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Abstract: 

This paper analyzes, within its feasible parameter space, the dynamics of the Uzawa-Lucas endogenous growth 

model.  The model is solved from a centralized social planner perspective as well as in the model’s decentralized 

market economy form. We examine the stability properties of both versions of the model and locate Hopf and 

transcritical bifurcation boundaries. In an extended analysis, we investigate the existence of Andronov-Hopf 

bifurcation, branch point bifurcation, limit point cycle bifurcation, and period doubling bifurcations. While these all 

are local bifurcations, the presence of global bifurcation is confirmed as well. We find evidence that the model could 

produce chaotic dynamics, but our analysis cannot confirm that conjecture. 

It is important to recognize that bifurcation boundaries do not necessarily separate stable from unstable solution 

domains.  Bifurcation boundaries can separate one kind of unstable dynamics domain from another kind of unstable 

dynamics domain, or one kind of stable dynamics domain from another kind (called soft bifurcation), such as 

bifurcation from monotonic stability to damped periodic stability or from damped periodic to damped multiperiodic 

stability.  There are not only an infinite number of kinds of unstable dynamics, some very close to stability in 

appearance, but also an infinite number of kinds of stable dynamics.  Hence subjective prior views on whether the 

economy is or is not stable provide little guidance without mathematical analysis of model dynamics. 

When a bifurcation boundary crosses the parameter estimates’ confidence region, robustness of dynamical 

inferences from policy simulations are compromised, when conducted, in the usual manner, only at the parameters’ 

point estimates. 
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1. Introduction 

The Uzawa-Lucas model (Uzawa (1965) and Lucas (1988)), upon which many others have 

been built, is among the most important endogenous growth models. The model has two sectors: 

the human capital production sector and the physical capital production sector producing human 

capital and physical capital, respectively. Individuals have the same level of work qualification 

and expertise (H). They allocate some of their time to producing final goods and dedicate the 

remaining time to training and studying.  

The social planner solution for the Uzawa-Lucas model is saddle path stable, but the 

representative agent’s equilibrium can be indeterminate, as shown by Benhabib and Perli (1994). 

As a result of the presence of externalities in human capital, the market solution is different from 

the social planner solution. The externality creates a distinction between return on capital, as 

perceived by the representative agent, to that perceived by a social planner. 

We solve for the steady states and provide a detailed bifurcation analysis of the model. The 

task of this paper is to examine whether the dynamics of the model change within the feasible 

parameter space of the model. A system undergoes a bifurcation, if a small, smooth change in a 

parameter produces a sudden qualitative or topological change in the nature of singular points and 

trajectories of the system. The presence of bifurcation damages the inference robustness of the 

dynamics, when inferences are based on point estimates of the model. Hence, knowing the 

stability boundaries within the feasible region of the parameter space, especially near the point 

estimates, can lead to more robust dynamical inferences and more reliable policy conclusions.  

Using Mathematica, we locate transcritical and Hopf bifurcation boundaries in two-

dimension and three-dimension diagrams. The numerical continuation package, Matcont, is used 

to analyze further the stability properties of the limit cycles generated by Hopf bifurcations and 

the presence of other kinds of bifurcations. We show the existence of Hopf, branch-point, limit-

point-of-cycles, and period-doubling bifurcations within the feasible parameters set of the 

model’s parameter space. While these are all local bifurcations, presence of global bifurcation is 

also confirmed. There is some evidence of the possibility of chaotic dynamics through the 

detected series of period-doubling bifurcations, known to converge to chaos. Some of these 

results have not previously been demonstrated in the literature on endogenous growth models. 
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Benhabib and Perli (1994) analyzed the stability property of the long-run equilibrium in the 

Lucas (1988) model. Arnold (2000a,b) analyzed the stability of equilibrium in the Romer (1990) 

model. Arnold (2006) has done the same for the Jones (1995) model. Mondal (2008) examined 

the dynamics of the Grossman-Helpman (1991b) model of endogenous product cycles. The 

results derived in those papers provide important insights to researchers considering different 

policies. But, as in the Benhabib and Perli (1994) paper, a detailed bifurcation analysis has not 

been provided so far for many of these popular endogenous growth models. The current paper 

aims to fill this gap for the Uzawa-Lucas model.  

As pointed out by Banerjee et al (2011): “Just as it is important to know for what parameter 

values a system is stable or unstable, it is equally important to know the nature of stability (e.g. 

monotonic convergence, damped single periodic convergence, or damped multi-periodic 

convergence) or instability (periodic, multi-periodic, or chaotic).”  Barnett and his coauthors have 

made significant contribution in this area. Barnett and He (1999, 2002) examined the dynamics of 

the Bergstrom-Wymer continuous-time dynamic macroeconometric model of the UK economy. 

Both transcritical bifurcation boundaries and the Hopf bifurcation boundaries for the model were 

found. Barnett and He (2008) have found singularity bifurcation boundaries within the parameter 

space for the Leeper and Sims (1994) model. Barnett and Duzhak (2010) found Hopf and period 

doubling bifurcations in a New Keynesian model. More recently, Banerjee et al (2011) examined 

the possibility of cyclical behavior in the Marshallian Macroeconomic Model and Barnett and 

Eryilmaz (2013a,b) have found bifurcation in open economy models. 

 

2. The Uzawa-Lucas Model 

The production function in the physical sector is defined as follows: 

                                    , 

where Y is output, A is constant technology level, K is physical capital,   is the share of physical 

capital, L is labor, and h is human capital per person. In addition,   and       are the fraction of 

labor time devoted to producing output and human capital, respectively, where      . 

Observe that      is the quantity of labor, measured in efficiency units, employed to produce 

output, and      measures the externality associated with average human capital of the work 



4 

 

force,   , where   is the positive externality parameter in the production of human capital.  In per 

capita terms,                . 

The physical capital accumulation equation is  ̇                     . In per capita 

terms,  ̇                        , and the human capital accumulation equation 

is  ̇         ,  where   is defined as schooling productivity. 

The decision problem is  

        ∫          
  [         ]                                             

subject to    ̇                                                                               
and  ̇                                                                                                  

where           is the subjective discount rate, and        is the inverse of the 

intertemporal elasticity of substitution in consumption.  

2.1. Social Planner Problem 

In solving the maximization problem, (1), subject to the physical capital accumulation 

equation (2) and the human capital accumulation equation (3), the social planner takes into 

account the externality associated with human capital. From the first order conditions (see 

Appendix 2), we derive the equations describing the economy of the Uzawa-Lucas model from a 

social planner’s perspective   ̇                              ̇          
  ̇                           
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  ̇                                           
  ̇     

                                 Taking logarithms of m and g and differentiating 

with respect to time, equations (4) and (5) define the dynamics of Uzawa-Lucas model   ̇                                                        

   ̇  (    )      (    )                                              

                           

The steady state         is given by  ̇   ̇    and derived to be 

                      
                                          

A unique steady state exists, if 

                         . 

In addition,   provides the necessary and sufficient for the transversality condition to hold for the 

consumer’s utility maximization problem (see Appendix 1). Following the footsteps of Barro and 

Sala-i-Martín (2003) and Mattana (2004), it can be shown that social planner solution is saddle 

path stable. We linearize around the steady state,           , to analyze the local stability 

properties of the system defined by equations (4) and (5).  The result is 



6 

 

[ ̇ ̇ ]  [   
   ̇  |    ̇  |    ̇  |    ̇  |  ]   

 
⏟            

[          ]  
where 

   [         (    )    ]  
As                                              hence saddle path stable.  

 

2.2. Representative Agent Problem 

From the first order conditions (see Appendix 3) and setting     ,we derive the equations 

describing the economy of the Uzawa-Lucas model from a decentralized economy’s perspective.   ̇                              ̇          
  ̇                           

  ̇                                     
  ̇     

                 . Taking logarithms of m and g and differentiating with respect to time, the 

following three equations define the dynamics of Uzawa Lucas model 

   ̇                                                     
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   ̇  (    )      (    )                                                        

   ̇                                                           

The steady state            is given by  ̇   ̇   ̇    and derived to be 

                  [          ]  
     [           ]           

     [               ]           
Note that as shown by Benhabib and Perli (1994)                [          ]                              

A unique steady state exists if 

                           
       

In addition,    is the necessary and sufficient for the transversality condition to hold for the 

consumer’s utility maximization problem (appendix 1), and         is necessary for          We linearize the system (6), (7) and (8) around the steady state,              , to acquire 

[ ̇ ̇ ̇ ]  
[  
   
   ̇  |    ̇  |    ̇  |    ̇  |    ̇  |    ̇  |    ̇  |    ̇  |    ̇  |  ]  

   
 

⏟                  
[               ]  
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           [  
                 (    )                  ]  

  
 . 

The characteristic equation associated with     is                 , where 

    [          ]       , 
                        , 

              . 
 

3. Bifurcation Analysis of Uzawa-Lucas Model 

In this section, we examine the existence of codimension 1 and 2, transcritical, and Hopf 

bifurcations in the system (6), (7), and (8). The codimension, as defined by Kuznetsov (1998), is 

the number of independent conditions determining the bifurcation boundary. Varying a single 

parameter helps to identify codimension-1 bifurcation, and varying 2 parameters helps to identify 

codimension-2 bifurcation. 

An equilibrium point, s , of the system is called hyperbolic, if the coefficient matrix,   , has 

no eigenvalues with zero real parts. For small perturbations of parameters, there are no structural 

changes in the stability of a hyperbolic equilibrium, provided that the perturbations are 

sufficiently small. Therefore, bifurcations occur at nonhyperbolic equilibria only.  

A transcritical bifurcation occurs, when a system has a nonhyperbolic equilibrium at the 

bifurcation point with a geometrically simple zero eigenvalue.  Also additional transversality 

conditions must be satisfied, as given by Sotomayor’s Theorem [Barnett and He (1999)]. The first 

condition we are going to use to find the bifurcation boundary is     det(     .  The result is 

the following. 

Theorem 1:    has zero eigenvalues, if 
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 [          ]                                                                               

Hopf bifurcations occur at points at which the system has a nonhyperbolic equilibrium with a 

pair of purely imaginary eigenvalues, but without zero eigenvalues. Also additional transversality 

conditions must be satisfied. We use the following theorem, based upon the version of the Hopf 

Bifurcation Theorem in Guckenheimer and Holmes (1983):    has precisely one pair of pure 

imaginary eigen values, if                       If                   , then J has no 

pure imaginary eigenvalues. The result is: 

Theorem 2: The matrix    has precisely one pair of pure imaginary eigenvalues, if      (              )                                                  } 
              

3.1 .  Case Studies 

To be able to display the boundaries, we consider two or three parameters. But the procedure 

is applicable to any number of parameters. 

Let                    =                                 and                                                     . 

Case I: Free parameters,    . 

Assume that free parameters vary at fixed   (values based on Benhabib and Perli (1994)). The 

result is illustrated in Figure 1.  The boundary in Figure 1 called Hopf gives a range of         

satisfying the Hopf bifurcation conditions, while the one named Transcritical depicts the value of         satisfying conditions for a transcritical bifurcation boundary. 

Similarly, the following cases gives the range of parameter values satisfying conditions (9) 

and (10), represented in the graphs by Transcritical and Hopf,  respectively, while the rest of the 

parameters are set at     
Case II: Free parameters,     (figure 2). 
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Case III: Free parameters,     (figure 3). 

Case IV: Free parameters,      (figure 4). Notice that for case IV, we do not have a Hopf 

bifurcation boundary. 

     We now add another parameter as a free parameter and continue with the analysis. The 

following cases give the range of parameter values satisfying conditions (9) or (10), represented 

in the graphs (5)-(9), while the rest of the parameters are assumed to be at      
Case V: Free parameters,         (figure 5). 

Case VI: Free parameters,        (figure 6). 

Case VII: Free parameters,        (figure 7). Notice that for case IV, we do not have a Hopf 

bifurcation boundary. 

Case VIII: Free parameters,        (figure 8). 

Case IX:  Free parameters,       (figure 9). 

The following is an approach to exploring cyclical behavior in the model. Suppose the 

externality parameter    increases. This causes the savings rate to increase. This is because when 

consumers are willing to cut current consumption in exchange for higher future consumption; that 

is, when intertemporal elasticity of substitution for consumption is high (  is low), people start 

saving more.  Hence there is a movement of labor from output production to human capital 

production. Human capital begins increasing. This implies faster accumulation of physical capital, 

if sufficient externality to human capital in production of physical capital is present. If people care 

about the future more (subjective discount rate   is lower), consumption starts rising gradually 

with faster capital accumulation, leading to greater consumption-goods production in the future. 

This will eventually lead to a decline in savings rate. Two opposing effects come into play when 

savings rate is different from the equilibrium rate, causing a cyclical convergence to equilibrium. 

Hence, interaction between different parameters can cause cyclical convergence to equilibrium 

(figure 10) or may cause instability; and for some parameter values we may have convergence to 

cycles (figure 11). 
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Using the numerical continuation package Matcont, we further investigate the stability 

properties of cycles generated by different combinations of parameters. While some of the limit 

cycles generated by Andronov-Hopf bifurcation are stable (supercritical bifurcation), there could 

be some unstable limit cycles (subcritical bifurcation) created as well. When Hopf bifurcations are 

generated, Table 1 reports the values of the share of capital   , externality in production of 

human capital    , and the inverse of intertemporal elasticity of substitution in consumption    . 

A positive value of the first Lyapunov coefficient indicates creation of subcritical Hopf 

bifurcation. Thus for each of the cases reported in Table 1, an unstable limit cycle (periodic orbit) 

bifurcates from the equilibrium. All of these cases also produce branch points 

(pitchfork/transcritical bifurcations). 

Continuation of limit cycles from the Hopf point, when   is the free parameter, gives rise to 

limit point (Fold/ Saddle Node) bifurcation of cycles. From the family of limit cycles bifurcating 

from the Hopf point, limit point cycle (LPC) is a fold bifurcation, where two limit cycles with 

different periods are present near the LPC point at   = 0.738. 

Continuing computation further from a Hopf point gives rise to a series of period doubling 

(flip) bifurcations. Period doubling bifurcation is defined as a situation in which a new limit cycle 

emerges from an existing limit cycle, and the period of the new limit cycle is twice that of the old 

one. The first period doubling bifurcation, at   = 0.7132369, has positive normal form 

coefficients, indicating existence of unstable double-period cycles.  The rest of the period 

doubling bifurcations have negative normal-form coefficients, giving rise to stable double-period 

cycles.  

The period of the cycle rapidly increases for very small perturbation in parameter  , as is 

evident in figure 12(C). The limit cycle approaches a global homoclinic orbit. A homoclinic orbit 

is a dynamical system trajectory, which joins a saddle equilibrium point to itself. In other words, a 

homoclinic orbit lies in the intersection of equilibrium’s stable manifold and unstable manifold. 

There exists the possibility of reaching chaotic dynamics in the decentralized version of Uzawa-

Lucas model through a series of period doubling bifurcations. 

For the cases in which    and    are free parameters, we carry out the continuation of limit 

cycle from the first Hopf point. Both cases give rise to limit point cycles with a nonzero normal-

http://en.wikipedia.org/wiki/Dynamical_system
http://en.wikipedia.org/wiki/Stable_manifold
http://en.wikipedia.org/wiki/Unstable_manifold
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form coefficient, indicating the limit cycle manifold has a fold at the LPC point. Similar results 

are found, if we carry out the continuation of limit cycles from the second Hopf point for each of 

these cases, and hence we do not report those results. 

 

 

 

 

 

 

Parameters 

Varied 

Equilibrium Bifurcation Bifurcation of Limit Cycle 

  

(Figure 12) 

Other parameters 

set at    

Figure 12 (A) Figure 12 (B) 

Hopf (H) 

First Lyapunov coefficient = 0.00242,   =0.738207 

Limit point cycle (LPC) 

period = 231.206,   = 0.7382042 

Normal form coefficient = 0.007 

Period Doubling (PD) 

period = 584.064,   = 0.7132369 

Normal form coefficient = 0.910 

Period Doubling (PD)  

period = 664.005,   = 0.7132002 

Normal form coefficient = -0.576 

Period Doubling (PD) 

period = 693.988,   = 0.7131958 

Normal form coefficient = -0.469 

Period Doubling (PD) 

period = 713.978,   = 0.7131940 

Normal form  coefficient = -0.368 

Table 1 
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Period Doubling (PD) 

period = 725.667,   = 0.7131932 

Normal form coefficient = -0.314 

Period Doubling (PD) 

period = 784.104,   = 0.7131912 

Normal form coefficient = -0.119 

Branch Point (BP)    

(Figure 13) 

Other parameters 

set at    

Figure 13 (A) Figure 13 (B) 

Hopf (H) 

First Lyapunov coefficient = 0.00250,  =0.107315 

Limit point cycle (LPC) 

period = 215.751,   = 0.1073147 

Normal form coefficient = 0.009 

Hopf (H) 

First Lyapunov coefficient = 0.00246   =0.052623 

 

Branch Point (BP)                

(Figure 14) 

Other parameters 

set at    

Figure 14 (A) Figure 14 (B) 

Hopf (H) 

First Lyapunov coefficient = 0.00264   =0.278571 

Limit point cycle (LPC) 

period = 213.83,    = 0.1394026 

Normal form coefficient = 0.009 

Hopf (H) 

First Lyapunov coefficient = 0.00249  =0.139394 

 

Branch Point (BP)              
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Figure 6: Free Parameters 𝜂 𝜁 𝜎 
(Transcritical Bifurcation Boundary) 

 𝜂 𝜁 𝜎

Figure 7:  𝛼 𝜂 𝜌  are free parameters 
(Hopf Bifurcation Boundary) 
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Figure 8: 𝛼 𝜎 𝜌  are free parameters 
(Hopf Bifurcation Boundary) 

 

Figure 9: Free Parameters 𝛼 𝜂 𝜎 
(Transcritical Bifurcation Boundary) 

 



18 

 

 

200 400 600 800 1000
t

0.02

0.04

0.06

0.08

g t

200 400 600 800 1000
t

0.080

0.085

0.090

m t

200 400 600 800 1000
t

0.2

0.4

0.6

0.8

1.0

1.2

t

Figure 10:  Parameters in the Stable Region 



19 

 

 

200 400 600 800 1000
t

0.0650

0.0652

0.0654

0.0656

0.0658

g t

200 400 600 800 1000
t

0.940

0.945

0.950

t

200 400 600 800 1000
t

0.06915

0.06920

0.06925

0.06930

0.06935

m t

Figure 11:  Parameters on the Hopf Bifurcation Boundary 



20 

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.12

e

g BP H 

0.7 0.705 0.71 0.715 0.72 0.725 0.73 0.735 0.74 0.74

250

300

350

400

450

500

550

600

650

700

750

k1

P
e
ri
o
d

LPC

PD 

PD PD 

PD 
PD PD 

PD 

PD 
PD 
PD 

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.05

0.1

0.15

0.2

0.25

m

g

LPC

PD 

PD 

PD 

PD 

PD 

PD 

PD 

PD 

α 

(C) 

(B) 

(A) 

Figure 12 

Ɛ 



21 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

e

g

H 

H 

BP

0.05 0.055 0.06 0.065 0.07 0.075 0.08 0.085 0.09
0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

m

g

H H 

 

H 

H H 
LPC

Ɛ 

Figure 13 

(A) 

(B) 



22 

  

0.05 0.055 0.06 0.065 0.07 0.075 0.08 0.085 0.09 0.095 0.1
0

0.02

0.04

0.06

0.08

0.1

m

g

H 

BP

H 

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.1

0.2

0.3

0.4

0.5

m

g

LPC

(A) 

(B) 

Figure 14 



23 

 

4. Conclusion 

This paper provides a detailed stability and bifurcation analysis of the Uzawa-Lucas model. 

Transcritical bifurcation and Hopf bifurcation boundaries, corresponding to different combinations 

of parameters, are located for the decentralized version of the model. Examination of the stability 

properties of the limit cycles generated from various Hopf bifurcations in the model depicts 

occurrence of limit point-of-cycles bifurcations and period-doubling bifurcations within the model’s 

feasible parameter set. The series of period-doubling bifurcations confirms the presence of global 

bifurcation. Period-doubling bifurcations also reveal the possibility of chaotic dynamics, occurring 

in the converged limit of the sequence of period doubling. In contrast, the centralized social planner 

solution is always saddle path stable, with no possibility of bifurcation within the feasible parameter 

set, but with no decentralized informational privacy. Thus the externality of the human capital 

parameter plays an important role in determining the dynamics of the decentralized Uzawa-Lucas 

model.  Our result emphasizes the need for simulations of decentralized macro econometric models 

at settings throughout the parameter-estimates’ confidence regions, rather than at the point estimates 

alone, since dynamical inferences otherwise can produce oversimplified conclusions subject to 

robustness problems. 

===================================================================== 

Appendix 1: 

In the steady state, the constancy of           implies 

  ̇    ̇    ̇    ̇                        . 

Transversality conditions require              and             , which in turn imply 

                         , 

where   and   are costate variables (appendix 2 and appendix 3) 

Appendix 2:  

Social Planner Problem: 
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  [         ] 
        [                      ]   [       ]. 

Lucas (1988) showed that the first order conditions are 

(1) c:                 
(2)                              
(3) k:   [                      ]    ̇  
(4) h:                                 ̇     

Appendix 3: 

Decentralized or Market Solution: 

  [         ] 
        [                       ]   [       ]. 

Lucas (1988) showed that the first order conditions are 

(1) c:                 
(2)                               
(3) k:   [                       ]     ̇  
(4) h:                                ̇     
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