studies are also

summarised.

Analytical approaches

Considering a health authority maximising patient welfare minus expected

cost, Zweifel et al (2005) analyse optimal contracts. The provider utility

function can be written as u(P, e) = P − C(e)− V (e). P is the pay, C are

expected costs. The parameter e measures the effort to reduce these costs,

and V (e) represents the loss in utility due to these efforts. The payment

can be expressed as P = G + np + γK, where G is a basic allowance, a

per capita payment p for n patients plus a share γ of the total costs K (i.e.

service payment). At the one extreme, a prospective payment (capitation)
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system is described by setting γ to zero. In this case, the provider bears

all the risk. At the other extreme, a retrospective payment (fee-for-service,

FFS) system is described by setting p and G to zero, so that the insurer

bears all the risk.

A contract should internalise the principal’s interests in cost effective-

ness. At the same time, the contract must still be attractive enough to

be accepted by the service provider. Following Zweifel et al (2005), the

first-best solution FB is a payment system E(P ) that compensates the

provider’s costs, efforts to reduce costs and a reservation utility which the

provider would achieve by not accepting the contract. This can be formally

written as E(P ) = C[eFB] + V [eFB] + u.

Varying the base model, they derive the following three typical cases with

respect to cost efficiency: In case (1), the reference model, the provider is

risk neutral, information is full and symmetric, and cost efficiency is the only

objective. The first-best payment is given by E(P ) = C[eFB] + V [eFB] + u,

where u is the reservation utility that needs to be fulfilled for the provider

to accept the contract. For this objective, a prospective payment system

is optimal; more specifically, a lump-sum payment with which the provider

has to cover all costs. The insurer can set the base payment in such a way

that it covers expected costs. In case (2), GPs are risk-adverse, and the

insurer has to pay a risk premium. It is then more effective to take over

some of the costs to reduce the risk premium. However, this also reduces

the incentive for the provider to reduce costs. Case (3) assumes that the

provider has more information about the expected case mix, and thus over

expected costs. An (opportunistic) provider will claim that he has only

the most costly case mix to obtain a higher risk premium. By increasing

payment with costs, the provider would be encouraged to share accurate

information. This again reduces the provider’s effort to reduce costs.
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Three more cases can be derived when quality is added. Quality can be

defined as the treatment success and the welfare of the patient. Treatment

success may sometimes be observable. However, apart from measurement

problems, it is impossible to determine whether a provider did not try to

provide the necessary quality even if treatment was not successful. Extend-

ing the provider’s utility function by assuming that quality has a utility

V for the provider and that it comes at a certain cost C depending on

the effort e the form becomes U = E(P ) − C(q, e) − V (q, e). Analysing

this utility function, they find that a provider has no incentive to provide

optimal quality: Case (1) is given by the assumption that treatment suc-

cess and quality are observable and providers are risk-neutral. Then, an

adjusted base payment induces the provision of optimal quality, as long as

the reservation utility of the GP is met (i.e. basically, the insurer pays for

the desired level of quality). If treatment success is stochastic and the more

risk-adverse the provider is, the regulator has to pay a risk premium. In this

case, direct control of quality is the cheaper option. In case (2), treatment

success and quality are not observable. There is a trade-off between quality

and quantity: For full take-over of costs in a pure retrospective system, the

provider has no incentive to minimise costs; hence, he can raise quality until

his marginal utility of quality equals the marginal cost of raising quality.

Since providers in prospective systems have incentives to reduce costs as

much as possible, quality will be minimal. In case (3), the regulator cannot

judge success and quality, but patients can. If providers compete for pa-

tients, then capitation payment is the best option. In this case, there is an

incentive to attract patients by improving quality, while at the same time to

minimise costs. If the situation is monopolistic or the elasticity of demand

is low, again a mix of capitation and fee systems is the best solution.

In what follows, some more specific models of primary care are reviewed,
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focusing especially on the role patient choice plays: The models of Jelovac

(2001) and Marinoso and Jelovac (2003) look in more detail at GPs’ clinical

decisions, and how these may be influenced by prospective and retrospec-

tive payment systems. Levaggi and Rochaix (2007) extend this model and

explicitly look at the role of consumer choice in this setting. The models of

Gravelle and Masiero (2000) and Karlsson (2007) treat capitation systems

when patients choose between GPs.

In Jelovac (2001), patients can have a minor or a major illness. The

minor illness can be treated by the GP; the major illness must be referred

to a specialist. The GP must first diagnose the condition. The lower his

effort, the less accurate the diagnosis; as a consequence of low effort, the

patient may be mistreated. In case that the special illness was diagnosed

but the patient had the general illness, the patient is cured, but with an un-

necessary, expensive treatment. In the case that the patient was diagnosed

with the general illness and is treated by the GP, but had the special ill-

ness, the patient was not treated accurately and has to be treated a second

time. The doctor incurs a utility loss by mistreatment because a second

visit is assumed to be costly, and because higher costs are incurred by the

unnecessary treatment. In this model, capitation payment induces the most

adequate treatment, since GPs are interested in decreasing the probability

of a second visit and in minimising the total number of treatments. As a

side-effect it induces higher effort as this is the precondition for appropriate

treatment decisions.

Building on the same model setup, Marinoso and Jelovac (2003) provide

some more conditions when prospective payment is more efficient than ret-

rospective. They analyse three different strategies available to the GP: He

may refer or treat blindly and save the effort of diagnosing; he can diagnose

with a certain effort and then either treat or refer based on the outcome
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of the diagnosis; finally, he can, under the assumption of asymmetric in-

formation, treat or refer irrespective of the diagnosis outcome. Since some

cost and effort is incurred for accurate treatment, it only pays for the GP

to diagnose accurately if the expected income is high enough. Otherwise,

it is more rational to guess based on the expected case mix, and receive

the net payment with the respective probability that the guess was correct.

Jelovac and Marinoso argue that the right incentive system depends on the

insurer’s objective: If welfare loss (caused by inadequate treatment) is high,

the most efficient option is to set incentives in form of treatment success

related fee payment. However, if the welfare loss by inadequate treatment

is not the most important objective, capitation payment is sufficient, as it

induces the GPs to reduce efforts, including the diagnosis effort.

Gravelle and Masiero (2000) present a game to research the question

whether increasing the capitation rate can induce higher quality. The model

is a two-stage hotelling game with two doctors, and n patients. Doctors

choose a level of quality; the higher quality the more costs are incurred by

the practice. The patients’ utility function includes distance and expected

quality (which is unknown to the patients initially). In the first round of

the game, patients choose a doctor based on their utility function. In the

second round of the game, quality is revealed, and patients compare their

expectations with the actual quality. Patients may then switch to the other

GP in the second round. If they switch, they incur some switching cost.

Gravelle and Masiero find that higher capitation rates increase quality as it

makes patients more valuable to practices, even if patients care much about

distance. They also show that GPs have incentives to increase quality even

if patients misjudge quality. As a result, both doctors increase quality as

long as costs are covered.

Karlsson (2007) develops a similar hotelling game. As in the preceding
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model, patients choose in a first stage their GP based on distance and

expected quality; after that, actual quality is revealed, and patients may

switch to the other GP. Karlsson considers additionally the search behaviour

of patients. Because of the interaction effects between consumer search

patterns and provider reactions, there may be settings where the optimal

capitation rate is indeterminate. If costs are very low, all providers have

strong incentives to increase quality. The more GPs do so, the stronger

decreases the variation in the GP population. This discourages patients

from searching, since there is not much to gain from (costly) search in a

homogeneous GP population. As a result, the equilibrium quality may

decrease even with increasing payments, because patients have no reason

to change providers. However, this happens only with a quadratic cost

function, and the author assumes that hyperbolic cost functions are more

intuitive and likely. Such cost function lead to an equilibrium where quality

increases with the capitation rate.

Levaggi and Rochaix (Levaggi and Rochaix 2007) combine the patient

choice perspective of Gravelle/Masiero and Karlsson with the moral haz-

ard perspective of Jelovac and Marinoso. The setup is as in Jelovac and

Marinoso (2003), but additionally, patients may choose the access route to

either GP or specialist themselves. Thus, GPs as well as patients can make

mistakes in a treatment choice. They find that under perfect information

(where the severity of illness can be judged ex-post) a gate-keeping system

is efficient. Its efficiency can furthermore be increased by allowing patients

to seek specialist care themselves, provided patients bear some of the risk in

form of payments for mistakes. If information is imperfect and opportunis-

tic behaviour possible, then non-gate-keeping systems are more effective.

Intuitively, this is because under capitation, GPs refer also mild illnesses;

under FFS, GPs will first treat themselves, even if the condition is severe;
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specialists will always treat rather than sending the patient back to the GP.

So the patient is the only actor who has an interest in the effective provision

of care (e.g., because he or she wants to avoid unnecessary visits). Even if

the patient makes mistakes in judgements the result is more cost-efficient.

The conclusion of this short survey is that pure capitation systems are

desirable for cost containment, but are optimal only under very restrictive

assumptions like risk neutrality of providers and information symmetry.

Some costs should be taken over in form of FFS. This reduces the willing-

ness to save costs, but also the risk premium that had to be paid otherwise.

Takeover of costs may as well increase quality if there is no or little com-

petition between providers. However, this will depend on the information

available to the health authority. If there is competition for patients, the

size of capitation payments can act as an incentive to improve quality. Gate-

keeping systems are only efficient under perfect information. Patient choice

can have a cost-reduction and welfare-increasing effect in non gate-keeping

systems, especially if payment is by FFS.

There are further, newer incentive systems in primary health care, which

are not considered here. For example, Pay for Performance combines as-

pects of managed systems with financial incentives by making payments

dependent on treatment priorities, and conditions treated. If a certain tar-

get is reached, reimbursement decreases, acting against over-treatment and

opportunistic diagnosing. This requires much closer monitoring, which more

recently has become possible due to the increased availability and usage of

new information technology.
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Empirical approaches

Types of studies Several empirical studies in the last 20-30 years inves-

tigated the influence of different remuneration schemes on GP behaviour.

Much of this literature (until about the year 2000) has been extensively re-

viewed (Scott and Hall 1995; Scott 2000; Gosden et al 2000). Most studies

find a relationship between payment system and practice patterns. How-

ever, the validity of the results is often limited to special circumstances,

as most of them are ‘opportunistic’ studies, taking advantage of data col-

lected for other purposes. Studies where the payment scheme was changed,

or new elements in the incentive system were introduced, were the most

important studies to investigate the relationship between payment and GP

behaviour. The most rigorous selection of studies was applied by Gosden

et al (2000), who reviewed only studies based on control group comparisons

(randomised control trials), time-series data or controlled before-and-after

studies. The advantage of such designs is a better control of confounding

variables. Scott and Hall (1995) also included cross-sectional studies, where

it is more difficult to estimate the influence of, say, self-selection effects of

GPs into certain payment schemes.

As most studies are described in the reviews, only the main results of the

most influential studies, and some of the newer literature are summarised

here. The major studies are the following:

The Krasnik study (Krasnik and Groenewegen 1992) compared two

groups of GPs in Denmark. GPs in the Copenhagen area moved from cap-

itation payment to a mixed capitation/FFS payment mode, while for the

regional doctors, the mixed capitation/FFS had already been introduced.

Data were collected six months before and at a 6-month and a 12-month

period after the intervention, allowing the comparison of practice patterns



CHAPTER 5. THE MARKET FOR PRIMARY CARE 187

of the same GPs before and after the intervention.

The Hutchinson study (Hutchinson et al 1996) compared the referral

patterns in Ontario, Canada, where FFS payment was changed to a mixed

capitation/incentive-based payment. A control group remained in FFS;

the intervention group received capitation payment. Furthermore, for each

hospital day exceeding the mean hospitalisation rate, the practice had to

bear a third of the hospitalisation cost. The authors compared in detail for

different patient groups the changes in referrals to hospitals.

The Davidson study (Davidson et al 1992) compared two groups of doc-

tors paid by Medicaid. The capitation group received a per capita payment,

and some amount per service, and could keep any surpluses on savings (but

had also to cover losses up to a certain extent). The FFS group received

higher fees for certain services as compared to the control group (fees were

about half the size).

The Hickson study (Hickson et al 1987) analysed the introduction of

salary payment in a FFS system. The salaried doctors received a fixed

income per month, the FFS doctors a fee for each visit. Both incomes were

designed on historical consultation rates, thus roughly equal in height.

Main results With respect to referrals, evidence is mixed - some studies

suggest an impact of the payment system, some do not. The Hutchinson

study found that Canadian FFS doctors did not lower referrals to hospitals.

Likewise, the Davidson study found that the number of specialist visits

was greater in the FFS group than in the capitation group. On the other

hand, the Krasnik study found a decrease in hospital and specialist referrals

after 12 months for FFS doctors, while there was no significant change in

the short-run (after six months). The Krasnik study also observed a fall
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in prescription renewals after FFS was introduced. This was unexpected

because extra fees for prescriptions were introduced, so that there was no

reason to reduce their costs.

With respect to the number of GP consultations, most studies indicate a

rationing of visits by capitation (and salaried) doctors as compared to FFS

doctors. The Hickson study found a lower number of visits per enrolled

patient in the salaried physician group as compared to the FFS group. This

was partially due to FFS doctors scheduling partly unnecessary services, to

some extent, due to too few visits by salaried doctors. Furthermore, the

Davidson study found that the number of primary-care doctor visits was

higher in the new FFS group than in the capitation group. Moreover, other

studies (e.g. Kristiansen and Hjortdahl 1992; Kristiansen and Mooney 1993;

Kristiansen and Holtedahl 1993) found that GPs paid by FFS are more likely

to provide shorter consultations.

Also with respect to the intensity of services provision most - although

not all - evidence points in the expected direction. FFS increases service

production, which is typically interpreted as the realisation of income oppor-

tunities by doctors. The Krasnik study found a strong increase in curative

and diagnostic services after the change to FFS. Similarly, Kristiansen et

al. found that FFS doctors are more likely to order tests (Kristiansen and

Hjortdahl 1992; Kristiansen and Mooney 1993; Kristiansen and Holtedahl

1993), a conclusion that is also reached by Devlin and Sisira (2008) in their

analysis of doctors with a mainly fee-based income in Canada. However, for

Norway, Grytten and Sorensen (2001) find that GPs paid by FFS did not

increase service production as compared to salaried doctors. Comparing

practices with different list sizes, i.e. different demand, they also showed

that practices with short lists have no higher service production per consul-

tation to compensate income loss compared to those practices with higher
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demand (Grytten and Sorensen 2007).

Summarising, evidence is not always as theory predicts. Regarding refer-

rals, evidence is mixed; regarding the number of consultations there seems

to be a clear trend for rationing under capitation; with respect to provider-

induced demand generated by FFS, before-after studies find evidence for,

cross-sectional studies against additional demand. Especially when looking

at the different conclusions of cross-sectional studies as compared to before-

after studies (especially the Krasnik study), the question seems rather not

to be if the payment mode influences behaviour, but how large and im-

portant the effect is when considering the health system as a whole. Other

influences such as rural-urban location, working hours and so on could have

an impact that reduces the influence of the payment as a single factor to

insignificant levels.

5.4 Patient Behaviour

Whereas the insurer-doctor agency problem has been extensively studied,

the patient-doctor relationship has attracted less attention. This relation-

ship is characterised by information asymmetry - because patients are usu-

ally not good doctors, they have to trust their doctors and expect them to

act for their benefit. Furthermore, it is often impossible to judge whether

particular treatments are unnecessary or not, or whether a different doctor

would have been more successful in treating a certain illness.

The common view has usually been that the patient is only interested in

health, i.e. health status is the only variable to his utility function. There

are, however, other dimensions in the patient utility function. For example,

patients might also expect some non-medical aspects such as a diagnosis to

rule out a dangerous illness, or obtaining information before surgery (Ryan
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1994; Mooney and Ryan 1993). Other authors have stressed the role of

information and the involvement of the patient in the decision process for

treatment options (summarised by Vick and Scott (1998)).

Empirically, discrete choice experiments about the patient-doctor rela-

tionship have been conducted to find out patients’ preferences. Vick and

Scott (1998) derive from the literature the following dimensions as being

important for patients: Being able to talk to the doctor; information about

the health problem; information about the treatment; doctor’s information

and explanation; who chooses the treatment; length of consultation; and

waiting time. They find that ‘being able to talk’ was most important to

patients, and that ‘who chooses your treatment’ was the least important.

Waiting times seem to be of little importance when patients can see a doctor

they know. Information about the condition and treatment were rated with

similar importance in the middle. The dimensions in Hole’s study (Hole

2008) were given by: Waiting time; cost (measured as willingness to pay);

warm and friendly doctor; knowing the doctor; thoroughness of physical

examination. In this study, reassurance about the process in the form of a

thorough medical examination turned out to be the most important. These

findings highlight also the ‘non-functional’ aspects of the doctor-patient re-

lationship; whereas technically the patient has an illness to be fixed, the

doctor additionally performs a social function by providing assurance or

help in a general way. Thus, it might be that not necessarily the best doc-

tor in clinical terms is preferred by patients, but maybe a doctor who spends

more time with them and who gives patients a feeling of being taken care of.

As Vick and Scott (1998) point out, convenience and accessibility factors

such as opening hours or distance have already been found less important

for the patient’s utility function by other authors (e.g Williams and Calnan

1991).
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Surveys using actual patient satisfaction survey data find similar results.

Dixon and Robertson (2008) find that the quality of the relationship with

their doctor is the most important factor influencing satisfaction, while the

factors with the lowest predictive power are waiting time and accessibil-

ity. They find that once a good relationship is established loyalty is high.

Practice change, they conclude, will probably only occur if the relationship

breaks down, so that increased choice is not expected to increase patient

movements significantly. This has also been observed before, although pa-

tient choice was not high on the agenda then. Low mobility has been at-

tributed to unfavourable circumstances preventing dissatisfied patients from

changing their GP (Gage and Rickman 2000; Goodwin 1998; Gabbott and

Hogg 1993).

Still, the impact of patient choice on the primary care system is mostly

unknown. In the UK, for example, most evidence used to argue in favour

of choice stems from pilot studies in secondary care. Critical authors (e.g.

Appleby and Dixon 2004) state that most arguments in favour of choice

remain rhetorical as no facts nor clear conditions are given. So, for example,

patients in the London choice pilot studies were only allowed to choose

if waiting time exceeded a maximum; as a result average waiting times

decrease inevitably simply by design of the study. The impact of choice

on quality was not measured at all. It has also been argued that actual

quality improvements are less due to the switching of providers, but rather

the image concerns of hospital managers (Robertson and Thorlby 2010).

Summarising, relatively much is known about stated preferences of con-

sumers in health care; very little is known about actual choice behaviour or

whether increased possibilities of patient choice will have an impact on the

efficiency (e.g. reduced waiting times) or quality of primary care services.

The available surveys as well as pilot studies from secondary care simply do
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not provide suitable data.

5.5 Modelling Primary Care

The preceding sections revealed that existing knowledge about the driving

forces of efficient health care provision has some shortcomings, which are

mainly the following:

– The agency literature makes strong assumptions about doctors’ moti-

vation. Many analyses treat in detail only the extreme case in which

doctors are not interested in their patients’ welfare, or constrained by

professional standards. The few articles accounting for joint patient

and GP utility functions remain vague.

– The empirical literature is constrained by the data available. Only a

few studies had the opportunities to study explicitly the influence of

different remuneration systems in longitudinal designs. Not surpris-

ingly, some results remain inconclusive. For example, some studies

find that capitation payment leads to more referrals, some find the

opposite.

– With respect to quality, there is a theoretical consensus that com-

petition is likely to improve quality, especially when prices are ad-

ministered (Gaynor 2006). However, the extent to which patients

are willing to change providers is unknown. Furthermore, nothing is

known about the implications for the health system as a whole. So

far, data has mostly been collected in exceptional circumstances, as

for example during the (secondary care) patient choice pilot studies.
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A complete model of primary care can certainly not replace missing data,

but at least simulate scenarios and highlight possible policy impacts, which

in the current discussion remain purely theoretical or politically motivated.

The computational model developed in the next sections will look mainly at

the dimensions of quantity and quality of service provision. The following

hypotheses inferred from the literature will be the frame for these scenarios:

– Prospective (capitation) payment is likely to ration service quality and

quantity. If patient demand reflects quality, and there is competition

between GPs, quality may rise if the marginal capitation payment ex-

ceeds the marginal cost (strong empirical evidence from most studies).

– Prospective payment is likely to induce higher than necessary rates

of referral. This effect might be counterbalanced if effort is high.

In this case, GPs want to attract more patients by better services;

better services could be reflected by more appropriate treatment (no

empirical evidence; the hypothesis is mainly based on Karlsson (2007)

and Gravelle and Masiero (2000)).

– Retrospective (FFS) payment induces in general a higher volume of

services (supplier-induced demand hypothesis; empirical evidence from

most studies). As competition increases, GPs are likely to increase un-

necessary treatments to compensate for short lists (based mainly on

the supplier induced demand hypothesis (Zweifel et al 2005); there is

only weak or even no empirical evidence (e.g. Grytten and Sorensen

2007)).

– As retrospective payment induces a high provision of services by the

doctor himself, the rate of referrals is expected to be lower than in

capitation systems, i.e. there are no unnecessary referrals. In fact,
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there may be fewer referrals than necessary (some empirical evidence

from studies).

– Demand side induced competition by patient choice improves qual-

ity. Unsatisfied consumers are likely to change their GP, but then

are likely to remain loyal, decreasing competition again. Under FFS,

this can be expected to work against unnecessary treatments (to pre-

vent excessive exits of existing patients). Under capitation, patient

induced competition will reduce unnecessary referrals to attract and

keep patients.

The computational model of primary care is described in the next sec-

tion. The aim is to design it in a way that allows to investigate the hy-

potheses that so far have only been incompletely covered in existing work.

5.6 A Reinforcement Learning Model Of Pri-

mary Care

The actors in the model are patients, GPs and the health authority (HA).

The HA is setup once per simulation. Its main function is to implement the

policy for a simulation run (e.g. by defining the value of fee and capitation

payments), and to pay the GPs.

The main assumptions of this model are:

– GPs are self-employed professionals who trade leisure and patient wel-

fare against income. Costs are incurred only indirectly in terms of

effort and time the GP invests.

– GPs can define their maximum workload, which must be > 0.
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– There is no reservation utility of GPs. A GP must treat patients

coming to him.

– There are no exits of GPs.

– There are no switching costs. When patients become unsatisfied with

a GP, they may search for a new doctor without incurring any trans-

action or search costs.

5.6.1 Overview

Patients and GPs are distributed randomly over a grid, with x and y di-

mensions from 0..1.

Time in the simulation proceeds in a discrete way. A time step d rep-

resents exactly one day. A period t is defined as a number of days. For

example, a period could be a week (t = 7 or a month t = 30). Typically,

certain decisions and updates are made per period, not per day.

At each day d > 1, consumers face a certain probability of becoming ill

with condition 1...m. When they become ill, they choose a GP based on

their utility function (see section 5.6.2). If it is their first appointment with

this doctor, the GP adds the patient to his list list. Then, an appointment

is scheduled by the GP at time d+k, 0 <= k. k depends on the waiting list

listwait of the GP. A GP can treat up to appointmentsmax patients a day. As

long as the waiting list for the day is not filled (listwait < appointmentsmax),

k = 0. After that the appointment is made for d + 1 and so on. k is thus

the number of days until a patient is seen by the doctor.

A GP sees then up to n, n < appointmentsmax, patients per day. De-

pending on the condition a treatment is chosen. While the condition is

always diagnosed correctly, the treatment choice is uncertain. This uncer-
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tainty is represented as a probability with which a doctor chooses between

alternatives ‘treat or ‘refer’. For example, some severe illnesses must be

referred - the GP has to decide to refer with probability 1. There are other,

milder conditions for which the GP can decide either to refer or to treat

himself. The details how this choice is made is described in section 5.6.3.

After the consultation happened, the patients receive information about

the doctor (e.g., the effort the GP made, or the waiting time to get an

appointment), which then enters their decision-process at the next time

they become ill.

The HA pays the GPs at the end of a period. The GPs send their

bills, containing the services they provided as well as the patients on their

list, to the HA. The HA calculates the pay depending on the policy being

implemented and sends the amount back to the GP. The GP then updates

his utility for the period and decides his work plan for the next period (e.g.,

the number of patients to see).

In the following sections, the utility functions and decision processes of

GPs and patients are described in detail.

5.6.2 Patient Decisions

Utility function When patients become ill, they choose a GP and make

an appointment. The choice of GP is based on distance dist, experienced

waiting times wait, and experienced effort of the doctor, E. Effort is here

interpreted as an indicator for the quality of the doctor-patient relationship,

for example, the time the doctor spends per consultation.

A patient calculates his welfare by
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UP = αwait+ βdist− γE. (5.1)

To be precise, UP is the ‘inconvenience’ of the consumer, which he tries

to minimise (minimal distance, minimal waiting time, maximal effort of

the doctor). Before knowing a doctor, the patient has no knowledge about

waiting times and effort. The function then reduces to UP = βdistance.

Calculation of the utility function After the first experience, a patient

can update his doctor information with respective values of E and wait.

Each patient maintains a list of GPs. The model generates and updates

this list; if the list is full, but there are more GPs unknown to the agent,

the model may replace the worst ranking GP from the list with a new

candidate.

Decision process Patients only consider practices if waiting time is <3

days. If all doctors a patient knows have a waiting time ≥ 3 days, he chooses

the closest GP. Patients forget the actual waiting time by reducing the

experienced waiting time by a certain factor each following day (currently

set to wait
10

). Thus, even if waiting time was long some time ago, a patient

might consider visiting this doctor again. Forgetting is important in this

model, because otherwise some practices would have no chance to convince

dissatisfied patients to return, as patient decisions are based on experience.

Patient choice behaviour is modelled using different forms of rationality.

A first dimension in which patients are bounded rational is in the sense that

they have access to only a small amount of information. First, the number

of doctors a consumer can remember is set to 3. Second, information about

GPs is circulated in networks of consumers. The network size may vary;

here networks with 2 or 5 close neighbours and one distant link (randomly
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chosen from anywhere in the landscape) have been generated. The idea is

that in a world with small networks, information circulates less freely. The

distant link has the function to bridge the distance among all consumers

in the landscape so that it is less likely, but not impossible to learn about

the best choices in the model. A second dimension of limited rationality

is realised by the application of different choice modes. In the ‘rational’

choice mode, a patient ranks all GPs by their expected utility, given by

the last experience (i.e. there is no discounting) and chooses the one which

ranks highest. That is, even infinitesimal small differences are recognised

by the agent. This is what meant with ’rational’ - the agent utilises its

computational power to distinguish between smallest difference in utility.

The ‘probabilistic’ choice mode is given by simple RL. In this case, GPs

represent action alternatives, and the expected utilities are used as the pay-

off p for equation 2.9 in chapter 2 to update the action strengths, and thus

the selection probability for choosing a particular GP. In the probabilistic

decision mode, small differences between GPs will lead to similar choice

probabilities.

Combining the behaviour dimensions - information availability and choice

mode - will allow us later to relate patient behaviour to the findings from

the literature review. For instance, it will help to investigate the difference

between scenarios where consumers have access to more information (larger

network), or make more efficient use of that information (by more rational

decision making).

5.6.3 GP Decisions

Decision context and constraints In this model, doctors’ decisions

are not influenced only by their own welfare (income), but also by their pa-

tients’ welfare and normative constraints like professional standards, which
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prevents them from being purely selfish. So even if a GP has not reached

his or her preferred income, he or she will not necessarily provide excessive

treatment - because it is neither in the patient’s best interest, nor is it jus-

tifiable before himself or herself or other colleagues. If there is, on the other

hand, room for ‘interpretation’ whether additional treatment is necessary

or not, his own welfare may play a larger role in deciding.

The model uses a decision-theoretic approach to reflect such situated

decision processes. The central concept in this approach is the clinical

condition and the related treatment(s). One patient can have exactly one

condition m, for which exactly one treatment tr exists. This is labelled a

condition-treatment pair {m, tr}. The diagnosis is always correct, and the

doctor has only some discretion about whether to apply the treatment or

not.

The condition-treatment pair {m, tr} determines the likelihood with

which a patient is treated by the GP or referred to secondary care. A deci-

sion is always, to a smaller or larger extent, uncertain. The GP’s decision

is therefore modelled probabilistically.

The condition-treatment pair specifies also the effort necessary to apply

the treatment, which can be seen as a sort of cost accrued by the GP when

choosing the option to treat. Referral has no effort for the GP - treating is

always more ‘costly’ than referring.

There is only small variation in the probabilities of each outcome (re-

ferral or treatment) of a consultation. The upper and lower bounds of

this variation are determined by parameter varmax, which sets the maxi-

mum deviation from an objective norm. The extent of the actual variation

varactual depends on the individual utility function and is adapted by the

GP during his decision process (see below). In detail, the decision proba-
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bilities are calculated as follows: Each {m, tr} has a professional certainty

value p between 0 and 1. This value indicates the certainty that tr is the

‘appropriate’ treatment for condition m; conversely, 1 − p represents the

opposite. The idea is based on Krasnik’s operationalisation of uncertainty

(Krasnik and Groenewegen 1992): Krasnik measured professional uncer-

tainty as the regression coefficient of treatment and condition in the GP

population. For example, a coefficient of 0.24 for a condition-treatment

pair (or better, condition-treatment group, because some services are ap-

plied typically for a number of diagnoses) means that 24 % of all doctors

apply this treatment if they diagnose the respective condition. This can

be interpreted as little professional consensus about whether to apply this

service, as 76 % of doctors would do nothing, or refer. Without accounting

for the empirical distribution of such certainties, the model uses this idea

to define a ‘norm’ for each {m, tr}. So, for example, if p = 0.24, a single

GP decides to treat a condition i with pi,actual = p ±vari,actual, and with

1− pi,actual to refer.

Utility function The GP is seen here as a self-employed professional:

The objective is to earn some income with minimal effort; at the same

time, he cares for his patients’ welfare. The utility function is given by

Ugp = Iα(Emax − E)β(n−DEV )γ. (5.2)

The rationale behind this Cobb-Douglas type utility function is to cap-

ture the decreasing marginal utility that is the usual standard form of utility

functions. It is positively influenced by total income (I) per period, total

‘leisure’ (Emax−E) per period, and the welfare (n−DEV ) of all n patients

in a given period. Leisure is defined as the difference between maximum

effort Emax and actual effort; the larger this difference (i.e. the smaller the

actual effort E), the higher utility. A similar logic applies to the valuation
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of patient welfare: Welfare is a function of the appropriate treatment, where

appropriateness is defined as the minimum deviation of a single patient’s

treatment from the norm; DEV stands for the sum of these deviations.

The more patients are over- or under-treated, the smaller the contribution

to total utility (n−DEV becomes smaller). The calculation of the variables

I, E, Emax and dev is described in the next paragraph.

Calculation of the utility function The components of the utility func-

tions are computed the following way:

Income is defined as

I = lIcapitation +

|TR|
∑

i=0

qifeeTRi
(5.3)

l denotes the list size of the GP, TR is the set of treatments a GP may

apply, and qi the number of times a particular service i from set TR, denoted

TRi, was actually applied. Payment is given by a capitation fee Icapitation

per patient, and the sum of fees of applied services.

For the calculation of leisure, the difference between the maximum pos-

sible effort Emax and actual effort E is calculated. The actual effort is given

by

E = nEbase +

|TR|
∑

i=0

qiETRi
(5.4)

Each service TRi requires some effort (e.g. the time necessary to perform

the service), which is the same for every GP. However, a GP may vary the

‘base effort’ Ebase, 0 < Ebase < 1, per patient. This base effort stands for,

e.g., the time spent with the patient, information and explanation given

during a consultation and so on. Thus, the lower the effort per patient,

and the lower the probability of treatment, the smaller the effort (the more
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leisure) of the GP. Emax, the average maximum possible effort is calculated

by the same formula, substituting the maximum possible values for the

variables:

Ebase = 1,

n =

|TR|
∑

i=0

qi = appointmentsmax,

ĒTR = 1
|TR|

|TR|
∑

i=0

Ei(pi + pivarmax).

The average maximum effort ĒTR over all possible treatments is given

by the average maximum treatment probability p and the effort values E

for all |TR| treatments. Multiplying now ĒTR by the maximum number of

patients appointmentsmax and the highest possible effort per patient Ebase

defines the maximum possible effort a GP can have per day: Emax = nĒTR,

The measurement of patient welfare is not well defined in the litera-

ture and difficult to operationalise. Evans (1976) sees the over-provision of

services constrained by some professional or ethical standard limiting the

power of the income or leisure component’s in the GP’s utility. Lerner and

Claxton (1996) point in their analysis of utility functions to authors with

similar arguments: Dranove (1985) argues that too aggressive provision of

services might lead to patients leaving or reduce the number of visits. Wood-

ward and Warren-Boulton (1984) state that ‘each physician derives addi-

tional utility both from positive consumption of the product of his leisure

activities... and from providing additional care per patient ... up to the

‘appropriate’ amount’. Based on such arguments, it is assumed here that

there is some norm of appropriate treatment, acknowledged by the profes-

sional community as well as by common-sense of patients. The assumption

of the existence of such a standard allows the definition of appropriateness
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as zero deviation from the norm. For each patient, the absolute difference

of the consultation outcome with the professional certainty p is computed.

So to speak, this is the deviation of what was objectively expected to be

appropriate for the patient, and what the GP actually did. Thus, for all in-

dividual decisions with uncertainty (0 <p< 1), there might be a deviation.

Since the modeller cannot judge the individual clinical decision, only the

sum of all positive and negative deviations is taken into account for defining

welfare:

DEV =
n

∑

i=0

TR
∑

j=0

(decisioni − pj)qi,j (5.5)

qi,j equals 1 if treatment TRj was applied to patient i, 0 otherwise.

decisioni equals 1 if the patient i was treated, 0 if referred. Thus, for all

patients of the GP, DEV approximates zero if the doctor treats always

according to the norm (and if patient numbers are sufficiently large); val-

ues > 0 denote overtreatment (the larger the value the more likely treat-

ment), values < 0 undertreatment (the smaller, the more likely referral).

For example, if pj = 0.8, i.e. professional consensus points strongly to-

wards treating, and if pjactual = 0.5 (the doctor reduces effort by refer-

ring), then of 10 patients with that condition 5 are referred, and 5 treated:

DEV = 5 ∗ (1 − 0.8) + 5 ∗ (0 − 0.8) = −3, whereas for a ‘norm-conform’

doctor it would calculate DEV = 8 ∗ (1− 0.8) + 2 ∗ (0− 0.8) = 0. Patient

welfare n−DEV for the first doctor would be 7, for the second 10.

Decision process The GP’s decision concerns the setting of his treatment

pattern pactual: pactual = {p0,actual . . . pi,actual . . . pz,actual} (determining the

referral behaviour), the number of appointments per day n (determining the

workload, respectively leisure Emax−E and income I) and the consultation
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pattern, which is the effort invested into the doctor-patient relationship

Ebase. The GP can influence income and leisure by setting the maximum

number of appointments and the treatment pattern (if there is fee income);

and he or she can influence patient welfare by setting the treatment pattern.

Several scenarios can be generated with this set of variables. For exam-

ple, some doctors may prefer to set Ebase low and see many patients with

a high probability of referring them. This would be an income-maximising,

effort-minimising strategy for a doctor without concerns for patient wel-

fare. Furthermore, this strategy would pay best in environments with a

large capitation component since there is no income loss from not treat-

ing. However, as patients can react via evaluation of Ebase, and may switch

to another doctor, the relationship of the GP’s decision variables become

non-deterministic.

The decisions of the GP in detail are as follows: At the end of each pe-

riod the GP decides about his consultation pattern and how many patients

nt he wants to see each day in the current (beginning) period t. To do this,

he ‘simulates’ the optimal configuration of the treatment probabilities popt

for all treatments: popt = {p0,opt . . . pi,opt . . . pz,opt}, and appointments nopt,

appointmentsmin < nopt < appointmentsmax for the next period t. He uses

for this the known constants (such as the capitation rate) and variables

from last period t − 1 as the estimates for next period. These values and

constants are: The expected frequency of each condition; the effort values

per treatment (fixed at the beginning of a simulation); Ebase; the capitation

rate (fixed at the beginning); list size; and fees per treatment (fixed at the

beginning). Using these values, he searches for utility maximising values of

the choice variables pi and nt. The search is implemented using a genetic

algorithm. Genetic algorithms are a standard solution for function approx-

imation, and search incrementally for value combinations that come closest
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to a fitness value (which is here simply the largest double precision number,

as the largest possible GP utility →∞).

Ebase is held constant during this optimisation process. So to speak, it

is assumed that the GP sees an illness, which needs to be fixed, and that

he has no intrinsic interest in a better doctor-patient relationship. The GP

only increases effort if he wants to keep or attract new patients; i.e., he

knows that patients value a good patient-doctor relationship, and will use

this fact as a ‘marketing tool’.

Depending on how many patients are expected per day, the following

actions are taken depending on the outcome of the optimisation procedure:

– nopt < nt−1: Set pactual = popt and nt = nopt. In this situation, the

waiting list is long enough, and the doctor sees no need to increase the

workload. The agent also sets the treatment patterns to the utility-

maximising pattern. Furthermore, if Ebase > 0, the GP decreases the

base effort by 0.1 (there is no need to attract patients).

– nopt > nt−1: The GP wants to have more patients than there is de-

mand. In this case, the agent reacts by re-optimising the optimal

treatment patterns p′opt under the constraint that n is given, and sets

pactual = p′opt. If Ebase < 1, he increases Ebase by 0.1, because he or she

wants to attract more consumers to achieve the preferred workload.

– nopt = nt−1: In this case, the situation of the GP remains unchanged.

The agent sets nt = nt−1, and all pactual = popt.

To put this model into context with the related literature, it is a model

with hidden action - the GP has some discretion whether to treat or refer.

There is no diagnosis effort (i.e. no hidden information). The effort variable
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is used to represent aspects of the doctor-patient relationship; however, this

does not, as in other models (e.g. Jelovac 2001), have a relationship with the

correctness of the diagnosis. Furthermore, also in contrast to other models,

list size is not a parameter that enters the calculations of the GPs as for

example in Grytten and Sorensen (2007). That is, in case of capitation

payment, there is no reasoning in the agent that increasing list size by

increasing effort can increase income. Rather, this effect would come as

a side-effect only if there are too few patients for the doctor’s preferred

workload.

5.7 Simulations

Simulations are run focusing on different dimensions of the system. The

three dimensions considered are: Competition (GP density), payment sys-

tem, and patient choice. After describing the simulation setup (section

5.7.1.1), first a comparative static perspective is taken by comparing results

averaged over all time steps for these dimensions (section 5.7.1.2); then de-

tailed results for a particular GP density are computed and analysed from

a dynamic perspective. The dependent variables are waiting lists, referrals,

GP effort (as indicator for quality), and patient utility (as indicator for

welfare).

5.7.1 Exploration of the Model

5.7.1.1 Parameter Settings and Setup

Pure capitation and pure FFS are the extreme points of prospective and

retrospective payment modes. In between these extremes, mixed systems

exist. Starting with a pure FFS system, mixed systems are simulated by

increasing the capitation rate Icapitation from 0 stepwise to 1, at the same
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time decreasing the height of fees. So when capitation reaches 1, fees reach

0. Three scenarios are considered: Capitation, half FFS and half capitation,

and full FFS.

The effects of (provider-induced) competition are simply represented by

simulations with different numbers of GPs.

The effects of patient choice behaviour is realised by running simulations

combining small and larger contact networks with rational and probabilistic

decision making as described in section 5.6.2: Simulations BR-3 and BR-6

are simulations with a network of 3 and 6 consumers, respectively, using

the rational choice mode, i.e. agents collect information, rank it and choose

the best expected GP. RL-3 and RL-6 are simulations with a network of

3 and 6 consumers using RL, i.e. a GP is chosen probabilistically. Table

5.1 summarises the model parameters for the simulations. The parameters

of the patients’ RL action selection function (see equation 2.10) are fixed

at α = 0.1 and γ = 1. This is an exploration rate and update speed

that enables the patient agents to react in reasonable time to environment

changes. The previous chapters illustrate this extensively. α values < 0.1

often lead to suboptimal choices. γ = 1 leads to the immediate realisation of

changes in the environment. Here, this is a change in the doctor’s treatment

pattern or waiting lists, or the addition of a new GP. If γ is too small, it

might take long until the patient realises this change. There is no reason to

delay such changes, as there is no noise to accommodate, as, for example,

in models where the average reward comes from larger samples of agents.

No variations in GP and patient utility functions are analysed. The only

sources of variations are different fees for services, Icapitation, the geographic

distribution, and the learning mode of the patient agents. That is, any re-

sulting differences in the simulation outcome will be based on homogeneous
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GP and patient preferences. Any inequalities, say, in the distribution of

waiting queues, would be generated simply by the structural and learning

properties of the model.

Most of the clinical parameters are set equally in the beginning: There

are 3 conditions for which the objective certainty values (p) are fixed. The

base fees are drawn from a uniform distribution in the interval 0...1. Then,

effort values for each condition-treatment pair e{mi,tri} are drawn from a uni-

form distribution in the range 0...1
2
e{mi,tri} so that effort is always smaller

than the fee in the beginning. These base settings are equal for all scenar-

ios. Then, for each payment mode, fees and capitation rate are adjusted.

The capitation rate also varies between 0 and 1. For each capitation rate

the service fees are decreased by the same amount. For example, if capita-

tion=0.5, then each fee is decreased by 50%, if capitation is 1, then all fees

are decreased by 100 %, i.e. set to 0.

Table 5.1 summarises the resulting simulation runs for these parameter

settings.

The GP utility function was set in a way that on average GPs prefer a

maximum workload per day below the limit of appointmentmax, and are not

influenced strongly by patient welfare. Some sample calculations have been

made on an Excel sheet to find parameter values for α, β and γ that (on

average) first increase the GP’s utility until workload becomes so high that

utility begins to decrease. In this model, workload is an important endoge-

nous variable responsible for generating variation in the outcomes. Setting

the utility function in a way that makes changes in workload unlikely (e.g.

by weighting income very high) will induce little variation in the workloads

and thus health outcomes. Figure 5.1 illustrates a sample function that was

generated with an average fee of 0.3, average effort of 0.5, and an average
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Choice Pay #pat. #GP cap. feeavg pavg eavg decision net.

BR-3 S-0 3000 10...250 0 0.48 0.53 0.24 rational 3
S-0.5 3000 10...250 0.5 0.24 0.53 0.24 rational 3
S-1 3000 10...250 1 0 0.53 0.24 rational 3

BR-6 S-0 3000 10...250 0 0.48 0.53 0.24 rational 6
S-0.5 3000 10...250 0.5 0.24 0.53 0.24 rational 6
S-1 3000 10...250 1 0 0.53 0.24 rational 6

RL-3 S-0 3000 10...250 0 0.48 0.53 0.24 prob. 3
S-0.5 3000 10...250 0.5 0.24 0.53 0.24 prob. 3
S-1 3000 10...250 1 0 0.53 0.24 prob. 3

RL-6 S-0 3000 10...250 0 0.48 0.53 0.24 prob. 6
S-0.5 3000 10...250 0.5 0.24 0.53 0.24 prob. 6
S-1 3000 10...250 1 0 0.53 0.24 prob. 6

Table 5.1: Overview of simulation runs. The first two columns denote scenario
names used in the analysis.

treatment probability of 0.5.

Patients have a simpler objective function: They value the doctor’s ef-

fort highest and distance the least, whereas the weight of waiting time lies

between the two. The function is linear: The higher the effort, the smaller

waiting time and distance, the higher utility.

Table 5.2 shows the respective parameters of the utility functions.

Parameter GP Patient
Ugp = Iα(Emax − E)β(n−DEV )γ UP = αwait+ βdist− γE

α 0.2 0.5
β 0.8 0.3
γ 0.1 0.7

Table 5.2: GP and patient utility functions

Consumers become ill with probability 0.9. This is certainly unrealistic,

but within this simple model justifiable, because time is only relevant for

patients to collect experiences about doctors. The value is < 1 to keep some
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Figure 5.1: A typical GP utility function (showing only the two dimensions
income and workload) as used in the simulations.

small variation in the number of ill consumers each time step. Thus, more

realistic lower morbidity rates and longer simulation runs are equivalent to

higher morbidity and shorter runs. A similar technical reason applies for

the decision cycles of GPs, which is set at a week, i.e. t = 7 (whereas

a period of a month or several months is much more realistic - see, for

example, the Krasnik study (Krasnik and Groenewegen 1992), which found

more significant changes only after 12 months after the intervention) - the

only function is to make the simulation runs more efficient by bundling the

important events.

For the comparative static view, simulations were run with 3000 con-

sumers and varying GP density. The reason for this large number was

mainly to be absolutely certain that the geographical distribution of con-

sumers is random. Only 120 time steps were run. The main interest is
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exploring many different competition scenarios by increasing GP density

and generating large enough samples of distribution parameters such as fee

and effort values. To keep the time to compute the simulations manageable,

the duration of the simulations was kept short - therefore the high morbidity

rate and shorter decision periods described above. For the dynamic view,

the number of patients was reduced to 1000 and only one GP density set-

ting run, which, comparing it with the larger simulation, seemed to be a

sufficient size. On the other hand, the number of time steps was increased

to 750 to observe the behaviour of the model in the longer run.

5.7.1.2 Static Analysis

The following sections show simulation runs averaged over 121 time steps,

representing 120 days or four months. In the figures, GP density is mea-

sured as the quotient of the number of GPs and patients in the respective

simulation.

Waiting lists

Figure 5.2 illustrates how GP density, payment system and choice mode in-

fluence waiting time. Waiting lists are measured as the quotient of patients

waiting for treatment at a time step, and all consumers in the population.

Quite trivially, waiting lists decrease with increasing GP density in all sce-

narios.

Comparing the scenarios, there is a very small difference between pure

capitation systems and non-capitation systems; there is virtually no differ-

ence between a pure FFS system and the mixed half-fee, half-capitation

system. Furthermore, there seem to be some very small differences between

choice modes. In the BR-6 scenario, for example, a GP density of 0.01
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(a) BR-3 (b) BR-6

(c) RL-3 (d) RL-6

Figure 5.2: Waiting lists (static analysis)

induces average waiting lists of 0.025. This value is smaller than the BR-3

scenario (where less consumer choice is possible), as well as all RL scenarios.

Referrals

Figure 5.3 shows the referral behaviour. The rate of referrals r is computed

relative against the expected referrals, which is determined by the certainty

value p: r = 1
p

#referrals
#referrals+#treatments

. For example, in the simulation setup

the ‘objective’ treatment probability is p = 0.53 and referral probability =

1 − p = 0.47. If the doctors’ decisions are on average close to 0.47, then

r ≈ 1 and vice versa. The maximum deviation parameter varmax was set
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to 0.2, so that r varies between 1.2 and 0.8.

There is a clear difference between capitation and non-capitation sys-

tems, but not between choice modes. r is almost constant for capitation

doctors at a rate close to 1; they decide ‘close to the norm’. This rate does

not change with increasing competition. This is somewhat surprising as the

major instrument for capitation doctors to increase utility is the reduction

of effort (β = 0.8). Patient welfare should not have such a big influence

(γ = 0.1); one would, therefore, expect a propensity to refer closer to the

maximum of 1.2 in all scenarios. In the FFS scenarios, the referral rate is

constant at about 0.8 - close to the minimum possible. The incentives of

the model are such that GPs always decide to over-treat; the rationale of an

FFS agent is to maximise income at each consultation independent of the

environment. This is plausible, as there is no incentive apart from patient

welfare to increase the referral rate. While patient welfare can influence

the decision of capitation doctors, resulting in appropriate treatment, this

influence is (ceteris paribus) too weak for FFS GPs in the model.

Effort

As could be expected, effort levels (figure 5.4) increase with GP density as

increasing effort is the main instrument for doctors to attract more patients.

Shape and level are similar in all scenarios, although effort is ends up slightly

higher in the BR models (≈ 0.9 as compared to ≈ 0.8 in RL). Furthermore,

in the BR-6 scenario under capitation is only very small change in effort; it

starts relatively high and then remains similar.
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(a) BR-3 (b) BR-6

(c) RL-3 (d) RL-6

Figure 5.3: Referrals (static analysis)

Patient utility

More differences between the scenarios exist with respect to patient utility

(figure 5.5). In BR-3, patient utility increases at a decreasing rate up to a

level of about 0.6. It then remains, by and large, at this level and seems

even to decrease when GP density increases further over ≈ 0.063. In BR-6,

the rise in utility is more constant as competition increases, and at the top

with 0.7 higher than in BR-3. Utility in the RL scenarios is lower, but

increasing almost linearly with GP density.
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(a) BR-3 (b) BR-6

(c) RL-3 (d) RL-6

Figure 5.4: GP effort (static analysis)

Summary

This overview showed on a coarse level the simulation outcomes in the

dimensions GP density and patient choice behaviour. There are mostly no

or only very little differences between the behaviour modes. Furthermore,

the relationship between competition, effort and welfare is obvious - the

more competition the higher quality. The following two main observations

will be investigated in more detail in the next set of experiments:

– Less rational choice behaviour (in the form of RL) leads to reduced

effort.
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(a) BR-3 (b) BR-6

(c) RL-3 (d) RL-6

Figure 5.5: Patient utility (static analysis)

– Patient welfare increases with better information (larger networks)

and more rational decision-making. There are two possibilities why

this can happen - either BR patients switch faster to better doctors

even if differences are very small; or, vice versa, the probabilistic

choices under RL lead to increased switching (probability matching)

and apparent random behaviour. In the latter case, this would in-

duce doctors to reduce effort, since it does not necessarily increase list

size; hence reducing effort could be a suitable strategy to improve GP

utility.
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5.7.2 Dynamic Analysis

The purpose of the preceding section was to cover many different param-

eter variations on an aggregate level. While the aggregate view only gives

a general impression of the simulation behaviour, this section takes the

exploratory results as a starting point and looks at the dynamic aspects.

For this, GP density is fixed and the number of patients reduced to obtain

results in a reasonable time. The number of patients is set at 1000, the

number of GPs at 60. Simulations are run for 750 steps. Furthermore, only

pure FFS versus pure capitation is compared, since the effects of minor

variations turned out to be negligible in the model. The other parameters

remain the same. The GP-patient ratio reflects the actual ratio in the UK.

According to a 2003 OECD report (cited in Royal College of General Prac-

titioners (2006)) this ratio was 65 GPs per 100.000 patients, of whom the

average patient had three visits per year. Given the high probability of

visiting a doctor in the simulation setup (0.9 as compared to 0.008), this

ratio of 0.000065 can be translated into a ratio of 0.06 in the simulation,

with the average workload of the GP remaining about the same.

Waiting lists

The development of waiting lists (figure 5.6) shows an important aspect

that was not observable during the shorter runs of the previous simulations:

Waiting lists decrease only at later stages of the simulation - roughly from

step 250 onwards. Over all learning modes, the decrease is sharper for FFS;

for network sizes of 6, the difference is smaller. Furthermore, the difference

between BR and RL modes is large. Waiting lists drop much faster to low

levels under RL. In RL-6 waiting lists are generally shorter than in RL-3.
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(a) BR-3 (b) BR-6

(c) RL-3 (d) RL-6

Figure 5.6: Waiting lists over time for a density of 0.06 GPs per patient.

Referrals

Figure 5.7 shows the referral behaviour. Here, the differences are very small

and the rates stable. However, differences between FFS and capitation in

BR-6 are smaller. Furthermore, variation seems to be larger in BR scenarios.

Effort

Figure 5.8 shows the effort levels. Effort increases quickly to the maximum

of 1 in all scenarios. The rise is a little slower in the RL scenarios. Fur-

thermore, there is - although very little - variability in effort levels under

capitation in the RL-scenarios, and the level is - also only slightly - below
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(a) BR-3 (b) BR-6

(c) RL-3 (d) RL-6

Figure 5.7: Referrals over time for a density of 0.06 GPs per patient.

the FFS levels.

Patient utility

Figure 5.9 shows the patient utility levels. Here, there are very obvious

differences between choice modes. The BR scenarios are very similar -

neither network size, nor payment mode influences patient utility strongly.

The difference is mainly that utility reaches its maximum a few time steps

earlier in the BR-6 scenarios, and this even faster under FFS. Within the

RL scenarios, patient utility is lower and varies much stronger. Moreover,

in the RL scenarios, utility is lower and variation stronger under capitation
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(a) BR-3 (b) BR-6

(c) RL-3 (d) RL-6

Figure 5.8: GP effort over time for a density of 0.06 GPs per patient.

than under FFS.

5.7.3 Summary of the Simulation Results and Discus-

sion

The dynamic view highlights the driving factors in the simulation in a more

detailed view. With regard to waiting lists, it was found that there are

considerable differences between choice modes and payment system. With

respect to patient welfare, there are differences between choice modes.

Table 5.3 shows some summary measures across all time steps, high-
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(a) BR-3 (b) BR-6

(c) RL-3 (d) RL-6

Figure 5.9: Patient utility for a density of 0.06 GPs per patient.

lighting some differences between learning modes and payment systems. A

variance analysis for the dependent variables waiting list, effort, referral rate

and patient welfare has been conducted; results are given in the appendix

C.

Using the graphs and the results of the variance analysis, two main

observations can be made:

In the simulations, patient choice reduces waiting times, but decreases

quality: For waiting lists, the variance analysis shows significant differences

between payment systems and choice mode (except for BR-3/Capitation
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scenario effort wait referral rate patient utility

mean sdev mean sdev mean sdev mean sdev
BR-3/FFS 0.982 0.000 9.625 5.711 0.808 0.017 0.617 0.053
BR-3/Capitation 0.976 0.005 13.944 5.518 0.988 0.035 0.611 0.053
BR-6/FFS 0.980 0.003 11.636 4.113 0.911 0.023 0.637 0.027
BR-6/Capitation 0.976 0.003 14.070 6.037 0.991 0.029 0.612 0.04
RL-3/FFS 0.963 0.016 6.651 2.497 0.803 0.013 0.44 0.123
RL-3/Capitation 0.964 0.008 7.709 2.229 0.993 0.020 0.289 0.157
RL-6/FFS 0.960 0.010 5.145 2.304 0.805 0.020 0.454 0.155
RL-6/Capitation 0.956 0.015 8.666 3.330 0.998 0.020 0.287 0.189

Table 5.3: Mean and standard deviation for dependent variables, measured
over 750 time steps.

which has no significant differences to RL-3/Capitation and RL-6/Capitation;

this is probably due to the strong decrease at later simulation steps). For

patient utility, the differences between choice mode and payment system

are also significant, with two exceptions (BR-3/Capitation is not different

from BR-3/FFS and BR-6/Capitation).

A likely reason for these clear differences between choice modes lies in GP

effort and patient mobility. In BR scenarios, patients remain loyal to their

GPs. This results in high and unchanged effort levels. Since effort is strongly

weighted in the patient utility function, this would explain the lower utility

levels in the RL models. Differences in effort levels are small, but significant

between BR and RL scenarios. Furthermore, significant differences in effort

exist between RL-6/Capitation and all other RL scenarios. With respect

to waiting lists, computations showed that the coefficient of variation in

the RL-scenarios is much lower (on average 0.37) than in BR-scenarios (on

average 0.44). This indicates that in BR there are some doctors with longer,

and some with short waiting lists, while in RL, patients distribute more

evenly over practices.
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Strictly choosing the most preferred doctor thus guarantee stability in

demand for the GPs, who in turn have a motivation to maintain quality

to keep patients. Both demand and supply stabilise each other. As the

differences between GPs are small (due to homogeneous utility functions

fixed in the setup), RL patients tend to go ‘GP shopping’. The closer

expected utility the more likely they switch. This trend is also obvious

when computing a loyalty index (table 5.4) as the ratio of the number of

visits at the GP most often seen by a patient and the number of total GP

visits. It shows that patients are most loyal to their GP in FFS scenarios

with rational decisions and small network size. In other words, limited

choice and economic decisions stabilise the system best. For example, in

BR-3/FFS 74% of all patients stayed with a single GP, whereas in all RL

scenarios, this rate is just 30%. The difference between capitation and FFS

in the BR models is likely due to shorter waiting lists: because capitation

doctors have longer waiting lists, some patients become unsatisfied faster

than under FFS and may switch. This would also be reflected by the smaller

differences between waiting lists in BR-6 as compared to BR-3, as are the

differences between loyalty values. Another pointer into this direction can

be seen in the referral behaviour. In BR-6, for example, even FFS doctors

tend to refer at more appropriate levels (which increases patient utility),

rather than over-treating.

While patient utility increases due to higher quality in BR scenarios,

longer waiting queues develop at ‘good’ doctors, while others have only few

patients. This shows the tension between policy goals - less choice might

actually provide increase quality and welfare, but waiting times are likely

to increase. More patient choice could reduce waiting lists, but also the

quality of doctor-patient relationship.

In the simulations, FFS appears to reduce waiting times better than cap-
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Scenario Loyalty

BR-3/FFS 0.75
BR-3/Capitation 0.49
BR-6/FFS 0.53
BR-6/Capitation 0.48
RL-3/FFS 0.28
RL-3/Capitation 0.29
RL-6/FFS 0.29
RL-6/Capitation 0.29

Table 5.4: Average loyalty index of patients. The index is computed as the
quotient of the number of visits at a most visited GP and total visits of GPs over
the whole simulation.

itation: Looking only at the influence of payment systems, the simulations

suggest that the FFS scenarios score better on most dependent variables

than capitation scenarios.

With respect to waiting lists, the reason is that the preferred workload of

FFS doctors is always higher (computations show that the preferred work-

load of FFS doctors is roughly twice the preferred workload of capitation

doctors). As the preceding figures showed, they increase their utility by

increasing income by treating more patients, and referring fewer patients.

Consequently, they have on average shorter waiting lists than capitation

doctors. This effect is not visible in early stages of the simulation; only

over time doctors manage to decrease their waiting lists by adapting their

planned workload week after week as their queues increase. It also explains

the different speed of BR-3 and BR-6: In BR-6 patients know more doctors

(coefficient of variation for waiting lists: 0.43) than in BR-3 (coefficient of

variation for waiting lists: 0.4), and thus distribute more evenly over the

GP population. The same tendency, but on different levels, is obvious from

figure 5.6 for the RL scenarios.
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Looking at patient welfare, utility is always lower in the capitation cases

- slightly in the BR scenarios, and more obvious in the RL scenarios. In the

BR scenarios, this difference can easily be attributed to the longer waiting

lists, which have some influence on utility. The large differences in RL are,

however, puzzling. Certainly also here the longer waiting lists influence

welfare negatively. The question is why level and shape of the curves differ

so much and persistently. The pattern in the first steps is analogous to the

BR simulations - under capitation welfare is always slightly lower. However,

over time, the difference between utility stabilises, instead of approximating

each other as under BR. The only remaining source of variation remains GP

effort. Effort does vary more and is lower as under FFS, but the difference

is extremely small (and not significant within RL-3).

Similar to the first result, this implies that FFS might be more efficient

in reducing waiting times. Moreover, if there is high patient mobility, more

FFS counterbalances the welfare loss due to lower effort levels.

5.8 Conclusion

Based on the results of the literature about incentive systems in primary

care, an agent-based model was developed, which attempted to address

the major shortcomings of the traditional models: The simplifying assump-

tions of the agency literature where GPs are modelled as income-maximising

firms, and the ad-hoc nature and assumptions of many empirical studies.

In particular, the model tried to operationalise patient choice, which plays

an important role in the political discussion, but about which few models

exist.

The simulations demonstrated how the impacts of possibly conflicting

policy targets (quality and efficiency) can be analysed within one and the
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same model. The model shows that more ‘shopping for GPs’ could, while

reducing waiting times, actually lead to lower quality and consequently, to

lower patient utility. The underlying reason is that GPs might choose to

work less in an environment they perceive as unpredictable and unstable.

If policy values low waiting times higher, these negative effects might be

accepted, because more shopping is likely to lead to a more equal distribu-

tion of patients over GPs. The simulations also showed how the interactions

between payment system and patient behaviour might be analysed. In par-

ticular, in the light of these artificial results, it could be argued, that - if

efficiency and quality are equally weighted goals - the implementation of

more patient choice should be accompanied with more FFS-like elements.

The result of the simulations could also be interpreted in a different way.

Assuming that policy ‘wants’ educated consumers behaving as rational as

the consumers in the BR-scenarios, the scenarios can be used as a thought

experiment of possible future paths. Consumers, prepared to make the best

choice, search for their preferred practice. They want to behave rationally

in the sense defined above, i.e. stick to the best GP and not shop around.

However, differences between practices, e.g. in a certain region, are so

small or there is not enough reliable information, that it is too difficult to

distinguish between doctors’ quality. It becomes impossible to find the best

GP (this is represented by the RL scenarios). As patients keep searching

for better practices, quality levels fall because GPs see no reason why they

should raise effort for non-loyal patients. Thus, even if policy could reach

the objectives in one area - motivating consumers to exercise choice as a

means to raise quality - the actual achievement of this goal might lead to

unintended consequences.
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Conclusion

This thesis focused on adaptation in artificial agents from different angles:

First, how simple and more complex approaches to learning and cognition

can be combined in an ACE framework; how simple and more complex

learning can be applied in various domains; and how a software can be

engineered that covers the implementation of this rather diverse set of issues.

Summary of results Chapter 2 showed that it is possible to learn about

the environment an agent lives in with very little a priori knowledge. The

main idea of the approach presented was an incremental search for the best

state-action mappings in the state space. Behaviour is learnt in a trial- and

error fashion using reinforcement learning, and then by mapping the action

selection probabilities to state descriptions. These mappings are similar to

simple rules. Which descriptions are generated depends on their relevance,

or what the agent ‘decides’ to know about its environment. This way,

agents learn to distinguish between important and less important details of

the world they live in. A simple experiment illustrated how the algorithm

works. The BRA algorithm is different from many learning approaches in

ACE as it combines rule learning and reinforcement learning in a dynamic

227
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way. BRA is a general approach, and it can cover a variety of approaches in

the simulation literature. For example, it is very similar to learning classifier

systems, but also able to represent very simple forms of learning as well.

Chapter 3 applied the algorithm to a model of statistical discrimination.

The aim was to build a bridge between theoretical game theory and the

classroom game conducted by Fryer Jr. et al (2005). It was shown that the

RL model is capable of reproducing the empirical results as well as the be-

havioural patterns observed in the experiment. A further parallel is that in

both simulations and experiment discrimination is rare. In the simulations,

no general rule or scenario was found that generated discrimination on the

average. In most cases, discrimination either did not evolve, or disappeared

in the longer run. In the samples where discrimination was observed, the

occurrence seemed path-dependent. In particular, if employers are liberal

in the beginning and differences in worker productivity are persistent, em-

ployers adjust their hiring levels eventually and a discriminatory outcome

emerged.

Chapter 4 developed a RL specification of a communication network

model. In the base version, it became clear that RL produces similar re-

sults as theoretical predictions. It was furthermore shown that the simplest

possible RL model is sufficient to produce that result. Using BRA, no plau-

sible mapping from player names to actions was found that was superior

than simple stimulus-response learning. Aggregate results did also not im-

prove. Comparing the RL model with an experiment from behavioural game

theory, it turned out that the model predicts the empirical results better

than the equilibrium prediction. This result has analogies to earlier research

in behavioural game theory, which often finds that the simplest model fit

actual data and theoretical results reasonably well; sometimes even better

than more complicated models. What is different here is that the RL con-
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nections model can state this also for the more complex class of network

games.

In chapter 5, agents were much simpler. The purpose of the health care

simulations was to use agent-based modelling to investigate models of a

complex environment. The primary care sector can be seen as such com-

plex environment. Some authors already made a case for applying complex-

ity science tools in this area. The simulations looked at some hypotheses

that were formulated and, to a certain extent, tested empirically. Further

experiments highlighted the influence of patient information and choice be-

haviour on health outcomes. The model served two purposes: First, it puts

BRA, although in its simplest form, into the context of a more complex

model. Second, it explored how ACE could be applied to primary care, for

which no other computational approaches exist so far. The results showed

that assumptions about patient behaviour influence the simulation result

considerably. The main result here is that more consumer choice can lead

to worse health outcomes, as doctors have no incentives to provide person-

alised services to non loyal consumers. Since most debate about the benefits

of consumer choice in health care is still driven by ideology, often based on

improvable facts about the benefits of competition, an ACE model may be

a starting point for a more rigorous analysis of arguments in this area.

Limitations The motivation of this work was to generate aggregate out-

comes (sometimes also described with the term ‘emergence’) like discrimi-

nation, health outcomes or network structures by adaptive algorithms. The

nature of complex systems and some definitions were introduced in the in-

troduction (see definitions 1 to 3). Of the three presented definitions, the

aspects covered in this work matches only the first two. The agents were

goal directed (utility optimisers) and reacted to changes in their environ-
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ment; they are not active planners in order to achieve some (sub-)goals,

which would require at least some representation of plans and goals as well

as capabilities to reason about them. For the type of models discussed in

this thesis, this is not necessary. More precisely, the overall approach taken

here is based on simple types of learning. The basis of this approach has

been tied to existing concepts of bounded rationality. However, there are

cases where more complex models of cognition and goal-directed behaviour

are necessary. For instance, as Gilbert (2006) mentions, agents in team en-

vironments may need to hold cognitive models about their colleagues and

develop strategies to improve the performance of the team as a whole. Al-

though BRA provides a simple cognitive representation in the form of rules

and symbolic state descriptors, it cannot handle such cases. For example,

a network game with farsighted players as, e.g., in Watts (2002) or Deroian

(2003) is already difficult to represent with BRA, as agents would need an

idea of what networks might form, how other agents are likely to act and

so on.

The BRA approach is thus useful for classification problems or where

cases can be translated into such classifications - hence it has a close re-

lationship to classifier systems. The discrimination game in chapter 3 is a

representative application - employers have to classify two types of worker

agents and behave accordingly. In other domains, classification may simply

be not necessary. For example, the primary care model in chapter 5 can for-

mally be modelled with the framework, but since there are no classification

problems to solve, the mechanism reduces to simple RL. From a different

angle, chapter 4 showed that where classification (based on the labels of

players) is a model option, it might simply not add anything to the quality

of the model result.

Another limitation of this thesis is its relationship to empirical valida-
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tion. The models of chapters 3 and 4 were only loosely coupled to exper-

iments from behavioural game theory. The main interest was to develop

models with learning agents and to use BRA framework for this. The pri-

mary care model in its current form is too general to be fitted to existing

data. More work to assemble the necessary data and to fit the model struc-

ture to it is required first.

Future work Future work should therefore focus on two aspects: The

empirical validation of the implemented models, and the development of

richer applied models to make better use of the BRA features. Looking back

at the main criticisms presented in the introduction, these are probably two

conflicting goals. The richer the model, the more likely the results produced

with it are less general, and that it is only one of many models with which

the empirical fact can be explained.

Looking at validation, the following paths are possible: In the area of

network games, more models for similar games with endogenous network

structures can be devised where experimental data is already available; the

comparison with Conte et al (2009) is an initial step into this direction.

Model parameters could be calibrated in a way that produces a minimal

deviation from the actual, empirical outcome. This is certainly more diffi-

cult in a health care model that is inherently related to real-world processes.

Here, a main path will be the collection of appropriate data, e.g. on regional

levels, using this data first for the specification of input parameters (geo-

graphical distribution, preferences, consumer types, etc.), and only then for

comparing artificial with real results (e.g., comparison of mobility rates,

GP lists, waiting lists, etc.). To what extent this procedure is possible de-

pends on the availability of data. Another aspect of calibrating the model

to actual health systems is to map the various levels of real health systems
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better and to model the consequences that arise from there. The model

restricted health provision to individual doctors, however, different organi-

sational forms exist. For example, GPs are organised on the practice level;

Primary Care Trusts (PCT) organise practices and so on. Furthermore, the

model deliberately modelled GPs as self-employed; nevertheless, GPs could

act also (partially) as firms. So, under the PCT scheme, GPs can invest

their surpluses into their practices. This adds another dimension to the

utility function not covered in the model.

As empirical validation can add to the quality of the models discussed

in this thesis, so could more complex models make use of the features of

BRA. For instance, rule learning could be added to the primary care model:

Patients can learn to distinguish dynamically between doctors for different

illnesses and build rules which doctors or specialists to consider under dif-

ferent conditions. Conversely, doctors might learn rules in which area they

want to specialise, depending on the demand for certain health services.

With this, a model of provider specialisation could be built.
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Appendix A

A Scalable ACE Simulation

Software Framework

A.1 Introduction

This section describes the software framework with which the simulations

in the previous chapters have been implemented.

The major features of the framework gsim (for ‘generic simulation frame-

work’) are: An interface for setting up a model in a declarative way (e.g.

objects and attributes, agent behaviour rules); an application programming

interface (API) which can be used to plug model-specific programmable

components; and the possibility to run many simulations simultaneously or

distribute a large simulation across a cluster of computers without the need

to modify any model code.

The motivation to develop this system was to find a middle way be-

tween the flexibility of a programming language, and out of the box sim-

ulation tools. It is a more specialised framework than simulation toolkits
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such as Swarm (Swarm 2010), Ascape (Ascape 2010), MASON (MASON

2010) or Repast (Repast 2010), because it not only provides a simulation

infrastructure (e.g., a scheduler or tools for generating graphs) and a set

of libraries useful for implementing models (e.g., genetic programming or

network libraries). It provides an integrated set of behaviours and learning

mechanisms that can be configured and require only little programming.

Another area where gsim is different from other simulation software is its

approach to scalability. In domains such as Artificial Life, distribution of

simulations is usually based on algorithms that distribute the landscape

agents live on efficiently. Large simulations are then partitioned in a way

that most communication happens locally, minimising the message traffic

over the network which is the most serious bottleneck of distributed simu-

lations (see section A.3.2.1 for more details). Only few general distribution

approaches not being based on topography exist. For RePast, for exam-

ple, distribution has been implemented with the Terracotta framework in

the RePast Symphony project (The Repast Symphony Project 2010), (Ter-

racotta 2010), or with the High-Level-Architecture (HLA), a specification

for parallel systems (e.g. Minson and Theodoropoulos 2004; Cicirelli et al

2009). For a model to become distributed, such approaches require the

additional implementation or configuration of the objects that are to be

distributed over the cluster, or even a redesign of single-machine programs.

gsim proposes a different method which abstracts from framework-specific

programming and configuration.

This appendix describes the central components and software architec-

ture of the framework: Section A.2 presents how models are described (sec-

tions A.2.1 to A.2.2) and behaviour specified (sections A.2.3 and A.2.6).

Section A.3 describes the software architecture from a more technical and

point of view, including a description of how the system is scaled up to a
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distributed version (section A.3.2).

A.2 Model Representation System

A.2.1 The Frame Principle

Frames are a central concept of Artificial intelligence (AI) for knowledge

representation and were first described by Minsky (Minsky 1975). It is an

approach to represent classes of objects on different levels of abstraction,

down to their concrete realisations as objects.

A frame can be defined as a schema that describes an entity or a class

of entities by a collection of attribute-value pairs in a hierarchy of such

schemata. Attributes have variable character; they provide ‘slots’. The

slots can take a specific value (’fillers’) to describe a more concrete entity.

Attributes may be thought of having any type of filler, such as number

or strings, but in particular, other frames. Complex structures and rela-

tionships can be generated by nesting frames into each other (similar to

object-oriented concepts).

A central feature of the frame concept is inheritance. Entities of the

same type can be more or less specialised depending on their position in

the hierarchy. On the higher, abstract levels of a hierarchy, frames typically

specify only very general information, such as the type of slots they contain

and the possible fillers for these slots. On lower, more concrete levels, slots

may be filled by more specific value ranges and default values. Default

attribute values describe a typical object of a class. For example, a vehicle

can be characterised by having a number of wheels. A car is a certain class

of vehicle, which has typically four wheels, so that using number 4 as a

default filler would be a sensible choice.
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While frames describe classes of entities at different levels of abstraction,

actual realisations of these classes are called ‘instances’. An instance de-

scribes an existing object with referral to its frame, for example ‘the green

car with four wheels’.

Using as an example the frame firm, figure A.1 illustrates this concept,

deriving concrete firms from it.

Figure A.1: Knowledge representation in gsim.

In figure A.1, the top level frame describes the possible values entities

of the type firm can have. On a more concrete level, media and transport

firms can be distinguished by applying default fillers. On the instance level,

concrete firms are created from the default frames. In gsim, this process is

labelled ‘instanciation’ to distinguish it from instantiation in object-oriented

programming.

The frame model in gsim gsim entities are organised by lists of at-

tributes and list of further frames. For simplification of the implementation,

both types of entities are kept separate. Attributes are simple name-value

pairs, and cannot contain frames.
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Entities are managed in their own environment, which implements the

schema hierarchy and manages value changes within that hierarchy. For

example, if a default value further up in the inheritance is changed, this

change is propagated down to all inheriting frames and all instances of that

frame. Any entity in gsim must be created via this environment. The

environment defines two special top-level frames: agent-class and object-

class. Any concrete simulation model must inherit from these entities.

As in the base concept, frames describe the possible value ranges and

default values. gsim makes some restrictions on the hierarchies that can be

generated. Only agent classes may contain further frames; object classes

are simple containers for attributes. Attributes can be of different types:

numerical attributes accept any numbers; string attributes any string value;

intervals define a value range by a minimum and maximum value; similarly,

set attribute defines a list of allowed fillers.

Figure A.2: The base agent frame in gsim (attributes are omitted).

Figure A.2 illustrates the agent-class. It only specifies frames for the
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behaviour and adds some default attributes (e.g. the attribute that contains

the operator of a condition); any other attributes and object classes would

be added depending on the simulation model. The behaviour itself is given

again by nested frames. A behaviour consists of a set of rules, which are

composed of conditions and refer to actions. The details are given in the

following section A.2.2.

During the process of instanciation, frames serve as a template for gener-

ating objects. Initially, the frame attribute defaults are used for the concrete

values in the instance’s attributes. Similarly, default objects may be gen-

erated. After the instances are generated, the default values may then be

overridden with instance-specific values, or varied randomly (the prototype

implementation provides utility classes for this).

Thus, a large range of models can be described with such a generic

representation, and agent populations easily be generated and modified.

Models specialise the generic classes by adding new attributes and further

frames. If a simulation requires it, the addition or deletion of attributes on

the instance level is possible as well.

Due to the regularity of the representation, it is possible to specify a

simple language that declares the objects of a model, which at the same

time is capable of specify some simple dynamics by defining rules operating

on these descriptions. The following section A.2.2 presents this language,

and illustrates how it is applied to generate the actual programs that execute

agents in gsim.

A.2.2 Formal Description as Language

This section specifies the gsim entities and dynamics with the help of a

simple language. The notation is based on the Backus-Naur (BNF) form,



APPENDIX A. A SCALABLE ACE SIMULATION SOFTWARE

FRAMEWORK 258

a notation used to express context-free grammars. Context-free grammars

are often used in Computer Science to describe the syntax of programming

languages by production rules of the form V → w, where V is a non ter-

minal symbol and w is a string consisting of terminals and/or non-terminal

symbols. Non-terminal symbols are enclosed in brackets ‘<>’. Terminal

symbols are character strings (enclosed in quotation marks). The character

‘|’ denotes a logical ‘or’. An asterisk ‘∗’ denotes (zero or more) repetitions.

The operator ”:=” denotes a production rule where the expression on the

left-hand side is replaced with the expression on the right-hand side. Subse-

quent replacements will thus resolve to a sequence of terminal symbols. The

operator ‘:=’ denotes a production of the left-hand side to the expression

on the right-hand side (examples are given in section A.3.2.4). Expressions

in the following paragraphs are valid also for the succeeding paragraphs, i.e.

definitions in preceding sections are not redefined when referenced in later

sections (e.g. character).

Common terminal symbols

character :: "a" | "b" | "c" | "d" | "e" | "f" | "g" |

"h" | "i" | "j" | "k" | "l" | "m" | "n" |

"o" | "p" | "q" | "r" | "s" | "t" | "u" |

"v" | "w" | "x" | "y" | "z"

digit :: "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9" ;

Frame definition

<frame> := <entity-name> [<frame>*] <frame-list>*

<domain-attribute-list>*

<entity-name> := character*

<list-name> := character*

<frame-list> := <list-name> "("<entity-name>")" <entity-name>*

<domain-attribute-list> := <list-name> <domain-attribute>*

<domain-attribute> := <domain-attribute-name>

<domain-attribute-type>
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<domain-attribute-name> := character*

<domain-attribute-type> := <set-default>| <numerical-default> |

<numerical-interval-default> | <string-default>

<set-type> := "Set" <filler>* <string-default-value>

<numerical-type> := "Numerical" <numerical-default-value>

<numerical-interval-type> := "NumericalInterval"

<interval-default-value>

<string-type> := "String" <string-default-value>

<filler> := character*

<string-default-value> := character*

<numerical-default-value> := digit*

<interval-default-value> := digit* "-" digit*

As described above, frames are containers for attributes and further

frames. Domain attributes describe the type and default values of concrete

attributes such as string- or numerical attributes. Domain attributes and

contained frames are organised in lists. These lists may specify the type

of object they contain by referring to the name of the entity it is allowed

to contain instances of. Frames can inherit from an arbitrary number of

parent frames. Inheritance can create naming conflicts, for example, lists

and entities with the same name in different parents. These conflicts are not

resolved, i.e. unless a particular frame is referenced, it is undefined which

object is returned on the lowest level.

Instance definition

<instance> := <entity-name> <frame> <attribute-list>*

<attribute-list> := <list-name> <attribute>*

<attribute> := <attribute-type> <attribute-name>

<attribute-name> := character*

<attribute-type> := <set-type>| <numerical-type> |

<numerical-interval-type> | <string-type>

<set-type> := "Set" <string-value>*

<numerical-type> := "Numerical" <numerical-value>

<numerical-interval-type> := "NumericalInterval"

<numerical-value>"-"<numerical-value>
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<string-type> := "String" <string-value>

<string-value> := character*

<numerical-value> := digit*

An instance is a concrete entity that can be generated by a frame. Any

attributes or contained instances must comply with the type and domain-

attribute restrictions set by its frame. An instanciation of a frame has a

reference to its frame, and is accessible at any time during the life cycle of

an instance.

Object class definition

<object-class> := <entity-name> <frame> <domain-attribute-list>*

Object-class is a top-level object in gsim. It is a derivation of a frame

that restricts the elements contained in that frame to attributes. An object

class may define an arbitrary number of domain attribute lists that describe

the particular entity to be modelled.

Object definition

<object> := <entity-name> <object-class> <attribute-list>*

Analogous to instances, all gsim objects are derived from and refer to

its defining object class.
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Agent class definition

<agent-class> := <entity-name> <frame>* <object-class-list>*

<domain-attribute-list>* <behaviour-class>

<object-class-list> := <list-name> "("<entity-name>")" <object-class>*

<behaviour-class> := <entity-name> <frame> <action-class>* <max-nodes>

<update-interval> <revaluation-probability>

<revisit-costfraction>

<reactive-rule-class>* <adaptive-rule-class>*

<action-class> := <entity-name> <frame> <frame>* <action-java-class>

<action-java-class> := character*

<reactive-rule-class> := <entity-name> <frame> <condition-class>* "->"

<consequent-class>

<adaptive-rule-class> := <entity-name> <frame> <condition-class>*

<expansion-class>* "->"<consequent-class>*

<reward-variable>

<condition-class> := <entity-name> <frame> [<domain-attribute-spec>

<numerical-operator>

[domain-attribute-spec||<constant>]] |

[<object-class-spec> <operator>

[<constant> | <object-class-spec> |

<attribute-spec>]]

<domain-attribute-spec> := <list-name>"/"<domain-attribute-name>"/"

<attribute-value>

<object-class-spec> := <entity-name> <Frame> <object-class-list>"/"

<entity-name>"::"<list-name>"/"<domain-attribute-name>"/"

<attribute-value>|<object-class-list>"/"<entity-name>

<expansion-class> := <list-name>"/"<domain-attribute-name> |

<object-class-list>"/"<entity-name>::

<list-name>"/"<domain-attribute-name>

<max-nodes> := digit*

<update-interval> := digit*

<revaluation-probability>:= digit*

<revisit-costfraction> := digit*

<reward-variable-class> := <domain-attribute-spec>*

<constant-class> := digit* | character*

<numerical-operator> := "=" | ">" | ">=" | "<" | "<="

<operator> := <numerical-operator> | "EXISTS" | "NOT EXISTS"
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Agent-class is the top-level agent frame in gsim, and all models have to

derive their agents from this frame. Agent-class specifies further frames for

describing the base of agent behaviour, e.g. in conditions and actions.

Agent definition

<agent> := <entity-name> <agent-class>* <object-list>*

<attribute-list>* <Behaviour>

<object-list> := <list-name> <object>*

<behaviour> := <entity-name> <behaviour-class> <action>* <max-nodes>

<update-interval> <revaluation-probability>

<revisit-costfraction>

<reactive-rule>* <adaptive-rule>*

<action> := <entity-name> <action-class> <instance>* <action-java-class>

<reactive-rule> := <entity-name> <reactive-rule-class> <condition>* "->"

<consequent>

<adaptive-rule> := <entity-name> <adaptive-rule-class> <condition>*

<expansion>* "->"<consequent>* <reward-variable>

<condition> := <entity-name> <condition-class> [<domain-spec>

<numerical-operator>

[domain-spec||<constant>]] |

[<object-spec> <operator>

[<constant> | <object-spec> | <attribute-spec>]]

<attribute-spec> := <list-name>"/"<attribute-name>"/"

<attribute-value>

<object-spec> := <entity-name> <object-class-spec> <object-list>"/"

<entity-name>"::"<list-name>"/"<attribute-name>"/"

<attribute-value>|

<object-list>"/"<entity-name>

<expansion> := <list-name>"/"<attribute-name>

<list-name>"/"<entity-name>::

<list-name>"/"<attribute-name>

<reward-variable> := <attribute-spec>*

Agent is the instanciation of an agent class, analogously to the frame-

instance relationships described in the previous sections.
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A.2.3 Agent Behaviour

A behaviour groups different types of rules, which realise the different cases

of the framework described in chapter 2: Behaviour for full CBR or LCS-

type learning, behaviour implementing simple RL (element adaptive-rule),

and deterministic behaviour in the form of if-then rules (element reactive-

rule). Technically, all behaviour is based on production rules, having zero

up to an unlimited number of conditions, and one or more consequents.

Conditions are simple first-order logic predicates using operators like equal

or smaller, and the existence-operators exists/not exist. The BRA algorithm

is applied by specifying optional ‘expansion’ descriptors. These descriptors

specify the set of symbols and operators that constitute the propositional

set L in definition 4, i.e. the initial condition symbols on which the rule

generalisation and specialisation mechanisms work.

Conditions are patterns referencing attributes or objects of the agents.

They specify object and attribute value combinations that trigger the action

part of the rule, for example, ‘for all objects x with attribute y greater z

do . . . ’. Here lies the major benefit of the language specification: It is a

directive that generates patterns that serve as the input for the production

rule system.

Actions modify the state of the agent or initiate a conversation with

other agents. Model implementations must provide an action implementa-

tion extending the framework java class gsim.engine.behaviour.SimAction.

Actions may have a dynamically changing arbitrary number of arguments

referring to agent objects and attributes. These arguments are specified on

the frame-level. By this, it is possible to program a general action, and ap-

ply the action to a large number of unknown, dynamically changing object

instances and/or attributes. For example, an action ‘Sell’ can implement
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the selling of an object in an agent’s product list. Instead of programming

an action ‘Sell product X’, referring to a product instance, a general ac-

tion for ‘Sell a product’ can be implemented and parameterised with the

object-class that the product list holds. At runtime, the rule engine will de-

termine the product to be sold based on the condition and pass it as actual

parameter to the action.

The following paragraphs describe the gsim rule system in more detail.

Rules The core of the simulation system is the rule engine, based on the

rule system Jess (Sandia Labs 2010). Depending on the agent’s current

state, the pattern matcher determines which rules are to be fired. The

pattern matcher searches objects in the rule engine’s knowledge base and

finds those combinations that match the objects described in the condition

part. In gsim, the knowledge base is constituted by the part of the agent’s

state (defined as the objects and attributes of the agent) that is referred to

in the behaviour specification.

In a model specification, rules are typically specified on the frame level.

The state to be evaluated is given by the terms <object-class-spec> and

<domain-attribute-spec>. Pattern matching in case of an <object-class-

spec> follows the rule: For all objects of type <frame-name> with attribute

<attribute-name> and value<attribute-value> execute<consequent> [java-

class]. Several terms of <object-class-spec> and <domain-attribute-spec>

can be combined in one condition, and are interpreted as connected with

a logical ‘and’. During runtime, objects and attributes are bound to vari-

ables. The variable names are given by the names of the respective frame

and domain-attributes. If instances or attributes of the same type are refer-

enced several times in <object-class-spec> and <domain-attribute-spec>,

they are bound to the same variable. This way it is guaranteed that con-
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sequents are only triggered by concrete values of the same entity, and not

arbitrary combined instances that are found in the knowledge base.

From this pattern matching and variable binding logic three charac-

teristic cases of how and how often rules may become activated can be

distinguished: In case (1) an unparameterised consequent is fired as many

times as instances in the condition are matched; in case (2) an unparame-

terszed consequent is fired only once independent of the concrete matches;

and in case (3) a parameterised consequent is matched once by binding the

action parameters to the variables in the condition. The following examples

illustrate these cases:

1. A simple action may be activated many times depending on the ob-
jects in a list.

agent-class := Agent object-class-list-1 (object-class-1) behaviour-class-1

behaviour-class-1 := BehaviourClass1 rule-class-1

rule-class-1 := RuleClass1 condition-class-1 -> action-class-1

action-class-1 := DoSomethingClass1 executable.class.java

object-class-1 := AssetClass1 domain-attribute-list-1

condition-class-1 := ConditionClass1 object-class-list-1/object-class-1::

domain-attribute-list-1/AssetAttribute-1 = 0

This behaviour specifies a rule class that activates the rule instance of

RuleClass1 any time the AssetAttribute-1 of objects in the instance

list of object-class-list-1 equals 0.

2. The previous case means that an identical action is executed solely

depending on the number of objects in the list. As long as the list does

not always contain a singleton instance, this is probably not desirable.

Usually, it will be enough (or even required) that the rule is fired only

once. For this, the EXISTS may be used. Using the specification

declared in case (1), this behaviour becomes:
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behaviour-class-2 := BehaviourClass2 rule-class-2

rule-class-2 := RuleClass2 condition-class-1 condition-class-2-> action-class-2

condition-class-2 := ConditionClass2 object-class-list-1/object-class-1::

domain-attribute-list-1/AssetAttribute-1 EXISTS

This rule first tests whether the attribute exists and is 0. Technically,

it restricts the exists-test to those attributes with value 0, which is

redundant but has the effect that the rule is only fired once.

3. If there can be more than one object in a list, the model typically im-

plies semantically that an action is activated for that particular object

- e.g., ‘if the product is green, sell it’. Using again the declarations

given above, this case is given by the following specification:

behaviour-class-3 := BehaviourClass3 rule-class-3

rule-class-3 := SalesRule condition-class-3 -> action-class-2

action-class-2 := Sell object-class-1 SellAction.java

condition-class-3 := ColourCondition object-class-list-1/object-class-1::

domain-attribute-list-1/AssetAttribute-1 = 1

In this example, the action has been parameterised with objects of

type object-class-1 (which could, say, represent a product, and the

attribute a code for a particular colour). Since the condition refers

also to objects of type object-class-1, the object instance matching

the condition is bound to the same variable as the object instance

passed to the action SellAction. The SellAction implementation then

knows which object actually matched the condition, and do something

appropriately with that object (e.g., sell it).

Adaptive Rules Adaptive rules are extensions of the simple rules de-

scribed in the preceding paragraph and are used to implement the different

types of learning described in chapter 2. Instead of one consequent, there
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are several, and the action to be executed is selected probabilistically. The

condition-part remains the same as in a simple rule.

Simple RL is given if there is no condition, and at least two consequents

are specified. Some action is always selected, and the reinforcement, given

by <reward-variable>, is updated.

CBR is given if at least one condition is specified and at least two con-

sequents are specified. RL then applies then only in certain situations.

CBR becomes dynamic when the <expansion> element is specified.

<expansion> refers to an attribute in the agent or one of its objects. This

attribute must be of type <numerical-interval> or <set-attribute> to define

the value range within the state-space partitioning algorithm works.

In the current implementation, the value ranges of <expansion> ele-

ments have to be fixed at setup-time; the disadvantage of this is that, as

mentioned in 2, the expansion process may operate on attribute ranges that

are irrelevant (for example, an initial value range 0-1000, where only val-

ues 0-10 can occur during the simulation). This makes the implementation

sensitive to the setup and the expected values. It is, however, quite easy to

extend the current mechanism to a more dynamic mode which is capable of

integrating new values and value ranges as they appear during a simulation,

making the algorithm more robust. The idea is as follows:

– If no tree is developed at all: Simply add the root node with one

value or value range: If the attribute is a set-attribute, add exactly

the category. If it is numerical, construct an interval (e.g. for a value

x, construct a range from x− x/2 to x+ x/2, or simply from x to x).

– If more than one level is developed: Select a child of the base rule at
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the deepest expanded level. Add the new category to this node, or

construct a new interval if the attribute is numeric. Up to the root

rule, add to all predecessors of the modified rule the new category

or modify the interval in an analogous way. The state value of the

modified nodes remains the same, i.e. the existence of the new value

does not affect current evaluations. As the new value is connected by

an ‘or’ to the existing terms in the condition, this can be interpreted as

a null hypothesis that the new value does not influence the well-being

of the agent at the current time step.

Parameters controlling the execution of the algorithm (e.g. the cost

of visiting nodes, the maximum allowed number of expansions and so on)

are given by <max-nodes> (parameter χ in chapter 2), <update-interval>

(µ in chapter 2; ν is currently fixed with round(µ − 1
4
µ)), <revaluation-

probability> (ρ in chapter 2) and <revisit-costfraction> (ζ in chapter 2).

These parameters are specified only once per agent, since they specify prop-

erties of an agent’s mind.

The <reward-variable> (parameter p in chapter 2) element specifies

which attribute is used as a reward for the reinforcement learner. Typically,

a model will modify this variable as the result of a change in the agent’s

state. The rule engine is responsible for mapping this value into the action

reward and later select an action accordingly.

The following example describes an adaptive rule that uses the attribute

player-type as the variable partitioning the state space, and the current

payoff of the player as the reward variable:

agent-class := PDAgent player-list (player-name) attribute-list behaviour-class

player-name := PDPlayer domain-attribute-list-1

behaviour-class := PDBehaviourClass pd-rule-class
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pd-rule-class := PDAdaptiveClass expansion-class-1 -> action-class-1, action-class-2

action-class-1 := Cooperate models.pd.Defect

action-class-2 := Defect models.pd.Cooperate

expansion-class-1 := ExpansionClass1 player-list/player-name::

domain-attribute-list-1/NameAttribute-1 = A|B|C|D attribute-list/payoff

The rule engine will use the four possible attribute values A B C or D to

construct the initial rule: ‘player-type= (A or B or C or D)’, and create spe-

cialisations during the simulation, e.g. player-type= (A or B)’. Depending

on the actual reward structure, selection probabilities will vary for different

specialisations as described in detail in chapter 2.

The expansion mechanism takes a path in which identical descriptors are

generated at different sections of the tree (this might be the case if there

are at least two attributes). Then the order at which the rules get activated

is random. Whichever rule is fired first is executed; the execution of any

other rules in the same time step is suppressed.

A.2.4 Agent Communication

Agent interaction is essential to ABM. In gsim, interactions require explicit

communication via messages. An agent A wanting to interact with agent

B sends a message with some content, which may trigger some activity in

agent B. Agent B sends a message back. In a minimal communication act,

this message ends the interaction, but also might trigger further actions

in agent A, who may continue talking to B and so on. This is called a

communication protocol. Each protocol is executed within a single time

step. Agents act without delay; that is, when the message is delivered, the

receiving agent reacts immediately.

As in any discrete simulation engine, gsim agents act sequentially. This

means that if agent B’s turn is after agent A, agent B might change its state
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during the communication, but before it is actually its turn in the normal

execution order. gsim does not request or provide any rules that handle the

case where this conflicts with the model logic. The modeller has to ensure in

the implementation that such side-effects are avoided or controlled. During

implementation of the models it was usually enough to apply state- and

reward updates before a cycle of activity. gsim’s scheduling method allows

to partition agents into different roles which are executed separately (the

roles are given by extending agent classes; the actions of each extension

is executed in its own cycle). This way, the modeller can configure quite

atomic units of work to ensure a correct order of actions and corresponding

state updates.

As all agent activities are initiated by a rule consequent, communication

protocols can technically be seen as an action. The protocol is provided by

the modeller, extending some classes of the framework, and specifying it

as the consequent of a rule. gsim then takes care that the messages are

delivered appropriately to the involved agents.

A.2.5 Other Components

gsim provides the possibility to integrate custom procedures in the form of

special agents, which are called Application Agents (e.g. for data collec-

tion, or broadcasting messages to the whole agent population). Application

Agents have access to the complete model state, and are called before and

after the execution of a time step. They are, in principle, helper classes and

thus not represented as frames and instances, but are simple java classes

that can be extended by the modeller.
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A.2.6 Interfaces

In the previous section, gsim was described in terms of a context-free gram-

mar. Based on examples. This section shortly describes two actual in-

terfaces that have been built on this idea in the prototype. Modellers

can use either the java application programming interface (API) or XML

files to specify a model. It is furthermore required to use and extend cer-

tain classes of the framework to be a runnable gsim application, e.g. ac-

tion implementations. The full API is available at http://www.stephan-

schuster.net/gsim-docs/api-docs/index.html. The XML schema is available

at http://www.stephan-schuster.net/gsim-docs/schema/model.xsd.

An XML example Listing A.1 shows how an agent definition is set up

using the XML interface. It is part of a prisoner’s dilemma model in which

agents have several visible tags, and may learn to discriminate based on this

information.

Listing A.1: XML example

<agent name="PDAgent" extends="GameAgent" >

<attribute-lists>

<list name="properties">

<Set name="own-tag" default="BLUE" >

<value>BLUE</value>

<value>GREEN</value>

</Set>

</list>

<list name="internal-state">

<Set name="current-strategy" default="">

<value>Cooperate</value>

<value>Defect</value>

</Set>

<Numerical name="payoff" default="0" />

</list>

</attribute-lists>
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<object-lists>

<list name="current" type="Player" />

<list name="known-tags" type="Tag" />

</object-lists>

<available-actions>

<action name="Defect" />

<action name="Cooperate" />

</available-actions>

<rl-nodes>

<rl-node name="RL-1">

<condition-nodes>

<condition-node param="known-tags/Tag::description/

characteristic" op="EQ" value="current/Player::list/

colour" />

<expand-node param="known-tags/Tag::description/

characteristic" />

</condition-nodes>

<action-nodes ref="Defect,Cooperate" />

<default-reward value="0.5" />

<selector value="softmax" />

<function variable="internal-state/payoff" update-lag="1"

alpha="0.08" />

<discount value="0.05" />

<averaging discount="0.1" />

</rl-node>

</rl-nodes>

</agent>

<objects>

<object name="Tag">

<list name="description">

<Set name="characteristic" default="BLUE" >

<value>BLUE</value>

<value>GREEN</value>

<value>YELLOW</value>

</Set>

</list>

</object>

<object name="Player">

<list name="list">

<String name="name" default="stephan" />

<Set name="colour" default="BLUE" >
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<value>BLUE</value>

<value>GREEN</value>

</Set>

</list>

</object>

</objects>

<actions>

<action name="Defect" class="models.pd.Defection" />

<action name="Cooperate" class="models.pd.Cooperation" />

</actions>

<system-agents>

<system-agent name="PairingGenerator" class="gsim.sim.agent.

gameagents.FullInformationPairingGenerator" />

</system-agents>

Listing A.1 describes an agent with several attributes in the<attributes>

section and objects in the <objects> section. An agent is described by its

name and colour. It has two object lists. The list ‘current’ is a singleton list

containing the current other player (the selection of which is implemented

in the ‘PairingGenerator’ ApplicationAgent which responsible for matching

players). The known-tags list is also singleton, and makes the tags defined

for the simulation known to the agent. Its attributes can then be referenced

in the behaviour part as variables. The java implementation of the actions

is given in the concluding <actions> tag. The agent has an adaptive rule.

The three attributes of the expansion element <Tag> can be expanded into

six different combinations. Following the variable binding rules described

in the previous section, of the different rules that may exist during run-

time, only that rule is activated where the characteristic attribute equals

the colour of the current player. The reward variable is given by the at-

tribute ‘internal-state/payoff’. The reward is updated in a separate cycle:

PDAgent has is an extension of ‘GameAgent’, the reward is updated in the

GameAgent role (not displayed here).
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API Listing A.2 indicates how the example lines in listing A.1 would be
implemented programmatically.

Listing A.2: API example

Core core = gsim.core.CoreFactory.getInstance().createCore();

//The environment is responsible for maintaining the agent- and

object hierarchy

DefinitionEnvironment env = core.create("PrisonersDilemma", new

java.util.HashMap());

//define the game agent here

AgentClassIF gameAgent = env.createAgentClass("GameAgent");

//[...]

//PDAgent inherits from GameAgent

AgentClassIF pd = env.createAgentClass("PDAgent", "GameAgent");

//define the object-lists for respective types

ObjectClass tag = env.getObjectClass("Tag");

pd.defineObjectList("known-tags", tag);

//[...]

//add some objects and attributes

DomainAttribute payoff =

new DomainAttribute("payoff", AttributeConstants.NUMERICAL);

payoff.setDefault("0");

pd.addAttribute("internal-state", payoff);

DomainAttribute ownTag = new DomainAttribute("own-tag",

AttributeConstants.SET);

ownTag.addFiller("GREEN");

ownTag.addFiller("BLUE");

ownTag.setDefault("BLUE");

pd.addAttribute("properties", domainAtt);

//[...]

//Define behaviour

BehaviourIF behaviour = pd.getBehaviour();

RLActionNodeIF rl = b.createRLActionNode("RL1");
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ConditionIF condition = rl.createCondition("known-tags/Tag::

description/characteristic", "=",

"current/Player::list/colour");

ExpansionIF expansion = rl.createExpansion("known-tags/Tag::

description/characteristic");

ActionIF consequent1 = b.createAction("Cooperate", "models.pd.

Cooperate");

ActionIF consequent2 = b.createAction("Defect",

"models.pd.Defect");

rl.addOrSetCondition(condition);

rl.addOrSetExpansion(expansion);

rl.addOrSetConsequent(consequent1);

rl.addOrSetConsequent(consequent2);

behaviour.addOrSetRLActionNode(rl);

pd.setBehaviour(b);

//define system-level objects, e.g.:

env.addApplicationAgent("Matcher", "gsim.sim.agent.gameagents.

FullInformationPairingGenerator");

Here, the main idea is that the attributes (which are simple name-value

pairs) of the agent are referenced by strings defining where they are located.

The behaviour is then composed by passing these specifications. There is no

direct programming model, as, say condition.setLeftHandSide(tagObject),

etc. The gsim rule parser translates the specifications into an executable

Jess program.

A.3 Software Architecture

The main logic of gsim is implemented in the representation system. It

provides the classes and interfaces necessary to build and run a model.

The representation system itself is part of larger software architecture that

provides the infrastructure for running simulations (section A.3.1.1), and its
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extension to a distributed simulation system for handling large simulations

(section A.3.2).

A.3.1 Base system

The base system describes the standalone software environment for running

gsim models.

A.3.1.1 Architecture and Design

Three layers can be distinguished. Here, the basic responsibilities and func-

tionality of each layer is shortly described.

Access layer This layer serves as the entry point and connects the mod-

eller with the definition and simulation layer. The modeller defines and

creates models either using the gsim API, or via the XML interface. After

defining the model in the environment, the model can be simulated. The

reference to the SimulationManager component is obtained via the gsim

API. The SimulationManager provides control method to start, stop, pause

or resume simulations. It is also possible to register event listeners that

handle events like the end of a simulation. Furthermore, the Simulation-

Manager component is used to access the current state of a simulation (i.e.

all agents at time t).

Definition layer This layer contains the implementation of the repre-

sentation system as described in section A.2. All frames and instances are

maintained in their own environment. The environment handles relation-

ships and inheritance. For example, if an agent-class is modified in the API,

the environment propagates the changes to all subclasses and instances of

this frame.
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Simulation layer This layer transforms the data structures of the rep-

resentation system into runnable code. The most important aspect of this

is the translation of the declarative structures into a rule-based program.

Furthermore, it contains the scheduler which executes the simulation in

discrete time steps. The SimulationContainer component provides a pos-

sibility to repeat a model several times. For this it creates the specified

number of model instances and schedulers (up to a maximum number of

parallel threads) and queues the remaining instances. It notifies the Simu-

lationManager after the execution of the model has finished. It is possible

to partition a large simulation over a number of delegates running in their

own threads to speed up execution.

By default, gsim uses a database to store simulation data. Accessing

the storage is manged by data handler classes. The modeller configures the

data source, and provides extension classes of the data handlers that insert

the data into the database. The framework calls these handlers with the

configured database connection. It is also possible not to use a database.

Figure A.3 illustrates the components.

A.3.1.2 Implementation

The standalone system is implemented in the Java Programming language,

version 1.6. The core is the behaviour system that generates executable

code from the rule descriptions, for which the rule engine Jess (Sandia Labs

2010) is used. The standalone system does by itself not require a database.

For the model implementations of this thesis, PostgreSQL has been used.
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Figure A.3: gsim base architecture. Arrows denote both flows of control and
object references.

A.3.2 Distributed system

A.3.2.1 Basic Design Questions

Scaling up a standalone environment raises a number of questions and im-

plications usually not relevant for standalone social simulation systems:

Synchronisation Social simulations are typically run sequentially and

synchronously. This means that exactly one agent is executed at a time,

and each agent has at any time the same information about its own and
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its environment’s state. Remaining with this mode of execution limits the

benefits of a distributed execution of a model, since all nodes in a cluster

have to be synchronised, and performance might even degrade because of the

coordination overhead. In some types of models, it is possible to proceed

with different parts of the simulation in their own time, with no or only

eventual synchronisation. This approach is useful if the agents are mostly

independent and can be executed without much influence on other agents,

or if clusters of interdependent agents can be identified and be separated

on distinct nodes. Such concepts have been applied in distributed Artificial

Life simulations where agents are located on a two-dimensional gird, and

often act isolated and communicate rarely. It seems unsuitable for many

social simulations, since social systems inherently require communication,

interaction and shared information. Moreover, social simulations do not

always require a geographical environment.

Being a general framework, distributed gsim does not provide special

synchronisation algorithms for asynchronous execution. The only funda-

mental assumptions it builds on are (1) agents share the same time, and

(2) that the perceivable environment state is identical for all agents. The

framework guarantees that these conditions are satisfied at any time during

the simulation. Synchronisation itself happens indirectly by configuring how

messages are sent through the system, which is described in the following

paragraph.

Messaging The synchronisation of the overall state of a simulation has

consequences for the communication of agents in a distributed system. Since

gsim explicitly makes no assumptions about the distribution of agents over

the physical nodes, most agent-to-agent communication travels over the net-

work. One option to implement communication is (1) to send many small
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messages (e.g. for every single agent, messages are transmitted immediately

over the network to the receiver) and achieve a high degree of parallelism.

The disadvantage is a potential message overload and nodes becoming too

busy just processing messages. The system could even become slower than

standalone systems because the time to process messages exceeds the ben-

efits of parallel processing. In case of the other extreme (2), all messages

produced on one node could be bundled, so that nodes communicate across

the network, but not single agents. This approach minimises communica-

tion, but also limits the benefits of parallel execution since most agents

located on one node have to wait for all agents on other nodes, even for

those who are not directly interacting with them.

The gsim approach is a solution between these extremes. Messages be-

tween agents are bundled. The modeller can configure how many messages

are collected before being sent off, or switch the mechanism off. In the lat-

ter case, all messages of the node are collected and sent over the network

only after all agents in the node have (case (2)). Case (1) is achieved by

setting the bundling threshold to 1, which results in each agent message

being immediately dispatched to the receiver.

In any distributed system, messages can get lost; servers break down or

similar network failures occur. gsim does not provide a recovery mechanism,

and also no built-in security to prevent failures due to communication or

computation overload. Only some basic configuration parameters allow to

control the workload, for example, the maximum number of concurrently

running simulations, and the size of simulation partitions. An optimised

configuration depends on the cluster the framework is running on, and has

to be tuned by the modeller. As an illustration, on a cluster with two nodes

with Pentium IV processors, a restriction to 30 parallel small simulations

was found to be a reasonable upper limit.
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Data collection Data collection in standalone applications typically it-

erates over agents in the agent container, computes statistics of interest

and displays it either to the user, or stores it in files or a database. In a

distributed system, this data has to be collected from different nodes and

sent over the network before computations are possible. This may lead to

performance or memory problems for large data sets. Using a database,

gsim provides a configurable caching mechanism that delegates the compu-

tation of statistics to a separate thread or even node. Each node stores its

current state in a database table, while a dedicated thread reads the data

and can then do computations on it. This is not visible to users, so that

no particular attention has to be paid whether data of only a few dozens or

several thousand agents is collected.

A.3.2.2 Architecture and Design

In the distributed version, the components of the standalone simulation

system are replicated over a cluster of servers. Some central services exist

uniquely in the cluster: The simulation clock, a resource manager control-

ling the number of parallel executing simulations, and a central registry for

configuration entries and the IP addresses of the servers currently available

in the cluster. The nodes of the cluster are coordinated by a mixture of

direct remote procedure calls and messages where parallelization is impor-

tant.

Environment and model container objects act as master. Instead of

handling agents themselves, they delegate calls to the appropriate delegate,

either directly, or by sending a message to the cluster:

– The Environment master receives a request from the access layer to

create a number of agents, and the number of delegates to be created.
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The master then creates the delegates and allocates the same number

of agents to each of them.

– When a simulation is started, the SimulationContainer receives a ref-

erence to the Environment master and creates one or more (if more

than one model run is requested) master models.

– The Model master holds a reference to the Environment master. It

creates the runnable agents and distributes them to number of dele-

gates defined by a partition size parameter.

In general, gsim uses direct (remote) references and synchronous calls

where possible and asynchronous messaging only during runtime. In the

setup stage, most communication happens directly. Furthermore, some ad-

ministrative tasks during a run can be calls by reference. Fetching the

simulation state, for example, happens by (remote) referencing the Model

delegates on the different nodes. To prevent too heavy memory usage, the

state can be loaded in chunks. Sometimes, remote calls are not feasible

anymore. For example, data collection for a very large simulation is time

intensive and should be forked into a separate thread on a dynamically cho-

sen node in the cluster (otherwise the simulation proceeds very slowly just

for computing statistical information). Communication with this process

happens via messages over a special channel, as it is not known where the

process is located.

Asynchronous processing is used for the following cases:

– Coordinating the several master and slaves: Time in the cluster pro-

ceeds synchronised. The Model master is responsible for assuring that

a whole model instance is proceeding at the same time. The Model
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master receives a signal from the global clock and sends a message to

its delegates requesting the execution of the next step. Each delegate

sends back a finished-message after executing all its agents.

– Agent-to-agent communication: Agent-to-agent communication fol-

lows a configurable protocol to achieve a compromise between message

processing load and serialisation of action sequences. More precisely,

the protocol follows the following steps: An agent starting a conver-

sation sends a starting message. The model delegate collects these

messages until the bundling threshold is reached or all agents have

produced their messages. The delegate then sends the messages to

the cluster. All nodes in the cluster receive the message bundle and

filter out those messages that address agents located at them. The

receiving delegate then immediately executes the agents’ responses

and collects them. When the threshold is reached, or at latest after

the last agent has responded, the messages are again distributed over

the network. The response message content may be null when the re-

ceiver agent ends the conversation or contain an answer if the protocol

consists of several steps. In the latter case, the sending of messages

continues until all conversations are ended (by sending null content).

This usually also ends the execution of a step.

– Accessing the current state: The Model master is accessible by system

agents supplied by the modeller. Several methods to enquire about the

current state exist, for example, retrieving all agents in a simulation.

To access the global state, the master sends a state-request message

to all delegates and waits until it has received the expected number

of answers. The result can then be returned to the requesting client.

– Data caching: For large simulations, the model delegates dump their
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current state into a database cache. Whenever data handlers are called

to process the simulation state, the Model master sends a message

containing the data handler and the reference to the cache entries to

a message receiver, which does the actual computation. At the same

time, the master can proceed with the simulation.

A.3.2.3 Implementation

A central feature of the system is that it builds on available standards and

open source frameworks. In particular, it uses the Java Enterprise Edition

(JEE) specification (Sun Corporation 2010c) that has become a widely used

standard for distributed applications using the programming language Java.

JEE is the general notion for several sub-specifications - for example, the

Servlet API for building dynamic web-applications; a messaging specifica-

tion for synchronous and asynchronous communication over the network;

or Enterprise Java Beans for (synchronous) remote procedure calls. Several

open-source software projects implement these standards and are provided

in an application server. For distributed gsim, the famous open source ap-

plication server JBoss (The JBoss Community 2010a) was chosen. While

earlier JEE versions had the reputation of being very complex and difficult

to manage, in recent years substantial modifications have been introduced

simplifying development significantly. Software engineering principles like

Aspect Oriented Programming or dependency injection (e.g. Irwin et al

1997; Nene 2005) follow a philosophy of inversion of control. The result is

that much infrastructure and low level work that formerly had to be imple-

mented or configured by the developer is now provided by the application

server provider. As a consequence of these developments, it has become

much easier and straightforward to extend a single-machine software to a

distributed system with minimal effort for developing the necessary infras-
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tructure.

gsim is a very pragmatic approach. The idea was to minimise own

developments and to find a way of utilising existing open-source software to

the largest extent possible. This allowed the researcher to implement the

system alone. The following paragraphs shortly describe the components

provided by the application server, and the major features and steps that

have to be implemented to extend from the standalone to a distributed

version of the software.

Standards and technologies used

Enterprise Java Beans (Sun Corporation 2010a; EJB) EJB is a

technology based on the Java standard for remote method invocation, us-

ing the Remote Method Invocation protocol (Sun Corporation 2010d; RMI).

In RMI, code is divided into server code and client code. A special compiler

generates stubs and skeleton classes that handle the receiving and dispatch-

ing of method calls depending on the underlying network protocol. EJB

builds on this base technology, simplifies its use, and provides additional

features and services that are common to distributed applications, such as

transaction handling or session management (e.g. by passivating or remov-

ing objects).

Java Messaging Service (Sun Corporation 2010b; JMS) JMS is a

specification of a messaging middleware. JMS can be used for both syn-

chronous and asynchronous messaging; in gsim the asynchronous mode is

the most important, since the major motivation is to achieve parallel exe-

cution and loose coupling of server nodes. At the core of a JMS system is a

server to which message producers and message consumers connect, i.e. it

is a centralised system where the server handles the receiving and distribu-
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tion of messages. Communication can be point-to-point or topic based. In

the point-to-point model, one message producer sends messages to a queue,

which are consumed by exactly one listener. In the topic model, several

consumers listen to incoming messages. In gsim, mostly the topic approach

is used. For example, the central clock service publishes step messages to

which all running models react, or the Model master sends coordination

messages to a single topic to which all delegates are connected. Because

JMS is centralised, scalability is limited. The more messages are produced

(e.g. by adding new nodes and/or running more models in parallel), the

higher the load on the server, and the system may slow down or even run

out of memory. gsim uses JBoss messaging, a clustered JMS server that

distributes the load over all participating nodes, so that the messaging load

may increase in parallel with the number of servers.

JBoss Cache (The JBoss Community 2010b) is a proprietary ser-

vice based on JGroups (JGroups 2010). JGroups is a toolkit for multicast

communication and can be used to create groups of processes on differ-

ent computers that coordinate by sending messages. It provides various

features such as group member detection and membership events such as

notification about joined, left or crashed members and similar services. A

major advantage of the toolkit is that the node names or IP addresses need

not be known in advance. JBoss Cache uses this protocol for a distributed

caching mechanism. The cache is, in principle, a tree structure that can be

discovered in the local network, and into which information can be stored

by the group members. In gsim, this service is used to register new nodes as

they enter the network, unregister them when they are killed, remark their

current load (used by gsim to distribute the workload), and to store related

cluster-wide information.
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PostgreSQL (PostgreSQL Global Development Group 2010) By

default, a PostgreSQL database system is used to store persistent data.

The JBoss application server requires a database for JMS. gsim also stores

data relevant for simulations in the database, for example, information for

handling the scheduling of simulations, caching the simulation state, etc.

Moreover, models typically store their data into a database, for which the

same database can be used.

Extension of the base architecture

The main idea of gsim is to provide the same API to the modeller inde-

pendent of the standalone or clustered mode. Where the system runs is

configured by a single parameter. Of course, if the simulation is very large,

the modeller has to take this into account when designing data access meth-

ods, how to parameterise parallel execution and so on.

From an implementation point of view, different implementations for

the environment, simulation container and model containers, as well for the

messaging component are provided. Their realisation is now based on EJB

and JMS technologies.

The main difference exists with respect to the management of a dis-

tributed simulation:

The cluster consists of n nodes. In each node, the same version of gsim

is deployed. New nodes may be added dynamically. Removal, however,

is more critical when simulations are running as gsim does not provide a

failover mechanism for running simulations. Messages or objects in the

cluster may get lost and prevent the finishing of simulations.

There is one central service that controls the scheduling of simulations
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by setting an upper limit of parallel running models. It also provides the

simulation clock (a service that issues messages at a certain interval). gsim

server jobs, and their dependent objects (environment, simulation contain-

ers, model masters and delegates), are controlled by the server. If the user

does not explicitly destroy objects created by him on the server, the server

does this after a specified idle-timeout.

Simulations run asynchronously and autonomously in the server. The

user sends a simulation model as a batch job and may disconnect. The

server executes the simulation on the modeller’s behalf. Reconnect to ac-

cess or control the simulation is, therefore, also handled via JMS, since

the references to the remote objects on the server are lost once the user

disconnects.

Figure A.4 illustrates the architecture of the distributed system. To the

environment and model components, delegates are added. The delegates

are distributed over the available nodes in the cluster. Communication and

control are mediated via the JMS server. The client API may then be

located on a different computer.

A.3.2.4 Examples

The previous section made clear that perfect parallelization is difficult to

achieve with the minimal (and restrictive) assumptions gsim makes about

the location and communication structures of the agents. A messaging

procedure has been presented that compromises between messaging over-

head and maximal parallelization. Comparing simulations in distributed

and standalone mode showed that the distributed version outperforms the

desktop application at any stage, and that computing time increases at a

flatter rate as the number of agents grows.
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Figure A.4: Distributed architecture. White areas mark client components, gray
server components. Server side components are distributed over n nodes, splitting
representation and runtime over possibly n physical locations. Communication
happens indirectly via messaging (JMS), or directly via remote method invoca-
tions (RMI). RMI connections typically represent object references, while JMS
connections flows of control (arrows).

Figure A.5 illustrates this with a toy model with minimal communica-

tion. In the model, agents meet other agents and play a prisoner’s dilemma.

The communication act consists of sending each time step n messages from

a central coordinator agent to n agents telling each single agent with which

player they interact. Action happens in an isolated way, i.e. there is no

agent-to-agent communication.

An example for a more complex simulation, including the sending of
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Figure A.5: Simulation examples I. In this example, the number of servers is
constant as the number of agents increases.

many messages is the GP model of chapter 5. First, a model with over 3000

complex agents was hardly possible to run on a single machine with 2 GB

of working memory. The results of chapter 5 were obtained (depending on

availability) with up to five nodes. Figure A.6 shows some more comparative

example runs with 1000 patient agents on one to four nodes. It shows first an

increase in performance as the second and third nodes are added. However,

the benefit of the fourth nodes diminishes. A likely reason for this is the

relatively small number of agents, so that additional communication begins

to outweigh the benefits of further load distribution.

The game simulations of chapters 3 and 4 represent a different use case

of the system. The number of agents was very small (20 at maximum).

Distributing the agents of single simulations on the cluster would not speed

up the simulations (communication overhead), but the distributed version

was used to execute the numerous required repetitions in parallel. In this

scenario, agent communication remains local as in the standalone system,

but coordination of the repetitions is realised over the network (the Simu-
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Figure A.6: Simulation examples II. In this example, the number of agent is
held constant, and servers added.

lationContainer creates several Model masters on different nodes), speeding

up the simulation process.

A.4 Conclusion

This appendix described the architecture and implementation of a software

framework for simulating agent-based models. The framework was used to

implement all models described in this thesis. The location of the source

code of the framework as well as the models is listed in appendix D.

At its core is the implementation of the BRA algorithm described in

chapter 2. Models using individual learning methods can easily build on this

mechanism to implement deterministic behaviour, simple RL, and complex

rule learning.
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The software provides also the technical infrastructure to scale the sys-

tem up, thus enabling the simulation of many thousand agents in reasonable

time scales. It provides an API that abstracts from the fact whether the

software is run in distributed or standalone mode. This makes it relatively

easy to transform simple models into large-scale simulations.

These two features distinguish the gsim approach from most available

modelling frameworks (e.g. Repast 2010; Ascape 2010; Cioffi-Revilla et al

2004), which often require both the implementation of behaviour strategies

as well as a re-implementation of parts of the model to distribute it (e.g.

Cicirelli et al 2009; Minson and Theodoropoulos 2004).



Appendix B

Details of the Statistical

Discrimination Model

The following tables show some summary measures for the simulation runs

of model variants I and II (chapter 2, section 3.5.2).
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Table B.1: Average discrimination in model variant I. Discrimination is defined
as the difference between employment levels of the high and low employment
group. Each row represents averages of 5 simulation runs.

δf(θ) avg. st. deviation maximum minimum
discrimination

0.0789 0.0587 0.0596 0.1603 0.0130
0.1275 0.0352 0.0236 0.0626 0.0071
0.1571 0.0452 0.0441 0.1031 0.0013
0.1681 0.0393 0.0249 0.0687 0.0031
0.1762 0.0829 0.0514 0.1367 0.0239
0.2192 0.0495 0.0324 0.0849 0.0078
0.2301 0.0380 0.0406 0.1086 0.0077
0.2317 0.0510 0.0535 0.1374 0.0005
0.2339 0.0356 0.0158 0.0600 0.0225
0.2435 0.0472 0.0401 0.1079 0.0145
0.2559 0.0493 0.0193 0.0703 0.0184
0.2610 0.0451 0.0233 0.0710 0.0098
0.3064 0.0592 0.0421 0.1285 0.0140
0.3119 0.0449 0.0157 0.0657 0.0272
0.3305 0.0433 0.0661 0.1604 0.0044
0.3567 0.0461 0.0157 0.0701 0.0280
0.3610 0.0573 0.0228 0.0772 0.0193
0.3708 0.0267 0.0243 0.0692 0.0108
0.3855 0.0529 0.0386 0.1121 0.0199
0.4076 0.0444 0.0320 0.0817 0.0073
0.4191 0.0476 0.0279 0.0674 0.0005
0.4337 0.0299 0.0124 0.0446 0.0137
0.4469 0.0502 0.0335 0.0933 0.0092
0.4558 0.0330 0.0308 0.0862 0.0113
0.4604 0.0714 0.0565 0.1533 0.0042
0.4767 0.0189 0.0214 0.0555 0.0008
0.4839 0.0450 0.0124 0.0595 0.0272
0.5245 0.0246 0.0246 0.0638 0.0024
0.5348 0.0306 0.0242 0.0687 0.0055
0.5465 0.0741 0.0612 0.1466 0.0108
0.5647 0.0261 0.0156 0.0476 0.0098
0.5679 0.0421 0.0305 0.0713 0.0018
0.5773 0.0235 0.0188 0.0564 0.0084
0.5827 0.0260 0.0287 0.0751 0.0046
0.5996 0.0506 0.0256 0.0893 0.0201
0.6188 0.0542 0.0421 0.1212 0.0114
0.6191 0.0259 0.0141 0.0451 0.0068
0.6233 0.0634 0.0475 0.1189 0.0105
0.6505 0.0296 0.0141 0.0480 0.0106
0.6817 0.0589 0.0316 0.0928 0.0209
0.6836 0.0373 0.0242 0.0770 0.0125
0.6991 0.0314 0.0300 0.0636 0.0014
0.7021 0.0477 0.0211 0.0626 0.0113
0.7066 0.0291 0.0151 0.0532 0.0165
0.7667 0.0443 0.0496 0.1320 0.0154
0.7964 0.0360 0.0340 0.0796 0.0056
0.8396 0.0419 0.0362 0.0847 0.0018
0.8561 0.0294 0.0228 0.0548 0.0023
0.9041 0.0572 0.0398 0.1164 0.0057
0.9314 0.0352 0.0198 0.0545 0.0096
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Table B.2: Average discrimination in model variant II. Discrimination is defined
as the difference between employment levels of the high and low employment
group. Each row represents averages of 5 simulation runs.

δf(θ) avg. st. deviation maximum minimum
discrimination

0.1542 0.0263 0.0244 0.0637 0.0035
0.1585 0.0654 0.1112 0.2622 0.0003
0.1933 0.0247 0.0125 0.0426 0.0090
0.2738 0.0757 0.0984 0.2484 0.0096
0.2756 0.0301 0.0244 0.0622 0.0119
0.2865 0.0296 0.0242 0.0667 0.0113
0.3075 0.0410 0.0332 0.0848 0.0067
0.3484 0.0386 0.0229 0.0632 0.0125
0.3554 0.0625 0.0545 0.1423 0.0031
0.3716 0.0372 0.0473 0.1213 0.0076
0.3885 0.0505 0.0368 0.0901 0.0016
0.4104 0.0563 0.0701 0.1776 0.0073
0.4139 0.0781 0.0796 0.1984 0.0075
0.4276 0.0343 0.0387 0.0787 0.0007
0.4339 0.0391 0.0383 0.0966 0.0029
0.4495 0.0186 0.0080 0.0259 0.0066
0.4572 0.0515 0.0422 0.1231 0.0167
0.4672 0.0521 0.0460 0.1271 0.0180
0.4713 0.0386 0.0225 0.0650 0.0132
0.4782 0.0379 0.0296 0.0744 0.0094
0.4865 0.0489 0.0397 0.1141 0.0079
0.5001 0.0709 0.0633 0.1408 0.0044
0.5063 0.0348 0.0173 0.0563 0.0194
0.5112 0.1344 0.0853 0.2577 0.0166
0.5113 0.0418 0.0198 0.0743 0.0224
0.5244 0.0410 0.0545 0.1366 0.0067
0.5260 0.0425 0.0172 0.0610 0.0240
0.5451 0.0555 0.0658 0.1717 0.0149
0.5465 0.0193 0.0288 0.0698 0.0005
0.5519 0.0662 0.0780 0.1802 0.0004
0.5677 0.0552 0.0332 0.0932 0.0102
0.5778 0.0822 0.0626 0.1657 0.0127
0.5910 0.1112 0.0355 0.1583 0.0806
0.6219 0.0460 0.0242 0.0719 0.0155
0.6301 0.0774 0.1135 0.2753 0.0003
0.6482 0.0473 0.0462 0.1032 0.0009
0.6610 0.0534 0.0439 0.1032 0.0065
0.6624 0.0347 0.0158 0.0564 0.0184
0.6634 0.0824 0.0841 0.2266 0.0146
0.7107 0.0397 0.0393 0.1045 0.0042
0.7779 0.0765 0.0526 0.1291 0.0033
0.7954 0.0384 0.0331 0.0936 0.0082
0.8031 0.0904 0.0774 0.1834 0.0067
0.8284 0.1032 0.0746 0.2125 0.0320
0.8290 0.0603 0.0325 0.0934 0.0251
0.8431 0.0484 0.0382 0.1089 0.0140
0.8574 0.0202 0.0199 0.0554 0.0093
0.8588 0.0479 0.0216 0.0771 0.0198
0.9208 0.0459 0.0247 0.0749 0.0218
0.9312 0.1099 0.1208 0.3141 0.0232



Appendix C

Variance Analysis for the

Primary Care Model

One way ANOVA, computed with OpenStat.

Variable labels for the group variables (variable name is scenario):

1 - BR-3/FFS

2 - BR-3/Capitation

3 - BR-6/FFS

4 - BR-6/Capitation

5 - RL-3/FFS

6 - RL-3/Capitation

7 - RL-6/FFS

8 - RL-6/Capitation

=====================================================================
ONE WAY ANALYSIS OF VARIANCE RESULTS

Dependent variable is: wait, Independent variable is: scenario

---------------------------------------------------------------------
SOURCE D.F. SS MS F PROB.>F OMEGA SQR.
---------------------------------------------------------------------
BETWEEN 7 4144.04 592.01 29.74 0.00 0.30
WITHIN 458 9117.10 19.91
TOTAL 465 13261.14
---------------------------------------------------------------------
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MEANS AND VARIABILITY OF THE DEPENDENT VARIABLE FOR LEVELS OF THE INDEPENDENT VARIABLE
---------------------------------------------------------------------
GROUP MEAN VARIANCE STD.DEV. N
---------------------------------------------------------------------

1 9.63 32.61 5.71 60
2 13.94 30.45 5.52 60
3 11.64 16.91 4.11 60
4 14.07 36.44 6.04 60
5 6.65 6.31 2.51 60
6 9.22 15.94 3.99 60
7 5.15 5.31 2.30 60
8 8.81 12.13 3.48 60

---------------------------------------------------------------------
TOTAL 9.98 28.52 5.34 466
---------------------------------------------------------------------

TESTS FOR HOMOGENEITY OF VARIANCE
---------------------------------------------------------------------
Hartley Fmax test statistic = 6.86 with deg.s freem: 8 and 59.
Cochran C statistic = 0.23 with deg.s freem: 8 and 59.
Bartlett Chi-square = 91.64 with 7 D.F. Prob. > Chi-Square = 0.000
---------------------------------------------------------------------

FISHER’S (PROTECTED) LEAST SIGNIFICANT DIFFERENCE TEST
---------------------------------------------------------------------
GROUP MEAN GROUP MEAN DIFFERENCE FISHER LSD SIGNIFICANT?
---------------------------------------------------------------------
1 9.626 2 13.944 4.319 1.601 YES
1 9.626 3 11.636 2.010 1.601 YES
1 9.626 4 14.070 4.445 1.601 YES
1 9.626 5 6.652 2.973 1.698 YES
1 9.626 6 9.224 0.402 1.601 NO
1 9.626 7 5.146 4.480 1.608 YES
1 9.626 8 8.810 0.815 1.608 NO
2 13.944 3 11.636 2.308 1.601 YES
2 13.944 4 14.070 0.126 1.601 NO
2 13.944 5 6.652 7.292 1.698 YES
2 13.944 6 9.224 4.720 1.601 YES
2 13.944 7 5.146 8.798 1.608 YES
2 13.944 8 8.810 5.134 1.608 YES
3 11.636 4 14.070 2.434 1.601 YES
3 11.636 5 6.652 4.984 1.698 YES
3 11.636 6 9.224 2.412 1.601 YES
3 11.636 7 5.146 6.490 1.608 YES
3 11.636 8 8.810 2.826 1.608 YES
4 14.070 5 6.652 7.418 1.698 YES
4 14.070 6 9.224 4.846 1.601 YES
4 14.070 7 5.146 8.924 1.608 YES
4 14.070 8 8.810 5.260 1.608 YES
5 6.652 6 9.224 2.572 1.698 YES
5 6.652 7 5.146 1.507 1.704 NO
5 6.652 8 8.810 2.158 1.704 YES
6 9.224 7 5.146 4.078 1.608 YES
6 9.224 8 8.810 0.414 1.608 NO
7 5.146 8 8.810 3.665 1.614 YES

NOTE! Familywise error rate may be greater than alpha
---------------------------------------------------------------------
=====================================================================
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ONE WAY ANALYSIS OF VARIANCE RESULTS

Dependent variable is: effort , Independent variable is: scenario

---------------------------------------------------------------------
SOURCE D.F. SS MS F PROB.>F OMEGA SQR.
---------------------------------------------------------------------
BETWEEN 7 0.04 0.01 59.99 0.00 0.47
WITHIN 458 0.05 0.00
TOTAL 465 0.09
---------------------------------------------------------------------

MEANS AND VARIABILITY OF THE DEPENDENT VARIABLE FOR LEVELS OF THE INDEPENDENT VARIABLE
---------------------------------------------------------------------
GROUP MEAN VARIANCE STD.DEV. N
---------------------------------------------------------------------

1 0.98 0.00 0.00 60
2 0.98 0.00 0.01 60
3 0.98 0.00 0.00 60
4 0.98 0.00 0.01 60
5 0.96 0.00 0.02 60
6 0.96 0.00 0.01 60
7 0.96 0.00 0.01 60
8 0.95 0.00 0.02 60

---------------------------------------------------------------------
TOTAL 0.97 0.00 0.01 466
---------------------------------------------------------------------

TESTS FOR HOMOGENEITY OF VARIANCE
---------------------------------------------------------------------
Hartley Fmax test statistic = 115294120037.52 with deg.s freem: 8 and 59.
Cochran C statistic = 0.31 with deg.s freem: 8 and 59.
Bartlett Chi-square = 1608.00 with 7 D.F. Prob. > Chi-Square = 0.001
---------------------------------------------------------------------

FISHER’S (PROTECTED) LEAST SIGNIFICANT DIFFERENCE TEST
---------------------------------------------------------------------
GROUP MEAN GROUP MEAN DIFFERENCE FISHER LSD SIGNIFICANT?
---------------------------------------------------------------------
1 0.980 2 0.976 0.004 0.004 NO
1 0.980 3 0.980 0.000 0.004 NO
1 0.980 4 0.976 0.004 0.004 YES
1 0.980 5 0.963 0.017 0.004 YES
1 0.980 6 0.960 0.020 0.004 YES
1 0.980 7 0.960 0.020 0.004 YES
1 0.980 8 0.955 0.025 0.004 YES
2 0.976 3 0.980 0.004 0.004 YES
2 0.976 4 0.976 0.000 0.004 NO
2 0.976 5 0.963 0.013 0.004 YES
2 0.976 6 0.960 0.016 0.004 YES
2 0.976 7 0.960 0.017 0.004 YES
2 0.976 8 0.955 0.021 0.004 YES
3 0.980 4 0.976 0.004 0.004 YES
3 0.980 5 0.963 0.017 0.004 YES
3 0.980 6 0.960 0.020 0.004 YES
3 0.980 7 0.960 0.021 0.004 YES
3 0.980 8 0.955 0.025 0.004 YES
4 0.976 5 0.963 0.013 0.004 YES
4 0.976 6 0.960 0.016 0.004 YES
4 0.976 7 0.960 0.016 0.004 YES
4 0.976 8 0.955 0.021 0.004 YES
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5 0.963 6 0.960 0.003 0.004 NO
5 0.963 7 0.960 0.003 0.004 NO
5 0.963 8 0.955 0.008 0.004 YES
6 0.960 7 0.960 0.001 0.004 NO
6 0.960 8 0.955 0.005 0.004 YES
7 0.960 8 0.955 0.005 0.004 YES

NOTE! Familywise error rate may be greater than alpha
---------------------------------------------------------------------
=====================================================================

ONE WAY ANALYSIS OF VARIANCE RESULTS

Dependent variable is: referral_rate, Independent variable is: scenario

---------------------------------------------------------------------
SOURCE D.F. SS MS F PROB.>F OMEGA SQR.
---------------------------------------------------------------------
BETWEEN 7 3.46 0.49 884.98 0.00 0.93
WITHIN 458 0.26 0.00
TOTAL 465 3.71
---------------------------------------------------------------------

MEANS AND VARIABILITY OF THE DEPENDENT VARIABLE FOR LEVELS OF THE INDEPENDENT VARIABLE
---------------------------------------------------------------------
GROUP MEAN VARIANCE STD.DEV. N
---------------------------------------------------------------------

1 0.81 0.00 0.02 60
2 0.99 0.00 0.04 60
3 0.91 0.00 0.02 60
4 0.99 0.00 0.03 60
5 0.80 0.00 0.01 60
6 0.99 0.00 0.02 60
7 0.81 0.00 0.02 60
8 1.00 0.00 0.02 60

---------------------------------------------------------------------
TOTAL 0.92 0.01 0.09 466
---------------------------------------------------------------------

TESTS FOR HOMOGENEITY OF VARIANCE
---------------------------------------------------------------------
Hartley Fmax test statistic = 7.24 with deg.s freem: 8 and 59.
Cochran C statistic = 0.28 with deg.s freem: 8 and 59.
Bartlett Chi-square = 70.53 with 7 D.F. Prob. > Chi-Square = 0.000
---------------------------------------------------------------------

FISHER’S (PROTECTED) LEAST SIGNIFICANT DIFFERENCE TEST
---------------------------------------------------------------------
GROUP MEAN GROUP MEAN DIFFERENCE FISHER LSD SIGNIFICANT?
---------------------------------------------------------------------
1 0.808 2 0.988 0.180 0.008 YES
1 0.808 3 0.910 0.102 0.008 YES
1 0.808 4 0.991 0.183 0.008 YES
1 0.808 5 0.804 0.004 0.009 NO
1 0.808 6 0.995 0.187 0.008 YES
1 0.808 7 0.805 0.003 0.009 NO
1 0.808 8 0.999 0.191 0.009 YES
2 0.988 3 0.910 0.078 0.008 YES
2 0.988 4 0.991 0.003 0.008 NO
2 0.988 5 0.804 0.184 0.009 YES
2 0.988 6 0.995 0.007 0.008 NO
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2 0.988 7 0.805 0.183 0.009 YES
2 0.988 8 0.999 0.011 0.009 YES
3 0.910 4 0.991 0.081 0.008 YES
3 0.910 5 0.804 0.107 0.009 YES
3 0.910 6 0.995 0.085 0.008 YES
3 0.910 7 0.805 0.105 0.009 YES
3 0.910 8 0.999 0.089 0.009 YES
4 0.991 5 0.804 0.187 0.009 YES
4 0.991 6 0.995 0.004 0.008 NO
4 0.991 7 0.805 0.186 0.009 YES
4 0.991 8 0.999 0.008 0.009 NO
5 0.804 6 0.995 0.191 0.009 YES
5 0.804 7 0.805 0.002 0.009 NO
5 0.804 8 0.999 0.195 0.009 YES
6 0.995 7 0.805 0.189 0.009 YES
6 0.995 8 0.999 0.004 0.009 NO
7 0.805 8 0.999 0.194 0.009 YES

NOTE! Familywise error rate may be greater than alpha
---------------------------------------------------------------------
=====================================================================

ONE WAY ANALYSIS OF VARIANCE RESULTS

Dependent variable is: utility_1, Independent variable is: scenario

---------------------------------------------------------------------
SOURCE D.F. SS MS F PROB.>F OMEGA SQR.
---------------------------------------------------------------------
BETWEEN 7 152.53 21.79 1670.86 0.00 0.59
WITHIN 7992 104.23 0.01
TOTAL 7999 256.76
---------------------------------------------------------------------

MEANS AND VARIABILITY OF THE DEPENDENT VARIABLE FOR LEVELS OF THE INDEPENDENT VARIABLE
---------------------------------------------------------------------
GROUP MEAN VARIANCE STD.DEV. N
---------------------------------------------------------------------

1 0.62 0.00 0.05 1000
2 0.61 0.00 0.05 1000
3 0.64 0.00 0.03 1000
4 0.61 0.00 0.04 1000
5 0.44 0.01 0.11 1000
6 0.29 0.02 0.16 1000
7 0.45 0.02 0.16 1000
8 0.29 0.04 0.19 1000

---------------------------------------------------------------------
TOTAL 0.49 0.03 0.188000
---------------------------------------------------------------------

TESTS FOR HOMOGENEITY OF VARIANCE
---------------------------------------------------------------------
Hartley Fmax test statistic = 47.98 with deg.s freem: 8 and 999.
Cochran C statistic = 0.34 with deg.s freem: 8 and 999.
Bartlett Chi-square = 5811.61 with 7 D.F. Prob. > Chi-Square = 0.001
---------------------------------------------------------------------
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FISHER’S (PROTECTED) LEAST SIGNIFICANT DIFFERENCE TEST
---------------------------------------------------------------------
GROUP MEAN GROUP MEAN DIFFERENCE FISHER LSD SIGNIFICANT?
---------------------------------------------------------------------
1 0.616 2 0.611 0.006 0.010 NO
1 0.616 3 0.638 0.021 0.010 YES
1 0.616 4 0.612 0.005 0.010 NO
1 0.616 5 0.440 0.177 0.010 YES
1 0.616 6 0.289 0.327 0.010 YES
1 0.616 7 0.454 0.162 0.010 YES
1 0.616 8 0.287 0.330 0.010 YES
2 0.611 3 0.638 0.027 0.010 YES
2 0.611 4 0.612 0.001 0.010 NO
2 0.611 5 0.440 0.171 0.010 YES
2 0.611 6 0.289 0.322 0.010 YES
2 0.611 7 0.454 0.157 0.010 YES
2 0.611 8 0.287 0.324 0.010 YES
3 0.638 4 0.612 0.026 0.010 YES
3 0.638 5 0.440 0.198 0.010 YES
3 0.638 6 0.289 0.348 0.010 YES
3 0.638 7 0.454 0.183 0.010 YES
3 0.638 8 0.287 0.351 0.010 YES
4 0.612 5 0.440 0.172 0.010 YES
4 0.612 6 0.289 0.323 0.010 YES
4 0.612 7 0.454 0.158 0.010 YES
4 0.612 8 0.287 0.325 0.010 YES
5 0.440 6 0.289 0.151 0.010 YES
5 0.440 7 0.454 0.014 0.010 YES
5 0.440 8 0.287 0.153 0.010 YES
6 0.289 7 0.454 0.165 0.010 YES
6 0.289 8 0.287 0.003 0.010 NO
7 0.454 8 0.287 0.168 0.010 YES

NOTE! Familywise error rate may be greater than alpha
---------------------------------------------------------------------
=====================================================================
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Table D.1: Executable models

Name Description URL Date

gsim JBoss server with gsim.jar and models

(optimised for windows platform) http://www.stephan-schuster.net/gsim/framework/gsim-windows-0.1.zip 09/09/2010

DynamicProcess Utility used for computing stochastic

stable networks (jar library) http://www.stephan-schuster.net/gsim/DynamicProcess/dp.jar 09/09/2010

PrimaryCare The primary care model http://www.stephan-schuster.net/gsim/models/PrimaryCare/gp.zip 09/09/2010

Networks-1 The network base model http://www.stephan-schuster.net/gsim/models/Networks1/net-base.zip 20/06/2011

Networks-2 The network BRA model http://www.stephan-schuster.net/gsim/models/Networks2/net-bra.zip 09/09/2010

Discrimination The discrimination model http://www.stephan-schuster.net/models/Discrimination/discrimination.zip 05/01/2012

Table D.2: Source code

Name Description URL Date

gsim Sources of the gsim framework http://www.stephan-schuster.net/gsim/framework/src.zip 09/09/2010

DynamicProcess Sources of the DynamicProcess jar-file http://www.stephan-schuster.net/gsim/DynamicProcess/src.zip 09/09/2010

PrimaryCare Source of the primary care model http://www.stephan-schuster.net/gsim/PrimaryCare/src.zip 09/09/2010

Networks-1 Sources of the network base model http://www.stephan-schuster.net/gsim/models/Networks1/src.zip 20/06/2011

Networks-2 Sources of the network BRA model http://www.stephan-schuster.net/gsim/models/Networks2/src.zip 09/09/2010

Discrimination Sources of the discrimination model http://www.stephan-schuster.net/gsim/models/Discrimination/src.zip 05/01/2012
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