

DOW effects in returns and in volatility of stock markets during quiet and turbulent times

Dumitriu, Ramona and Stefanescu, Razvan

"Dunarea de Jos" University of Galati, "Dunarea de Jos" University of Galati

28 February 2013

Online at https://mpra.ub.uni-muenchen.de/47218/MPRA Paper No. 47218, posted 30 May 2013 05:16 UTC

DOW EFFECTS IN RETURNS AND IN VOLATILITY OF STOCK MARKETS DURING QUIET AND TURBULENT TIMES

Ramona Dumitriu; University "Dunarea de Jos" Galati;

Razvan Stefanescu; University "Dunarea de Jos" Galati;

Abstract

The persistence in time of the calendar anomalies is one of the most disputed subjects from the financial literature. Quite often, the passing from quiet to turbulent periods of time provokes radical changes in the investors' behaviors which affect the stock markets seasonality. In this paper we investigate the presence of the day of the week effects in returns and volatility for 32 indexes from advanced and emerging markets. We analyze this seasonality for two periods of time: a relative quiet period, from January 2000 to December 2006, and a more turbulent period, from January 2007 to September 2012. A GJR-GARCH model allows us to identify, for the two periods, various forms of day of the week effects in returns and volatility. However, only for few indexes we find the stability in time of the daily seasonality. For many of the advanced markets indexes, the day of the week effects in returns identified for the quiet period disappeared during the turbulent period. A less radical decline occurred for the day of the week effects in volatility. In the case of indexes from the emerging markets, the persistence in time of the daily seasonality in returns was more consistent in comparison with advanced markets indexes. Regarding the volatility of emerging markets, we find that during the turbulent period many day of the week effects in volatility disappeared, while new others appeared.

Key words: Calendar Anomalies, GJR - GARCH, Volatility, Day of the Week Effects, Stock Markets

JEL Classification: C58, G02, G14, G15

1. Introduction

The day of the week (DOW) effects are among the first discovered seasonal behaviors that affect the financial markets. One of the most known forms, the so-called week-end effect, consisting in significant differences between the stock returns from the last trading day of a week and those from the first trading day of the next week, was revealed many decades ago (Kelly, 1930; Fields, 1931; Cross, 1973; French, 1980; Gibson and Hess, 1981; Lakonishok and Levi, 1982; Gultekin and Gultekin, 1983; Keim and Stambaugh, 1984). In general, the empirical researches concerning the week-end effect reported that returns from the last trading day of a week were higher than those from the first trading day of the next week. Later, there were found significant differences among the returns from other days of week (Rogalski, 1984; Chang et al., 1993). The study of such patterns is justified by practical and theoretical reasons. The knowledge about differences among the returns from the specific day of a week could be used in the stock market investment. In fact, this kind of investment is opposed to one of the main Efficient Market Hypothesis (EMH) principles which proclaimed the impossibility of obtaining profits by extrapolating the past evolutions of capital markets (Fama, 1970). In the last decades the calendar anomalies existence was one of the main arguments against EMH provided by the Behavioral Finance Theory.

The researches on calendar effects from the last decades approached various aspects such as the different behaviors of the advanced financial markets and the emerging markets, the seasonality of the stock markets volatilities and the persistence in time of the calendar anomalies. Empirical researches revealed some differences between the calendar anomalies from advanced financial markets and those from the emerging markets (Wong, 1992; Balaban, 1995; Ajayi et al., 2004; Doyle and Chen, 2009). There are many explanations for such differences. Usually, by comparing to the developed financial markets, the emerging markets are perceived by the international investors as having superior potential of growing but also as much riskier. The emerging markets lower development makes them less sensitive to some factors with high influence on the advanced financial markets. While the strong linkages between developed financial markets make them very vulnerable to

the contagion of the stock prices declines, many emerging markets are immune to this phenomenon (Claessens, 1995; Phylaktis and Ravazzolo, 2002; Li et al., 2003; Gupta and Donleavy, 2009).

The analysis of the financial markets seasonal behaviors gained a new dimension after the appearance of the so called General AutoRegressive Conditional Heteroskedasticity (GARCH) models pioneered by Engle (1982) and Bollersev (1986) which were meant to capture the time-varying volatility. Many empirical researches that used GARCH models found calendar effects, including DOW effects, not only on returns of stock indexes but also on their volatilities (Choudhry, 2000; Kiymaz and Berument, 2003; Yalcin and Yucel, 2006).

Another important dimension of the a seasonality analysis consists in its persistence in time. The disappeareance or the decrease in intensity of some calendar anomalies were used by EMH partisans to prove that such inefficiency of stock markets was just temporary (Fama, 2007). A Murphy's law for financial markets anomalies, proposed by Dimson and Marsh (1999), consider that a calendar effect could disappear or could go to reverse after a lot of investors became aware by it. The changes in the seasonal behavior of the stock markets could be linked by the passing from relatively quiet to turbulent time periods (Holden et al, 2005; Marquering et al, 2006; Wong et al., 2006; Kourkoumelis, and Hourvouliades, 2010).

In this paper we approach the DOW effects on some capital markets for two periods of time. The first period, from January 2000 to December 2006, could be considered, for most of the financial markets, as relatively quiet. Instead, during the second period, from January 2007 to September 2012, the stock markets were affected by some processes (real estate speculative bubble from 2007, the adhesion of new members to European Union, the recent global crisis etc.) that brought substantial turbulences. We use daily values of 32 indexes from 31 advanced and emerging stock markets (due to the importance of the capital market from United States we employed two indexes from this country: Nasdaq – 100 and Standard & Poor's). We identify and study the DOW effects on these indexes by Glosten et al. (1993) GJR – GARCH models which allow taking into consideration the different stock behaviors in the circumstances of bull and bear markets.

The remainder of this paper is organized as it follows: the second part describes the data and the methodology used in our investigation, the third part approaches the prior researches on DOW effects, the fourth part presents the empirical results of our investigation and the fifth part concludes.

2. Literature review

The week-end effect was highly approached in the Behavioral Finance literature which offers many hypotheses explaining this calendar anomaly such as the settlement issue, the institutional trading issue, the liquidity issue or the short sellers issue (Pettengill, 2003; Dicle and Levendis, 2010).

The settlement hypothesis, developed by Lakonishok and Levy (1982) explained the weekend effect, in part, by a practice, established in 1968 in United States, which imposed that settlement of the common stocks had to take place five business days after trading. Because of the non-trading days from weekend, for the stocks purchased on Friday the payment occurred with a two calendar days delay. These circumstances motivated the investors to buy stocks on Friday rather than other days. However, Dyl and Martin (1985) investigation found no significant impact of settlement practice on the weekly pattern of stock returns.

The institutional trading issue highlights the differences between the individual and the institutional investors' behaviors during and after week-ends. Miller (1988) revealed that on non-trading days, in the absence of their brokers' advices, many individual investors decide to sell risky assets from their portfolios. In these circumstances, on Monday, the sell orders exceed the buy orders causing the decrease of returns. Lakonishok and Maberly (1990) confirmed these findings adding that during Monday the individual investors were much more active than the institutional investors who dedicated the beginning of the week to discussions about their strategies. Instead, Sias and Starks (1995) indicated the institutional investors' behavior as the primary source of DOW effects.

The liquidity hypothesis linked the low stock returns on Mondays to the decrease of the liquidity on capital markets (Foster and Viswanathan, 1993). Abraham and Ikenberry (1994) found that reduced activity of the institutional investors during Mondays caused, in part, the low level of liquidity.

The short sellers issue explains the week-end effect by the investors risk aversion regarding the uncertainty from the non-trading days. Chen and Singal (2003) claimed that behaviors of the speculative short sellers, who used to

close their risky positions on Fridays and to re-establish new short positions on Mondays, were, at least in part, responsible for the week-end effects. The anxiety of investors to close their positions on Fridays was justified by the large amounts of news, many of them bad news, arriving during the non-trading days. In fact, it was revealed that many firms and even government entities preferred to delay for the weekends the announcement of bad news (French, 1980; Rogalski, 1984; Penman, 1987; Kiymaz and Berument, 2003). However, the results of Blau et al. (2008) investigation about weekend effect on New York Stock Exchange didn't support the short sellers' hypothesis.

The results of some researches proved significant patterns of stock returns not only for Monday and Friday but also for other days of the week (Solnik and Bousquet, 1990; Athanassakos and Robinson, 1994; Angelidis and Lyroudi, 2004). Such findings were explained by delayed influence from leading markets (Aggarwal and Rivoli, 1989) or by Murphy Law of the calendar anomalies (Dimson and Marsh, 1999). There were also researches that failed to find evidences of the presence of DOW effects on stock returns. Santemases (1986) proved that no significant DOW effects characterized the behavior of Madrid Stock Exchange between 1979 and 1983. Brooks and Persand (2001) investigated the presence of daily effects for five South - East Asian stock markets finding no DOW effect for Korea and Philippines.

The importance of markets instability on investment decisions stimulated the researches on seasonality of volatility. Chukwuogor - Ndu (2006) studied the day-of-the-week effects on returns and volatility for 15 emerging and developed European capital markets. Eleven of them exhibited the highest volatility, as expressed by standard deviation, on Monday. Later, Chukwuogor - Ndu (2007) investigated the daily seasonality for ten East Asian stock markets for the turbulent period 1998 - 2003. The results indicate that the lowest volatility occurred on Tuesday for Japan, Philippines, Singapore and Thailand, on Wednesday for Indonesia and India and on Friday for China and Korea. Instead, the highest volatility occurred on Monday for China, Japan, Malaysia, Philippines, Singapore, Korea and India, on Tuesday for Thailand, on Wednesday for Taiwan and on Friday for Indonesia. Other researches revealed the presence of daily patterns on the volatility for various capital markets by employing GARCH models to capture the conditional variance. Bhattacharya et al (2003) investigated the stability of the DOW effects in returns and volatility at the Indian capital market, covering the period January 1991 – September 2000 using GARCH and OLS with lagged returns models. They divided this period of time in two sub-periods: first from January 1991 to December 1995 and second from January 1996 to September 2000. The analysis in a GARCH framework provided results that were different from those obtained in the OLS framework. Regarding the seasonality in volatility, for the first sub-period it was found no DOW effect. Instead, for the second sub-period, there were revealed significant positive day effects for Monday, Tuesday and Wednesday. Berument et al. (2003) investigated DOW effect on the volatility of Istanbul Stock Exchange between 1986 and 2003. Their results indicated the highest level on Monday and the lowest level on Tuesday.

Apolinario et al. (2006) examined daily seasonality of stock prices returns and volatility for 13 European capital markets using symmetric and asymmetric GARCH models. The results indicate significant DOW effects on volatility for all the countries, excepting the Czech Republic. Yalcin and Yucel (2006) studied the evolutions of 20 emerging markets proving significant DOW effects on volatility for five of them. Kenourgios and Samitas (2008) analyzed the day-of-the-week effects on returns and volatility for Athens Stock Exchange during two periods: an emerging period from 1995 to 2000 and a developed period from 2001 to 2005. While for the first period there were obtained strong evidences in favor of the daily seasonality of returns and volatility, for the second period the results suggested the weakening of DOW effects. Batuo Enowbi et al. (2009) found significant DOW effects on the volatility of stock markets from Egypt, Morocco, South-Africa and Tunisia. Duran (2010) investigated DOW effects on stock returns and volatility in four Latin American capital markets: Argentina, Brazil, Chile and Mexico for the period March 1998 – March 2010. It was found significant daily seasonality of volatility only for Brazil and Mexico. The lowest volatility for both countries occurred on Friday while only for Brazil it was found a peak of volatility on Monday.

3. Data and Methodology

In our investigation we employ daily closing values of the indexes from 32 stock markets for a time period between January 2000 and September 2012 (Table 1). Half of them are from 15 developed countries stock exchanges (due to the importance of US capital market we use two indexes from this country: Nasdaq - 100 and Standard & Poor's) and the other 16 from emerging markets.

(Insert here Table 1)

In order to capture the differences between quiet and turbulent circumstances we divide the sample of data into two sub-samples:

- first sub-sample, corresponding to a quiet period, from January 2000 to December 2006;
- second sub-sample, corresponding to a turbulent period, from January 2007 to September 2012.

We use continuous return of indexes (r_{i,t}), each of them being computed by the formula:

$$r_{i,t} = [\ln(P_{i,t}) - \ln(P_{i,t-1})] * 100$$
 (1)

where $P_{i,t}$ and $P_{i,t-1}$ are the closing values of index i on the days t and t-1, respectively.

We analyze the stationarity of returns by employing the Augmented Dickey – Fuller (ADF) tests (Dickey and Fuller, 1979). Based on the graphical representations of the returns time series we chose to use intercept terms in the ADF regressions. The numbers of lags are determined by Akaike (1973) Information Criteria.

As a preliminary stage before the investigation of DOW effects in a GARCH framework we perform ARMA (p, q) models on returns, using a Box-Jenkins methodology to find the appropriate values of p and q. Then, we study the autocorrelation and the heteroscedasticity of the residuals by Ljung-Box test Q and the Engle (1982) Lagrange Multiplier (LM) test for ARCH effects.

We define five dummy variables associated to the five working days of a week:

- D₁, taking the value 1 for returns from Monday and value zero otherwise;
- D₂, taking the value 1 for returns from Tuesday and value zero otherwise;
- D₃, taking the value 1 for returns from Wednesday and value zero otherwise;
- D₄, taking the value 1 for returns from Thursday and value zero otherwise;
- D₅, taking the value 1 for returns from Friday and value zero otherwise.

A special case is Tel Aviv Stock Exchange which, from the most of the period 2000-2006, was closed on Fridays. In these circumstances, for this market, we don't use D_5 in the regressions for the first sub-sample.

The GJR - GARCH (q,p) model applied to reveal DOW effects on returns and volatility is described by two equations: the conditional mean equation and the conditional variance equation.

In the conditional mean equation of the returns the constant term is excluded in order to avoid the collinearity:

$$r_{t} = \sum_{i=1}^{5} \mu_{j} * D_{jt} + \sum_{k=1}^{n} \xi_{k} * r_{t-k} + \mathcal{E}_{t}$$
 (2)

where:

- μ_i (j=1,2...5) are coefficients which reflect the DOW effects on returns;
- D_{it} are dummy variables corresponding to the five working days of the week;
- ξ_k (k=1,..n) are coefficients associated to lagged returns;
- n is the number of lagged returns, calculated by the Akaike (1969) Final Prediction Error Criterion;
- ε_t is the error term.

In the conditional variance equation the dummy variable associated to Wednesday (D_3) is excluded in order to avoid the dummy trap:

$$\sigma_{t}^{2} = \omega + \sum_{j=1}^{5} v_{j} * D_{jt} + \sum_{k=1}^{q} [\alpha_{k} * \varepsilon_{t-k}^{2} + \gamma_{k} * \varepsilon_{t-k}^{2} * I(\varepsilon_{t-k} < 0)] + \sum_{l=1}^{p} (\beta_{l} * \sigma_{t-l}^{2})$$
(3)

where:

- σ_t^2 is the conditional variance of the returns;
- ω is a constant term reflecting the seasonal effect on volatility for the excluded dummy variable (associated to Wednesday);
 - $-v_i$ (j=1, 2, 4, 5) are coefficients which reflect the DOW effects on volatility for the other four working days;
- α_k and γ_k (k=1,..q) are coefficients associated to the squared values of the lagged values of error term from the conditional mean equation;
- $I(\epsilon_{t\cdot k}\!\!<\!\!0)$ is a dummy variable taking the value 1 if the k-lagged error term is strict negative and value zero otherwise;

- q is the number of lagged values of the error term, calculated by the Akaike (1973) Information Criteria;
- β_1 (j=1, 2, ...p) are coefficients associated to the lagged values of the conditional variance;
- p is the number of lagged values of conditional variance, calculated by the Akaike (1973) Information Criteria

For each return we analyze the robustness of GJR - GARCH model by employing Lagrange Multiplier (LM) test for ARCH effects on the residuals.

4. Empirical Results

The Table 2 reports the results of ADF tests. For all 32 returns the null hypothesis of unit root was rejected for both sub-samples.

(Insert here Table 2)

The results of Ljung-Box Q and ARCH LM tests are presented in the Table 3. For all the returns and for both sub-samples there cannot be rejected the null hypothesis of autocorrelation and the heteroscedasticity of the residuals.

(Insert here Table 3)

The Table 4 provides the coefficients of the GJR-GARCH conditional mean regressions performed on the advanced markets indexes for the first sub-sample. The results reveal the presence of DOW effects on the returns. Most of significant coefficients are positive: four for D_1 (AEX General, All Ordinaries, ATX, BEL-20 and S&P TSX Composite), one for D_2 (ATX), two for D_3 (ATX and BEL-20), two for D_4 (ATX and OSEAX) and six for D_5 (All Ordinaries, ATX, FTSE 100, OSEAX, Straits Times and TAIEX). Only for Nasdaq – 100 and Standard & Poor's resulted negative coefficients of D_5 .

(Insert here Table 4)

The coefficients of GJR-GARCH conditional variance equations of advanced markets indexes for the first subsample are presented in the Table 5. The results indicate various DOW effects on volatility for the advanced markets indexes from the first sub-sample. Some significant positive coefficients result: five for ω (All Ordinaries, ATX, FTSE 100, Hang Seng and OSEAX) and two for D_1 (Straits Times and TAIEX). There are also some significant negative coefficients: five for D_1 (AEX General, All Ordinaries, CAC 40, DAX and FTSE 100), one for D_4 (All Ordinaries) and three for D_5 (All Ordinaries, Hang Seng and OSEAX).

(Insert here Table 5)

For the second sub-sample, the GJR-GARCH conditional mean equations of the advanced markets indexes indicate only positive significant coefficients: one for D₃ (TAIEX) and two for D₅ (DAX and OSEAX).

(Insert here Table 6)

The GJR-GARCH conditional variance regressions performed for the second sub-sample on the advanced markets indexes revealed DOW effects on volatility. Positive significant coefficients were found for ω (All Ordinaries and Straits Times), for D_2 (S&P TSX Composite and TAIEX), and for D_4 (S&P TSX Composite and SSMI). Significant negative coefficients were found for ω (S&P TSX Composite), for D_2 (All Ordinaries, Straits Times,), for D_4 (Straits Times) and for D_5 (All Ordinaries).

(Insert here Table 7)

The results of GJR-GARCH conditional mean regressions performed on the emerging markets indexes from the first sub-sample are presented in the Table 8. There are positive significant coefficients for D_1 (BUX, PX and TA 100), for D_2 (BET-C, CROBEX, IPC, OMXT and SSE Composite), for D_3 (BET-C, Bovespa, MerVal, OMXT, SEMDEX, IDX Composite and IPC), for D_4 (Athex Composite Share, BET-C, BSE 30, KOSPI, IPC, IDX Composite, MerVal, OMXT, PX, SEMDEX and TA 100) and for D_5 (Athex Composite Share, BET-C, Bovespa, BSE 30, IDX Composite, IPC, KLSE Composite, OMXT, PX and SEMDEX). There are also negative significant coefficients for D_1 (Athex Composite Share) and for D_4 (SSE Composite).

(Insert here Table 8)

The Table 9 reports the coefficients of GJR-GARCH conditional variance equation for the first sub-sample data of the emerging markets indexes. Positive significant values were found for ω (BUX, IDX Composite, KLSE Composite, SEMDEX, SSE Composite and TA 100) and for D_1 (BET-C). Negative significant values occurred for D_1 (BUX and KLSE Composite), for D_2 (KLSE Composite, SSE Composite and TA 100) and for D_5 (Athex Composite Share, Bovespa, IPC and KLSE Composite).

(Insert here Table 9)

The results of GJR-GARCH conditional mean regression for the second sub-sample data of emerging markets indexes are presented in the Table 10. There are positive significant coefficients for D_1 (IPC), for D_2 (IDX Composite, KLSE Composite, CROBEX, IDX Composite, KLSE Composite, MerVal and PX), for D_3 (CROBEX, KLSE Composite, IDX Composite, KLSE Composite, MerVal and PX), for D_4 (KLSE Composite) and for D_5 (BET-C, IDX Composite, KLSE Composite, OMXT and SEMDEX). There are also negative significant coefficients for D_1 (Athex Composite Share, BET-C, CROBEX, OMXT and SEMDEX).

(Insert here Table 10)

The Table 11 reports the coefficients of GJR-GARCH conditional variance equation for the second sub-sample data of emerging markets indexes. Positive significant values were found for ω (KOSPI, SEMDEX), for D_1 (Athex Composite Share, BET-C, MerVal, OMXT and TA 100), for D_2 (Athex Composite Share, Bovespa, for D_4 (Athex Composite Share, OMXT and TA 100). Negative significant coefficients were found for ω (Athex Composite Share), for D_2 (KOSPI, TA 100), for D_4 (SEMDEX) and for D_5 (SEMDEX).

(Insert here Table 11)

For all GJR-GARCH regressions the ARCH LM tests revealed no ARCH remaining effects.

(Insert here Table 12)

5. Conclusions and implications

In this paper we investigated the presence of daily seasonality on returns and volatility for 32 indexes from advanced and emerging markets during two periods of time: a relative quiet one and a turbulent one. Based on GJR-GARCH models we identified various DOW effects in the two periods.

Our investigation revealed significant differences between quiet and turbulent times. In fact only few DOW effects identified for the first period survived to the second one. For the returns we found persistence in time for Monday (Athex Composite Share), Tuesday (CROBEX), Wednesday (MerVal) and Friday (BET-C, IDX Composite, KLSE Composite, OMXT and SEMDEX). The DOW effects on volatility survived for Monday (BET-C), Wednesday (All Ordinaries and SEMDEX) and Friday (All Ordinaries). Instead, for many indexes, new forms of daily seasonality appeared during the turbulent times. Such evolutions could be associated to changes in investors' behaviors from the quiet to the turbulent period.

The results suggest that the decline of DOW effects on returns was more consistent for the advanced markets than for the emerging markets. In fact, for many emerging markets, the investors had highly risk perceptions even during the quiet times so the changes induced by the turbulences were less sharp as in case of the most advanced markets.

In the recent context of financial instability it is hard to formulate irevocable conclusions about the causes of the changes in DOW effects. Such changes could be provoked by the turbulences on the financial markets or there could be viewed as the confirmation of Dimson and Marsh (1999) Murphy's law for the calendar anomalies. In these circumstances, the researches on the persistence in time of DOW effects should be extended to the post-global crisis periods.

References

- Abraham, A., and Ikenberry, D. L. (1994). The individual investor and the weekend effect. *Journal of Financial and Quantitative Analysis*, vol. 29, 1994, pp. 263–77.
- Agathee, Ushad Subadar (2008). Day of the Week Effects: Evidence from the Stock Exchange of Mauritius (SEM). International Research Journal of Finance and Economics, Issue 17
- Aggarwal, R. and Rivoli, P. (1989). Seasonal and day-of-the week effect in four emerging stock markets. *Financial Review*, vol. 24, pp. 541–550.
- Ajayi, Richard A., Seyed Mehdian, and Mark J. Perry (2004). The day of the week effect in stock returns: Further evidence from Eastern European emerging markets. *Emerging Markets Finance and Trade*, vol. 4, pp. 53-62.
- Akaike, H. (1969). Fitting autoregressive models for prediction. *Annals of the Institute of Statistical Mathematics* 21, pp. 243-247.
- Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle, *in* B. Petrov and F. Csáki (eds). 2nd International Symposium on Information Theory, Académiai Kiadó, Budapest, pp. 267-281.
- Akaike, H. (1974). A new look at the statistical model identification. *IEEE Transactions on Automatic Control* AC-19, pp. 716-723.
- Al-Loughani, N., and D. Chappell (2001). Modeling the day-of-the-week effect in the Kuwait stock exchange. *Applied Financial Economics*, pp. 353-359.
- Aly, H., Mehdian, S. and Perry, M. (2004). An Analysis of Day-of-the-Week Effects in the Egyptian Stock Market. International Journal of Business, 9 (3), Available at: http://ssrn.com/abstract=551101
- Angelidis, D. and Lyroudi, K. (2004). Seasonalities in the French Stock Market: The day of the Week Anomaly, 11th Annual Conference of the Multinational finance Society, Constantinople, Turkey, Available at: http://mfs.rutgers.edu/MFC/MFC11/mfcindex/files/MFC-077%20AngelidisLyroudi.pdf
- Apolinario Rosa María Cáceres, Santana Octavio Maroto, Lourdes Jordán Sales and Caro Alejandro Rodríguez (2006). Day of the Week Effect on European Stock Markets. *International Research Journal of Finance and Economics*, Issue 2
- Athanassakos and Robinson (1994). The Day of the Week Anomaly: The Toronto stock exchange experience. *Journal of Business Finance and Accounting*, vol. 21 (6), pp. 833-856.
- Balaban, Ercan (1995). Day of the week effects: New evidence from an emerging stock market. *Applied Economics Letters*, vol. 2, 139-143.
- Batuo Enowbi, Michael, Guidi, Francesco, and Kupukile, Mlambo (2009). Testing the weak-form market efficiency and the day of the week effects of some African countries. Unpublished. Available at: http://mpra.ub.uni-muenchen.de/19116
- Berument, Hakan, and Kiymaz, Halil (2001). The day of the week effect on stock market volatility. *Journal of Economics and Finance*, vol. 2, 181-193.
- Berument, H., Inamlik, A., and Kiymaz, H. (2003). *The Day of the Week Effect on Stock Market Volatility: Istanbul Stock Exchange*. Available at: http://www.bilkent.edu.tr/~berument/iif05.pdf
- Berument, H., Dogan, N. (2012). Stock Market Return and Volatility: Day-of-the-week Effect. *Journal of Economics and Finance*, vol. 36, pp. 282-302.
- Bhattacharya, K., Sarkar, N., and Mukhopadhayay, D. (2003). Stability of the Day-of-the- Week Effect in Return and in Volatility at the Indian Capital Market: A GARCH Approach with Proper Mean Specification. *Applied Financial Economics*, Vol. 13, pp. 553-563.
- Blau, Benjamin M., Van Ness, Bonnie F., and Van Ness, Robert A. (2008). Short Selling and the Weekend Effect for Nyse Securities. Available at SSRN: http://ssrn.com/abstract=962772 or http://dx.doi.org/10.2139/ssrn.962772
- Bollerslev, Tim (1986). Generalized autoregressive conditional heterescedasticity. *Journal of Econometrics*, vol. 31, 307-327.
- Bollerslev, T., Chou, R.Y., and Kroner, K.F. (1992). ARCH Modeling in Finance: A Selective Review of the Theory and Empirical Evidence. *Journal of Econometrics*, 52, 5-59.
- Box, G. E. P., Jenkins, G. M., and Reinsel, G. C. (1994). *Time Series Analysis, Forecasting and Control*, 3rd ed. Prentice Hall, Englewood Clifs, NJ.
- Brooks, Chris, and Persand, Gita (2001). Seasonality in Southeast Asian stock markets: Some new evidence on day of the week effects, *Applied Economics Letters*, vol. 8, 155-158.
- Chang, RP, Fukuda, T, Rhee, SG, and Taakano, M (1993). Intraday and interday behavior of the TOPIX. *Pacific-Basin Finance Journal*, 1, pp. 67-95.
- Chen, Honghui, and Singal, Vijay (2003). Do Short Sellers Cause the Weekend Effect? Available at SSRN: http://ssrn.com/abstract=429844 or http://dx.doi.org/10.2139/ssrn.429844
- Choudhry, Taufiq. (2000). Day of the week effect in emerging Asian stock markets: Evidence from GARCH model. *Applied Financial Economics*, vol. 10, 235-242.
- Chukwuogor-Ndu, Chiaku (2006). Stock Market Returns Analysis, Day-of-the-Week Effect, Volatility of Returns: Evidence from European Financial Markets 1997-2004. *International Research Journal of Finance and Economics*, Issue 1
- Chukwuogor-Ndu, Chiaku (2007). Day-of-the-week effect and volatility in stock returns: Evidence from East Asian financial markets. *International Journal of Banking and Finance*, Vol. 5: Iss. 1, Article 7. Available at: http://epublications.bond.edu.au/ijbf/vol5/iss1/7
- Claessens S., Dasgupta, S., and J. Glen, (1995). Return Behavior in Emerging Stock Markets. *The World Bank Economic Review*, pp. 131-151.
- Cross, F. (1973). The behavior of stock price on Fridays and Mondays. Financial Analyst Journal, vol. 29, pp. 67-69.
- Dickey, D. A., and Fuller, W. A. (1979). Estimators for autoregressive time series with a unit root. *Journal of the American Statistical Association* 74, 427-431.
- Dicle, Mehmet F., and Levendis, John (2010). Day-of-the-Week Effect Revisited: International Evidence. Journal of Economics and Finance, Forthcoming. Available at SSRN: http://ssrn.com/abstract=1395005

- Dimson E., Marsh P. (1999). Murphy's law and market anomalies. Journal of Portfolio Management, 25, pp. 53-69
- Doyle, J., Chen, C. H. (2009) The wandering weekday effect in major stock markets. *Journal of Banking and Finance*, No. 33, pp. 1388–1399.
- DUBOIS, M., and LOUVET, P. (1996). The day of the week effect: International evidence. *Journal of Banking and Finance*, vol. 20, pp. 1463–84.
- Dumitriu, Ramona, and Stefanescu, Razvan (2010). Changes in the DOW effects in the Romanian foreign exchange market. *Manager Journal*, Vol. 11/2010, pp. 163-179.
- Dumitriu, Ramona, Stefanescu, Razvan, Nistor, Costel (2012). *Holiday effects during quiet and turbulent times*. The Proceedings of the 14th International Conference AFASES Scientific Research and Education in the Air Force, pp. 57-62, Available at SSRN: http://ssrn.com/abstract=2043756 or http://dx.doi.org/10.2139/ssrn.2043756
- Dumitriu, Ramona, Stefanescu, Razvan, and Nistor, Costel (2012). *The Halloween Effect During Quiet and Turbulent Times*. Available at SSRN: http://ssrn.com/abstract=2043757 or http://dx.doi.org/10.2139/ssrn.2043757
- Duran, Irais Perez (2010). The day-of-the-week effect on stock returns and volatility: The case of Latin America, *University essay from Lunds universitet/Nationalekonomiska institutionen*. Available at: http://www.essays.se/essay/3d95f4e072
- Dyl, E. A., and Martin, S. A. (1985). Weekend Effects on Stock Returns: A Comment. *Journal of Finance*, 40 (1), pp. 347-349.
- Elango, R. and Macki, Al, N. (2008) Monday Effect and Stock Return Seasonality: Further Empirical Evidence. *The Business Review, Cambridge*. 10(2): 282-288. Available at SSRN: http://ssrn.com/abstract=1103627.
- Engle, R.F. (1982). Autoregressive Conditional Heteroskedasticity with Estimates of the Variance of U.K. Inflation. *Econometrica*, 50, 987-1008.
- Fama, E. (1965). The behavior of stock market prices. Journal of Business, 38, 34-105.
- Fama, E.F. (1970). Efficient Capital Markets: A Review of Theory and Empirical Work. *Journal of Finance*, Vol. 25, pp. 383-417.
- Fama, F. E. (1991). Efficient Capital Markets: II. Journal of Finance, vol. 46, No. 5, pp. 1575-1617
- Fama, Eugene F., and French, Kenneth R. (2007). Dissecting Anomalies. CRSP Working Paper No. 610. Available at SSRN: http://ssrn.com/abstract=911960 or http://dx.doi.org/10.2139/ssrn.911960
- Fields, M. J. (1931). Stock Prices: A Problem in Verification. Journal of Business, 4, pp. 415-418.
- French, K. R. (1980). Stock Returns and the Weekend Effect. Journal of Financial Economics, 8, 55-69.
- Gibbons, M. R., and Hess, P. (1981). Day-of-the-Week Effects and Asset Returns. Journal of Business, 54 (4), 579-596.
- Glosten, L.R., Jagannathan, R., and Runkle, D. (1993). On the Relation Between the Expected Value and the Volatility of the Nominal Excess Return on Stocks. *Journal of Finance*, 48, pp. 1779-1801.
- Gu, A.Y. (2004). The reversing weekend effect: Evidence from the U.S. equity markets. *Review of Quantitative Finance and Accounting*, 22, 395-404.
- Gultekin, M.N., and Gultekin, N.B. (1983). Stock Market Seasonality: International Evidence. Journal of Financial Economics, 469-482.
- Gupta, R., Donleavy, G.D. (2009). Benefits of diversifying investments into emerging markets with time-varying correlations: an Australian perspective. *Journal of Multinational Financial Management*, 19, 160-177.
- Hannan, E. J., and Quinn, B. G. (1979). The determination of the order of an autoregression. *Journal of the Royal Statistical Society* B41, 190-195.
- Holden, Ken, Thompson, John, and Ruangrit, Yuphin (2005). The Asian crisis and calendar effects on stock returns in Thailand. *European Journal of Operational Research*, Elsevier, vol. 163(1), pp. 242-252.
- Jaffe, J., and Westerfield, R. (1985). The Week-End Effect in Common Stock Returns: The International Evidence. *Journal of Finance*, 40 (2), 433-454.
- Kamara, Avraham (1997). New Evidence on the Monday Seasonal in Stock Returns. *Journal of Business*, Vol. 70, No. 1. Available at SSRN: http://ssrn.com/abstract=8214
- Keef, S.P., and Roush, M.L. (2005). Day-of-the-week effects in the pre-holiday returns of the Standard and Poor's 500 stock index. *Applied Financial Economics*, 15, 107-119.
- Keim, D., and Stambaugh, R. (1984). A Further Investigation of the Weekend Effect in Stock Returns. *Journal of Finance*, 39(3), 819-835.
- Kenourgios, D., and Samitas, A., S. (2008). The Day of the Week Effect Patterns on Stock Market Return and Volatility: Evidence for the Athens Stock Exchange. *International Research Journal of Finance and Economics*, Issue 15
- Kelly, F. (1930). Why You Win or Lose: The Psychology of Speculation, Boston: Houghton Mifflin.
- Kohers, G., Kohers, N., Pandey, V., and Kohers., T. (2004). The disappearing Day-of-theweek effect in the World's largest equity markets. *Applied Economics Letters*, vol. 13, pp. 167-171.
- Kourkoumelis, Nick, and Hourvouliades, Nikolaos L. (2010). New Evidence for the Day-of-the-Week Effect in the Financial Crisis. Available at SSRN: http://ssrn.com/abstract=1553667 or http://dx.doi.org/10.2139/ssrn.1553667
- Kiymaz, H., and Berument, H. (2003). The day of the week effect on stock market volatility and volume: International evidence. *Review of Financial Economics*, vol. 12, pp. 363–80.
- Werner, Kristjan, Poller, Rodriguez (2012). Day of the Week Effect in Latin American Stock Markets. *Revista de Analisis Economico*, Vol. 27, No. 1, pp. 71-89.
- Lakonishok, J., and Levi, M. (1982). Weekend Effects on Stock Returns: A Note. Journal of Finance, 37 (3), pp. 883-889.
- Lakonishok, J., and Maberly, E. (1990). The Weekend Effect: Trading Patterns of Individual and Institutional Investors. *Journal of Finance*, 45 (1), 231-243.
- Lakonishok, J., and Smidt, S. (1988). Are Seasonal Anomalies Real? A Ninety-Year Perspective. *Review of Financial Studies*, 1 (4), 403-425.

- Li, K., Sarkar, A., and Wang, Z. (2003). Diversification Benefits of Emerging Markets Subject to Portfolio Constraints. *Journal of Empirical Finance*, 10, pp. 57-80
- Ljung, G., and Box, G. (1978). On a Measure of Lack of Fit in Time Series Models. Biometrika, 65, pp. 297-303.
- Marquering W., Nisser J., and Valla T. (2006) Disappearing anomalies: A dynamic analysis of the persistence of anomalies, *Applied Financial Economics*, 16, pp. 291-302.
- Nik Maheran Nik Muhammad and Nik Muhd Naziman Abd. Rahman (2010). Efficient Market Hypothesis and Market Anomaly: Evidence from Day-of-the Week Effect of Malaysian Exchange. *International Journal of Economics and Finance*, Vol. 2, No. 2
- Mehdian, S., and Perry, M.J. (2001). The reversal of the Monday effect: New evidence from the US equity markets. *Journal of Business Finance and Accounting*, 28, 1043-1065.
- Miller, E.M. (1988, September). Why a Weekend Effect? Journal of Portfolio Management, pp. 43-48.
- Pena, I. (1995). Daily Seasonalities and Stock Market Reforms in Spain. Applied Financial Economics, 5 (6), 419-423.
- Penman, S.H. (1987). The Distribution of Earnings News Over Time and Seasonalities in Aggregate Stock Returns. *Journal of Financial Economics*, Vol. 18, pp. 199-228.
- Pettengill, G. N. (2003). A Survey of the Monday Effect Literature. *Quarterly Journal of Business and Economics*, 42 (3-4), 3-27.
- Phylaktis, K., and Ravazzolo, F. (2002). Measuring financial and economic integration with equity prices in emerging markets. *Journal of International Money and Finance*, 21, 879-903
- Rogalski, R. J. (1984, December). New Findings Regarding Day-of-the-Week Returns over Trading and Non-Trading Periods: A Note. *Journal of Finance*, Vol. 39, pp. 1603-1614.
- Santemases, M. (1986). An Investigation of the Spanish Stock Market Seasonalities. *Journal of Business, Finance and Accounting*, 13 (2): pp. 267-276.
- Sias, R.W., and Starks, L. (1995). The Day-of-the-Week Anomaly: The Role of Institutional Investors. *Financial Analysts Journal*, pp. 58-67.
- Solnik, B., and Bousquet, L. (1990). Day-of-the-week effect on the Paris Bourse. *Journal of Banking and Finance*, vol. 14, 461-468
- Ulussever, Talat, Guran Yumusak Ibrahim, Kar Muhsin (2011). The Day-of-the-Week Effect in the Saudi Stock Exchange: A Non-Linear GARCH Analysis. *Journal of Economic and Social Studies*, Volume 1, Number 1
- Venezia, I, Shapira, Z. (2005, December 28). Do Professional Investors Behave Differently than Amateurs After the Weekend? *Discussion Papers from Free University Berlin*, School of Business and Economics
- Wing-Keung Wong, Aman Agarwal and Nee-Tat Wong (2006). The Disappearing Calendar Anomalies in the Singapore Stock Market, *The Lahore Journal of Economics* 11:2, pp. 123-139.
- Wong, K.A., Kui, T.K. and Chan, C.Y. (1992). Day-of-the-Week Effects: Evidence from Developing Stock Markets. *Applied Financial Economics*, 2, pp. 49-56.
- Yalcin Yeliz, Yucel Eray M. (2006). The Day-of-the-Week Effect on Stock-Market Volatility and Return: Evidence from Emerging Markets, Finance a úver. *Czech Journal of Economics and Finance*, 56, c. 5-6.
- Ziemba, W., T. (1991). Japanese security market regularities: monthly, turn-of-the-month and year, holiday and Golden Week effects. *Japan and the World Economy* 3, pp. 119-146

Appendix

Table 1 - Indexes from advanced and emerging markets used in DOW effects investigation

Adva	anced Markets	Emerging Markets		
Index	Market	Index	Market	
AEX General	Amsterdam Stock Exchange	Athex Composite	Athens Stock Exchange	
		Share		
All Ordinaries	Australian Securities	BET-C	Bucharest Stock Exchange	
	Exchange			
ATX	Vienna Stock Exchange	Bovespa	São Paulo Stock, Mercantile & Futures	
			Exchange	
BEL-20	Brussels Stock Exchange	BSE 30	Bombay Stock Exchange	
CAC 40	Paris Bourse	BUX	Budapest Stock Exchange	
DAX	Frankfurt Stock Exchange	CROBEX	Zagreb Stock Exchange	
FTSE 100	London Stock Exchange	IDX Composite	Indonesia Stock Exchange	
Hang Seng	Hong Kong Stock Exchange	IPC	Mexican Stock Exchange	
Nasdaq - 100	Nasdaq Stock Market	KLSE Composite	Kuala Lumpur Stock Exchange	
Nikkei 225	Tokyo Stock Exchange	KOSPI	Korea Stock Exchange	
OSEAX	Oslo Stock Exchange	MerVal	Buenos Aires Stock Exchange	
S&P TSX	Toronto Stock Exchange	OMXT	Talinn Stock Exchange	
Composite				
Standard & Poor's	New York Stock Exchange	PX	Prague Stock Exchange	
Straits Times	Singapore Exchange	SEMDEX	The Stock Exchange of Mauritius	
SSMI	SIX Swiss Exchange	SSE Composite	Shanghai Stock Exchange	

Table 2 - Results of ADF tests for the returns

Index	First sul	o-sample	Second	d sub-sample
macx	Number of lags	Test statistics	Number of lags	Test statistics
		Panel A: advanced	markets	
AEX General	14	-10.7823	18	-8.32651
		(0.0001***)		(0.0001***)
All Ordinaries	17	-10.0896	6	-15.5319
		(0.0001***)		(0.0001***)
ATX	13	-9.77552	24	-6.23618
DET 40	- 10	(0.0001***)		(0.0001***)
BEL-20	13	-11.8373	11	-10.6814
CAC 40	14	(0.0001***)	15	(0.0001***)
CAC 40	14	(0.0001***)	13	(0.0001***)
DAX	24	-8.53843	24	-7.37193
5.2.	2.	(0.0001***)	2.	(0.0001***)
FTSE 100	14	-10.8309	5	-17.5394
		(0.0001***)		(0.0001***)
Hang Seng	7	-15.3832	17	-9.19713
		(0.0001***)		(0.0001***)
Nasdaq - 100	20	-9.56295	17	-9.26676
N. 1 . 222	1.5	(0.0001***)	20	(0.0001***)
Nikkei 225	15	-11.2584	20	-8.51149
OSEAX	8	(0.0001***)	7	(0.0001***)
USEAX	8	-13.2077 (0.0001***)	/	-13.8879 (0.0001***)
S&P TSX	12	-11.1597	11	-11.5512
Composite	12	(0.0001***)	11	(0.0001***)
Standard & Poor's	15	-10.1123	15	-9.51837
		(0.0001***)		(0.0001***)
Straits Times	5	-16.6154	11	-10.6075
		(0.0001***)		(0.0001***)
SSMI	14	-10.156	6	-16.9921
m		(0.0001***)	10	(0.0001***)
TAIEX	11	-11.0642 (0.0001***)	13	-8.61777
		Panel B: emerging	markete	(0.0001***)
Athex Composite	17	-10.2631	16	-7.96602
Share	1,	(0.0001***)	10	(0.0001***)
BET-C	19	-8.22136	21	-6.59446
		(0.0001***)		(0.0001***)
Bovespa	15	-8.96446	19	-7.92883
		(0.0001***)		(0.0001***)
BSE 30	13	-10.7685	13	-9.04364
DIM	10	(0.0001***)		(0.0001***)
BUX	10	-13.3637	6	-15.3365
CROBEX	6	(0.0001***)	5	(0.0001***)
CNODEA	U	(0.0001***)	3	-14.7376 (0.0001***)
IDX Composite	2	-22.1749	4	-18.0152
	_	(0.0001***)		(0.0001***)
IPC	7	-15.2835	6	-16.2523
		(0.0001***)		(0.0001***)
KLSE Composite	12	-11.9723	1	-31.5414
		(0.0001***)		(0.0001***)
KOSPI	6	-17.1261	2	-21.7521
3437.1		(0.0001***)	4	(0.0001***)
MerVal	6	-13.4829	4	-17.2232

		(0.0001***)		(0.0001***)
OMXT	5	-18.3964	4	-14.9384
		(0.0001***)		(0.0001***)
PX	14	-9.62865	12	-9.75293
		(0.0001***)		(0.0001***)
SEMDEX	7	-11.8471	3	-16.4603
		(0.0001***)		(0.0001***)
SSE Composite	19	-8.89945	14	-9.00431
		(0.0001***)		(0.0001***)
TA 100	11	-9.26086	7	-12.8812
		(0.0001***)		(0.0001***)

Notes: p-values are within brackets ***, **, *; mean significant at 0.01, 0.05, and 0.1 levels, respectively

Table 3 - Results of Ljung-Box Q Tests and ARCH LM Tests

Index	First su	b-sample	Second sub-sample		
Inucx	Ljung-Box Q Test	ARCH LM Test	Ljung-Box Q Test	ARCH LM Test	
		Panel A: advanced ma	rkets		
AEX General	13.446	391.334	8.96528	396.203	
	(0.00376***)	(0.0001***)	(0.02976**)	(0.0001***)	
All Ordinaries	6.51525	91.3962	5.05377	280.89	
	(0.08906*)	(0.0001***)	(0.07991*)	(0.0001***)	
ATX	27.8973	182.746	58.2389	296.366	
	(0.06364*)	(0.0001***)	(0.0003***)	(0.0001***)	
BEL-20	15.583	258.237	26.9399	276.957	
	(0.0013***)	(0.0001***)	(0.01268**)	(0.0001***)	
CAC 40	6.38657	288.244	16.0411	238.082	
	(0.09424*)	(0.0001***)	(0.0011***)	(0.0001***)	
DAX	28.0102	373.69	14.2688	198.317	
	(0.0001***)	(0.0001***)	(0.0025***)	(0.0001***)	
FTSE 100	14.5175	390.88	27.8931	311.59	
	(0.0022***)	(0.0001***)	(0.0001***)	(0.0001***)	
Hang Seng	9.37888	53.57	17.4304	333.17	
	(0.0247**)	(0.0001***)	(0.0259**)	(0.0001***)	
Nasdaq - 100	7.64417	245.89	8.81411	299.15	
	(0.0539*)	(0.0001***)	(0.0318**)	(0.0001***)	
Nikkei 225	3.18548	88.7815	28.8302	405.995	
	(0.0743*)	(0.0001***)	(0.0505*)	(0.0001***)	
OSEAX	19.9717	243.456	24.4474	393.726	
	(0.0676*)	(0.0001***)	(0.0177**)	(0.0001***)	
S&P TSX	26.4092	68.0158	17.6595	374.746	
Composite	(0.0908*)	(0.0001***)	(0.0005***)	(0.0001***)	
Standard & Poor's	24.9918	235.028	8.19199	385.787	
	(0.03465**)	(0.0001***)	(0.04221**)	(0.0001***)	
Straits Times	12.226	50.7723	32.1008	259.125	
	(0.0067***)	(0.0001***)	(0.0004***)	(0.0001***)	
SSMI	12.4504	300.031	40.1069	383.978	
	(0.0060***)	(0.0001***)	(0.0001***)	(0.0001***)	
TAIEX	10.1508	144.199	15.187	136.241	
	(0.0173**)	(0.0001***)	(0.0188**)	(0.0001***)	
		Panel B: emerging ma	rkets		
Athex Composite	13.0424	264.699	16.3939	77.0799	
Share	(0.0003***)	(0.0001***)	(0.08890*)	(0.0001***)	
BET-C	7.63799	171.096	7.27873	245.17	
	(0.0541*)	(0.0001***)	(0.06352*)	(0.0001***)	
Bovespa	72.9216	68.6832	39.5832	371.278	
	(0.0760*)	(0.0001***)	(0.0024***)	(0.0001***)	
BSE 30	14.0105	336.769	25.3007	114.615	
	(0.0029***)	(0.0001***)	(0.0317**)	(0.0001***)	

BUX	7.96806	56.0144	25.0094	206.719
	(0.0467**)	(0.0001***)	(0.0001***)	(0.0001***)
CROBEX	54.8695	134.155	6.64009	303.79
	(0.0724*)	(0.0001***)	(0.03615**)	(0.0001***)
IDX Composite	4.38838	60.1264	6.61387	172.101
	(0.0362**)	(0.0001***)	(0.0366**)	(0.0001***)
IPC	48.2081	129.471	14.5206	191.49
	(0.0189**)	(0.0001***)	(0.0243**)	(0.0001***)
KLSE Composite	22.994	161.162	26.8158	315.752
	(0.0604*)	(0.0001***)	(0.0203**)	(0.0001***)
KOSPI	29.7704	94.412	49.5997	325.521
	(0.0280**)	(0.0001***)	(0.09854*)	(0.0001***)
MerVal	39.0468	266.118	12.2962	251.076
	(0.0270**)	(0.0001***)	(0.0064***)	(0.0001***)
OMXT	59.7153	38.4731	10.9985	102.436
	(0.0572*)	(0.0001***)	(0.0117**)	(0.0001***)
PX	42.0537	132.742	6.09437	318.364
	(0.0828*)	(0.0001***)	(0.04749**)	(0.0001***)
SEMDEX	7.34232	107.484	6.67927	286.652
	(0.06175*)	(0.0001***)	(0.0829*)	(0.0001***)
SSE Composite	52.8942	34.8136	8.35051	61.7187
	(0.07812*)	(0.0001***)	(0.0393**)	(0.0001***)
TA 100	7.83988	62.7447	27.1864	160.63
	(0.0494**)	(0.0001***)	(0.0755*)	(0.0001***)

Notes: p-values are within brackets ***, **, *; mean significant at 0.01, 0.05, and 0.1 levels, respectively.

 Table 4 - GJR - GARCH conditional mean equation for advanced markets indexes: first sub-sample

Index	μ_1	μ_2	μ_3	μ_4	μ_5
AEX General	0.0755424	-0.014037	-0.045273	0.0242148	0.0397865
	(0.0425985)	(0.0463955)	(0.0480921)	(0.0492975)	(0.0501093)
	[0.0762*]	[0.7622]	[0.3465]	[0.6233]	[0.4272]
All Ordinaries	0.0767990	0.0285597	0.0420356	0.0453442	0.0614361
	(0.0319269)	(0.0265139)	(0.0341807)	(0.0334003)	(0.0252957)
	[0.0162**]	[0.2814]	[0.2188]	[0.1746]	[0.0152**]
ATX	0.100589	0.0771809	0.106041	0.0850316	0.122212
	(0.0461255)	(0.0425585)	(0.0441400)	(0.0456686)	(0.0451495)
	[0.0292**]	[0.0698*]	[0.0163**]	[0.0626 *]	[0.0068***]
BEL-20	0.0699541	0.0468310	0.101732	0.0456243	0.0375359
	(0.0373864)	(0.0375811)	(0.0373977)	(0.0407414)	(0.0392643)
	[0.0613*]	[0.2127]	[0.0065***]	[0.2628]	[0.3391]
CAC 40	0.0326705	-0.0102087	-0.0317669	0.0404277	0.0511922
	(0.0490380)	(0.050220)	(0.0528445)	(0.0526624)	(0.0551603)
	[0.5053]	[0.8389]	[0.5477]	[0.4427]	[0.3534]
DAX	0.0814277	-0.0248078	-0.0497526	0.0415427	0.0213303
	(0.0563164)	(0.0516843)	(0.0584292)	(0.0549179)	(0.059217)
	[0.1482]	[0.6312]	[0.3945]	[0.4494]	[0.7187]
FTSE 100	0.0304428	-0.0521080	-0.0512377	-0.00280678	0.0782482
	(0.0412265)	(0.0388607)	(0.0414916)	(0.0424596)	(0.0407947)
	[0.4603]	[0.1800]	[0.2169]	[0.9473]	[0.0551*]
Hang Seng	0.0940742	-0.0214411	0.0269410	0.0348119	0.0734177
	(0.0601015)	(0.0507183)	(0.0590832)	(0.0544895)	(0.0459185)
	[0.1175]	[0.6725]	[0.6484]	[0.5229]	[0.1098]
Nasdaq - 100	0.0391001	-0.0167946	0.0487685	0.0599143	-0.101019
_	(0.0657167)	(0.0626917)	(0.0634829)	(0.0594164)	(0.0598356)
	[0.5519]	[0.7888]	[0.4424]	[0.3133]	[0.0914*]
Nikkei 225	0.0637049	-0.0172316	-0.00367104	-0.0102692	0.0976279
	(0.0782963)	(0.0580664)	(0.0594898)	(0.0625170)	(0.0612161)
	[0.4159]	[0.7667]	[0.9508]	[0.8695]	[0.1108]
OSEAX	0.0755638	0.0597820	-0.0155395	0.200088	0.220883
	(0.0523840)	(0.0491672)	(0.0524583)	(0.0559445)	(0.0478317)
	[0.1492]	[0.2240]	[0.7671]	[0.0003***]	[0.0001***]
S&P TSX	0.126156	0.0390491	0.0291947	0.0464563	0.0593796

Composite	(0.0417848)	(0.0434801)	(0.0427279)	(0.0400900)	(0.036458)
	[0.0025***]	[0.3691]	[0.4944]	[0.2465]	[0.1034]
Standard & Poor's	0.0374551	0.00049457	0.00702435	0.0285865	-0.0674330
	(0.0444341)	(0.0449662)	(0.0447479)	(0.0410869)	(0.0409787)
	[0.3993]	[0.9912]	[0.8753]	[0.4866]	[0.0999*]
Straits Times	0.00612006	0.0356064	0.0507027	0.0325270	0.104062
	(0.0521439)	(0.0465193)	(0.0453576)	(0.0470304)	(0.0375684)
	[0.9066]	[0.4440]	[0.2636]	[0.4892]	[0.0056***]
SSMI	0.0670227	0.00926668	0.0373755	0.0257060	0.00674820
	(0.0437310)	(0.0433340)	(0.0449233)	(0.0427924)	(0.0385334)
	[0.1254]	[0.8307]	[0.4054]	[0.5480]	[0.8610]
TAIEX	-0.0712241	-0.0898057	0.0526373	0.0646611	0.198857
	(0.0797420)	(0.0603976)	(0.0634890)	(0.0626027)	(0.0589379)
	[0.3718]	[0.1370]	[0.4071]	[0.3017]	[0.0007***]

Notes: Standard Errors are within round brackets; p-values are within squared brackets; ***, **, * mean significant at 0.01, 0.05, and 0.1 levels, respectively

Table 5 - GJR - GARCH conditional variance equation for advanced markets indexes: first sub-sample

Day of the week variables

Index	ω	v_1	\mathbf{v}_2	v_4	V 5
AEX General	0.069117	-0.21395	0.009673	-0.03552	-0.04056
	(0.06571)	(0.09199)	(0.11095)	(0.12786)	(0.10243)
	[0.2929]	[0.0200**]	[0.9305]	[0.7812]	[0.6921]
All Ordinaries	0.116228	-0.0700591	-0.145880	-0.0869523	-0.206828
	(0.0260930)	(0.0316015)	(0.0350167)	(0.0478562)	(0.0440856)
	[0.0001***]	[0.0266**]	[0.0001***]	[0.0692*]	[0.0001***]
ATX	0.130381	-0.0673397	-0.127099	-0.0873039	-0.0496915
	(0.0651009)	(0.0892650)	(0.105459)	(0.106051)	(0.0906895)
	[0.0452**]	[0.4506]	[0.2281]	[0.4104]	[0.5837]
BEL-20	0.0096560	-0.0440816	0.0285455	0.0389628	0.0243701
	(0.0465206)	(0.0697419)	(0.0828361)	(0.0751039)	(0.0658809)
	[0.8356]	[0.5273]	[0.7304]	[0.6039]	[0.7114]
CAC 40	0.0672835	-0.218619	-0.0136544	-0.0736037	0.0288606
	(0.0585675)	(0.0968381)	(0.113720)	(0.101956)	(0.103654)
	[0.2506]	[0.0240**]	[0.9044]	[0.4703]	[0.7807]
DAX	0.132803	-0.218094	-0.152345	-0.201320	-0.00241635
	(0.0888274)	(0.117754)	(0.163741)	(0.153543)	(0.102610)
	[0.1349]	[0.0640*]	[0.3522]	[0.1898]	[0.9812]
FTSE 100	0.0591741	-0.128583	-0.0537116	-0.0265733	-0.0286375
	(0.0355662)	(0.0521320)	(0.0669453)	(0.0698259)	(0.0719706)
	[0.0962*]	[0.0136**]	0.4224]	0.7035]	0.6907]
Hang Seng	0.157792	-0.0188709	-0.169943	-0.165205	-0.385455
	(0.0852169)	(0.108922)	(0.134824)	(0.143637)	(0.139066)
	[0.0641*]	[0.8625]	[0.2075]	[0.2501]	[0.0056***]
Nasdaq - 100	0.0918860	-0.111892	0.0251918	-0.191255	-0.152514
	(0.120317)	(0.144467)	(0.175397)	(0.192655)	(0.157670)
	[0.4450]	[0.4386]	[0.8858]	[0.3208]	[0.3334]
Nikkei 225	-0.0519134	0.237786	-0.176526	0.269265	0.0893470
	(0.111793)	(0.159214)	(0.221939)	(0.188953)	(0.145633)
	[0.6424]	[0.1353]	[0.4264]	[0.1541]	[0.5395]
OSEAX	0.170605	0.0950489	-0.188489	0.0656093	-0.333945
	(0.0961636)	(0.140852)	(0.164505)	(0.171233)	(0.138399)
	[0.0760*]	[0.4998]	[0.2519]	[0.7016]	[0.0158**]
S&P TSX	0.0274643	0.0342679	0.0364816	-0.0877512	-0.0443450
Composite	(0.0619646)	(0.0853346)	(0.0988075)	(0.0996926)	(0.0877460)
	[0.6576]	[0.6880]	[0.7120]	[0.3787]	[0.6133]
Standard & Poor's	-0.00541086	-0.0211977	0.102185	-0.0533156	0.0330222
	(0.0604250)	(0.0769656)	(0.0961420)	(0.0863178)	(0.0816537)
	[0.9286]	[0.7830]	[0.2878]	[0.5368]	[0.6859]
Straits Times	-0.0159532	0.158551	0.0338716	0.0615633	-0.0732825
	(0.0590535)	(0.0774300)	(0.102396)	(0.101916)	(0.0888782)
	[0.7870]	[0.0406**]	[0.7408]	[0.5458]	[0.4096]
SSMI	0.0729621	0.0115838	-0.0790849	-0.125081	-0.0905412

	(0.0517219)	(0.0691287)	(0.0851100)	(0.0965111)	(0.0750840)
	[0.1583]	[0.8669]	[0.3528]	[0.1950]	[0.2279]
TAIEX	-0.110675	0.337181	-0.0222709	0.0982198	0.213084
	(0.141213)	(0.179067)	(0.254942)	(0.198429)	(0.204167)
	[0.4332]	[0.0597*]	[0.9304]	[0.6206]	[0.2966]

Other conditional variance variables

Index	α_1	a_2	γ_1	γ_2	β
AEX General	0.0359564	X	0.990887	X	0.917023
	(0.006201)		(0.013041)		(0.01286)
	[0.0001***]		[0.0001***]		[0.0001***]
All Ordinaries	0.0326235	X	0.976623	X	0.898325
	(0.00598842)		(0.0287170)		(0.0176162)
	[0.0001***]		[0.0001***]		[0.0001***]
ATX	0.0677402	X	0.403252	X	0.840959
	(0.0214342)		(0.142376)		(0.0331369)
	[0.0016 ***]		[0.0046 ***]		[0.0001***]
BEL-20	0.0982407	X	0.348152	X	0.866056
	(0.0217138)		(0.0896264)		(0.0218759)
	[0.0001***]		[0.0001***]		[0.0001***]
CAC 40	0.0309540	X	0.984412	X	0.928840
	(0.00497699)		(0.0184129)		(0.00995893)
	[0.0001***]		[0.0001***]		[0.0001***]
DAX	0.0356813	X	0.981625	X	0.918774
	(0.00515075)		(0.0190388)		(0.0107879)
	[0.0001***]		[0.0001***]		[0.0001***]
FTSE 100	0.0379096	X	0.984430	X	0.908964
	(0.00607039)		(0.0170426)		(0.0135027)
	[0.0001***]		[0.0001***]		[0.0001***]
Hang Seng	0.0160259	X	0.977247	X	0.959993
	(0.00346387)		(0.0305710)		(0.00848066)
	[0.0001***]		[0.0001***]		[0.0001***]
Nasdaq - 100	0.0285278	X	0.745991	X	0.951707
	(0.0154484)		(0.419150)		(0.00984780)
	[0.0648*]		[0.0751*]		[0.0001***]
Nikkei 225	0.0659869	X	0.320605	X	0.912522
	(0.0123894)		(0.0999821)		(0.0147372)
	[0.0001***]		0.0013***]		0.0001***]
OSEAX	0.0816038	X	0.434648	X	0.815866
	(0.0255899)		(0.143545)		(0.0455215)
	[0.0014***]		[0.0025***]		[0.0001***]
S&P TSX	0.0269631	0.0300864	0.104373	-0.0296341	0.912324
Composite	(0.00751698)	(0.0146464)	(0.0293401)	(0.0144567)	(0.0233715)
	[0.0003***]	[0.0400**]	[0.0004***]	[0.0404**]	[0.0001***]
Standard &	0.0302520	X	0.993993	X	0.932818
Poor's	(0.00559027)		(0.00722113)		(0.0118254)
	[0.0001***]		[0.0001***]		[0.0001***]
Straits Times	0.0743685	X	0.199799	X	0.904503
	(0.0250608)		(0.0735604)		(0.0306879)
	[0.0030***]		[0.0066***]		[0.0001***]
SSMI	0.0397917	X	0.970371	X	0.904977
	(0.00689665)		(0.0589502)		(0.0136424)
	[0.0001***]		[0.0001***]		0.0001***]
TAIEX	0.0421033	x	0.296706	Х	0.947357
	(0.0112890)		(0.0876213)		(0.0132104)
	[0.0002***]		[0.0007***]		[0.0001***]

Notes: Standard Errors are within round brackets; p-values are within squared brackets; ***, **, ** mean significant at 0.01, 0.05, and 0.1 levels, respectively

Table 6. GJR - GARCH conditional mean equation for advanced markets indexes: second sub-sample

Index	μ_1	μ_2	μ_3	μ_4	μ_5
AEX General	-0.00154014	-0.0484031	-0.0394375	-0.0165317	0.0511868
	(0.0616886)	(0.0688564)	(0.0645827)	(0.0671994)	(0.0588107)

	[0.9801]	[0.4821]	[0.5414]	[0.8057]	[0.3841]
All Ordinaries	0.0244476	-0.00962768	-0.0130367	0.0909229	-0.0456738
All Ordinaries					
	(0.0594320)	(0.0530526)	(0.0568489)	(0.0586453)	(0.0551605)
A 777.7	[0.6808]	[0.8560]	[0.8186]	[0.1210]	[0.4077]
ATX	-0.0259364	-0.0893432	0.0123288	-0.0069001	0.0289874
	(0.0892951)	(0.0842077)	(0.0859728)	(0.0926134)	(0.0797465)
	[0.7715]	[0.2887]	[0.8860]	[0.9406]	[0.7162]
BEL-20	-0.0133871	-0.0556456	0.0152431	-0.0863495	0.0275490
	(0.0651973)	(0.0677728)	(0.0661938)	(0.0672150)	(0.0619648)
	[0.8373]	[0.4116]	[0.8179]	[0.1989]	[0.6566]
CAC 40	-0.0458785	-0.0422756	0.0150984	-0.0568853	0.0531790
	(0.0689226)	(0.0708645)	(0.0713530)	(0.0723867)	(0.0761244)
	[0.5056]	[0.5508]	[0.8324]	[0.4320]	[0.4848]
DAX	0.0200216	0.0355220	0.0524474	0.00016441	0.112974
	(0.0634883)	(0.0660633)	(0.0696703)	(0.0694342)	(0.0679473)
	[0.7525]	[0.5908]	[0.4516]	[0.9981]	[0.0964*]
FTSE 100	0.0151388	-0.0168573	-0.0481037	-0.0047505	0.0822111
	(0.0583701)	(0.0637588)	(0.0626174)	(0.0600161)	(0.0580826)
	[0.7954]	[0.7915]	[0.4424]	[0.9369]	[0.1569]
Hang Seng	0.0706178	-0.0668694	-0.00089909	0.0198497	0.0634904
	(0.0878434)	(0.0815728)	(0.0803999)	(0.0740114)	(0.0760585)
	[0.4215]	[0.4124]	[0.9911]	[0.7885]	[0.4039]
Nasdaq - 100	0.0389407	-0.0145717	0.0936727	0.0653279	0.00816826
1	(0.0666882)	(0.0659888)	(0.0641544)	(0.0672002)	(0.0703892)
	[0.5593]	[0.8252]	[0.1443]	[0.3310]	[0.9076]
Nikkei 225	-0.0127374	-0.0831226	0.0196591	0.116310	-0.120585
	(0.0824980)	(0.0670854)	(0.0738713)	(0.0743260)	(0.0792662)
	[0.8773]	[0.2153]	[0.7901]	[0.1176]	[0.1282]
OSEAX	0.0466948	-0.0920927	0.0183655	0.0526510	0.167674
	(0.0707644)	(0.0802278)	(0.0756938)	(0.0744943)	(0.0673503)
	[0.5093]	[0.2510]	[0.8083]	[0.4797]	[0.0128**]
S&P TSX	-0.00315342	-0.0210763	0.0744394	0.0187790	0.0673859
Composite	(0.0543088)	(0.0734330)	(0.0573689)	(0.0581985)	(0.0494494)
	[0.9537]	[0.7741]	[0.1944]	[0.7469]	[0.1730]
Standard &	0.0212589	0.0228199	0.0803565	0.0856502	0.0704222
Poor's	(0.0504691)	(0.0545812)	(0.0547923)	(0.0583547)	(0.0561053)
1 001 5	[0.6736]	[0.6759	[0.1425]	[0.1422]	[0.2094]
Straits Times	-0.0154191	0.0428444	0.0703298	-0.0452142	0.0809787
State Times	(0.0677824)	(0.0551151)	(0.0619488)	(0.0508141)	(0.0507811)
	[0.8201]	[0.4369]	[0.2563]	[0.3736]	[0.1108]
SSMI	0324872	0244685	0.0213740	0.00526163	0.0143190
551111	(0.0477756)	(0.0538065)	(0.0490269)	(0.0553460)	(0.0559189)
	[0.4965]	[0.6493]	[0.6629]	[0.9243]	[0.7979]
TAIEX	0.0944737	0.00189929	0.164928	0.0482840	0.0174514
IAIEA	(0.0785341)	(0.0615602)	(0.0655463)	(0.0670236)	(0.0641278)
	[0.2290]	[0.9754]	[0.0119**]	[0.4713]	[0.7855]
	[0.2290]	[0.7/34]	[0.0119]	[0.4/13]	[0.7633]

Notes: Standard Errors are within round brackets; p-values are within squared brackets; ***, ** mean significant at 0.01, 0.05, and 0.1 levels, respectively

Table 7 - GJR - GARCH conditional variance equation for advanced markets indexes: second sub-sample

Day of the week variables

Index	ø	v_1	v_2	v_4	v ₅
AEX General	-0.04324	0.168222	0.188584	0.0997146	-0.10076
	(0.12852)	(0.17277)	(0.22181)	(0.198414)	(0.18702)
	[0.7365]	[0.3302]	[0.3952]	[0.6153]	[0.5900]
All Ordinaries	0.142746	0.126296	-0.318576	-0.0596804	-0.292120
	(0.078788)	(0.127923)	(0.141847)	(0.158566)	(0.122670)
	[0.0700*]	[0.3235]	[0.0247**]	[0.7066]	[0.0172**]
ATX	0.0789616	-0.0799536	0.156419	0.0966971	-0.306418
	(0.195994)	(0.271261)	(0.358553)	(0.277149)	(0.299758)
	[0.6870]	[0.7682]	[0.6627]	[0.7272]	[0.3067]

BEL-20	0.0113127	0.174054	0.135552	0.0892056	-0.155335
	(0.168275)	(0.236872)	(0.296688)	(0.278415)	(0.219552)
	[0.9464]	[0.4625]	[0.6478]	[0.7487]	[0.4792]
CAC 40	-0.0383724	0.00720544	0.173227	0.160380	0.127108
	(0.187525)	(0.245441)	(0.374967)	(0.276801)	(0.265154)
	[0.8379]	[0.9766]	[0.6441]	[0.5623]	[0.6317]
DAX	0.00826400	-0.0840347	0.171380	0.0658735	0.00389301
	(0.188436)	0.219478)	0.360970)	0.283167)	0.248533)
	[0.9650]	[0.7018]	[0.6349]	[0.8160]	[0.9875]
FTSE 100	0.0251352	0.0455005	0.123995	-0.0669032	-0.0473587
	(0.134414)	(0.168334)	(0.226670)	(0.213619)	(0.162442)
	[0.8517]	[0.7869]	[0.5844]	[0.7541]	[0.7706]
Hang Seng	0.104723	0.190971	-0.310712	-0.307724	0.130701
	(0.176249)	(0.277384)	(0.303084)	(0.263576)	(0.223103)
	[0.5524]	[0.4912]	[0.3053]	[0.2430]	[0.5580]
Nasdaq - 100	-0.0732849	-0.0456796	0.251059	0.176123	0.172736
-	(0.146824)	(0.169046)	(0.283806)	(0.231170)	(0.195628)
	[0.6177]	[0.7870]	[0.3764]	[0.4461]	[0.3772]
Nikkei 225	0.231315	-0.219734	-0.450391	-0.147757	0.00732893
	(0.154421)	(0.206983)	(0.280074)	(0.246798)	(0.227326)
	[0.1341]	[0.2884]	[0.1078]	[0.5494]	[0.9743]
OSEAX	-0.0868262	0.0768428	0.459701	0.0391907	0.0757571
	(0.167132)	(0.208162)	(0.289283)	(0.252344)	(0.260115)
	[0.6034]	[0.7120]	[0.1120]	[0.8766]	[0.7709]
S&P TSX	-0.176455	0.153245	0.479664	0.209477	0.140566
Composite	(0.07477)	(0.112762)	(0.166563)	(0.123576)	(0.102230)
	[0.0183**]	[0.1741]	[0.004***]	[0.0901*]	[0.1691]
Standard &	-0.0481409	-0.0409121	0.230775	0.165012	-0.0273488
Poor's	(0.123343	(0.147554	(0.242846	(0.226507	(0.157758
	[0.6963]	[0.7816]	[0.3420]	[0.4663]	[0.8624]
Straits Times	0.180433	0.0448178	-0.331768	-0.403754	-0.133057
	(0.085670)	(0.121795)	(0.138955)	(0.134656)	(0.104887)
	[0.0352**]	[0.7129]	[0.0170**]	[0.0027***]	[0.2046]
SSMI	-0.12999	0.0498034	0.304655	0.248457	0.0997675
	(0.090833)	(0.124468)	(0.187383)	(0.131974)	(0.119725)
	[0.2135]	[0.6891]	[0.1040]	[0.0598*]	[0.4047]
TAIEX	0.179270	0.00245523	0.462692	0.154864	0.110801
	(0.140792)	(0.234657)	(0.226193)	(0.284204)	(0.181664)
	[0.2029]	[0.9917]	[0.0408**]	[0.5858]	[0.5419]

Other conditional variance variables

Index	a_1	a_2	γ ₁	γ_2	β
AEX General	0.0439067	X	1.02878	X	0.899037
	(0.007776)		(0.019222)		(0.01673)
	[0.0001***]		[0.0001***]		[0.0001***]
All Ordinaries	0.0289263	X	1.47776	X	0.883720
	(0.0128317)		(0.481306)		(0.0190041)
	[0.0242**]		[0.0021***]		[0.0001***]
ATX	0.0671511	X	0.509659	X	0.898397
	(0.0283737)		(0.176026)		(0.0314497)
	[0.0179**]		[0.0038***]		[0.0001***]
BEL-20	0.0790858	X	0.667860	X	0.860715
	(0.0246216)		(0.212183)		(0.0274383)
	[0.0013***]		[0.0016***]		[0.0001***]
CAC 40	0.0523974	X	1.01369	X	0.877372
	(0.0103578)		(0.00754771)		(0.0217141)
	[0.0001***]		[0.0001***]		[0.0001***]
DAX	0.0431282	X	1.01772	X	0.895449
	(0.00827872)		(0.0103799)		(0.0183616)
	[0.0001***]		[0.0001***]		[0.0001***]
FTSE 100	0.0458975	X	1.01504	Х	0.887379
	(0.00843226)		(0.00795133)		(0.0192211)
	[0.0001***]		[0.0001***]		[0.0001***]
Hang Seng	0.0730281	X	0.353519	X	0.901957

		1		1	1
	(0.0131446)		(0.0898681)		(0.0177123)
	[0.0001***]		[0.0001***]		[0.0001***]
Nasdaq - 100	0.0420197	X	1.01958	X	0.892819
	(0.00763084)		(0.0140955)		(0.0166944)
	[0.0001***]		[0.0001***]		[0.0001***]
Nikkei 225	0.0722617	X	0.574660	X	0.869902
	(0.0228655)		(0.222813)		(0.0215227)
	[0.0016***]		[0.0099***]		[0.0001***]
OSEAX	0.0709407	X	0.529780	X	0.889612
	(0.0150306)		(0.132217)		(0.0157966)
	[0.0001***]		[0.0001***]		[0.0001***]
S&P TSX Composite	0.0204790	0.0487121	1.02348	0.0838395	0.884812
	(0.0121594)	(0.0258899)	(0.0118150)	(0.0497548)	(0.0190063)
	[0.0921*]	[0.0599*]	[0.0001***]	[0.0916*]	[0.0001***]
Standard & Poor's	0.0460070	X	1.02633	X	0.895880
	(0.00859964)		(0.0126575)		(0.0168948)
	[0.0001***]		[0.0001***]		[0.0001***]
Straits Times	0.0651887	Х	0.360451	Х	0.917132
	0.0168562)		(0.0894941)		0(.0186075)
	[0.0001***]		[0.0001***]		[0.0001***]
SSMI	0.0484465	X	1.02040	X	0.880444
	(0.00826308)		(0.0168760)		(0.0180590)
	[0.0001***]		[0.0001***]		[0.0001***]
TAIEX	0.0591813	x	0.487612	X	0.905759
	(0.0215096)		(0.171944)		(0.0302413)
	[0.0059***]		[0.0046***]		[0.0001***]
NT 4 C: 1 1E	1.1 1	11 1 .		11 1	

Notes: Standard Errors are within round brackets; p-values are within squared brackets; ***, **, * mean significant at 0.01, 0.05, and 0.1 levels, respectively

 Table 8 - GJR - GARCH conditional mean equation for emerging markets indexes: first sub-sample

Index	μ_1	μ_2	μ_3	μ_4	μ_5
Athex Composite	-0.124650	-0.0491162	0.0272962	0.120085	0.124267
Share	(0.0531007)	(0.0529838)	(0.4795)	(0.0562685)	(0.0496491)
	[0.0189**]	[0.3539]	[0.6316]	[0.0328**]	[0.0123**]
BET-C	0.0617362	0.118531	0.152402	0.0978414	0.150505
	(0.0533116)	(0.0528773)	(0.048756)	(0.0461737)	(0.0484912)
	[0.2469]	[0.0250**]	[0.0018***]	[0.0341**]	[0.0019***]
Bovespa	-0.0781432	0.0548061	0.171253	0.0247076	0.196375
•	(0.0932146)	(0.0900391)	(0.0939205)	(0.0982074)	(0.0803072)
	[0.4019]	[0.5427]	[0.0682*]	[0.8014]	[0.0145**]
BSE 30	0.170586	0.0788403	0.0804323	0.174107	0.134966
	(0.0692384)	(0.0612375)	(0.0601387)	(0.0631244)	(0.0666715)
	[0.0137]	[0.1979]	[0.1811]	[0.0058***]	[0.0429**]
BUX	0.167014	0.0556660	-0.0385334	0.100626	0.0480655
	(0.0711989)	(0.0667083)	(0.0728563)	(0.0688408)	(0.0647362)
	[0.0190**]	[0.4040]	[0.5969]	[0.1438]	[0.4578]
CROBEX	0.0656239	0.0796818	0.0650210	0.0722343	0.0616566
	(0.0526915)	(0.0481369)	(0.0455672)	(0.0466311)	(0.0450899)
	[0.2130]	[0.0979*]	[0.1536]	[0.1214]	[0.1715]
IDX Composite	-0.101013	0.0961067	0.181250	0.115435	0.279932
_	(0.0673556)	(0.0590346)	(0.0624430)	(0.0624985)	(0.0609141)
	[0.1337]	[0.1035]	[0.0037***]	[0.0647*]	[0.0001***]
IPC	0.0804551	0.136578	0.124638	0.143806	0.0953993
	(0.0577221)	(0.0603060)	(0.0616259)	(0.0592880)	(0.0522136)
	[0.1634]	[0.0235**]	[0.0431**]	[0.0153**]	[0.0677*]
KLSE Composite	-0.0137552	-0.00382785	0.0409280	0.00707011	0.0800758
•	(0.0360811)	(0.0301491)	(0.0365695)	(0.0360224)	(0.0299072)
	[0.7030]	[0.8990]	[0.2631]	[0.8444]	0.0074***]
KOSPI	0.0151799	0.00235562	0.0706150	0.170977	0.114755
	(0.0863878)	(0.0696418)	(0.0785223)	(0.0764530)	(0.0752548)
	[0.8605]	[0.9730]	[0.3685]	[0.0253**]	[0.1273]
MerVal	0.0218198	0.0561594	0.151455	0.210751	0.0588398
	(0.0991120)	(0.0865118)	(0.0901837)	(0.0918500)	(0.0841262)
	[0.8258]	[0.5162]	[0.0931*]	[0.0218**]	[0.4843]

OMXT	0.0193603	0.0819035	0.0675682	0.0857097	0.0818093
	(0.0331517)	(0.0337247)	(0.0341702)	(0.0312644)	(0.0331336)
	[0.5592]	[0.0152**]	[0.0480**]	[0.0061***]	[0.0135**]
PX	0.161169	0.0481942	0.0589307	0.200690	0.125966
	(0.0561626)	(0.0574828)	(0.0574290)	(0.0575984)	(0.0496882)
	[0.0041***]	[0.4018]	[0.3048]	[0.0005***]	[0.0112**]
SEMDEX	0.0234146	0.0141426	0.0330008	0.0295841	0.0526948
	(0.0153544)	(0.0150355)	(0.0159882)	(0.0156898)	(0.0153986)
	[0.1273]	[0.3469]	[0.0390**]	[0.0594*]	[0.0006***]
SSE Composite	-0.00110230	0.149286	0.0399518	-0.0800717	-0.00849171
	(0.0595221)	(0.0391230)	(0.0497895)	(0.0451211)	(0.0451516)
	[0.9852]	[0.0001***]	[0.4223]	[0.0760*]	[0.8508]
TA 100	0.212063	-0.0173368	-0.0178327	0.118978	X
	(0.105034)	(0.0527500)	(0.0613055)	(0.0593434)	
	[0.0435**]	[0.7424]	[0.7711]	[0.0450**]	

Notes: Standard Errors are within round brackets; p-values are within squared brackets; ***, ** mean significant at 0.01, 0.05, and 0.1 levels, respectively

Table 9- GJR- GARCH conditional variance equation for emerging markets indexes: first sub-sample

Day of the week variables

Index	ω	$\mathbf{v_1}$	\mathbf{v}_2	v_4	v ₅
Athex	0.184483	0.0845121	-0.12293	-0.1430	-0.358769
Composite	(0.15401)	(0.20414)	(0.23492)	(0.23581)	(0.17188)
Share	[0.2310]	[0.6789]	[0.6008]	[0.5442]	[0.0369**]
BET-C	-0.017187	0.328612	0.228741	0.0744826	0.253330
	(0.116454)	(0.179966)	(0.220013)	(0.181314)	(0.155149)
	[0.8827	[0.0679*]	[0.2985]	[0.6812]	[0.1025]
Bovespa	0.217147	0.500373	-0.313047	-0.0400775	-0.723147
	(0.292247)	(0.323601)	(0.464946)	(0.371483)	(0.367780)
	[0.4575]	[0.1220]	[0.5008]	[0.9141]	[0.0493**]
BSE 30	0.227722	0.0385744	-0.375799	-0.0628776	-0.0819548
	(0.154138)	(0.200375)	(0.238404)	(0.260641)	(0.211602)
	[0.1396]	[0.8473]	[0.1150]	[0.8094]	[0.6985]
BUX	0.355699	-0.372005	-0.302052	-0.442701	-0.197457
	(0.167571)	(0.216705)	(0.269077)	(0.276158)	(0.255499)
	[0.0338**]	[0.0860*]	[0.2616]	[0.1089]	[0.4396]
CROBEX	0.0721569	0.324140	-0.0318306	0.180517	0.0278884
	(0.138093)	(0.203262)	(0.230716)	(0.219093)	(0.173797)
	[0.6013]	[0.1108]	[0.8903]	[0.4100]	[0.8725]
IDX	0.360355	0.170070	-0.349778	-0.165766	-0.277376
Composite	(0.194380)	(0.243876)	(0.289747)	(0.297831)	(0.230314)
	[0.0638*]	[0.4856]	[0.2274]	[0.5778]	[0.2285]
IPC	0.135606	0.0272622	-0.0421552	-0.128571	-0.292022
	(0.0990071)	(0.147945)	(0.163550)	(0.173026)	(0.166339)
	[0.1708]	[0.8538]	[0.7966]	[0.4574]	[0.0792*]
KLSE	0.124158	-0.128533	-0.176982	0.0909103	-0.138849
Composite	(0.0489771)	(0.0611690)	(0.0694633)	(0.0557009)	(0.0706565)
	[0.0112**]	[0.0356**]	[0.0108**]	[0.1027]	[0.0494**]
KOSPI	0.165548	-0.0617593	-0.345344	-0.256106	0.0496151
	(0.229069)	(0.239613)	(0.308141)	(0.409730)	(0.266716)
	[0.4699]	[0.7966]	[0.2624]	[0.5319]	[0.8524]
MerVal	0.330504	0.259874	-0.516650	-0.395128	-0.422134
	(0.325283)	(0.374279)	(0.636516)	(0.527232)	(0.455789)
	[0.3096]	[0.4875]	[0.4170]	[0.4536]	[0.3544]
OMXT	0.0560990	-0.0053958	-0.0639412	-0.0989721	-0.0328028
	(0.0653915	(0.0940359)	(0.0997121)	(0.110435)	(0.108236)
	[0.3910]	[0.9542]	[0.5214]	[0.3701]	[0.7618]
PX	0.0697436	0.0423529	0.0845749	0.0908410	-0.267399
	(0.123330)	(0.145699)	(0.193244)	(0.201354)	(0.184297)
	[0.5717]	[0.7713]	[0.6616]	[0.6519]	[0.1468
SEMDEX	0.110958	-0.0303218	-0.0400914	-0.0290464	-0.0367730
	(0.0302207)	(0.0241039)	(0.0249661)	(0.0279354)	(0.0231048)
	[0.0002***]	[0.2084]	[0.1083]	[0.2984]	[0.1115]

SSE	0.483199	0.437855	-1.23670	-0.404270	-0.316930
Composite	(0.183315)	(0.323937)	(0.352987)	(0.336544)	(0.278272)
	[0.0084***]	[0.1765]	[0.0005***]	[0.2297]	[0.2547]
TA 100	0.341122	0.335492	-0.932165	-0.201513	X
	(0.147023)	(0.276179)	(0.20426)	(0.269004)	
	[0.0203**]	[0.2245]	[0.0001***]	[0.4538]	

Other conditional variance variables

Index	α_1	α_2	γ_1	γ_2	β
Athex Composite Share	0.104079	X	0.260595	X	0.842609
1	(0.030645)		(0.067758)		(0.047852)
	[0.0007***]		[0.0001***]		[0.0001***]
BET-C	0.390246	-0.273368	0.194886	0.228700	0.867559
	(0.0574123)	(0.0709686)	(0.112049)	(0.0961448)	(0.0619715)
	[0.0001***]	[0.0001***]	[0.0820*]	[0.0174**]	[0.0001***]
Bovespa	0.0220422	X	0.968402	X	0.922980
	(0.00607510)		(0.054849)		(0.0271047)
	[0.0003***]		[0.0001***]		[0.0001***]
BSE 30	0.124758	X	0.362801	X	0.788715
	(0.0243646)		(0.0918808)		(0.0370616)
	[0.0001***]		[0.0001***]		[0.0001***]
BUX	0.0619469	X	0.257143	X	0.885238
	(0.0144608)		(0.112207)		(0.0216555)
	[0.0001***]		[0.0219**]		[0.0001***]
CROBEX	0.203779	X	-0.164579	X	0.710559
	(0.0792956)		(0.0808776)		(0.108483)
	[0.0102**]		[0.0419**]		[0.0001***]
IDX Composite	0.0880075	X	0.398331	X	0.764327
	(0.0343131)		(0.145956)		(0.0839018)
	[0.0103**]		[0.0064***]		[0.0001***]
IPC	0.0647729	X	0.507126	X	0.888887
	(0.0194441)		(0.119515)		(0.0276038)
	[0.0009***]		[0.0001***]		[0.0001***]
KLSE Composite	0.0981506	X	-0.124127	X	0.894011
	(0.0579478)		(0.0719683)		(0.0634279)
	[0.0903*]		[0.0846*]		[0.0001***]
KOSPI	0.0399033	0.0916998	0.984021	0.228292	0.899318
	(0.0199430)	(0.0409716)	(0.0215196)	(0.121790)	(0.0351897)
	[0.0454**]	[0.0252**]	[0.0001***]	[0.0609*]	[0.0001***]
MerVal	0.0942423	X	0.222608	X	0.879824
	(0.0169718)		(0.0633037)		(0.0201464)
	[0.0001***]		[0.0004***]		[0.0001***]
OMXT	0.198619	X	0.0506546	X	0.832328
	(0.0532266)		(0.0204370)		(0.0377430)
	[0.0002***]		[0.0132**]		[0.0001***]
PX	0.0951020	X	0.254242	X	0.858748
	(0.0148611)		(0.0896571)		(0.0195196)
an their	[0.0001***]		0.0046***]		0.0001***]
SEMDEX	0.576364	X	-0.228739	X	0.0967157
	(0.132050)		(0.0741679)		(0.0346091)
age o	[0.0001***]		[0.0020***]		[0.0052***]
SSE Composite	0.182950	X	0.224401	X	0.761419
	(0.0557012)		(0.0677898)		(0.0598452)
TH. 100	[0.0010***]		[0.0009***]		[0.0001***]
TA 100	0.0788252	X	0.306229	X	0.835340
	(0.0324123)		(0.162902)		(0.0820009)
	[0.0150**]		[0.0601*]		[0.0001***]

Notes: Standard Errors are within round brackets; p-values are within squared brackets; ***, **, * mean significant at 0.01, 0.05, and 0.1 levels, respectively

Table 10. GJR- GARCH conditional mean equation for emerging markets indexes: second sub-sample

Index	μ_1	μ_2	μ_3	μ_4	μ_5
-------	---------	---------	---------	---------	---------

Athex Composite Share	-0.271912	-0.135823	0.0738800	-0.0581420	0.132957
	(0.0975980)	(0.106226)	(0.0921946)	(0.0929195)	(0.0851906)
	[0.0053***]	[0.2010]	[0.4229]	[0.5315]	[0.1186]
BET-C	-0.129960	-0.0807418	0.0522272	0.0923277	0.188367
	(0.076394)	(0.0679077)	(0.0642144)	(0.0668125)	(0.0638602)
	[0.0889 *]	[0.2344]	[0.4160]	[0.1670]	[0.0032***]
Bovespa	0.0121202	-0.0470852	0.0486121	0.0365851	0.0464125
<u>.</u>	(0.0847223)	(0.101406)	(0.0898602)	(0.0852854)	(0.079884)
	[0.8862]	[0.6424]	[0.5885]	[0.6679]	[0.5612]
BSE 30	0.0115869	0.0917477	0.0220690	-0.0163387	0.0634090
	(0.0790990)	(0.121324)	(0.0706942)	(0.0713767)	(0.126805)
	[0.8835]	[0.4495]	[0.7549]	[0.8189]	[0.6170]
BUX	-0.00120307	-0.0897011	0.0221549	-0.0859577	0.0239887
	(0.0852512)	(0.0847159)	(0.0805930)	(0.0760934)	(0.0861747)
	[0.9887]	[0.2897]	[0.7834]	[0.2586]	[0.7807]
CROBEX	-0.265705	-0.0636285	0.0960594	0.0562492	0.134675
	(0.0525838)	(0.0536227)	(0.0533120)	(0.0471270)	(0.0461246)
	[0.0001***]	[0.2354]	[0.0716*]	[0.2326]	[0.0035***]
IDX Composite	-0.0284996	0.122663	0.226459	0.0865944	0.174906
1	(0.0734586)	(0.0688393)	(0.069304)	(0.0674238)	(0.0671185)
	[0.6980]	[0.0748*]	[0.0011***]	[0.1990]	[0.0092***]
IPC	0.110366	-0.0671275	0.0858926	0.0526721	0.0496451
	(0.0600480)	(0.0661109)	(0.0595861)	(0.0507405)	(0.0558366)
	[0.0661*]	[0.3099]	[0.1494]	[0.2992]	[0.3739]
KLSE Composite	-0.0001688	0.0662186	0.0970672	0.0735054	0.0883412
1	(0.0451861)	(0.0349022)	(0.0379239)	(0.0360355)	(0.0351702)
	[0.9970]	[0.0578*]	[0.0105**]	[0.0414**]	[0.0120**]
KOSPI	-0.0594856	0.00232102	0.0962986	0.0618686	0.0248066
	(0.0727538)	(0.0589869)	(0.0675418)	(0.071298)	(0.0761519)
	[0.4136]	[0.9686]	[0.1539]	[0.3855]	[0.7446]
MerVal	0.000900761	0.0252420	0.193599	0.0153923	0.103877
	(0.101350)	(0.0964758)	(0.0764287)	(0.0881444)	(0.0727339)
	[0.9929]	[0.7936]	[0.0113**]	[0.8614]	[0.1532]
OMXT	-0.128825	-0.0421612	0.0536126	-0.0224543	0.0960759
	(0.0605006)	(0.0595410)	(0.0484965)	(0.0519274)	(0.0528979)
	[0.0332**]	[0.4789]	[0.2689]	[0.6654]	[0.0693*]
PX	0.00712210	-0.0979148	0.135969	-0.0367208	0.0153903
	(0.0678791)	(0.0682125)	(0.0649496)	(0.0691632)	(0.068136)
	[0.9164]	[0.1512]	[0.0363**]	[0.5955]	[0.8213]
SEMDEX	-0.0661893	-0.002094	0.0129429	0.00600948	0.0564874
	(0.0264205)	(0.0253749)	(0.0305844)	(0.0248812)	(0.023132)
	[0.0122**]	[0.9342]	[0.6722]	[0.8091]	[0.0146**]
SSE Composite	0.192124	-0.0977652	0.0632809	-0.0861354	0.102332
	(0.117297)	(0.0876406)	(0.0938420)	(0.0846607)	(0.0743509)
	[0.1014]	[0.2646]	[0.5001]	[0.3090]	[0.1687]
TA 100	0.0893025	0.0284323	0.117337	-0.0337701	0.0459268
	(0.106690)	(0.06402)	(0.07167)	(0.0599409)	(0.07632)
	[0.4026]	[0.6570]	[0.1016]	[0.5732]	[0.5473]

Notes: Standard Errors are within round brackets; p-values are within squared brackets; ***, **, * mean significant at 0.01, 0.05, and 0.1 levels, respectively

 $\begin{table} \textbf{Table 11 -} GJR - GARCH conditional variance equation for emerging markets indexes:} \\ second sub-sample \end{table}$

Day of the week variables

Index	Ø	v_1	v_2	v_4	v ₅
Athex	-0.70948	1.16439	1.52021	0.78225	0.581959
Composite	(0.33104)	(0.465883)	(0.642969)	(0.448849)	(0.430533)
Share	[0.0321**]	[0.0124**]	[0.0181**]	[0.0814*]	[0.1765]
BET-C	-0.048467	0.527912	-0.049947	0.282060	-0.072963
	(0.164286)	(0.222805)	(0.350144)	(0.263561)	(0.216509)
	[0.7680]	[0.0178**]	[0.8866]	[0.2845]	[0.7361]
Bovespa	-0.158273	0.279844	0.623337	0.207060	0.0452774
	(0.224914)	(0.335054)	(0.362470)	(0.375471)	(0.290304)

	[0.4816]	[0.4036]	[0.0855*]	[0.5813]	[0.8761]
BSE 30	0.241072	-0.212904	-0.727474	-0.150383	0.150030
DSE 50	(0.404899)	(0.969580)	(0.661998)	(0.372171)	(0.182962)
	[0.5516]	[0.8262]	[0.2718]	[0.6862]	[0.4122]
BUX	0.0524111	-0.0626724	0.0312995	-0.132712	0.213927
DOA	(0.222611)	(0.318108)	(0.352697)	(0.407681)	(0.309138)
	[0.8139]	[0.8438]	[0.9293]	[0.7448]	[0.4889]
CROBEX	0.0484317	0.164144	-0.102346	-0.0931211	-0.120889
CROBLA	(0.0975308)	(0.178574)	(0.149660)	(0.172532)	(0.125403)
	[0.6195]	[0.3580]	[0.4941]	[0.5894]	[0.3350]
IDX Composite	0.255580	0.140655	-0.360884	-0.195675	-0.105504
1D/X Composite	(0.166776)	(0.232096)	(0.249311)	(0.283555)	(0.244748)
	[0.1254	[0.5445	[0.1478	[0.4901	[0.6664
IPC	-0.0679870	0.241915	0.101468	-0.0781436	0.156489
irc	(0.105419)	(0.148378)	(0.182722)	(0.162456)	(0.150863)
	[0.5190]	[0.1030]	[0.5787]	[0.6305]	[0.2996]
KLSE	0.114915	0.0906616	-0.133645	-0.108611	0.00821924
Composite	(0.0798989)	(0.0925893)	(0.113936)	(0.106478)	(0.0952105)
Composite	[0.1504]	[0.3275]	[0.2408]	[0.3077]	[0.9312]
KOSPI	0.273026	-0.242561	-0.579115	-0.136426	-0.144025
KOSPI	(0.114255)	(0.172378)	(0.206330)	(0.228498)	(0.162496)
	[0.0169**]	[0.172378]	[0.0050***]	[0.5505]	[0.3754]
MerVal	-0.294361	1.21610	0.470952	0.772515	-0.0783283
iviei v ai	(0.332848)	(0.450005)	(0.519128)	(0.579288)	(0.449992)
	,	[0.0069***]	` /	` /	` /
OMXT	[0.3765]		[0.3643]	[0.1823]	[0.8618]
OMX1	-0.207958	0.575371	0.266292	0.364028	0.163546
	(0.149723)	(0.247652)	(0.295461)	(0.212580)	(0.192961)
DV	[0.1648]	[0.0202**]	[0.3674	[0.0868*]	[0.3967
PX	0.0219779	0.0179886	0.100432	0.0853103	-0.0470677
	(0.135025)	(0.181896)	(0.242338)	(0.222628)	(0.188512)
CEMPEN	[0.8707]	[0.9212]	[0.6786]	[0.7016]	[0.8028]
SEMDEX	0.123090	-0.0576658	-0.0643370	-0.146310	-0.0957100
	(0.0634068)	(0.0492140)	(0.0683285)	(0.0579367)	(0.0573707)
CCE C	[0.0522*]	[0.2413]	[0.3464]	[0.0116**]	[0.0953*]
SSE Composite	0.130702	0.468668	-0.440635	-0.361733	-0.182143
	(0.231231)	(0.355610)	(0.345214)	(0.474638)	(0.357691)
TA 100	[0.5719]	[0.1875]	[0.2018]	[0.4460]	[0.6106]
TA 100	-0.0828191	0.758071	-0.496967	0.275656	0.206715
	(0.0667726)	(0.0785422)	(0.135232)	(0.107751)	(0.129141)
	[0.2149]	[0.0001***]	[0.0002***]	[0.0105**]	[0.1094]

Other conditional variance variables

Index	α_1	α_2	γ1	γ ₂	В
Athex Composite Share	0.121571	X	0.172749	X	0.859862
-	(0.0189677)		(0.0625657)		(0.0202896)
	[0.0001***]		[0.0058***]		[0.0001***]
BET-C	0.261956	-0.140327	0.218263	-0.188392	0.868292
	(0.0543404)	(0.0586892)	(0.0973720)	(0.0884440)	(0.0230347)
	[0.0001***]	[0.0168**]	[0.0250**]	[0.0332**]	[0.0001***]
Bovespa	0.0590878	X	0.619012	X	0.895973
	(0.0200976)		(0.201297)		(0.0281731)
	[0.0033***]		[0.0021***]		[0.0001***]
BSE 30	0.0694722	X	0.543793	X	0.893300
	(0.0146853)		(0.194587)		(0.0272159)
	[0.0001***]		[0.0052***]		[0.0001***]
BUX	0.101276	X	0.272977	X	0.877639
	(0.0246544)		(0.0704770)		(0.0297007)
	[0.0001***]		[0.0001***]		[0.0001***]
CROBEX	0.0964529	X	0.165297	X	0.897070
	(0.0271008)		(0.0610617)		(0.0251165)
	[0.0004***]		[0.0068***]		[0.0001***]
IDX Composite	0.135833	X	0.389331	X	0.775995
	(0.0363724)		(0.114635)		(0.0737159)

	[0.0002***]		[0.0007***]		[0.0001***]
IPC	0.0341845	X	0.127792	X	0.924336
	(0.0158726)		(0.0271572)		(0.0180237)
	[0.0313**]		[0.0001***]		[0.0001***]
KLSE Composite	0.0388799	X	0.220187	X	0.676888
	(0.0172558)		(0.0729673)		(0.0829656)
	[0.0242**]		[0.0025***]		[0.0001***]
KOSPI	0.0362009	0.0584439	1.00923	0.132805	0.864559
	(0.0148925)	(0.0337227)	(0.00659752)	(0.0636295)	(0.0317880)
	[0.0151**]	[0.0831*]	[0.0001***]	[0.0369**]	[0.0001***]
MerVal	0.130114	X	0.201293	X	0.824001
	(0.0313601)		(0.0821764)		(0.0427067)
	[0.0001***]		[0.0143**]		[0.0001***]
OMXT	0.172179	X	0.117645	X	0.814076
	(0.0566040)		(0.0558468)		(.0557115)
	[0.0024***]		[0.0352**]		[0.0001***]
PX	0.132491	X	0.160412	X	0.846052
	(0.0234456)		(0.0576846)		(0.0245922)
	[0.0001***]		[0.0054***]		[0.0001***]
SEMDEX	0.598606	X	0.159287	X	0.525315
	(0.238969)		(0.091909)		(0.160344)
	[0.0122**]		[0.0655*]		[0.0011***]
SSE Composite	0.134050	X	0.0475152	X	0.961951
	(0.0497006)		(0.0286597)		(0.0301153)
	[0.0070***]		[0.0973*]		[0.0001***]
TA 100	0.0602547	X	0.446569	X	0.889283
	(0.0146969)		(0.149146)		(0.0247238)
	[0.0001***]		[0.0028***]		[0.0001***]

Notes: Standard Errors are within round brackets; p-values are within squared brackets; ***, **, * mean significant at 0.01, 0.05, and 0.1 levels, respectively

Table 12 - Results of ARCH LM tests for residuals of GJR - GARCH models

Advanced Markets			Emerging Markets		
Index	First sub- sample	Second sub- sample	Index	First sub- sample	Second sub- sample
AEX General	3.82442	8.16378	Athex Composite	4.2315	9.56303
	(0.5749)	(0.2263)	Share	(0.7527)	(0.7933)
All Ordinaries	5.79642	7.01345	BET-C	6.52508	5.76374
	(0.7601)	(0.5351)		(0.6864)	(0.6736)
ATX	4.69548	11.6598	Bovespa	8.84215	8.93558
	(0.6971)	(0.3084)	•	(0.6364)	(0.6278)
BEL-20	4.65513	2.34918	BSE 30	3.3976	6.29409
	(0.7937)	(0.8849)		(0.7575)	(0.7101)
CAC 40	4.55634	11.6779	BUX	9.96961	3.94477
	(0.8711)	(0.4719)		(0.6964)	(0.7861)
DAX	4.71099	7.20135	CROBEX	3.25728	8.89959
	(0.5814)	(0.2060)		(0.8602)	(0.7114)
FTSE 100	5.03728	7.5501	IDX Composite	6.46223	6.4898
	(0.6554)	(0.5801)	_	(0.7750)	(0.7725)
Hang Seng	3.65111	12.2059	IPC	4.78851	3.33323
	(0.7237)	(0.5108)		(0.7799)	(0.76600
Nasdaq - 100	5.31084	6.34414	KLSE Composite	9.96271	7.34715
	(0.8064)	(0.3857)		(0.6192)	(0.6923)
Nikkei 225	5.29606	9.19298	KOSPI	4.75869	9.04092
	(0.8705)	(0.4196)		(0.78302)	(0.7698)
OSEAX	3.54891	6.6219	MerVal	3.37442	6.35409
	(0.6160)	(0.4692)		(0.7605)	(0.2732)
S&P TSX	2.76026	8.50659	OMXT	4.21014	8.09781
Composite	(0.7368)	(0.2901)		(0.7552)	(0.7774)
Standard & Poor's	5.80689	6.17705	PX	9.92352	7.35218
	(0.8312)	(0.2893)		(0.6226)	(0.7698)
Straits Times	3.97698	12.8984	SEMDEX	8.88502	9.42561
	(0.7824)	(0.5345)		(0.6325)	(0.8028)

SSMI	4.3547	9.24011	SSE Composite	6.40792	6.86153
	(0.6287)	(0.5094)		(0.7799)	(0.3338)
TAIEX	3.92782	11.6764	TA 100	3.69551	7.16281
	(0.8635)	(0.3884)		(0.8834)	(0.5191)

Notes: p-values are within brackets