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Abstract

In the repeated Prisoner’s Dilemma, predictions are notoriously difficult. Re-

cently, however, Blonski, Ockenfels, and Spagnolo (2011, BOS) showed that

experimental subjects predictably cooperate when the discount factor exceeds

a particular threshold. I show that this threshold implies existence of an equi-

librium robust to two standard refinement assumptions (utility perturbations and

imperfect monitoring). The equilibrium is “Semi-Grim”: Cooperate after mu-

tual cooperation, defect after mutual defection, randomize otherwise. Testing

six resulting predictions on existing data, comprising 37.000 observations, I then

find that subjects indeed play Semi-Grim strategies, and switch to cooperation in

round 1, when the former turn into equilibria—at the BOS-threshold.
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1 Introduction

Most economic interactions are long-term relationships, and the welfare generated in

long-term relationships depends primarily on whether agents manage to sustain mu-

tual cooperation. Since this applies to all forms of relationships, including personal,

industrial, and multi-national ones, the emergence of cooperation has been studied

extensively. The theoretical results are well known for underlining the diversity of

potential equilibrium outcomes. This diversity is theoretically robust to impatience,

renegotiation, and various equilibrium refinement concepts.1 In line with these pre-

dictions, experimental analyses showed that the existence of cooperative equilibria is

necessary but not sufficient for cooperative behavior to emerge (e.g. Dal Bo, 2005).

Recently, Blonski, Ockenfels, and Spagnolo (2011, BOS) and Dal Bo and Fréchette

(2011) showed that an empirically predictable condition for cooperation exists nonethe-

less. In experiments on the repeated Prisoner’s Dilemma, they showed that cooperation

sets in once the discount factor δ exceeds a certain threshold above the theoretically

necessary condition for δ. It is currently unclear whether this threshold has a strategic

interpretation, i.e. whether it is related to existence of a particular class of equilibria.

The purpose of the present paper is to show that this threshold is the existence con-

dition of a particular class of Markov perfect equilibria and that subjects indeed start

playing the respective strategies when they turn into equilibria. These equilibria differ

from those discussed in the literature, they are mixed and lack direct reciprocity, but

they are played robustly across treatments in recent experiments.

BOS derived the threshold from conditions relating δ to the base game payoffs,

based on the novel idea that the emergence of cooperation depends also on the sucker’s

payoff in the base game. The lower the sucker’s payoff, the higher is the risk of unilat-

eral cooperation (as the opponent may defect), and hence the lower one’s inclination

to actually cooperate. Since the sucker’s payoff is irrelevant with respect to the exis-

tence of pure-strategy equilibria such as Grim, this result broadens the perspective and

its empirical robustness shows that subjects’ strategies are more predictable than Folk

1The Folk theorem of Fudenberg and Maskin (1986) shows that all individually rational payoff

profiles may be sustained along the equilibrium path if the discount factor is sufficiently close to 1.

The range of equilibrium outcomes shrinks only “slightly” if discounting is not just infinitesimal (Abreu

et al., 1990; Stahl et al., 1991), if players may renegotiate (Evans and Maskin, 1989; Van Damme, 1989),

if monitoring is imperfect (Ely and Välimäki, 2002), or if robustness to utility perturbations is required

(“purifiability”, Doraszelski and Escobar, 2010).
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theorems and their refinements suggest. The BOS axioms do not lend themselves to a

strategic interpretation, however, and the recent econometric analyses of Dal Bo and

Fréchette (2011, DF) and Fudenberg, Rand and Dreber (2012, FRD) did not identify

an empirically robust strategy.

In my theoretical analysis, I show that a Markov perfect equilibrium (MPE) that is

robust to two standard refinement assumptions exists if and only if the discount factor

δ exceeds the BOS-threshold. These refinement assumptions are utility perturbations

and imperfect monitoring. On their own, both of them have been investigated exten-

sively in the existing literature. Robustness to utility perturbations (i.e. “purifiability”,

Doraszelski and Escobar, 2010) isolates equilibria that continue to exist if the oppo-

nent has payoff parameters that differ stochastically from those in the payoff matrix.

A special case are logit equilibria, and following McKelvey and Palfrey (1995), logit

equilibria have been applied successfully in many analyses of experimental games.2

I am considering the limit of logit equilibria as noise disappears, i.e. limiting-logit

equilibria. Robustness to imperfect monitoring, in turn, isolates equilibria that are ro-

bust to the possibility that players forget the current state, possibly due to imperfect

attention in the experiment or due to imperfect recall in general. A Markov perfect

equilibrium is robust to imperfect monitoring if it is completely mixed, i.e. “belief-

free” (Ely et al., 2005). While the intersection of equilibria that are both generically

purifiable and belief-free is empty (Bhaskar et al., 2008), I show that an equilibrium

that is limiting-logit and belief-free exists iff δ exceeds the BOS-threshold. This equi-

librium is in Semi-Grim strategies: Cooperate with high probability if both players

had cooperated in the previous round, with low probability after mutual defection, and

with intermediate but equal probabilities if exactly one player had cooperated in the

previous round—regardless of who had cooperated, i.e. without direct reciprocity.

Re-analyzing the data from four recent experiments on the repeated Prisoner’s

Dilemma, I then show that subjects indeed play Semi-Grim strategies. In addition to

the data of BOS and FD, which in aggregate contain 16 treatments where δ is compa-

rably near the BOS-threshold, I also consider Duffy and Ochs (2009) and FRD, which

contain one treatment each where δ is substantially above the BOS-threshold (the re-

maining treatments of their experiments are non-standard repeated games with either

2This includes the centipede game (Fey et al., 1996), the traveler’s dilemma (Capra et al., 1999),

auctions (Goeree et al., 2002b), public goods games (Goeree et al., 2002a), monotone contribution

games (Choi et al., 2008), and beauty contests (Breitmoser, 2012).
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fixed rematching or exogenous noise). This provides two robustness checks. I use the

raw data from the second halves of these experiments, when learning has largely sta-

bilized. The analyzed data set thus contains about 37.000 decisions of 748 subjects in

four different experiments and 18 different treatments.

The main results are summarized briefly. Behavior is well-described by memory-1

Markov strategies. In round 1, behavior adapts strongly to the treatment parameters and

cooperation starts to occur systematically (in 50% of the games) almost exactly as δ

crosses the BOS-threshold. The continuation strategies are fairly invariant to the treat-

ment parameters and have the outlined Semi-Grim structure across treatments. The

predicted absence of direct reciprocity is confirmed. I then analyze individual strate-

gies by estimating the latent weights of standard equilibrium strategies and Semi-Grim

MPEs, and find that subjects switch strategies as δ increases. Starting with Always-

Defect, they move via Grim toward Semi-Grim MPEs. This is compatible with the

observation that the average strategy is Semi-Grim in most treatments. As δ crosses

the BOS-threshold, about 50% of the population plays Semi-Grim MPEs, and further

above the threshold, they play Semi-Grim MPEs almost exclusively.

Thus, subjects switch to cooperation in round 1 and to Semi-Grim in the continu-

ation simultaneously, when the limiting-logit, belief-free MPE appears. This explains

the emergence of cooperation at the BOS-threshold. It also shows that strategies in

repeated games are robust—behaviorally robust across treatments and strategically ro-

bust to utility perturbations and imperfect monitoring—and indeed predictable, at least

to the degree that mixed strategies are predictable.3 Both strategies and behavior in re-

peated games thus appear to be far more predictable (and systematic) than previously

assumed. It seems reasonable to expect that the results extend to general repeated

games, as the discussed refinement concepts generalize. Potential applications thus

range from interpersonal relationships over repeated public goods problems to indus-

trial competition.

Section 2 reviews the literature and provides a first look at the data. Sections 3 and

4 derive testable predictions from the refinements concepts considered here. Sections

5 and 6 test the predictions with respect to aggregate and individual behavior, respec-

tively. Section 7 concludes. The supplementary material contains proofs, robustness

checks, and parameter estimates.

3The observation that the strategies are mixed also explains that the sucker’s payoff is of strategic

relevance, since it implies that one may end up cooperating unilaterally.
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Figure 1: Prisoner’s dilemma games (pdc > pcc > pdd > pcd and b > a > 1)

(a) Prisoner’s Dilemma

c d

c pcc, pcc pcd , pdc

d pdc, pcd pdd , pdd

(b) “Standardized” PD

c d

c a,a 0,b

d b,0 1,1

2 Related literature and a first look at the data

Early experimental research, such as Roth and Murnighan (1978) and Murnighan and

Roth (1983), showed that cooperation increases when equilibria sustaining coopera-

tion exist. The existence of cooperative equilibria did not seem to yield substantial

or even robust cooperation, however. Dal Bo (2005) discusses this literature in detail

and conducted a novel series of experiments showing that behavior is largely in line

with theoretical predictions. Cooperative equilibria exist if the discount factor satis-

fies δ ≥ (pdc − pcc)/(pdc − pdd), using the notation in Table 1a, and the existence of

cooperative equilibria is merely necessary, not sufficient for the emergence of cooper-

ation. The resulting question, whether a predictive threshold for δ existed at all, has

recently been answered in the affirmative by Blonski et al. (2011, BOS) and Dal Bo and

Fréchette (2011, DF). They showed that cooperation occurs predictably if δ exceeds a

threshold significantly stronger than existence of cooperative equilibria, namely if

δ ≥ pdc + pdd − pcd − pcc

pdc − pcd

=: δBOS. (1)

While BOS derived this threshold axiomatically, their analysis gives little insight into

related equilibrium strategies, since their axioms relate to the base game payoffs, not to

existence of equilibria such as Grim.4 Indeed, it is unclear whether δBOS has a strategic

interpretation.

In order to obtain a first, preliminary picture of the strategies used in experiments,

I estimated the average memory-1 strategies in the four experiments mentioned in the

4In short, the axioms are: Invariance with respect to linear payoff transformations; Monotonicity of

cooperation in δ; Cooperation disappears as pcd →−∞; Cooperation occurs iff a condition µ ≥ 0 where

µ is additively separable with respect to pcc − pdd , pdc − pcc, pdd − pcd ; the two differences pdc − pcc

and pdd − pcd have the same weight in this condition.
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Introduction. In addition to the 16 treatments of BOS and FD, where δ is below or

near the BOS-threshold, I consider Duffy and Ochs (2009) and FRD, which contain

one treatment each where δ is substantially above the BOS-threshold, to verify robust-

ness. I focus on the second halves of these experiments, when learning has largely

stabilized. Table 1 provides a detailed overview of these data sets and the estimated

memory-1 strategies. The set of memory-1 histories is {cc,cd,dc,dd} and the corre-

sponding memory–1 Markov strategy is denoted as σ = (σcc,σcd,σdc,σdd). For exam-

ple, σcd denotes the probability that a player cooperates when his most recent action is

c (cooperate) and his opponent’s most recent action is d (defect).

Across treatments and experiments in Table 1, the average strategy has a surpris-

ingly constant structure, approximately (σcc,σcd,σdc,σdd) = (0.9,0.3,0.3,0.1). I refer

to strategies of the form σcc ≈ 1, σcd =σdc ∈ (0,1), and σdd ≈ 0 as Semi-Grim: similar

to Grim, they do not return to cooperation after mutual defection, but they are milder

than Grim, as they return to cooperation after mixed histories. Note that the robust-

ness of Semi-Grim strategies on average does not guarantee that any individual subject

plays Semi-Grim, although it seems likely. This will be analyzed (and confirmed) in

Section 6. The observation that σcd = σdc is rejected in just one treatment, across all

four experiments, is perhaps most surprising. It shows that subjects do not act directly

reciprocal—a previously cooperating player does not cooperate less with a previously

defecting one than the other way around.

The recurrence of Semi-Grim strategies does not seem to have been noticed in the

literature. The only references related to this observation (that I found) are in Rapoport

and Mowshowitz (1966), who observed (σcc,σcd,σdc,σdd) = (0.81,0.43,0.37,0.22),

which is discussed briefly also in Erev and Roth (2001), and in Bruttel and Kamecke

(2012), who elicit strategies via three different methods (hot play, strategy method, and

a Moore procedure following Engle-Warnick and Slonim, 2004, 2006) and find, but not

discuss, strategies of the form σcc > σcd ≈ σdc > σdd in their logistic regressions (see

their Table 4).

The conjecture that subjects play mixed Semi-Grim strategies would explain sev-

eral results in the literature, in particular of DF and FRD. They both found that Tit-

for-Tat (TFT, mimic the opponent’s action of the previous round) had not been used

systematically. This observation is compatible with mixed Semi-Grim, as σcd < σdc

would otherwise tend to result. Similarly, σdd ≈ 0 explains why Win-Stay-Lose-Shift
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Table 1: Overview of the experiments: Treatment parameters, numbers of observations, and average memory-1 strategies

Game parameters Sizes of the data sets Average memory-1 strategy

Treatment b a δ #Subj #Games
Subj

#Obs
Subj

#Obs σ̂cc σ̂dc σ̂cd σ̂dd

Blonski et al. (2011)

6 1.429 1.286 0.5 20 8 17 340 0.133 ≈ 0.006

3 2.5 1.5 0.5 20 9 21 420 0.333 ≈ 0.117 ≈ 0.014

2 1.25 1.125 0.75 40 8–9 41–42 1660 0.003

7 1.429 1.286 0.75 40 8–9 22–25 940 0.982 ≈ 0.411 ≈ 0.313 > 0.006

4 2.5 1.5 0.75 60 8–9 27–39 2020 0.912 ≫ 0.128 ≈ 0.226 ≫ 0.032

8 1.429 1.286 0.875 40 5–6 33–34 1340 0.968 > 0.088 ≈ 0.234 ≫ 0.027

5 2.5 1.5 0.875 40 5–6 41–46 1740 0.971 ≫ 0.28 ≈ 0.211 ≫ 0.039

9 2.4 1.8 0.75 40 8–9 28–38 1320 0.887 ≫ 0.117 ≈ 0.244 > 0.037

1 3 2 0.75 40 8–9 30–50 1600 0.908 > 0.286 ≈ 0.285 ≫ 0.022

10 4.667 3 0.75 40 8–9 34–40 1480 0.854 ≫ 0.254 ≈ 0.195 > 0.064

Dal Bo and Fréchette (2011)

1 2.923 1.538 0.5 44 30–36 55–80 2988 1 ≈ 0.464 ≈ 0.406 > 0.03

3 2.923 2.154 0.5 50 36 62–81 3614 0.951 ≫ 0.364 ≈ 0.403 ≫ 0.122

2 2.923 1.538 0.75 44 14–17 70–103 3606 0.946 ≫ 0.38 ≈ 0.358 ≫ 0.03

5 2.923 2.769 0.5 46 34–39 67–78 3398 1 ≫ 0.21 ≈ 0.371 ≫ 0.037

4 2.923 2.154 0.75 38 12–24 49–75 2524 0.959 ≫ 0.555 > 0.328 ≫ 0.103

6 2.923 2.769 0.75 44 15–18 59–83 3140 0.976 ≫ 0.347 ≈ 0.28 ≈ 0.074

Duffy and Ochs (2009), “random rematching” treatment

3 2 0.9 56 4–7 28–103 3276 0.924 ≫ 0.37 ≈ 0.347 ≫ 0.123

Fudenberg et al. (2012), “no-noise” treatment

6 5 4 0.875 48 3–5 24–42 1800 0.935 ≫ 0.465 ≈ 0.465 ≫ 0.078

Note: The “game parameters” are standardized as in Figure 1b. The strategy components σ̂cc, σ̂cd , σ̂dc, σ̂dd are estimated as follows: For each state, the individual

cooperation probability in this state is estimated for each subjects, and then averaged over all subjects with at least 3 observations per subject; the result is printed

here if there are at least three such subjects. The relation signs indicate the p-values of Wilcoxon matched-pair tests (using the cooperation probabilities of

individual subjects as independent observations): “≫,≪” indicate the p-value is p < .001, “>,<” indicate p < .01, and “≈” indicates p-values greater than 0.01.

As σcd ,σdc mostly do not differ significantly, the relative frequencies of σcd,dc have been pooled in tests against either σcc or σdd .
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(WSLS, cooperate iff both players acted equally in the previous round) had generally

been insignificant in their analyses.5 Finally, FRD estimated weights that are fluctuat-

ing (across treatments) between strategies such as Tit-for-2-Tats (TF2T: Play C unless

partner played D in both of the last 2 rounds), 2-Tits-for-Tat (2TFT: Play C unless part-

ner played D in either of the last 2 rounds), Lenient Grim2 (Play C until 2 consecutive

rounds occur in which either player played D, then play D forever), and correspond-

ing memory-3 strategies. This is compatible with Semi-Grim, which randomizes after

mixed histories fairly uniformly (see FRD in Table 1), and then exactly these paths of

play will materialize depending on how the chips fall.

3 Remaining definitions

Consider the infinitely repeated Prisoner’s dilemma (PD, Figure 1a) where players dis-

count future payoffs using δ ∈ (0,1). In each round, the players may either cooperate

(c) or defect (d), and in the theoretical analysis, I assume that their actions depend only

on the choices made in the most previous round. The memory-1 strategies are denoted

as σ = (σcc,σcd,σdc,σdd), as introduced above. Following most of the literature, I

focus on strategy profiles (σ,σ) that are symmetric between players, and consequently

I do not use a player index in denoting strategies. Thus, if a player cooperates with

probability σs′,s′′ in state (s′,s′′), then his opponent considers the state to be (s′′,s′) and

cooperates with probability σs′′,s′ .

Given strategy profile (σ,σ) and a state state (s′,s′′) ∈ S×S, define the expected

payoff of choosing c in this state as πs′,s′′(c), the expected payoff of choosing d as

πs′,s′′(d), and the expected payoff of playing according to σs′,s′′ as πs′,s′′ . These payoffs

are determined by solving a linear equation system where for all (s′,s′′) ∈ S×S

πs′,s′′ = σs′,s′′ ·πs′,s′′(c)+(1−σs′,s′′) ·πs′,s′′(d) (2)

πs′,s′′(c) = σs′′,s′ ·
(

δπcc +(1−δ) pcc

)

+(1−σs′′,s′) ·
(

δπcd +(1−δ) pcd

)

(3)

πs′,s′′(d) = σs′′,s′ ·
(

δπdc +(1−δ) pdc

)

+(1−σs′′,s′) ·
(

δπdd +(1−δ) pdd

)

. (4)

5Both TFT and WSLS are theoretically promising strategies. Axelrod (1980a,b) showed that TFT is

effective against opponents with unknown strategies, and Nowak et al. (1993) and Imhof et al. (2007)

showed that WSLS is even more effective than TFT when most subjects play cooperative strategies (as

WSLS can restore cooperation after unilateral defection).
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Solving the equation system for (πs′,s′′) yields the expected payoffs as functions of

σ. Relatedly, define the cooperation incentive π̃s′,s′′ in state (s′,s′′) ∈ S× S to be the

difference of expected payoffs from one-time cooperation and one-time defection in

this state, with continuation play evolving according to σ. That is, π̃s′,s′′ := πs′,s′′(c)−
πs′,s′′(d). The player is strictly best off cooperating in state (s′,s′′) if π̃s′,s′′ > 0, he is

best off defecting if π̃s′,s′′ < 0, and he may randomize if π̃s′,s′′ = 0. A strategy profile

(σ,σ) is called Markov perfect equilibrium (MPE), or “equilibrium” for short, if

σs′,s′′ > 0 ⇒ π̃s′,s′′ ≥ 0 and σs′,s′′ < 1 ⇒ π̃s′,s′′ ≤ 0 (5)

for all (s′,s′′) ∈ S×S. In the following, I assume payoffs standardized as in Figure 1b.

4 Derivation of testable predictions

This section introduces six increasingly restrictive predictions derived from the as-

sumption that subjects play robust, memory–1 Markov perfect equilibria. First, that

is, I hypothesize that subjects play memory–1 Markov strategies. Existing evidence

on this hypothesis is surprisingly scarce. Bruttel and Kamecke (2012) show that the

memory–1 assumption is largely valid, with deviations being of limited relevance, but

evidence on a broader range of data sets and treatment parameters appears desirable.

In experimental analyses, the memory–1 MPE assumption is additionally understood

to imply that the first-round cooperation probabilities equate with those in state (c,c).

Denoting the initial state as /0, this sub-hypothesis σ /0 = σcc is not formally implied by

Markov perfection, however. Any state’s cooperation probabilities induce an equilib-

rium in the first round /0, and the validity σ /0 = σcc has not yet been verified. For these

reasons, I am testing these two hypotheses first.

Hypothesis 1 (Markov). Subjects play memory-1 Markov strategies with σ /0 = σcc.

The remaining hypotheses are derived from the two refinement assumptions, ro-

bustness to utility perturbations and robustness to imperfect monitoring. I begin with

robustness to utility perturbations. In conjunction with Markov perfection and the

seemingly innocuous assumption σcc > σdd , this yields the strong hypothesis σcd =

σdc. If exactly one player has cooperated in the previous round, both players will
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cooperate with the same probability in the next round—regardless of who actually co-

operated. The previously cooperating player does not explicitly punish his opponent’s

defection in the previous round, nor does the previously defecting player explicitly

reciprocate his opponent’s cooperation. I therefore call these strategies non-reciprocal.

Robustness to utility perturbations is a generic property of Nash equilibria in

normal-form games and of regular MPEs in stochastic games (Doraszelski and Esco-

bar, 2010). Experimental analyses generally focus on the case that the utility perturba-

tions have extreme-value distribution, i.e. on logit equilibria, and following McKelvey

and Palfrey (1995), this has been shown to explain experimental observations in a wide

range of circumstances (see Footnote 2). While the limiting equilibrium, as noise dis-

appears, is generically independent of the noise distribution (Doraszelski and Escobar,

2010), I follow this tradition and focus on limiting-logit equilibria. Formally, a strat-

egy profile (σ,σ) is a Markov logit equilibrium (MLE, Breitmoser et al., 2010) if there

exists λ ∈ R+ such that for all states (s′,s′′),

σs′,s′′ =
exp{λ ·πs′,s′′(c)}

exp{λ ·πs′,s′′(c)}+ exp{λ ·πs′,s′′(d)}
. (6)

It is a limiting-logit MPE if it is the limit of logit MPEs as λ tends to infinity.

Proposition 4.1. Let (σ,σ) be an MLE of a repeated PD. If σcc > σdd and σcc > 0.5,

then σcd = σdc < σcc.

All proofs are relegated to the appendix. Thus, σcd = σdc < σcc results in all

Markov logit equilibria (if σcc > σdd), and by extension in all limiting-logit MPEs.

Thus, it applies in all MPEs that are robust to (extreme value) utility perturbations.6 In

conjunction, the assumptions and the implication yield the second hypothesis.

Hypothesis 2 (No reciprocity). Subjects play limiting-logit equilibria with σcc > σdd .

This implies σcd = σdc and σcc > σcd,dc.

In addition, players may seek robustness to imperfect monitoring. Monitoring is

imperfect if one may forget the current state with positive probability, possibly due to

imperfect attention in the experiment or due to imperfect recall in general. Regular

6There is an alternative set of limiting-logit MPEs with σcc = σdd . In these equilibria, σcd < σcc =
σdd < σdc results. These equilibria are not of empirical relevance, as σcc > σdd will be shown to be

satisfied universally, i.e. in all treatments of all experiments.
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MPEs, including all well-known ones such as Grim and Win-Stay-Lose-Shift, are not

robust to imperfect monitoring (Kandori, 2002), but an alternative class of completely

mixed MPEs—where player randomize in all states—are robust (Ely and Välimäki,

2002). In completely mixed MPEs, players are always indifferent, and their best re-

sponses are independent of their beliefs about the opponent’s history. This yields the

robustness to imperfect monitoring of these belief-free MPEs (Ely et al., 2005). To

illustrate briefly, the cooperation incentives7 generally satisfy

π̃cc − π̃cd = (σdc −σcc) ·µ π̃cc − π̃dc = (σcd −σcc) ·µ (7)

π̃cc − π̃dd = (σdd −σcc) ·µ π̃cd − π̃dc = (σcd −σdc) ·µ (8)

with some common factor µ ∈ R. Thus, µ = 0 implies π̃cc = π̃cd = π̃dc = π̃dd . If

π̃cc = 0 holds in addition, the underlying strategy profile (σ,σ) is a completely mixed

MPE, i.e. an MPE where players are indifferent in all states. These are the equilibria

that are robust to imperfect monitoring. Solving for µ = 0 and πcc = 0, we obtain a

two-dimensional manifold of such MPEs (Bhaskar et al., 2008),

σcd =
(b−1) δσcc − (b−a) (1+δσdd)

(a−1) δ
, σdc =

aδσdd −δσcc +1

(a−1) δ
. (9)

Since players are indifferent in all states, their own payoffs are independent of their

own actions, and in this sense, each player sets the expected payoff for his opponent.

This property has been independently discovered and further analyzed by Press and

Dyson (2012, Eq. (8)) in their analysis of “zero-determinant” strategies. Their work

shows that belief-free MPEs are not only robust to imperfect monitoring (or recall),

but in some sense also to renegotiation. By playing belief-free MPE strategies, players

essentially use “ultimatum strategies” (Stewart and Plotkin, 2012) by which they set

their opponent’s payoff and thus unilaterally enforce a claim of the payoffs.

As indicated before, I am interested in belief-free MPEs that are additionally ro-

bust to utility perturbations. In a first analytical step, I characterize the set of belief-free

equilibria that satisfy the “no-reciprocity” condition σcd = σdc implied by limiting-

logit equilibrium. This additional condition refines the two-dimensional manifold to

a one-dimensional one. Notably, such MPEs exists if δ ≥ δ⋆ and they induce “Semi-

7Recall from Section 3 that the cooperation incentive in state (s′,s′′) is the long-term difference in

expected payoffs between one-time cooperation and one-time defection, i.e. π̃s′,s′′ = πs′,s′′(c)−πs′,s′′(d).
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Grim” strategies, i.e. σcc > σcd = σdc > σdd .

Proposition 4.2. A belief-free MPE satisfying σcd = σdc exists iff δ ≥ δ⋆, with

δ⋆ =
b−a+1

b
≡ pdc + pdd − pcd − pcc

pdc − pcd

=: δBOS. (10)

These MPEs are in Semi-Grim strategies (σcc > σcd = σdc > σdd) and constitute a

one-dimensional manifold consisting of all strategy profiles (σ,σ) satisfying

σcc =
(bδ−b+a−1)r+b−a+1

bd
σdc =

(bδ−b+a−1)r+1
bd

σdd = (bδ−b+a−1)r

bd
(11)

for some r ∈ [0,1].

That is, a repeated PD satisfies the five BOS axioms (Blonski et al., 2011) if and

only if a belief-free MPE satisfying σcd = σdc exists. This is a first characterization

of the BOS-threshold in terms of equilibrium strategies. This class of MPEs may

therefore explain both the Semi-Grim pattern across treatments (Section 2) and the

predictiveness of the BOS-threshold observed by BOS and DF.

Next, I show that one these MPEs is indeed robust to (extreme-value) utility

perturbations. This is not obvious, as Bhaskar et al. (2008) showed that belief-free

memory–1 MPEs are not robust to generic utility perturbations. One of them is ro-

bust to extreme-value perturbations, however, and this standard assumption (following

Luce, 1959) is technically not even particularly special. Belief-free MPEs that are ro-

bust to alternative distributions coexist under the same conditions, and Bhaskar et al.

(2008) also showed that all belief-free memory–1 MPEs are robust to generic pertur-

bations if we allow them to be limits of infinite-horizon strategies.

Proposition 4.3. In any repeated PD, a memory-1 MPE that is belief-free and limiting-

logit exists iff δ≥ δBOS. It satisfies σcc >σcd =σdc >σdd , and it satisfies Eq. (11) using

r such that

(

((−bδ+b−a+1)r+bδ)((bδ−b+a−1)r+1)
(bδ−b+a−1)r ((−bδ+b−a+1)r+bδ−1)

)b−a

= ((bδ−b+a−1)r+b−a+1)((bδ−b+a−1)r−bδ+1)
(bδ−b+a−1)(r−1)((bδ−b+a−1)r+1) .

The BOS axioms are therefore equivalent to requiring existence of MPEs that

are robust to both imperfect monitoring and (extreme-value) utility perturbations. Two

hypotheses that immediately follow from this result are that subjects cooperate in round

12



1 and play Semi-Grim strategies in the continuation if this MPE exists.

Hypothesis 3 (Semi-Grim strategy). Subjects play Semi-Grim strategies σcc >σcd,dc >

σdd , both on average and individually, if belief-free, limiting-logit equilibria exist.

Hypothesis 4 (Round-1 cooperation). Cooperation in round 1 is increasingly frequent

as δ increases, and it occurs “systematically” (in at least 50% of the games) if belief-

free, limiting-logit equilibria exist.

The final two hypotheses extend the previous ones in that they relate the observed

strategies more tightly to the Semi-Grim MPEs. At first glance, it may seem natural to

hypothesize that subjects exactly play the unique belief-free, limiting-logit MPE for all

δ > δ⋆. This would imply that the probability cooperation in state (c,c) is decreasing

in δ. For example, in case b = a+ 1, the belief-free, limiting-logit MPE is (applying

Prop. 4.3, this MPE satisfies Eq. (11) for r = 1/2)

σcc =
bδ/2+1

bδ
σcd = σdc =

1

2
σdd = bδ/2−1

bδ
. (12)

Thus, at δ = δ⋆, σcc = 1 and σcc = 0, but as δ increases, σcc is predicted to decrease.

The intuition is simple. Players have to be indifferent between cooperation and defec-

tion while the long-term gains from cooperation increase in δ. Thus, one continues

to be indifferent between c and d only if the cooperation rate of the opponent is de-

creasing in δ, i.e. if σcc decreases. This would contradict fairly robust results in the

existing literature, e.g. Roth and Murnighan (1978) and Dal Bo (2005), and therefore I

hypothesize the following.

Hypothesis 5 (Comparative statics). The average strategy (σcc,σcd,dc,σdd) does not

correlate (positively) with the belief-free, limiting-logit MPE for all δ.

More generally, as δ increases, players may seek to balance three objectives: Ef-

ficiency (σcc = 1), robustness to imperfect monitoring (RIM), and robustness to utility

perturbations (RUP). These objectives are simultaneously satisfied only in the limiting

case δ = δ⋆. As δ increases, the belief-free, limiting-logit MPE splits up into three

distinctive Semi-Grim equilibria, one of which is efficient and RIM, another one is ef-

ficient and RUP, and the third one is the belief-free, limiting-logit MPE characterized

in Prop. 4.3 (which is RIM and RUP). If δ > δ⋆, players therefore have to pick two

13



of the three criteria, and I hypothesize that they always play one of the these three

Semi-Grim equilibria.

Hypothesis 6 (Semi-Grim MPE). Individual subjects play one of the three Semi-Grim

MPEs if they exist.

To be specific, the MPE that is efficient (σcc = 1) and RIM obtains for r = 1 in

Eq. (11), which yields

σcc = 1 σdc =
bδ−b+a

bd
σdd = bδ−b+a−1

bd
. (13)

I refer to this equilibrium as the efficient belief-free Semi-Grim MPE. In turn, the MPE

that is efficient and RUP will be called efficient limiting-logit Semi-Grim MPE. It struc-

ture is derived in the appendix (Lemma B.1) and satisfies σcc = 1, σdd = 0, and

σcd = σdc =

√

2a(2d2−4d+1)+b2 (d−1)4−2ab(d−1)2−2b(d−1)2+a2+1+bd2+(2−2b)d+b−a−1

2bd2+(−2b−2a+2)d
.

(14)

It exists under slightly weaker conditions than the belief-free, limiting-logit MPE, but

in all four experiments reviewed above, there is just one treatment where this limiting-

logit Semi-Grim MPE exists and the belief-free, limiting-logit MPE does not. I will

therefore not analyze this subtle difference.

5 Analysis of aggregate behavior

In the next two sections, I am testing the hypotheses using the data sets reviewed in

Table 1. As above, I focus on the second halves of the experiments, when learning

has largely stabilized (similarly to DF and FRD). In conjunction with the measures

described in the following, I believe this yields robust, replicable results. To reduce the

probability of false positives, I require constant and comparably high levels of signif-

icance in all hypotheses tests. A test result will be called significant if the associated

p-value is less than 0.01, and highly significant if p < 10−4 (given the sizes of the

data sets, these thresholds will be met frequently). Considering the noise in experi-

mental data, it seems unrealistic to expect that any of the above ex-ante hypotheses
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is confirmed or rejected in every treatment of all experiments. I assume that correct

hypotheses hold up in the (vast) majority of treatments across experiments, while in-

correct ones are rejected in the majority of treatments. I will say that observations are

systematic if they are significant in at least half the treatments, they are highly system-

atic if they are highly significant in at least half the treatments and significant in at least

75%, and they are universal if they are highly significant in at least 75% and significant

in all treatments. The distinction between systematic and non-systematic observations

is robust to changing the threshold. Indeed, there are no observations that are system-

atic without being highly systematic, and the threshold for “systematic observations”

could be lowered to requiring significance in a third of the treatments without having

to change any of the wording—there would still be no systematic observations that are

not highly systematic.

The first hypothesis is that subjects play memory-1 Markov strategies. This one is

crucial, as all subsequent hypothesis are derived from it. I test it in models regressing

the probability of cooperation (either 0 or 1 in each round) on all memory-1 histories

and as many memory-2 histories as the non-singularity condition permits, control-

ling for individual differences by subject-level random effects. The p-values of the

hypothesis tests are bootstrapped. For transparency about the estimated cooperation

probabilities (i.e., strategies), in particular in tests of the subsequent hypotheses, I use

linear-probability models without intercept throughout this section. The results do not

change notably if logit models are used instead.

Table 2 categorizes the resulting levels of significance across treatments; Table 9

(in the appendix) additionally provides the estimated coefficients. Treatment 6 of BOS

contains virtually no cooperation, which implies that meaningful regression analysis

is impossible there. In the remaining 17 treatments, each memory-1 history is highly

significant in at least 10 treatments, and significant in at least 15, from which I conclude

that every memory-1 history is of highly systematic relevance. In turn, no memory-

2 history is significant in more than 5 of these 17 treatments, and thus no memory-2

history is of systematic relevance. The fact that one or two memory-2 histories are

significant in most cases, varying between treatments, confirms the chosen approach

of analyzing multiple data sets to mitigate the multiple-testing problem and obtain

replicable results. I conclude that only memory-1 histories are systematically relevant

and focus on memory-1 Markov strategies in the following.
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Table 2: Testing the memory-1 Markov assumption: Levels of significance of memory-1 and memory-2 Markov strategies

(bootstrapped p-values; the coefficients are provided in the appendix, Table 9)

Memory-1 histories Memory-2 histories (t −1)× (t −2)

Tr (c,c) (d,c) (c,d) (d,d) cc× cc cc× cd cc×dc cd × cc cd ×dc cd ×dd dc× cc dc× cd dc×dd dd × cd dd ×dc

Blonski et al. (2011)

6

3 ++

2 ++ +

7 ++ ++ + +

4 ++ ++ + ++ −−
8 ++ ++ ++ ++ −
5 ++ ++ ++ ++ + +

9 ++ ++ + + +

1 ++ ++ ++ ++ − ++

10 ++ ++ + ++ − +

Dal Bo and Fréchette (2011)

1 ++ ++ + ++ + −
3 ++ ++ ++ ++

2 ++ ++ ++ ++ + ++

5 ++ ++ ++ ++ +

4 ++ ++ ++ ++ − −−
6 ++ ++ ++ ++

Duffy and Ochs (2009), “random rematching” treatment

++ ++ ++ ++ − + ++

Fudenberg et al. (2012), “no-noise” treatment

6 ++ ++ ++ ++

Note: ++ indicates significance of a positive coefficient at p < 10−4, + indicates significance of a positive coefficient at p < 10−2, −− and − indicate

the respective levels of significance for negative coefficients

1
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The second claim in Hypothesis 1 is that subjects approach the first round as if they

had cooperated before, i.e. σcc = σ /0. It can be tested similarly, in linear-probability

models with subject-level random effects, now excluding the memory-2 histories due

to their predicted and observed unsystematic relevance. In addition, to the four non-

empty histories (cc,cd,dc,dd), this regression includes the empty history /0. As before,

I include subject-level random effects and bootstrap the p-values. The results of evalu-

ating H0 : σcc =σ /0 are provided in the third column of Table 3. The remaining columns

indicate the results on tests of subsequent hypotheses. As for H0 : σcc = σ /0, Table 3

shows that it is rejected highly significantly in all treatments, i.e. universally.

Result 1 (Markov). Subjects play memory-1 Markov strategies with σ /0 < σcc.

This shows that we cannot pool first-round behavior and choices after (c,c) when

we estimate strategies, and I will therefore continue to distinguish the state (c,c) from

round 1, i.e. from state /0.

Hypothesis 2 claims that σcc > σdd would imply the no-reciprocity condition

σcd = σdc as well as σcc > σcd,dc (derived from the assumption that subjects play

limiting-logit equilibria). This is analyzed with the set of regression models already

used to test σcc = σ /0, and the results are provided in the remaining columns of Table

3. The first column shows that σcc > σdd applies universally, i.e. σcc = σdd is rejected

highly significantly in all treatments. The theoretical implication σcd = σdc is main-

tained in 13 of 17 treatments, again systematically. Surprisingly, the four rejections of

σcd = σdc are all in Dal Bo and Fréchette (2011), which suggests the existence of a co-

hort effect. As there is no systematic evidence in favor of rejecting σcd = σdc, however,

I will pool the states (c,d) and (d,c) in the following and use an otherwise equivalent

regression model to test σcc > σcd,dc. The null σcc = σcd,dc is rejected universally in

favor of σcc > σcd,dc, as the last column of Table 3 shows. Thus, both predictions of

limiting-logit MPE are confirmed.

Result 2 (No reciprocity). The hypothesis that subjects play limiting-logit equilibria

is sustained. σcc > σdd and σcc > σcd,dc are universal, while σcd = σdc is not violated

systematically.

I proceed by testing the stronger hypotheses that subjects’ behavior aligns with

the limiting-logit, belief-free equilibrium. Hypothesis 3 claims that the average subject

plays a Semi-Grim strategy, i.e. that the Semi-Grim pattern discussed above (Table 1)
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Table 3: Testing the predictions of limiting-Logit, belief-free equilibria

Treatment parameters H0 : σcc = σdd H0 : σdc = σcd H0 : σcc = σ /0 Pooled estimate (using σcd,dc)

Tr b a δ σcc σdd σdc σcd σcc σ /0 σcc σcd,dc σdd

Blonski et al. (2011)

6 1.43 1.29 0.5

3 2.5 1.5 0.5 0.923 ≫ 0.011 0.186 ≈ 0.09 0.923 ≫ 0.217 0.93 ≫ 0.142 > 0.01

2 1.25 1.12 0.75 0.97 ≫ 0.004 0.33 ≈ 0.218 0.97 ≫ 0.044 0.976 ≫ 0.276 ≫ 0.004

7 1.43 1.29 0.75 0.994 ≫ 0.002 0.373 ≈ 0.289 0.994 ≫ 0.15 1.001 ≫ 0.333 ≫ 0.001

4 2.5 1.5 0.75 0.886 ≫ 0.038 0.189 ≈ 0.154 0.886 ≫ 0.243 0.888 ≫ 0.172 ≫ 0.037

8 1.43 1.29 0.88 0.914 ≫ 0.032 0.237 ≈ 0.207 0.914 ≫ 0.372 0.916 ≫ 0.222 ≫ 0.031

5 2.5 1.5 0.88 0.915 ≫ 0.053 0.318 ≈ 0.236 0.915 ≫ 0.393 0.922 ≫ 0.279 ≫ 0.051

9 2.4 1.8 0.75 0.913 ≫ 0.03 0.206 ≈ 0.172 0.913 ≫ 0.553 0.915 ≫ 0.189 ≫ 0.029

1 3 2 0.75 0.801 ≫ 0.051 0.318 ≈ 0.266 0.801 ≫ 0.35 0.807 ≫ 0.295 ≫ 0.049

10 4.67 3 0.75 0.872 ≫ 0.053 0.28 ≈ 0.163 0.872 ≫ 0.595 0.874 ≫ 0.223 ≫ 0.051

Dal Bo and Fréchette (2011)

1 2.92 1.54 0.5 0.795 ≫ 0.031 0.428 > 0.207 0.795 ≫ 0.062 0.816 ≫ 0.327 ≫ 0.03

3 2.92 2.15 0.5 0.811 ≫ 0.118 0.383 ≫ 0.255 0.811 ≫ 0.194 0.822 ≫ 0.323 ≫ 0.116

2 2.92 1.54 0.75 0.899 ≫ 0.041 0.414 > 0.3 0.899 ≫ 0.263 0.906 ≫ 0.36 ≫ 0.039

5 2.92 2.77 0.5 0.929 ≫ 0.072 0.244 ≈ 0.319 0.929 ≫ 0.408 0.917 ≫ 0.28 ≫ 0.077

4 2.92 2.15 0.75 0.945 ≫ 0.167 0.548 ≫ 0.364 0.945 ≫ 0.768 0.948 ≫ 0.454 ≫ 0.157

6 2.92 2.77 0.75 0.98 ≫ 0.106 0.383 ≈ 0.303 0.98 > 0.955 0.981 ≫ 0.342 ≫ 0.104

Duffy and Ochs (2009), “random rematching” treatment

3 2 0.9 0.957 ≫ 0.134 0.38 ≈ 0.342 0.957 ≫ 0.696 0.958 ≫ 0.361 ≫ 0.133

Fudenberg et al. (2012), “no-noise” treatment

6 5 4 0.88 0.949 ≫ 0.171 0.483 ≈ 0.466 0.949 ≫ 0.825 0.95 ≫ 0.474 ≫ 0.169

Note: p-values are bootstrapped, ⋆⋆ indicates significance at p < 10−4, ⋆ indicates significance at p < 10−2
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is econometrically robust to individual random effects. I test this in the same set of

regressions used to test σcc > σcd,dc, again bootstrapping the p-values. The results,

shown in the last column of Table 3, confirm the Semi-Grim hypothesis universally.

The population plays σcc > σcd,dc > σdd in all treatments of all experiments.

Result 3 (Semi-Grim). The average cooperation probabilities satisfy σcc > σcd,dc >

σdd universally.

Note that subjects play Semi-Grim strategies even when the respective equilib-

rium, the belief-free, limiting-logit MPE, does not exist. This “puzzle” is further ana-

lyzed (and resolved) in the next section, when the individual strategies are considered.

At this point, let me just clarify that Result 3 neither claims nor shows that every sub-

ject plays a Semi-Grim strategy (which is the second half of Hypothesis 3).

The related Hypothesis 4, that cooperation in round 1 correlates with the existence

of limiting-logit, belief-free equilibria, can be confirmed as well. Figure 2 provides a

first intuition. It plots the relative frequencies of observing at least one cooperative

action (c) in round 1 against δ − δ⋆, for all treatments. The respective logistic re-

gression controls for the weights of the various treatments and for correlation within

experiments by random effects. If Hypothesis 4 is correct, the logistic curve crosses

the 50%-line approximately at δ−δ⋆ = 0 and the regression intercept is insignificant.8

This is indeed the case, the curve crosses the line almost exactly at δ = δ⋆. The regres-

sion coefficients presented alongside Figure 2 show that the intercept is insignificant.

That is, subjects respond to increasing δ, as the coefficient of δ−δ⋆ is significant, and

they starting cooperating “systematically” (50%) once the Semi-Grim strategies turn

into Markov-perfect equilibria, as the intercept is insignificant.9

Result 4 (Round-1 cooperation). Cooperation in round 1 is increasingly frequent as δ

increases and can be observed systematically (in at least 50% of the games) if δ ≥ δ⋆.

8In a logistic regression Pr(Coop) = 1/
(

1+ exp{−a−b · (δ−δ⋆)}
)

, the intercept is a.
9Blonski et al. (2011) obtain a similar result on the hypothesis that cooperation occurs at least once

in any round, while I focus on cooperation in round 1. BOS further refine their result by excluding

paths of play that fail a rationalizability condition. Their “necessary” condition (“Filtering Rule 1”)

for rationalizability is that it must be possible to extend the observed path of play by a continuation

equilibrium such that both players obtain at least their minimax payoffs. This condition is necessary for

individual rationality if one assumes that subjects play pure strategies. With mixed strategies, such as

Semi-Grim, there is a positive probability (which is high if the game is short) such that a path of play

results that is not ex-post rationalizable in this way although it resulted from an equilibrium strategy.

Since I explicitly allow for mixed strategies, I therefore abstain from such refinements.
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Figure 2: Cooperation in round 1 in relation to δ−δ⋆
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In conjunction with Table 3, which shows that the average memory-1 strategy

is Semi-Grim and fairly invariant across treatments, this suggests that subjects play

Semi-Grim continuation strategies intuitively in all cases, but they trust these strategies

enough to also cooperate in round 1 only if they are equilibrium strategies.

Finally, I evaluate to which degree the observed continuation strategies comply

with the comparative statics of belief-free, limiting-logit equilibrium (Hypothesis 5).

As discussed in relation to Eq. (12), σcc is decreasing in δ in the limiting-logit, belief-

free equilibrium. A confirmation of this prediction would therefore contradict fairly

robust previous experimental results (see Dal Bo, 2005). We may therefore expect

the comparative statics to fail. This is confirmed by Figures 3 and 4, which plot the

observed memory-1 strategies against δ− δ⋆ and against the predicted strategies (re-

spectively). Table 4 provides the respective regression coefficients. Pooling states

(c,d) and (d,c), we are left with three states. The cooperation probabilities in all three

states are increasing in δ−δ⋆ (Table 4a), i.e. cooperation becomes increasingly robust

as δ increases in relation to the threshold. This is intuitive and compatible with previ-

ous experiments, but it contradicts the comparative statics of limiting-logit, belief-free

MPE. Indeed, Table 4b shows that the aggregate strategies are negatively correlated

with the predictions in states (c,c) and (cd,dc).

Result 5 (Comparative statics). The cooperation probabilities in all states are increas-

ing in δ − δ⋆. The cooperation probabilities in states (c,c) and (cd,dc) correlate
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Figure 3: The observed memory-1 strategies in relation to δ−δ⋆
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(b) Cooperation after cd,dc
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(c) Cooperation after dd
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Figure 4: The observed memory-1 strategies in relation to the predictions

(a) Cooperation after cc

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Prediction of limiting−logit, belief−free MPE

In
d
iv

id
u
a
l 
p
ro

b
a
b
ili

ty
 o

f 
p
la

y
in

g
 c

 a
ft
e
r 

c
c ● ●

●

●

●

(b) Cooperation after cd,dc
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(c) Cooperation after dd
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negatively with the predictions, while those in state (d,d) correlate positively. Overall,

the comparative statics of limiting-logit, belief-free MPE are violated.

This suggests that subjects do not play limiting-logit, belief-free MPEs for all δ.

They start cooperating when these equilibria start to exist, but they seem to maintain

efficiency (σcc = 1) as δ increases. This is analyzed next, by inspecting individual

strategies.

6 Analysis of individual strategies

The previous section shows that subjects play Semi-Grim strategies on average and

that they start cooperating when MPEs inducing Semi-Grim strategies start to exist.
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Table 4: Regression of observed strategies on δ−δ⋆ and the predicted MPE

(a) Logistic regression on δ−δ⋆

Cooperation Intercept Coefficient

after cc 2.196
(0.035)

⋆⋆ 2.156
(0.177)

⋆⋆

after cd,dc −0.797
(0.022)

⋆⋆ 0.38
(0.111)

⋆

after dd −2.611
(0.041)

⋆⋆ 1.829
(0.198)

⋆⋆

(b) Logistic regression on prediction

Cooperation Intercept Coefficient

after cc 7.728
(0.488)

⋆⋆ −5.954
(0.551)

⋆⋆

after cd,dc −0.045
(0.115)

−1.181
(0.197)

⋆⋆

after dd −2.779
(0.062)

⋆⋆ 4.529
(0.418)

⋆⋆

These MPEs are limiting-logit and belief-free, i.e. robust to utility perturbations and

imperfect monitoring—two ex-ante plausible selection criteria. The comparative stat-

ics of limiting-logit, belief-free MPE are not satisfied, however. Efficient cooperation

(σcc ≈ 1) results in all treatments, and if anything, σcc is increasing in δ, as opposed to

being decreasing as limiting-logit, belief-free MPE predicts. A potential explanation

is that subjects start cooperating if limiting-logit, belief-free MPE exist, at δ = δ⋆, and

at this threshold, the equilibrium is even efficient (inducing σcc = 1). As δ increases,

however, subjects have to pick two of these three attributes—MPEs that are efficient,

limiting-logit and belief-free do not exist for high δ. Depending on which two of these

three attributes they pick, they would end up with one of three Semi-Grim MPEs, and

the hypotheses (3 and 6) to be analyzed in this section are that they do pick one of

these MPEs.

I proceed in two steps, starting with a general classification of the individual strate-

gies, addressing Hypothesis 3, and secondly estimating the weights of eight relevant

MPEs, addressing Hypothesis 6. To analyze individual behavior, the experimental

literature following Stahl and Wilson (1994, 1995), including Dal Bo and Fréchette

(2011) and Fudenberg et al. (2012), usually estimates latent strategy weights by finite-

mixture modeling (McLachlan and Peel, 2000). That is, assuming the population con-

sists of a finite number of components (each component is associated with a particular

strategy), the weights of these components are treated as latent and estimated by max-

imum likelihood. I adopt this approach as well, all details are provided in Appendix

A, and following Biernacki et al. (2000), I identify insignificant components using the

ICL-BIC information criterion. The weights of the remaining significant components

are of interest in my analysis. As before, all standard errors are bootstrapped.
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First, to classify individual strategies without imposing an equilibrium constraint,

I estimate the weights of six prototypical strategies—only one of which is Semi-

Grim. The other candidate strategies are (1) the constant strategy (σcc,σcd,σdc,σdd) =

(α1,α1,α1,α1), α1 ∈ [0,1], which contains Always-Defect and Always-Cooperate as

special cases; (2) a generalized Grim strategy of the form (1,α2,α2,α2), which con-

tains Grim and Always cooperate as special cases; (3) a generalized TFT strategy

(1,0,α3,0); (4) a generalized Win-Stay-Lose-Shift strategy (1,0,0,α4); (5) a gener-

alized cooperative strategy (1,α5,0,0), which is behaviorally equivalent to “Always

Cooperate” for α5 = 1 and additionally allows to reconstruct a Semi-Grim population

(in conjunction with the strategies 3 and 4) without any individual playing a Semi-Grim

strategy; and (6) Semi-Grim (1,α6,α6,0) itself. In order to facilitate the identification

of the strategies, I restrict the cooperation probabilities α3,α4,α5 of TFT, WSLS, and

Coop (resp.) to be in [0.5,1]. That is, a subject’s behavior has to be sufficiently pro-

nounced and distinctive from Grim to be classified as either TFT, WSLS, or Coop.

Subject to this constraint, all strategy parameters (α1, . . . ,α6) are treated as free pa-

rameters and estimated from the data (as described in the appendix).

The results, i.e. estimated parameters and weights, are provided in Table 5. First,

let me summarize the results of Table 5 by simply counting which components have

majority weight in the various treatments.

Result 6 (Semi-Grim strategies). In 15/18 treatments, the majority of subjects plays

Semi-Grim strategies, and in 12/18 treatments, at least 80% of the subjects play Semi-

Grim. It is the only strategy that is played systematically (in more than 50% of the

treatments). The only other strategy that has more than 10% weight in more than 3/18

treatments is Generalized Grim (1,α,α,α), which is borderline Semi-Grim.

Subjects overwhelmingly play strategies with Semi-Grim structure. They do not

play mixtures of say (1,0,α3,0), (1,0,0,α4), (1,α5,0,0), which on average would

yield something akin to Semi-Grim. Aside from Treatment 6 in BOS, where subjects

do virtually not cooperate, Semi-Grim has positive weight in all cases. In 12 of these

17 treatments, its weight is above 80%. In these cases, alternative strategies can be

considered residual. Of the five remaining treatments, where the Semi-Grim weight is

below 80%, four can be found in the DF data set. This seems to relate to the cohort-

effect suspected in relation to Result 2 and Table 3. Overall, I consider the Semi-Grim

hypothesis (Hypothesis 3) therefore to be confirmed both on average and individually.
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Table 5: Estimated weights and randomization parameters of prototypical strategies (σcc,σcd,σdc,σdd)

Constant Gen Grim Gen Coop Gen TFT Gen WSLS Semi-Grim

(α,α,α,α) (1,α,α,α) (1,α,0,0) (1,0,α,0) (1,0,0,α) (1,α,α,0)

Treat δ−δ⋆ γ Weight α Weight α Weight α Weight α Weight α Weight α LL

Blonski et al. (2011)

6 -0.3 0.001
(0)

1
(−)

0.017
(0.013)

− − − − − − − − − − −15.3

3 -0.3 0.015
(0.012)

− − − − − − − − − − 1
(−)

0.143
(0.094)

−32.8

2 -0.15 0.003
(0.003)

− − − − − − − − − − 1
(−)

0.286
(0.082)

−52.2

7 -0.05 0.006
(0.005)

− − − − − − − − − − 1
(−)

0.326
(0.072)

−72.7

4 -0.05 0.008
(0.007)

− − 0.12
(0.049)

0.252
(0.054)

− − − − − − 0.88
(−)

0.167
(0.048)

−264.1

8 0.075 0.018
(0.01)

− − 0.025
(0.025)

0.8
(0)

− − − − − − 0.975
(−)

0.18
(0.04)

−170.6

5 0.075 0.015
(0.007)

0.05
(0.042)

0.218
(0.077)

− − 0.118
(0.096)

0.868
(0.224)

− − − − 0.831
(−)

0.277
(0.071)

−265.6

1 0.083 0.017
(0.01)

0.053
(0.039)

0.244
(0.088)

0.361
(0.094)

0.016
(0.011)

0.055
(0.054)

0.985
(0.082)

0.031
(0.045)

0.985
(0.118)

− − 0.5
(−)

0.43
(0.042)

−278.6

9 0.083 0.022
(0.018)

0.052
(0.042)

0.259
(0.167)

− − − − − − − − 0.948
(−)

0.193
(0.047)

−200.3

10 0.179 0.059
(0.017)

0.037
(0.056)

0.412
(0.067)

− − − − − − − − 0.963
(−)

0.221
(0.044)

−352.4

Dal Bo and Fréchette (2011)

1 -0.316 0.006
(0.004)

− − 0.045
(0.033)

0.553
(0.129)

− − 0.069
(0.047)

0.997
(0.046)

− − 0.885
(−)

0.276
(0.064)

−187

3 -0.105 0.033
(0.018)

0.355
(0.077)

0.008
(0)

0.14
(0.048)

0.647
(0.069)

− − 0.157
(0.062)

0.88
(0.161)

− − 0.348
(−)

0.446
(0.083)

−513

2 -0.066 0.027
(0.023)

− − 0.325
(0.071)

0.005
(0)

− − 0.141
(0.061)

0.952
(0.065)

− − 0.533
(−)

0.508
(0.046)

−562.6

5 0.105 0.004
(0.006)

− − 0.299
(0.105)

0.137
(0.093)

0.402
(0.119)

0.97
(0.241)

− − − − 0.299
(−)

0.552
(0.117)

−337.3

4 0.145 0.026
(0.023)

− − 0.226
(0.084)

0.703
(0.103)

0.146
(0.073)

0.873
(0.146)

− − − − 0.628
(−)

0.358
(0.054)

−401.8

6 0.355 0.017
(0.007)

0.023
(0.025)

0.5
(0)

0.074
(0.071)

0.796
(0.109)

− − − − − − 0.902
(−)

0.227
(0.041)

−322.2

Duffy and Ochs (2009), “random rematching” treatment

1 0.233 0.028
(0.022)

0.144
(0.048)

0.34
(0.047)

− − − − − − − − 0.856
(−)

0.385
(0.033)

−815.7

Fudenberg et al. (2012), “no-noise” treatment

1 0.475 0.021
(0.015)

0.083
(0.05)

0.419
(0.164)

− − − − − − − − 0.917
(−)

0.434
(0.065)

−354.7

Note: Bootstrapped standard errors are provided in parentheses. Irrelevant components are identified (and then eliminated, as indicated by “−”) based on

the ICL-BIC information criterion, as described in the appendix. The right-most weight, usually that of the Semi-Grim component, is simply the difference

of the remaining weights to 1. Thus, it is not a model parameter and is not assigned a standard error.
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This raises the question how these individual strategies relate to Semi-Grim equi-

libria. To address it, the population weights of the relevant candidate MPEs are esti-

mated in a finite mixture similar to the one above. The composition will be similar, too,

while the prototypical strategies are now replaced by their MPE counterparts. In ad-

dition to the Always-Defect equilibrium (σcc,σcd,σdc,σdd) = (0,0,0,0) and the three

Semi-Grim MPEs hypothesized above, I include four candidate MPEs that are efficient

(σcc = 1) but not Semi-Grim—and their conjunction will again allow to reconstruct a

Semi-Grim population. On the one hand, the three Semi-Grim MPEs are those that

are obtained if players pick Semi-Grim equilibria satisfying two of the three criteria:

efficiency, robustness to utility perturbations (RUP), and robustness to imperfect mon-

itoring (RIM). The limiting-logit, belief-free MPE characterized in Prop. 4.3 is RIM

and RUP, the efficient belief-free Semi-Grim MPE in Eq. (13) is efficient and RIM, and

the efficient limiting-logit Semi-Grim MPE in Eq. (14) is efficient and RUP.

On the other hand, the four efficient MPEs that are not Semi-Grim are Grim,

(σcc,σcd,σdc,σdd) = (1,0,0,0), and three equilibrium strategies related most closely

to the prototypical strategies considered before: (1) Tit-for-tat (σcc,σcd,σdc,σdd) =

(1,0,1,0), which of course is not an MPE but included as it represents the conventional

notion of reciprocity most explicitly; (2) Weak Win-Stay-Lose-Shift (W-WSLS), which

is an MPE of the form (σcc,σcd,σdc,σdd) = (1,0,0,α), namely with10

σdd =
bd2−2d−b+a+1−

√

b2 d4−2(b2−ab+b+2a−2)d2+4(b−1)d+(b−a−1)2

2d(bd2−a)
; (15)

and (3) the asymmetric belief-free MPE that obtains for σcc = 1 and σdd = 0 in Eq. (9),

σcc = 1 σcd =
(b−1)d −b+a

(a−1)d
σdc =

1−d

(a−1)d
σcc = 0. (16)

The asymmetric belief-free MPE is particularly interesting, as it is maximizes the dif-

ference σcd −σdc subject to efficiency (σcc = 1) and to σcc > σdd as observed univer-

sally. It is therefore most suitable to reconstruct the Semi-Grim population without any

individual playing a Semi-Grim strategy. To see this, recall that Proposition 4.1 shows

10This Weak WSLS strategy is a more promising candidate strategy than the pure WSLS (1,0,0,1)
for two reasons. First, pure WSLS is an MPE only if one round of punishment suffices to retaliate

unilateral deviations, which is the case only in few treatments. Secondly, pure WSLS attracted virtually

no weight in the analyses of Dal Bo and Fréchette (2011) and Fudenberg et al. (2012). Thus, replacing

it by the less extreme “Weak WSLS” strategy improves its chances of attracting weight.
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Table 6: The mixed MPEs (σcc,σcd,σdc,σdd) in the analysis and bootstrapped confidence intervals of the empirical strategies

(The MPEs are set bold face type when they exist, and plain when they would exist for some δ′ ≤ δ2/3)

Confidence Intervals Mixed MPEs (σcc,σcd ,σdc,σdd)
Tr σ̂cc σ̂cd σ̂dc σ̂dd LimLog BF Eff BF SG Eff LimLog SG Asymm BF W-WSLS

Blonski et al. (2011)

6 (1,0,0,1)
3 [0.63,1] [0,0.27] [0,0.4] [0,0.05]
2 [0.89,1] [0,0.48] [0.08,0.62] [0,0.01]
7 [0.87,1] [0.1,0.46] [0.19,0.56] [0,0.02] (1,0.87,0.87,0) (1,0.88,0.88,0) (1,0.67,0.67,0) (1,0.86,1,0) (1,0,0,0.84)
4 [0.81,0.95] [0.07,0.24] [0.11,0.28] [0.02,0.05] (1,0.5,0.5,0) (1,0.5,0.5,0) (1,0.5,0.5,0) (1,0.33,0.67,0)
8 [0.85,0.97] [0.11,0.31] [0.13,0.35] [0.02,0.05] (0.92,0.8,0.8,0) (1,0.89,0.89,0.09) (1,0.33,0.33,0) (1,0.93,0.5,0) (1,0,0,0.57)
5 [0.87,0.96] [0.15,0.34] [0.22,0.41] [0.04,0.07] (0.96,0.5,0.5,0.04) (1,0.54,0.54,0.09) (1,0.23,0.23,0) (1,0.71,0.29,0)
9 [0.86,0.96] [0.07,0.27] [0.1,0.31] [0.01,0.06] (0.93,0.59,0.59,0.04) (1,0.67,0.67,0.11) (1,0.3,0.3,0) (1,0.75,0.42,0) (1,0,0,1)
1 [0.7,0.88] [0.18,0.36] [0.23,0.41] [0.03,0.07] (0.94,0.5,0.5,0.06) (1,0.56,0.56,0.11) (1,0.26,0.26,0) (1,0.67,0.33,0)
10 [0.81,0.93] [0.07,0.25] [0.18,0.38] [0.03,0.09] (0.9,0.43,0.43,0.14) (1,0.52,0.52,0.24) (1,0.13,0.13,0) (1,0.72,0.17,0) (1,0,0,0.61)

Dal Bo and Fréchette (2011)

1 [0.7,0.87] [0.08,0.34] [0.32,0.54] [0.02,0.04]
3 [0.72,0.89] [0.17,0.34] [0.31,0.45] [0.1,0.14] (1,0.57,0.57,0) (1,0.57,0.57,0) (1,0.53,0.53,0) (1,0.33,0.87,0)
2 [0.86,0.93] [0.22,0.38] [0.34,0.49] [0.03,0.05] (1,0.42,0.42,0) (1,0.42,0.42,0) (1,0.46,0.46,0) (1,0.14,0.62,0)
5 [0.9,0.96] [0.25,0.4] [0.18,0.31] [0.05,0.1] (0.83,0.73,0.73,0.04) (1,0.89,0.89,0.21) (1,0.33,0.33,0) (1,0.91,0.57,0) (1,0,0,0.54)
4 [0.92,0.96] [0.27,0.46] [0.46,0.64] [0.12,0.22] (0.89,0.54,0.54,0.09) (1,0.65,0.65,0.19) (1,0.21,0.21,0) (1,0.78,0.29,0) (1,0,0,0.7)
6 [0.97,0.99] [0.18,0.44] [0.26,0.51] [0.06,0.17] (0.71,0.64,0.64,0.18) (1,0.93,0.93,0.47) (1,0.14,0.14,0) (1,0.97,0.19,0) (1,0,0,0.23)

Duffy and Ochs (2009), “random rematching” treatment

[0.94,0.97] [0.27,0.41] [0.31,0.45] [0.11,0.18] (0.87,0.5,0.5,0.13) (1,0.63,0.63,0.26) (1,0.09,0.09,0) (1,0.89,0.11,0) (1,0,0,0.2)

Fudenberg et al. (2012), “no-noise” treatment

6 [0.93,0.97] [0.35,0.58] [0.38,0.6] [0.11,0.24] (0.73,0.5,0.5,0.27) (1,0.77,0.77,0.54) (1,0.04,0.04,0) (1,0.95,0.05,0) (1,0,0,0.06)

Note: LimLog BF is the limiting-logit, belief-free MPE characterized in Prop. 4.3, the Eff BF SG is the efficient belief-free Semi-Grim MPE in Eq. (13),

Eff LimLog SG is the efficient limiting-logit Semi-Grim MPE in Eq. (14), Asymm BF is the asymmetric belief-free MPE in Eq. (16), and W-WSLS is the

Weak WSLS MPE in Eq. (15).
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that there are no limiting-logit MPEs satisfying σcd > σdc and σcc > σdd . Hence, no

such MPEs are regular in the sense of Doraszelski and Escobar (2010), and in turn,

any MPE satisfying both σcc > σdd and σcd > σdc must be belief-free. Of those, the

asymmetric belief-free MPE maximizes σcd −σdc, and since σcc = 1 and σdd = 0 holds

true as well, it is the most suitable MPE to reconstruct the Semi-Grim population. The

cooperation probabilities predicted by the mixed MPEs are provided in Table 6.

As for the analytical set up, one choice is left to be made: Which strategy should

I use (if any) when an MPE does not exist? For example, the limiting-logit, belief-free

equilibrium exists only if δ ≥ δ⋆. We will see that subjects indeed play Semi-Grim

strategies if δ ≥ δ⋆. Now, setting the Semi-Grim weights to zero whenever δ < δ⋆

would thus effectively assume the result that subjects start playing Semi-Grim at δ =

δ⋆. To avoid this effect, I relax the existence conditions slightly and consider the

respective MPE also if it does not exist for the δ in question, but if δ is increased

slightly (up to δ2/3).11 In addition to allowing me to analyze the transition to Semi-

Grim MPEs more effectively, this approach levels the playing field between the various

MPEs and TFT (which is never an MPE but always considered) and it benefits Weak

WSLS, which otherwise exists in the smallest number of treatments. The results are

robust to varying the threshold of δ2/3, as I show in the supplementary material.

Table 7 presents the results. Accounting for the noise in experimental data, there

is a surprisingly stable overall pattern. If δ is far below the threshold, roughly if δ−
δ⋆ < −0.2, subjects do not cooperate and play always defect. Around the threshold,

roughly if −0.2≤ δ−δ⋆≤ 0.1, subjects switch to Grim and Semi-Grim strategies, with

Semi-Grim MPEs attracting around 50% on aggregate. The particular distribution of

weight between the Semi-Grim MPEs is rather uninformative if δ ≈ δ⋆, since the three

Semi-Grim MPEs are quantitatively fairly similar around the threshold (as shown in

Table 6). Above the threshold, roughly if δ− δ⋆ > 0.1, the subjects have switched

(almost) completely to Semi-Grim MPEs and distribute fairly evenly across the three

Semi-Grim MPEs (these are the treatments BOS-10, DF-4 and 6, as well as DO and

FRD). Thus, above the threshold, where subjects have to pick two of the three selection

criteria (efficiency, RIM, and RUP), they consistently sort into either of the three cases.

Alternative MPEs are only residual then, confirming Hypothesis 6. In particular, Weak

11To be precise, if a particular mixed MPE does not exist for the treatment parameters in question, I

verify if it exists for δ2/3 (i.e. if the period length was shortened by 33% and δ gets adapted correspond-

ingly), and in case it does, I use the mixed MPE at the threshold of existence.
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Table 7: Estimated weights of equilibrium strategies

Efficient MPEs that are not Semi-Grim Semi-Grim MPEs

Treat δ−δ⋆ A-Def Grim TFT W-WSLS Asymm BF LimLog BF Eff Symm BF Eff LimLog SG γ LL

Blonski et al. (2011)

6 -0.3 1
(−)

− − − 0.02
(0.013)

−15.3

3 -0.3 1
(−)

0.08
(0.03)

−66.4

2 -0.15 − 1
(−)

− 0.01
(0.006)

−86.5

7 -0.05 − − − − − − − 1
(−)

0.01
(0.005)

−93.5

4 -0.05 0.537
(0.079)

− 0.161
(0.062)

− − − 0.303
(−)

0.026
(0.023)

−279.6

8 0.075 − − − − − − 0.029
(0.03)

0.971
(−)

0.018
(0.009)

−180

5 0.075 − − − − − 0.24
(0.083)

0.76
(−)

0.012
(0.006)

−269

1 0.083 − 0.434
(0.084)

− − 0.566
(−)

− − 0.009
(0.008)

−300.1

9 0.083 0.116
(0.068)

− − − − − − 0.884
(−)

0.033
(0.023)

−218.1

10 0.179 0.089
(0.057)

− − − − 0.323
(0.094)

− 0.588
(−)

0.028
(0.027)

−346.9

Dal Bo and Fréchette (2011)

1 -0.316 1
(−)

0.1
(0.038)

−487.1

3 -0.105 − 0.458
(0.077)

0.196
(0.073)

− 0.346
(−)

− − 0.076
(0.023)

−604.5

2 -0.066 − 0.315
(0.072)

0.139
(0.064)

− − − 0.546
(−)

0.027
(0.024)

−564.3

5 0.105 − 0.448
(0.077)

− − − − 0.15
(0.057)

0.403
(−)

0.01
(0.009)

−337.9

4 0.145 − − − − − 0.199
(0.08)

0.415
(0.103)

0.386
(−)

0.006
(0.005)

−398.9

6 0.355 − − − − − 0.092
(0.045)

− 0.908
(−)

0.012
(0.006)

−324.2

Duffy and Ochs (2009), “random rematching” treatment

1 0.233 − − 0.095
(0.049)

− − 0.312
(0.075)

0.298
(0.081)

0.296
(−)

0.011
(0.005)

−822.2

Fudenberg et al. (2012), “no-noise” treatment

1 0.475 − − 0.137
(0.064)

− − 0.165
(0.057)

0.423
(0.082)

0.275
(−)

0.005
(0.004)

−334.3

Note: The mixed MPEs are as described in Table 6. Bootstrapped standard errors are provided in parentheses. Empty cells indicate that the respective

MPE does not exist even after inflating δ up to δ2/3. Hyphens (“−”) indicate that the MPE exists but attracts insignificant weight according to ICL-BIC.

Since the right-most weight is not a parameter but a (usually sizeable) residual, it is not assigned a standard error.
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Figure 5: The aggregate share of subjects playing Semi-Grim MPEs
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(b) . . . in relation to Pr(Coop) in round 1
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Table 8: Logistic regression of Pr(Semi-Grim) on δ−δ⋆ and cooperation

Intercept Coefficient

Pr(Semi-Grim) | δ−δ⋆ 0.271
(0.302)

9.662
(2.319)

⋆

Pr(Semi-Grim) | Pr(Coop) 0.161
(0.275)

6.357
(1.333)

⋆

WSLS and the asymmetric belief-free MPE never attract any weight, and TFT is used

only unsystematically (in 5/18 treatments), never attracting more than 20% weight.

Figure 5 illustrates this overall description by plotting the share of subjects playing

either of the Semi-Grim MPEs in relation to both δ−δ⋆ and the probability of observ-

ing cooperation in round 1. The coefficients of the respective logistic regressions are

provided in Table 8. The plot in relation to cooperation in round 1 is particularly il-

lustrative. Subjects switch to Semi-Grim almost exactly as they start cooperating in

round 1, both visually in Figure 5b and econometrically as the intercept is insignificant

(Table 8), and the relationship is virtually linear.

Result 7 (Semi-Grim MPEs). There is a stable pattern across experiments that sub-

jects switch to Semi-Grim MPEs as they start cooperating in round 1, and both occurs

at the threshold δ= δ⋆ where the Semi-Grim strategies turn into equilibrium strategies.
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7 Discussion

The purpose of the paper was to analyze the strategies underlying the observation of

Blonski, Ockenfels, and Spagnolo (2011, BOS) and Dal Bo and Fréchette (2011, DF)

that experimental subjects start to cooperate when the discount rate δ reaches the seem-

ingly abstract threshold δ⋆ = (pdc + pdd − pcd − pcc)/(pdc − pcd). To this end, I first

computed the average memory-1 strategies in a variety of recent experiments. This re-

vealed a stable Semi-Grim pattern (σcc,σcd,σdc,σdd) = (1,α,α,0) with α ∈ [0.2,0.5],

across all 18 treatments of four recent experiments.

In aggregate, my results explain both the Semi-Grim pattern and the predictive-

ness of the BOS-threshold. Semi-Grim equilibria are implied by requiring robustness

to imperfect monitoring (RIM) and utility perturbations (RUP), they exist once the dis-

count rate exceeds the BOS-threshold δ⋆, that is when subjects start to cooperate, and

subjects indeed play Semi-Grim strategies in most treatments. Three cases need to be

distinguished here. If the discount rate is far below the threshold δ⋆, players hardly co-

operate in round 1, and Semi-Grim thus predicts rare cooperation in subsequent rounds.

In this case, subjects are most parsimoniously categorized as playing Always Defect.

Around the threshold δ⋆, the population is a mixture of Grim and Semi-Grim MPEs,

which have the structure (σcc,σcd,σdc,σdd) = (1,0,0,0) and (1,α,α,0), respectively.

This yields a Semi-Grim structure (1,α′,α′,0) on average, just as observed. Above

the threshold, finally, most subjects play Semi-Grim MPEs, but in this case they have

to pick two of the three selection criteria (efficiency, RIM, and RUP). Subjects then

distribute fairly evenly across the three resulting MPEs, and their mixture of course

yields Semi-Grim on average, again. Thus, it is not a single selection principle, but a

mixture of three, and if the respective predictions are sufficiently different (far above

the threshold δ⋆), subjects distribute evenly in all experiments.

In addition, the Semi-Grim equilibria explain that individual choices may some-

times be lenient (Grim only after two defections) or forgiving (Tit-for-Two-Tats, Two-

Tits-for-Tat), as observed by Fudenberg et al. (2012). As subjects cooperate with sym-

metric, intermediate probabilities α ∈ [0.2,0.5] after mixed memory-1 histories, (c,d)

and (d,c), they do not reciprocate systematically. This yields either lenient or forgiving

behavior depending on how the coin falls.

The absence of direct reciprocity, σcd = σdc, which was predicted and observed,
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marks a departure from the literature following Axelrod (1980a,b). This literature

emphasizes the theoretical effectiveness of strategies such as Tit-for-Tat (TFT) and

Win-Stay-Lose-Shift (WSLS) in evolutionary tournaments (Nowak et al., 1993; Imhof

et al., 2007). The initial inspection of the average choices, which revealed σcd = σdc

as well as σdd ≤ 0.1, suggested that neither TFT nor WSLS would have substantial

weight, and the analysis of individual strategies confirmed this hypothesis. This ob-

servation accompanies Press and Dyson (2012), who recently showed that the “zero-

determinant” strategies generalize TFT in that they are unbeatable by any opponent

strategy (see also Duersch et al., 2013). These zero-determinant strategies contain the

“belief-free” equilibria (Ely and Välimäki, 2002) considered here. The finding that

these equilibria explain both the Semi-Grim pattern across experiments and the BOS-

threshold thus relates neatly to the recent discussion of zero-determinant strategies.

Finally, the existence of belief-free equilibria is guaranteed in general repeated games

(Ely et al., 2005), which suggests that the results obtained in the present paper will

generalize as well. This appears to be a promising avenue for further research.
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A Econometric analysis of individual behavior

Essentially, my approach adapts Dal Bo and Fréchette (2011) to enable the inclusion

of mixed equilibria, but is otherwise similar. Thus, subjects (of a given type) play their

equilibrium action with probability 1− γ, γ ∈ (0,1), and they randomize uniformly

with probability γ (in each round, taking independent draws). This approach estimates

the same population weights as Dal Bo and Fréchette’s approach if only pure equilibria

are considered, while it provides a straightforward generalization to mixed MPEs. The

population is a mixture of a finite number of components k ∈ K, while os,t ∈ {0,1} and

ωs,t = { /0,cc,cd,dc,dd} denote choice and state of the decision number t of subject

s ∈ S, respectively (os,t = 1 denotes cooperation and os,t = 0 denotes defection). Let

σω(k) denote the (perturbed) probability that members of component k cooperate in

state ω and let ρ(k) denote the component weight. Thus, the log-likelihood of the

model 〈σ,ρ,K〉 is

LL = ∑
s∈S

log ∑
k∈K

ρ(k)L(s,k) with L(s,k) =∏
t

(

σωs,t (k)
)os,t ·

(

1−σωs,t (k)
)1−os,t .

The likelihood is maximized jointly over all parameters (σ,ρ), first using the robust,

gradient-free NEWUOA algorithm (Powell, 2006) and secondly, verifying conver-

gence using a Newton-Raphson algorithm. Standard errors are bootstrapped.

The model dimensionality K is estimated using ICL-BIC (integrated classification

likelihood-Bayes information criterion), which is an entropy-based generalization of

Bayes information criterion appropriate to discriminate finite-mixture models (Bier-

nacki et al., 2000). Models with poorly distinguished components have high entropy,

and in such cases, ICL-BIC recommends to eliminate a component. It is defined as

ICL-BIC =−LL+D/2 · lnn+En(τ̂)

with En(τ̂) =−∑
s∈S

∑
k∈K

τ̂sk ln τ̂sk with τ̂sk =
ρk L(s,k)

∑k′∈K ρk′ L(s,k′)
, (17)

with n as number of subjects and D as number of parameters. Note that τ̂sk is the

posterior probability that subject s belongs to component k. The precise procedure to

estimate K is as follows. I start with the complete model containing all components and

estimate all nested models where exactly one component is eliminated. I rank all the
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nested models according to their log-likelihood (LL) and start with the model with the

highest LL. If eliminating the respective component improves ICL-BIC, it is eliminated

and the procedure restarts with the correspondingly reduced number of components.

Otherwise, the next-ranked component is considered, and so on. The procedure stops

if no component can be eliminated. Details on the intermediate outcomes and on the

elimination order are provided as supplementary material.

B Proofs

Proof of Proposition 4.1. Recall π̃s′,s′′ as defined in Eqs. (7)–(8) and that log
[

(1 −
σs′,s′′)/σs′,s′′

]

=−λπ̃s′,s′′ in all (s′,s′′) if (σ,σ) is an MLE.

First, by π̃cc − π̃dd = (σdd −σcc) ·µ, σcc 6= σdd implies µ < 0. For, µ = 0 implies

σcc = σdd , and in case µ > 0, σcc ≷ σdd implies π̃cc ≶ π̃dd and thus σcc ≶ σdd (contra-

diction). In turn, µ< 0 implies σcd = σdc, as in case µ< 0, σcd ≷ σdc implies π̃cd ≶ π̃dc

and thus σcd ≶ σdc, a contradiction to σcd 6= σdc. It remains to show that σdc < σcc, or

equivalently π̃cc < π̃dc. Using σcd = σdc, π̃cc − π̃dc simplifies toward

π̃cc − π̃dc =
(d−1)(σdc−σcc)(d (bσdd−2aσdd+2aσdc−2σdc−bσcc+2σcc)+b−a−1)

d (σ2
dd−2σdd−2σ2

dc+2σdc+σ2
cc)+2d2 (σdc−σcc)(σdd−σcc)(σdd−σdc)−1

.

For contradiction assume σdc ≥ σcc. The denominator of the fraction is generally

decreasing in σdd , and in the limiting case σdd = 0 it is

2d (d σcc −1) σ2
dc −2d

(

d σ2
cc −1

)

σdc +d σ2
cc −1 < 0.

Thus, it is generally negative. The numerator of the right-hand side is negative if

σdd <
(2a−2) d σdc +(2−b) d σcc +b−a−1

(2a−b) d
=: σ̃dd.

Thus, in case σdd < σ̃dd , π̃cc − π̃dc is positive, contradicting the initial assumption

σcc < σdc. Alternatively, in case σdd ≥ σ̃dd , the cooperation incentive π̃dc is decreasing

in σdd , and in the limiting case σdd = σ̃dd ,

π̃dc =
(d −1) (bd σdc −bd σcc +b−a)

2d σdc −2d σcc +1
.

36



Thus, π̃dc < 0 follows if σdc > σcc. Since π̃dc < 0 also implies σdc < 0.5, this contra-

dicts max{σcc,σcd,σdc,σdd}> 0.5.

Proof of Proposition 4.2. Eqs. (7)–(8) hold equivalently here, now with µ= r1/r2 where

r1 = δ (pdc + pcd) (σdd −σcc)−2δ pcc (σdd −σdc)

−2δ pdd (σdc −σcc)− pdd + pdc + pcd − pcc

and r2 6= 0. Thus, r1 = 0 again yields π̃cc = π̃cd = π̃dc = π̃dd . Solving r1 = 0 for σdc,

σdc =
2δ(pcc σdd − pdd σcc)−δ (pdc + pcd) (σdd −σcc)+ pdd − pdc − pcd + pcc

2δ(pcc − pdd)
,

and substituting this into π̃cc = 0 yields

δ2 (pdc − pcd) (σdd −σcc)−δ (pdc − pcd) (σdd −σcc −1)

+δ(pdd − pcc)− pdd − pdc + pcd + pcc = 0.

Solving these two conditions for (σdd,σdc) yields

σdd =
(pdc − pcd) δ σcc − pdd − pdc + pcd + pcc

δ(pdc − pcd)
,

σdc = σcd =
(pdc − pcd)δ σcc − pdc + pcc

δ (pdc − pcd)
,

and rearranging yields Eqs. (11). As for existence, σdd ≥ 0 holds true (at σcc = 1)

iff δ ≥ (pdc + pdd − pcd − pcc)/(pdc − pcd), while σdd < σdc ≤ 1 is satisfied for all

σcc ∈ [0,1].

Proof of Proposition 4.3. First, I show that any limiting-logit, belief-free MPE at δ ≈
δBOS must satisfy σcd = σdc. By Prop. 4.1, any limiting-logit MPE with σcd 6= σdc

satisfies σcc = σdd . Since belief-free MPEs satisfy Eq. (9), σcc = σdd implies

σcd =
(a−1) δσcc +a−b

(a−1) δ
σdc =

(a−1)δσcc +1

(a−1) δ
, (18)

which is a strategy profile only if δ > (b− a+ 1)/(a− 1). Thus, no such strategy

profile exists at δ ≈ δBOS.
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In turn, if a limiting-logit, belief-free equilibrium exists at δ ≈ δBOS, then it sat-

isfies σcd = σdc. By Prop. 4.2, δ ≥ δBOS is necessary for a belief-free MPE satisfying

σcd = σdc to exist, and the following shows that δ ≥ δBOS is sufficient for a limiting-

logit, belief-free equilibrium to exist. Since σdc = σcd is also necessary, δ ≥ δBOS will

thus be established as a necessary and sufficient condition.

Since it must be an MPE as characterized in Prop. 4.2, Eq. (11) applies for some

r ∈ [0,1]. By definition of MLE, log
[

(1−σs′,s′′)/σs′,s′′
]

· f =−π̃s′,s′′ for all (s′,s′′) and

some f > 0, where π̃s′,s′′ as defined in Eqs. (7)–(8) expand to

π̃cc =

(δ−1)
(

bδ(σ2
dd−σcc σdd−σdd−σ2

dc+σdc+σ2
cc)−aδ(σdd−σdc)(σdd+σdc−2σcc)

+bδ2 (σdc−σcc)(σdd−σcc)(σdd−σdc)−δ(σdc−σcc)
2−bσcc+aσcc+σcc−1

)

δ(σ2
dd−2σdd−2σ2

dc+2σdc+σ2
cc)+2δ2 (σdc−σcc)(σdd−σcc)(σdd−σdc)−1

π̃dc =

(δ−1)
(

bδ(σ2
dd−σdc σdd−σdd−σ2

dc+σcc σdc+σdc)−aδ(σdd−σdc)
2

+bδ2 (σdc−σcc)(σdd−σcc)(σdd−σdc)+δ(σdc−σcc)
2−bσdc+aσdc+σdc−1

)

δ(σ2
dd−2σdd−2σ2

dc+2σdc+σ2
cc)+2δ2 (σdc−σcc)(σdd−σcc)(σdd−σdc)−1

π̃dd =

(δ−1)
(

bδ(σcc σdd−σdd−σ2
dc+σdc)+aδ(σdd−σdc)

2

+δ(σdc−σcc)(2σdd−σdc−σcc)+bδ2 (σdc−σcc)(σdd−σcc)(σdd−σdc)−bσdd+aσdd+σdd−1
)

δ(σ2
dd−2σdd−2σ2

dc+2σdc+σ2
cc)+2δ2 (σdc−σcc)(σdd−σcc)(σdd−σdc)−1

.

Let σ(r) denote the MPEs in Eq. (11) and substitute σcc,σdd in all expressions by

σcc = σcc(r)+w1

(

σdc −σdc(r)
)

σdd = σdd(r)+w2

(

σdc −σdc(r)
)

.

Let fs′,s′′ = log
[

(1−σs′,s′′)/σs′,s′′
]

· f + π̃s′,s′′ for all (s′,s′′) denote the MLE conditions

and totally differentiate the MLE condition for state (d,c), i.e. fdc, with respect to

(σdc, f ). This yields an expression for dσdc/d f . Next, define

dcc :=
∂ fcc

∂σdc

· dσdc

d f
+

∂ fcc

∂ f
ddd :=

∂ fdd

∂σdc

· dσdc

d f
+

∂ fdd

∂ f

and substitute σdc(r) as defined in Eq. (11) for σdc.

Thus, by the implicit function theorem, σ(r) is a limiting-logit equilibrium if dcc =

ddd = 0 along some direction (w1,w2) 6= 1 at f = 0. Note that dcc = ddd = 0 holds

trivially for the direction (w1,w2) = 1 (at f = 0), as we then move along the line of

belief-free Semi-Grim MPEs where the MPE conditions hold trivially for f = 0. Thus,
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the objective is to find r ∈ (0,1) such that dcc = ddd = 0 for (w1,w2) 6= 1. To this end,

solve [dcc = 0,ddd = 0] for (w1,w2). The solution is of the form

w1 =
n1 ∗ f + x

m1 ∗ f + x
w2 =

n2 ∗ f + x

m2 ∗ f + x
,

and thus it satisfies (w1,w2) 6= 1 if x = 0, where x = x′ ∗ x′′ with

x′ = (δ−1)2 (bδ−b+a−1)2 (r−1)r ((bδ−b+a−1)r+1)
((bδ−b+a−1)r+b−a+1)((bδ−b+a−1)r−bδ)((bδ−b+a−1)r−bδ+1)

x′′ =

(

log
(

− (bδ−b+a−1)(r−1)
(bδ−b+a−1)r+b−a+1

)

−(b−a+1) log
(

− (bδ−b+a−1)r−bδ+1

bδ

)

+b log
(

− (bδ−b+a−1)r−bδ
(bδ−b+a−1)r

)

−a log
(

− (bδ−b+a−1)r−bδ
(bδ−b+a−1)r

)

+(b−a+1) log
(

(bδ−b+a−1)r+1

bδ

))

.

Note that x′ 6= 0 for interior r follows from δ ≥ δBOS, which implies bδ−b+a−1 ≥ 0.

Thus, x = 0 only if x′′ = 0, which applies if

(

((−bδ+b−a+1)r+bδ)((bδ−b+a−1)r+1)
(bδ−b+a−1)r ((−bδ+b−a+1)r+bδ−1)

)b−a

= ((bδ−b+a−1)r+b−a+1)((bδ−b+a−1)r−bδ+1)
(bδ−b+a−1)(r−1)((bδ−b+a−1)r+1) .

The left-hand side is finite for r = 1 and infinite for r = 0, while the right-hand side

is infinite for r = 1 and finite for r = 0. Both are continuous in r, and thus an interior

solution r ∈ (0,1) exists.

Lemma B.1. A regular Semi-Grim MPE exists for all δ > δBOS in general, and if

pcc + pdd > pdc + pcd , then also for all

δ> 1−
√

2
√

pcc−pcd

√
pdc−pcc

√
pdd−pcd

√
pdc−pdd+(pdc+pcd−2 pcc) pdd+(pcc−2 pcd) pdc+pcc pcd

pdc − pcd

.

(19)

Proof of Lemma B.1. If σcc = 1, σcd = σdc, and σdd = 0, the cooperation incentive in

state (d,c), π̃dc := πdc(c)− π̃dc(d), is

π̃dc =
δ(pdd+δ(pdc−pcd)−pdc+pcd−pcc)σ2

dc−(δ2 (pdc−pcd)+2δ(pdd−pdc)+pdc+pcd−pdd−pcc)σdc−(1−δ)(pdd−pcd)

2δ (σdc −1) σdc +1
.

(20)

First, I show that the two conditions π̃cc > π̃dc and π̃dc = 0 imply that σ is a mixed

MPE. By σdc = σcd and Eq. (8), π̃dc = π̃cd , i.e. π̃dc = 0 implies π̃cd = 0. Further, by
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π̃cc > π̃dc and Eqs. (7)–(8), σcc = 1 > σdc implies µ < 0, and by σdd = 0 < σdc this

implies π̃dd < π̃dc = 0. Hence, any strategy profile satisfying π̃cc > π̃dc = 0 (besides

σcc = 1,σdd = 0) is mixed MPE with the claimed incentive structure.

Second, I derive the existence condition. π̃dc = 0 obtains if

σdc =
(2δ−1) pdd +(1−δ)2

pdc +
(

1−δ2
)

pcd − pcc ±
√

r

(2δ2 −2δ) (pdc − pcd)−2δ(pcc − pdd)
(21)

with

r =(pdd − pdc − pcd + pcc)
2+4δ

(

(pdc + pcd) pdd + pcc (pdc + pcd −2 pdd)− p2
dc − p2

cd

)

−2δ2
(

(pdc + pcd) pdd + pcc (pdc + pcd −2 pdd)−3 p2
dc +4 pcd pdc −3 p2

cd

)

+ δ4 (pdc − pcd)
2 −4δ3 (pdc − pcd)

2

These strategy profiles exist if r ≥ 0, and solving r = 0 for δ, this yields the lower

bound claimed in Eq. (19). Now, evaluating π̃cc − π̃dc at σcc = 1, σcd = σdc, σdd = 0

yields

π̃cc − π̃dc =
(1−σdc)(δ(2 pdd σdc−2 pcc σdc−2 pdd+pdc+pcd)+pdd−pdc−pcd+pcc)

2δ (σdc −1) σdc +1
(22)

and at the limiting strategy σdc

∣

∣

r=0
, it is positive if and only if

(d −1)2 (pdc − pcd) (pdd − pdc − pcd + pcc)

pcc − pdd +(1−δ) (pdc − pcd)
> 0. (23)

This is satisfied if and only if pcc + pdd > pdc + pcd . Otherwise, the limiting strategy

σdc does not solve r = 0. Instead, it solves π̃cc = π̃dc, which yields

σdc =
(2δ−1) pdd +(1−δ) pdc +(1−δ) pcd − pcc

2δ(pdd − pcc)
. (24)

Substituting it into π̃dc = 0, and solving for δ yields δ > δBOS.

40



Table 9: Testing the Markov assumption: The weights of the memory-1 and memory-2 histories

Treatment parameters Memory-1 histories Memory-2 histories (t −1)× (t −2)

Tr b a δ (c,c) (d,c) (c,d) (d,d) cc× cc cc× cd cc×dc cd × cc cd ×dc cd ×dd dc× cc dc× cd dc×dd dd × cd dd ×dc

Blonski et al. (2011)

6 1.43 1.29 0.5

3 2.5 1.5 0.5 1.005
(0.028)

⋆⋆ 0.163
(0.079)

0.042
(0.063)

0.011
(0.011)

−0.153
(0.168)

0
(0)

0
(0)

0
(0)

0.061
(0.316)

0
(0.072)

0
(0)

−0.172
(0.1)

0.791
(0.41)

−0.014
(0.031)

0.071
(0.074)

2 1.25 1.12 0.75 0.984
(0.017)

⋆⋆ 0.234
(0.131)

0.144
(0.108)

0.003
(0.002)

⋆ 0
(0)

0
(0)

0
(0)

0
(0)

0.434
(0.269)

−0.154
(0.111)

0
(0)

0.134
(0.282)

0.241
(0.306)

−0.013
(0.013)

0.001
(0.006)

7 1.43 1.29 0.75 0.983
(0.019)

⋆⋆ 0.313
(0.08)

⋆⋆ 0.139
(0.063)

⋆ 0.006
(0.005)

−0.028
(0.033)

0
(0)

0
(0)

0
(0)

0.519
(0.174)

⋆ 0.261
(0.373)

0
(0)

0.248
(0.196)

0.135
(0.364)

−0.006
(0.015)

0.002
(0.008)

4 2.5 1.5 0.75 0.832
(0.062)

⋆⋆ 0.182
(0.039)

⋆⋆ 0.106
(0.036)

⋆ 0.043
(0.006)

⋆⋆ 0.061
(0.063)

−0.007
(0.082)

0.098
(0.07)

−0.134
(0.047)

0.386
(0.166)

0.041
(0.1)

−0.137
(0.081)

0.025
(0.142)

0.048
(0.087)

−0.085
(0.019)

⋆⋆ 0.009
(0.022)

8 1.43 1.29 0.88 0.905
(0.06)

⋆⋆ 0.211
(0.048)

⋆⋆ 0.118
(0.034)

⋆⋆ 0.033
(0.006)

⋆⋆ 0.03
(0.059)

−0.014
(0.114)

−0.041
(0.156)

0.407
(0.204)

0.723
(0.161)

0.068
(0.159)

−0.189
(0.072)

0.646
(0.17)

−0.082
(0.109)

−0.054
(0.019)

⋆ 0.005
(0.012)

5 2.5 1.5 0.88 0.912
(0.046)

⋆⋆ 0.292
(0.049)

⋆⋆ 0.169
(0.035)

⋆⋆ 0.049
(0.007)

⋆⋆ 0.011
(0.043)

−0.096
(0.117)

0.053
(0.055)

−0.17
(0.079)

0.358
(0.117)

⋆ 0.011
(0.097)

−0.34
(0.143)

0.256
(0.121)

−0.041
(0.088)

−0.008
(0.034)

0.071
(0.031)

⋆

9 2.4 1.8 0.75 0.923
(0.027)

⋆⋆ 0.207
(0.046)

⋆⋆ 0.103
(0.04)

⋆ 0.029
(0.01)

⋆ −0.003
(0.032)

−0.489
(0.409)

−0.443
(0.35)

−0.078
(0.108)

0.487
(0.151)

⋆ 0.193
(0.192)

−0.112
(0.116)

0.148
(0.163)

−0.078
(0.121)

−0.032
(0.025)

0.055
(0.035)

1 3 2 0.75 0.876
(0.063)

⋆⋆ 0.221
(0.037)

⋆⋆ 0.303
(0.047)

⋆⋆ 0.043
(0.008)

⋆⋆ −0.077
(0.077)

−0.067
(0.104)

−0.019
(0.135)

−0.232
(0.126)

0.101
(0.102)

−0.271
(0.087)

⋆ 0.277
(0.196)

0.468
(0.095)

⋆⋆ −0.109
(0.071)

−0.032
(0.031)

0.014
(0.02)

10 4.67 3 0.75 0.885
(0.032)

⋆⋆ 0.301
(0.055)

⋆⋆ 0.09
(0.04)

⋆ 0.051
(0.012)

⋆⋆ −0.01
(0.038)

−0.341
(0.263)

−0.256
(0.242)

−0.121
(0.043)

⋆ 0.399
(0.112)

⋆ 0.139
(0.123)

−0.169
(0.08)

0.025
(0.111)

0.083
(0.135)

−0.041
(0.032)

0.093
(0.042)

Dal Bo and Fréchette (2011)

1 2.92 1.54 0.5 0.804
(0.036)

⋆⋆ 0.315
(0.056)

⋆⋆ 0.226
(0.061)

⋆ 0.032
(0.004)

⋆⋆ 0
(0)

0
(0)

0
(0)

0
(0)

0.135
(0.119)

−0.231
(0.143)

0
(0)

0.416
(0.1)

⋆ 0.128
(0.124)

−0.156
(0.048)

⋆ 0.06
(0.06)

3 2.92 2.15 0.5 0.899
(0.058)

⋆⋆ 0.321
(0.031)

⋆⋆ 0.294
(0.04)

⋆⋆ 0.119
(0.009)

⋆⋆ −0.072
(0.077)

−0.202
(0.105)

−0.091
(0.101)

−0.114
(0.204)

−0.167
(0.093)

−0.092
(0.082)

0.216
(0.199)

0.241
(0.106)

0.17
(0.07)

−0.065
(0.047)

0.033
(0.024)

2 2.92 1.54 0.75 0.937
(0.031)

⋆⋆ 0.307
(0.036)

⋆⋆ 0.339
(0.039)

⋆⋆ 0.034
(0.005)

⋆⋆ −0.006
(0.032)

0
(0.032)

−0.179
(0.08)

−0.161
(0.129)

0.056
(0.079)

−0.163
(0.074)

0.432
(0.12)

⋆ 0.437
(0.072)

⋆⋆ −0.024
(0.077)

0.005
(0.03)

0.053
(0.026)

5 2.92 2.77 0.5 0.942
(0.011)

⋆⋆ 0.201
(0.024)

⋆⋆ 0.324
(0.031)

⋆⋆ 0.065
(0.01)

⋆⋆ 0
(0)

0
(0)

0
(0)

0
(0)

0.3
(0.133)

−0.138
(0.134)

0
(0)

0.455
(0.148)

⋆ 0.273
(0.141)

−0.026
(0.034)

0.03
(0.016)

4 2.92 2.15 0.75 0.952
(0.012)

⋆⋆ 0.556
(0.048)

⋆⋆ 0.351
(0.054)

⋆⋆ 0.178
(0.021)

⋆⋆ −0.008
(0.012)

−0.064
(0.025)

⋆ −0.059
(0.048)

−0.131
(0.101)

0.106
(0.093)

0.076
(0.139)

0.09
(0.106)

0.013
(0.096)

−0.224
(0.108)

−0.19
(0.03)

⋆⋆ 0.084
(0.059)

6 2.92 2.77 0.75 0.985
(0.005)

⋆⋆ 0.346
(0.079)

⋆⋆ 0.249
(0.073)

⋆⋆ 0.108
(0.027)

⋆⋆ −0.006
(0.006)

−0.104
(0.113)

−0.003
(0.022)

−0.098
(0.105)

0.401
(0.155)

0.186
(0.163)

−0.086
(0.113)

0.232
(0.168)

0.244
(0.161)

−0.065
(0.043)

0.057
(0.069)

Duffy and Ochs (2009), “random rematching” treatment

3 2 0.9 0.979
(0.014)

⋆⋆ 0.298
(0.042)

⋆⋆ 0.276
(0.043)

⋆⋆ 0.115
(0.014)

⋆⋆ −0.014
(0.014)

−0.175
(0.06)

⋆ −0.123
(0.059)

0.064
(0.087)

0.235
(0.08)

⋆ 0.021
(0.068)

0.212
(0.09)

0.149
(0.079)

0.074
(0.067)

−0.011
(0.033)

0.153
(0.042)

⋆⋆

Fudenberg et al. (2012), “no-noise” treatment

6 5 4 0.88 0.944
(0.017)

⋆⋆ 0.502
(0.059)

⋆⋆ 0.417
(0.067)

⋆⋆ 0.166
(0.03)

⋆⋆ 0.011
(0.017)

−0.068
(0.067)

−0.086
(0.066)

0.062
(0.117)

0.128
(0.123)

0.077
(0.143)

−0.02
(0.109)

−0.067
(0.115)

0.006
(0.151)

−0.036
(0.068)

0.059
(0.056)

Note: ⋆⋆ indicates significance at p < 10−4, ⋆ indicates significance at p < 10−2


