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Abstract 

Many procedures have been suggested for the venerable problem of dividing a set 

of indivisible items between two players.  We propose a new algorithm (AL), related to 

one proposed by Brams and Taylor (BT), which requires only that the players strictly 

rank items from best to worst.  Unlike BT, in which any item named by both players in 

the same round goes into a “contested pile,” AL may reduce, or even eliminate, the 

contested pile, allocating additional or more preferred items to the players.  The 

allocation(s) that AL yields are Pareto-optimal, envy-free, and maximal; as the number of 

items (assumed even) increases, the probability that AL allocates all the items appears to 

approach infinity if all possible rankings are equiprobable.  Although AL is potentially 

manipulable, strategizing under it would be difficult in practice.   
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Two-Person Fair Division of Indivisible Items: An Efficient, Envy-Free Algorithm 

1.  Introduction 

In this paper, we present two simple algorithms for dividing indivisible items fairly 

between two players.  Both assume that the players can strictly rank the items from best 

to worst (i.e., there are no ties in the rankings), and both use only these rankings to make 

allocations. 

The first algorithm can be thought of as asking the players to make simultaneous 

and independent choices in sequence, starting with their most preferred item (if they are 

sincere) and progressively descending to less and less preferred items that have not 

already been allocated.  The second algorithm requires the players to submit their 

complete rankings in advance to a referee (or computer).   

The first algorithm was proposed by Brams and Taylor (1999) as a “query step” 

for allocating indivisible items fairly between two players, A and B.  We call it BT, and it 

works as follows: At any point in the allocation process, if A and B name different items, 

BT allocates them immediately; if A and B name the same item, it goes into a “contested 

pile.”  BT does not allocate the items in the contested pile, which is a subject we will 

return to later. 

The second algorithm, which we describe in section 3 and call AL, also allocates 

items sequentially, one at a time to each player, based on the players’ rankings.  Like BT, 

it does not necessarily allocate all the items—some may go into a contested pile.   

But under AL, the contested pile is never larger, and may be smaller, than under 

BT.  Furthermore, if the contested piles under AL and BT contain the same number of 

items, each player will never strictly prefer the items it receives under BT.  
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BT and AL share the property that, when they assign an item to one player, they 

simultaneously assign another item to the other player.  Thus, A and B are allocated equal 

numbers of items. 

The allocations given by both BT and AL are envy-free (EF): A’s items can be 

matched pairwise to B’s items such that A prefers each of its items to the corresponding 

item of B; there is a similar pairwise matching of B’s items to A’s.  But only the 

allocations given by AL are always efficient or Pareto-optimal (PO): There is no other 

allocation that is at least as good for A and B and better for one or both players, based on 

their rankings.  Also, AL allocations are always maximal: There is no EF allocation that 

allocates additional items to the players.  

Both BT and AL are manipulable: It is possible for a player to improve its 

allocation by ranking items insincerely (i.e., not according to its preferences).  Practically 

speaking, however, successful manipulation of either algorithm would require that a 

player have essentially complete information about the preference ranking of its 

opponent, which is highly unlikely in most real-life situations.   

In many disputes, including divorce and estate division, only an allocation in 

which the disputants receive about the same number of items will be perceived as fair.   

BT and AL work well for that purpose, especially when they allocate most, if not all, of 

the items.  BT is a paragon of simplicity, and AL is not much harder to understand as we 

show in section 3, which should facilitate its acceptance as a practicable procedure.   

The paper proceeds as follows.  In section 2, we define envy-freeness formally, 

illustrate it with examples, provide a necessary and sufficient condition for an allocation 
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to be envy-free, and give a condition on the players’ preferences that is necessary for the 

existence of an envy-free allocation.  

In section 3, we define and illustrate BT and AL, showing that AL generally 

allocates more or better items to the players than BT.  Then we use AL to show that the 

necessary condition of section 2 is also sufficient for the existence of an envy-free 

allocation.  In section 4 we prove that an AL allocation is Pareto-optimal and maximal, 

and then illustrate that it may be manipulable.   

In section 5, we calculate the probability that an EF allocation of all the items 

exists when all possible preference rankings are equiprobable and offer a conjecture 

about this probability as the number of items, assumed to be even, approaches infinity.  In 

section 6, we summarize our results and draw some conclusions.   

2. Envy-Free Allocations 

Consider the task of dividing a set of indivisible items between two players, A and 

B, so that each player receives an equal number of items.  For example, if the items are 

numbered 1 – 6, the allocation might be {1, 3, 5} to A and {2, 4, 6} to B.  We assume that 

each player can strictly rank the items from most to least preferred.  Roughly speaking, an 

allocation is envy-free if each player prefers the subset of items it receives to the subset of 

items received by its opponent. 

The precise definition of envy-freeness uses only the players’ orderings to assess 

whether each player prefers its own subset of items to its opponent’s subset.  Denote the 

sets of items received by A and B by SA and SB, respectively.  Recall that | SA|  = | SB|, that 

is, SA and SB have the same cardinality (i.e., contain equally many items).  An allocation 

(SA, SB) is envy-free iff there exists an injection fA:SA →  SB and an injection fB:SB →  SA 
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such that, for each item x received by A, A prefers x to fA(x), and for each item y received 

by B, B prefers y to fB(y).1  Thus, for each item received by a player in an envy-free 

allocation, it pairwise prefers its items to its opponent’s items. 

Suppose the players’ preferences are as indicated below: 

Example 1:  A:  1 2 3 4 5 6 

 B:  2 4 6 1 3 5 

Consider the underscored allocation, {1, 3, 5} to A and {2, 4, 6} to B.  We show that this 

allocation is envy-free (EF) by exhibiting a 1-1 mapping from A’s items to B’s, and a 1-1 

mapping from B’s items to A’s, such that each player prefers each of its own items to the 

opponent’s item to which it is mapped.  These mappings are, for A,  fA(1) = 2, fA(3) = 4, 

fA(5) = 6; and for B, fB(2) = 1, fB(4) = 3, and  fB(6) = 5.  To simplify notation, we writing 

these mappings as fA(1, 3, 5) = (2, 4, 6) and fB(2, 4, 6) = (1, 3, 5).  

We emphasize that each player pairwise prefers its own item to the corresponding 

item of its opponent.  For example, A receives item 3 and prefers 3 to fA(3) = 4, but A does 

not prefer item 3 to item 2, another item received by B.  However, A prefers item 1, 

another item it receives, to item 2.  In this example, the functions fA and fB are inverses, but 

this property is not essential and, indeed, cannot be achieved in some examples, as we will 

show later. 

By comparison, the allocation {1, 2, 3} to A and {4, 5, 6} to B is not EF.  This 

could be proven by checking exhaustively all possible injections from {1, 2, 3} to {4, 5, 

6}, and from {4, 5, 6} to {1, 2, 3}, showing that no pair of them has the required property.  

But there is an easier proof, based on the following characterization. 

                                                 
1 An injection is a 1-1 mapping, that is, fA maps each item in SA to a different item in SB. 
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Proposition 1.  An allocation is EF iff, for each item, x, received by a player (say, 

A), the number of items received by B that A prefers to x is not greater than the number of 

items received by A that A prefers to x. 

Proof.  To show that the given property is necessary for an allocation to be EF, 

suppose that A receives x in an EF allocation, and it prefers r of its own items to x and s of 

B’s items to x.  We show that r ≥ s.  Consider the mapping fA defined above.  Suppose that 

for some item y received by A, fA(y) is preferred to x.  Because A prefers y to fA(y), A must 

also prefer y to x.  It follows that each of B’s s items that A prefers to x must be the image 

under fA of an item received by A that A also prefers to x. There are r such items, which 

implies that r ≥ s.  A similar argument beginning with an item received by B completes 

the proof of necessity.   

To show sufficiency, suppose that an allocation satisfies the given property.  We 

construct a 1-1 mapping, fA, of A’s items to B’s items such that A always prefers the item 

it receives to the corresponding item received by B.  To see that A must receive its most 

preferred item, x1, assume otherwise.  Then B receives at least one item that A prefers to 

the most preferred item it does receive, whereas A receives zero such items, contradicting 

the required property.  Therefore, x1 must have been assigned to A.  Let xk denote A’s kth 

most preferred of the items it receives, and define fA(xk) to be A’s kth most preferred of the 

items B receives.  Because the number of B’s items that A prefers to xk cannot exceed k − 

1, it follows that A prefers xk to fA(xk).  The mapping fA thus defined, and the mapping fB 

constructed analogously, show that the allocation is EF. ■ 

An alternative way to state Proposition 1 is as follows: If an allocation is EF, then 

whenever a player receives an item x, it must also receive at least half of all the allocated 
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items that it strictly prefers to x.  Assuming that all items are allocated, then if a player 

receives an item x that it ranked kth in its original ranking, then it must also receive at least 

(k − 1)/2 items that it strictly prefers to x. 

It is clear that the allocation {1, 2, 3} to A and {4, 5, 6} to B in Example 1 is EF 

for A: Because A receives its top three items, it cannot prefer any items that B receives.   

But the story is different for B, as can be shown using Proposition 1.  It receives 

item 5, which is 6th in its ranking, and prefers only two of the items it receives, 4 and 6, to 

5.  The allocation cannot be EF for B, because it prefers to 5 more items in A’s subset 

(three: 1, 2, and 3) than in its own subset (two: 4 and 6).  (In general, in an EF allocation, a 

player must receive its most preferred item, and cannot receive its least preferred item.)  

Another proof can be based on the fact that B receives item 4, which it ranks 2nd, but no 

item that it prefers to item 4 (A receives item 2, which B ranks 1st).  

We can now characterize all pairs of preference rankings for which EF allocations 

exist.   Specifically, we present Condition D below, which we will show is necessary and 

sufficient for the existence of an EF allocation.  The proof of necessity is given below; the 

proof of sufficiency will be given after we describe AL, which we show in section 3 

always produces an EF allocation if Condition D is satisfied. 

Observe that, for an EF allocation to be possible, the number of items to be 

allocated to the two players, n, must be even.  This is because, for an allocation to be EF, 

there must exist a 1-1 mapping of A’s items to B’s (and of B’s items to A’s), which is not 

possible unless these two non-intersecting subsets have the same cardinality.  
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Let n be the number of items to be allocated.  Fix the rankings of A and B.  Before 

stating Condition D, we begin with a sequence of simpler conditions.  We say that A’s and 

B’s rankings satisfy Condition C(k) iff 

Condition C(k).  The set consisting of A’s k most preferred items is equal to the 

set consisting of B’s k most preferred items. 

Note that condition C(k) refers to an equality of sets—A’s ranking of its first k 

items may or may not be the same as B’s: What is required is that the same set of k items 

be most preferred by both A and B.  We will be concerned about whether C(k) is true 

when k is an odd number.  In Example 1, where n = 6, C(k) is not satisfied for any odd k: 

k = 1: {1} for A is different from {2} for B.  

k = 3: {1, 2, 3} for A is different from {2, 4, 6} for B. 

k = 5: {1, 2, 3, 4, 5} for A is different from {2, 4, 6, 1, 3} for B. 

We can now state Condition D in terms of Condition C(k): 

Condition D.  Condition C(k) fails for all odd values of k, 1 ≤ k ≤ n. 

In other words, Condition D states that, for all odd k, at least one of A’s top k items 

is not a top k item for B, which as we noted above is true in Example 1.  Note that 

Condition D cannot be true if n is odd, because Condition C(n) must be true since the set 

of all items must be the same for both players.  Thus, Condition D can be true only if the 

number of items to be allocated is even. 

Proposition 2.  Let n be even.  A pair of strict preference rankings of n items 
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admits a complete EF allocation iff it satisfies Condition D. 

 Proof (of Necessity).  To show that Condition D must hold in order for an EF 

allocation of all n items to exist, we show that, if Condition D fails, then there can be no 

EF allocation.  Now Condition D fails iff there is some odd value of k such that C(k) 

holds.  Assume such a value of k, and let S be the subset consisting of A’s (or B’s) top k 

items. 

Suppose that an EF allocation exists.  Because S contains an odd number, k, of 

items, it follows that one of A and B, say A, must receive fewer than half of the items in S.  

Suppose that A receives r < k/2 items from S.  Moreover, because each player must 

receive the same number of items in an EF allocation, A must receive at least one item 

that does not lie in S—that is, it is not among A’s k most preferred items. 

Let y be the item most preferred by A among the items that A receives that are not 

in S.  If y is hth ranked by A in A’s original ranking, we must have h ≥ k + 1.  Moreover, A 

receives exactly r items that it prefers to y.  According to Proposition 1, we must have r ≥ 

(h − 1)/2 ≥ k /2.  But, as noted above, r < k/2.  This contradiction shows that no EF 

allocation can exist, establishing that Condition D is necessary. ■ 

We postpone the proof of sufficiency, which depends on the performance of AL.  We 

describe this algorithm and BT next. 

3.  The BT and AL Algorithms 

In this section, we formally state the rules of BT and AL.  Both algorithms allocate 

a set of indivisible items in a series of stages.  In the case of BT, the players can be 

thought of as simultaneously and independently choosing the most preferred unallocated 

item at each stage, so a complete ranking is in fact not needed in advance.  In the case of 
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AL, the players submit their complete rankings to a referee (or a computer), which makes 

choices solely on the basis of the rankings.  

BT Rules  

 1.  Players A and B name their most preferred item of those that have not yet been 

allocated.   

2.  If A and B name different items, each player receives the item it names; if they 

name the same item, it goes into the contested pile (CP).   

3.  If all items have been allocated to the players or put in CP, stop.  Otherwise, go 

to step 1.  

AL Rules 

We begin with an informal description of AL, which also works by descending the 

preference rankings of the players.  If the players have not yet been assigned any items, 

then if there is an item at the top of both preference orderings, it is put into CP, and this 

step is repeated until each player most prefers a different unallocated item.  If the players 

most prefer different unallocated items, AL assigns each player its preferred item. 

After the first assignment of items to the players is made, new assignments are 

made 

 (i) when the players prefer different items; or  

(ii) when they prefer the same item, provided a new assignment—of the    

      preferred item to one player and a less preferred item to the other—does  

      not cause envy and so is feasible.   
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When there is a commonly preferred item, the feasibility of assigning it to either player is 

assessed, one player at a time.  Only if there is no such assignment is the commonly 

preferred item put in CP.  

Formally, we start AL at stage 0, which may be repeated.  In stage t (t = 0, 1, 2, 

…), exactly t items have already been assigned to each player.  AL proceeds until there 

are no unallocated items.   

Stage 0 

Compare the most preferred unallocated items of players A and B.  If they are 

identical, place the commonly preferred item in CP and repeat stage 0.  If they are 

different, assign each player its most preferred item.  Then go to stage t = 1.    

Stage t 

1.  If one unallocated item remains, place it in CP and stop; if no unallocated items 

remain, stop.  Otherwise, compare A’s and B’s most preferred unallocated items.  If they 

are the same, go to step 2; if they are different, assign each player its most preferred item, 

and go to stage t + 1.  

2.  Determine whether the unallocated item that A and B both most prefer, say i, 

which we call the “tied” item, can be assigned to either A or B as follows: Let jA1,, jA2, … 

represent, in order of A’s preference, the unallocated items that A finds less preferable 

than i.  Let jB1, jB2, … represent, in order of B’s preference, the unallocated items that B 

finds less preferable than i. 

3.  Consider all possible assignments of i to B and first jA1, then jA2, etc., to A.  

Such an assignment is feasible as long as the number of items assigned to B or 

unassigned, including i, that A prefers to the “compensation” item it receives, jA1 or jA2 or 
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…, is at most t.  Stage t + 1 must be implemented for each feasible assignment of i to B.  

If the number of items assigned to B. or unassigned, that A prefers to jA1, including i, is 

greater than t, then no assignment of i to B is feasible.   

4.  Consider all possible assignments of i to A and first jB1, then jB2, etc., to B.  

Such an assignment is feasible as long as the number of items assigned to A or 

unassigned, including i, that B prefers to its “compensation” item,  jB1 or jB2 or …, is at 

most t.  Stage t + 1 must be implemented for each feasible assignment of i to A.  If the 

number of items assigned to B, or unassigned, that A prefers to jB1, including i, is greater 

than t, then no assignment of i to A is feasible.     

5.  If the assignment of i to A is infeasible, and the assignment of i to B is 

infeasible, put i in CP.  Then repeat stage t with the remaining unallocated items.  

Whereas BT gives only one EF allocation, AL may give many, because for t > 1,   

there may be multiple ways to implement AL, as we will illustrate later.  Although AL is 

more complex than BT, it is not so for the players, who only need submit their rankings 

of items.   

The chief difference between BT and AL is in how CP is defined, as we next 

illustrate with two examples.  In each example, we assume that the players are sincere, 

ranking each item according to their true preferences.  Later we assume that the players 

may not be sincere—in particular, they may seek to manipulate BT or AL to their 

advantage.  

Example 2: A:  1 2 3 4  

 B:  2 3 4 1 



 14 

When BT is applied to Example 2, A indicates that its first choice is item 1, and B 

that its first choice is item 2; by BT rule 2, the players receive their preferred items 

because they are different.  At stage 2, A and B both indicate that item 3 is their preferred 

item of those remaining, so it goes into CP, as does item 4 at stage 3, by BT rule 2.  In 

summary, A receives item 1, B receives item 2, and CP = {3, 4}.  

Under AL, the players’ top-ranked items—1 for A and 2 for B—are different, so 

item 1 goes to A and item 2 goes to B at stage 0.  Now proceed to stage t = 1.  Of the 

unallocated items, both players most prefer i = 3.  For A, one unallocated item, jA1 = 4 is 

less preferred than i = 3.  We consider assigning item 3 to B and jA1 = 4 to A.  But then B 

will be assigned two items, namely 2 and 3, that A prefers to jA1 = 4, which exceeds t = 1, 

so i cannot be assigned to B.   

For B, too, the only unallocated item less preferred than i = 3 is jB1 = 4.  We 

consider assigning i = 3 to A and jB1 = 4 to B.  This assignment is feasible, because only 

one item that is preferred by B to jB1 = 4 is allocated to A.  In summary, AL produces the 

allocation in which A receives {1, 3}, B receives {2, 4}, and CP =  in Example 2.  

In general, we refer to an allocation in which CP =  as complete.  Example 2 

shows that AL may sometimes produce a complete allocation when BT does not. 

Example 2 also shows that under AL, the 1-1 mappings, fA and fB, of A’s items 

onto B’s and B’s onto A’s need not be inverse functions.  In particular, the allocation 

given by AL is EF for A because fA(1, 3) = (2, 4), and it is EF for B because fB(2, 4) = (3, 

1).2   

                                                 
2 The mappings fA and fB  are inverses iff  fB(fA(x)) = x for all x in A’s subset.  When an EF allocation exists 

despite a common preference, such as both players preferring item 2 to item 3, it can be shown that the 

mappings fA and fB  cannot be inverses.  Thus in Example 2, fA(1) = 2, so fB(fA(1)) = 3 ≠ 1.   
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Example 2 also shows that AL may not only reduce the CP given by BT—

containing items {3, 4}—but may eliminate it entirely, allocating all four items to the 

players.  However, as we illustrate next, this will not always be the case. 

Example 3:  A:  1 2 3 4 5 6 

 B:  2 3 5 4 1 6 

When BT is applied to Example 3, A and B initially receive their most preferred 

items, 1 and 2, respectively.  Next, because both players name item 3, it goes into CP.  

Then A and B receive the items they name, 4 and 5, respectively.  Finally, both players 

name item 6, so it goes into CP.   Altogether, A receives {1, 4}, B receives {2, 5}, and 

CP = {3, 6}.  This allocation is EF, using fA(1,4) = (2, 5), and fB(2, 5) = (1, 4) or (4, 1).  

 Under AL, because the players’ top-ranked items are different, item 1 goes to A 

and item 2 goes to B in stage 0.  In stage 1, both players prefer i = 3.  For A, the most 

preferred unallocated item less preferred than i = 3 is jA1 = 4.  But we cannot assign i = 3 

to B and jA1 = 4 to A, because B would be assigned more than t = 1 item (namely, 2 and 

3) that A prefers to jA1 = 4.  

For B, the first unallocated item less preferred than i = 3 is jB1 = 5.  We can assign i 

= 3 to A and jB1 = 5 to B, because only one item assigned to A is preferred by B to jB1 = 5.  

But we cannot proceed further, because after jB1 = 5 the next unallocated item in B’s 

preference ranking is jB2 = 4.  However, assigning i = 3 to A and jB2 = 4 to B is infeasible, 

because more than t = 1 item—in fact, two items (namely, 2 and 3)—that B prefers to jB2 

= 4 would be unallocated or assigned to A.  Therefore, there is only one way to proceed 

to stage 2, namely with A assigned items 1 and 3, and B assigned items 2 and 4. 
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In stage 2, A and B both prefer item 4 and next most prefer item 6.  As already 

noted, in an EF allocation, neither player can be assigned item 6, the common last choice. 

Consequently, both 4 and 6 are put in CP.  In summary, AL produces exactly one 

allocation in Example 3: {1, 3} to A, {2, 5} to B, and {4, 6} to CP.   

Example 3 illustrates another possible difference between BT and AL.  Neither 

algorithm produces a complete allocation.  Both yield a CP that contains two items.  In 

both cases, CP contains item 6; under BT it also contains item 3, whereas under AL it 

contains item 4.  The AL and BT allocations also differ: A receives {1, 4} under BT and 

{1, 3} under AL, and B receives {2, 5} under both BT and AL. 

Consider two allocations, (SA, SB)  and (SA', SB'), where all four subsets are of equal 

cardinality.  We say that (SA, SB) Pareto-dominates (SA', SB') iff there are injections gA:SA 

→  SA' and gB:SB →  SB' such that A finds x at least as preferable as gA(x) for all x  SA, B 

finds y at least as preferable as gB(y) for all y  SB, and for at least one x or y this 

preference is strict.  Thus one allocation Pareto-dominates another if the first allocation is 

at least as good for both players and better for at least one of them, based on pairwise 

comparisons.   

Note that the Pareto-comparison of (SA, SB) and (SA', SB') depends only on the 

assumptions that the four subsets have equal cardinality, that SA does not overlap SB, and 

that SA' does not overlap SB'.  In particular, the sets of items allocated, SA U SB and  SA' U 

SB' , need not be identical, making it possible to Pareto-compare two allocations when 

unallocated items remain, or when the CPs are different. 
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In Example 3, A prefers its AL allocation, {1, 3}, to its BT allocation {1, 4}, 

because while both allocations contain item 1, A prefers item 3 to item 4; B is indifferent 

between its BT and AL allocations, which are both {2, 5}.  

Thus, the AL allocation Pareto-dominates the BT allocation.  Note also that both 

players agree that CP = {3, 6}, given by BT, is preferable to CP = {4, 6} given by AL, 

reflecting the fact that one player (A) prefers its AL allocation to its BT allocation, 

whereas the other player (B) is indifferent.  

Examples 2 and 3 illustrate the following proposition: 

Proposition 3.  The number of items allocated to the players under AL is never 

less, and may be more, than under BT.  If the number of items allocated to the players is 

the same under BT and AL but some items are different, then the AL allocation Pareto-

dominates the BT allocation.  

Proof.  A commonly preferred item, i, which we will call a tied item, may be 

assigned to a player under AL but is never assigned under BT.  Thus, one or more tied 

items may go into CP under BT that would not under AL, so the number of items 

allocated under AL may be greater, and will never be less, than the number allocated 

under BT.   

When a tied item is allocated under AL, the consequence may be the creation of 

later tied items, which would not have occurred if the tied item had been put in CP, as it 

would have under BT.  Thus, the total number of items in CP may be the same as under 

BT.  But ties that occur later involve less preferred items, so an AL allocation—even if it 

does not reduce the cardinality of CP—Pareto-dominates the corresponding BT allocation 

if they differ.     
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Proposition 4.  An AL allocation is a maximal EF allocation: There is no other EF 

allocation that allocates more items to the players.   

Proof.  The AL algorithm continues until all items are either assigned or in CP. 

Thus any EF allocation that contains an AL allocation must allocate items from CP to the 

players.  But AL puts an item, i, in CP only if it is tied and the assignment of i to either 

player, and any less preferred item to its opponent, cannot preclude the opponent from 

being envious.  

This is not to say that AL finds all maximal EF allocations.  In Example 3, we found two 

maximal EF allocations of two items to each player—one by AL and one by BT—but the 

AL allocation Pareto-dominates the BT allocation.  Indeed, Proposition 3 shows that such 

dominance must be the case when these two allocations are the same size but not 

identical.   

So far we have shown that, for any pair of strict rankings of n items,    

1. An AL allocation may give each player more items than the BT allocation; 

2. An AL allocation may give each player the same number of items as the BT 

allocation, but the sets may not be the same, in which case the AL allocation 

Pareto-dominates the BT allocation;  

3. The AL and BT allocations may be exactly the same. 

Possibility 3 occurs in Example 1, wherein both procedures give {1, 3, 5} to A and {2, 4, 

6} to B.  It also occurs in two extreme cases: when the players rank all items exactly the 

same (in which case all items go into CP); and when their rankings are diametrically 
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opposed and n is even (in which case each player will obtain its more preferred half of 

the items, and CP will be empty).   

It is obvious that BT always gives an EF allocation, because it allocates items to 

players only when they prefer different ones at the same time.  This implies that fA and fB 

can be inverses. But recall that Example 2 showed that the no-envy mappings of an AL 

allocation may not be inverses.  Examples 2 and 3 also showed that AL may give larger 

or more preferred EF allocations than BT. 

Earlier we proved the necessity part of Proposition 2: That Condition D—for each 

odd k, 1 ≤ k ≤ n, at least one of A’s top k items is not a top k item of B—is necessary for 

the existence of an EF allocation of all n items, i.e., a complete EF allocation.  We next 

show that Condition D is also sufficient by adding the proof of sufficiency to Proposition 

2, which we repeat below: 

Proposition 2.  Let n be even.  A pair of strict preference rankings of n items 

admits a complete EF allocation iff it satisfies Condition D. 

Proof (of Sufficiency).  We show that Condition D is sufficient for the existence 

of a complete EF allocation by proving that AL produces a complete EF allocation unless 

Condition D fails.  Specifically, we show that, if AL puts any item in CP, then for some 

odd k, the subset comprising A’s k most preferred items must equal the subset comprising 

B’s k most preferred items.  

Suppose that we are applying AL to find an EF allocation.  At stage 0, if A’s and 

B’s top-ranked items are the same, AL will put this item in CP.  Thus, if AL puts an item 

in CP at stage 0, then Condition C(k) must be satisfied for k = 1, i.e.,  A’s and B’s most 

preferred items are identical.   
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Next suppose that A’s and B’s top-ranked items are different, and that AL has 

reached stage t > 0, so that both players have received t items without violating envy-

freeness.  For an item to be added to CP, it must be the case that (i) both players prefer it 

to all other unallocated items (i.e., it is a tied item), and (ii) allocation of the tied item to 

either player must cause the opponent to be envious.   

Assume the tied item is i.  If it is possible to assign i to B and jA1—A’s most 

preferred unallocated item after i—to A, while preserving envy-freeness, the number of 

items assigned to B, including i, that A prefers to jA1 must be at most t.   If it is not 

possible to assign i to B and jA1 to A, then the number of items assigned to B that A 

prefers to jA1 must exceed t.  Because only t items were assigned to each player prior to i, 

then the number of items assigned to B, including i, that A prefers to jA1 must equal 

exactly t + 1.  In particular, i itself, together with the items previously assigned to A or to  

B, must be the first 2t + 1 items in A’s preference ranking.   

An analogous argument can be made for B.  If it is not possible to assign i to A and 

jB1 to B, then it must be the case that the subset consisting of i, the items previously 

assigned to A, and the items previously assigned to B must be the first 2t + 1 items in B’s 

preference ranking.   

When the players have the same 2t + 1 items in their preference rankings—no 

matter which player receives tied item i—Condition C(k) holds for k = 2t + 1, so 

Condition D fails.  To conclude, AL puts an item in CP when Condition D fails, which 

means that Condition C(k) must hold for some odd k.  When Condition D holds, a 

complete EF allocation must exist, because AL never puts an item in CP.    
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Although Condition D is both necessary and sufficient for the existence of an EF 

allocation, it does not say what the EF allocation(s) are.3  For that purpose, we need AL.   

As noted previously, both AL and BT always allocate to each player the same 

number of items, although AL may allocate more items in toto (Example 2).  Therefore, 

the number of items allocated to CP—if it is not empty—will be even or odd, depending 

on whether the total number of items to be allocated is even or odd.  In particular, if n is 

odd, then CP must contain at least one item. 

We showed earlier (Proposition 3) that if AL and BT give different EF allocations 

to the players, AL’s allocation must include more, or more preferred, items; furthermore, 

it gives a maximal EF allocation (Proposition 4).  We next assess how well AL and BT 

do according to other properties. 

4. Other Properties of EF Allocations 

We begin with an example that illustrates how AL may produce more than one 

complete EF allocation: 

Example 4:  A:  1 2 3 4 5 6 7 8 

 B:  3 4 5 6 7 8 1 2 

In stage 0, AL assigns item 1 to A and item 3 to B.  In stage 1, AL assigns item 2 

to A and item 4 to B.  Then, in stage 2, there is a tie on item 5.  The tie cannot be resolved 

by assigning i = 5 to B, because jA1 = 6, and the assignment of items 3, 4, and 5 to B 

would mean that of the items A prefers to 6, fewer than half (i.e., only items 1 and 2) are 

assigned to A.  But the tie can be resolved by assigning i = 5 to A, in which case B can 

                                                 
3 We postpone until section 4 examples showing that AL may produce multiple EF allocations. 
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receive either jB1 = 6 or jB2 = 7.  Thus, stage 3 can begin with A assigned {1, 2, 5} and B 

assigned {3, 4, 6}, or with A assigned {1, 2, 5} and B assigned {3, 4, 7}.  In the first 

case, A is assigned item 7 and B item 8 in stage 3; in the second case, A is assigned item 

6 and B item 8 in stage 3. 

The two resulting EF allocations are underscored below: 

(i) A:  1 2 3 4 5 6 7 8          (ii) A:  1 2 3 4 5 6 7 8 

    B:  3 4 5 6 7 8 1 2                B:  3 4 5 6 7 8 1 2 

In (i), a player’s minimal ranking for an item it receives is 7th (item 7 for A), whereas in 

(ii) this minimal ranking is 6th (item 6 for A and item 8 for B).  We call (ii) the maximin 

complete allocation—it maximizes the minimum rank of the players—which may be 

desirable in certain situations.   

A complete allocation is called locally Pareto-optimal if there is no other 

allocation of the same items that Pareto-dominates it, i.e., the items could not be re-

distributed between the players so that each player is at least as well off, and some player 

is better off, where comparisons are always pairwise.  For example, if there are n = 2 

items and A prefers item 1 to item 2 and B prefers item 2 to item 1, then the allocation of 

2 to A and 1 to B is not Pareto-optimal, because both players would be better off if 1 

were assigned to A and 2 to B.  Note that in section 3 we defined the Pareto-optimality of 

allocations that were not constrained by the “same items” condition. 

Call an allocation sequential if it assigns each player its most preferred item when 

it is that player’s turn according to some sequence (e.g., ABAB or AABB).  Note that the 

players need not alternate in the sequence, though each player must have the same 
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number of turns.  The resulting allocation of items, called a sincere sequence of choices, 

clearly depends on the sequence.  

Proposition 5 (Brams and King, 2005).  An allocation of a fixed set of items is 

locally Pareto-optimal (LPO) iff it is the product of a sincere sequence of choices.     

Strictly speaking, BT and AL are not sequential algorithms, because items are 

assigned to the players simultaneously.  But if at some stage the players’ first choices are 

different, then the players can be considered to receive items in either order, AB or BA, 

because the items received by A and B would be the same.  Therefore, when A and B 

most prefer (and receive) different items, the assignment can be considered as part of a 

sincere sequence of choices. 

Now suppose that, at some stage, the players’ first choices are the same.  Under 

BT, this item always goes into CP and, hence, will not be part of the allocation to A and 

B.  Under AL, by comparison, this item will go into CP if and only if the item cannot be 

assigned to either player so as to maintain envy-freeness.  Nonetheless, the resulting 

allocation is certain to be PO in the sense that no re-allocation of items can Pareto-

dominate what the algorithm yields. 

Proposition 6.  Both BT and AL produce LPO allocations.  

Proof.  We have already noted that the BT allocation of items that do not end up in 

CP is a sincere sequence of choices.  To show that the same is true of the AL allocations, 

we need only check that it is true at any point when both players prefer the same item.  

Suppose that the tied item, i, is assigned to B while some compensating item, jA1 or jA2 or 

… is assigned to A.  Recall that jA1, jA2, … represent, in order of A’s preference, the 
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unallocated items that A finds less preferable than i.  Clearly, an allocation in which B 

receives i and A receives jA1 is the result of a sincere choice sequence, in the order BA.  If 

B receives i and A receives, say, jAh where h > 1, then the allocation is the result of a 

sincere choice sequence, B … A, where the missing entries are determined by the 

eventual allocation of the unallocated items, including jA1, jA2, …, jAh−1.  (This may be 

considered an “out-of-order” assignment in that it does not make assignments strictly 

according the players’ preferences.)   

In an AL allocation, every item that is not assigned to a player who most prefers it 

among all unallocated items is a deferred-compensation item, such as jAh. When all items 

that precede jAh in A’s order have been allocated,  it will be possible to identify a sincere 

choice sequence, containing equally many A’s and B’s, that  corresponds to any AL 

allocation.   

Complete allocations of items under BT or AL are both EF and LPO.  Similarly, 

incomplete allocations, under BT or AL, satisfy both properties only for the items that are 

allocated to the players (i.e., that do not go into CP).  Moreover, as Proposition 3 shows, 

when a BT allocation produces the same number of items as an AL allocation but the 

items are different, then the BT allocation is Pareto-dominated by the AL allocation. 

The reason that the AL allocation in Example 3 Pareto-dominates the BT 

allocation is that, while each algorithm allocates four of the six items to A and B, AL 

assigns a preferred item (3) to A and BT does not, which puts this item in CP before 

assigning item 4 to A.  This enables A to do better under AL than it does under BT, 

without changing the allocation to B (but changing the contents of CP). 
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We note that LPO allocations need not be EF.  In Example 2, for instance, the 

allocation of {1, 2} to A and {3, 4} to B is LPO in that any other allocation is less 

preferred by A.  But B might envy A (for receiving items that bracket its two middle 

items), so we call such an allocation envy-possible (it does not ensure envy).  In contrast, 

allocating {2, 4} to A and {1, 3} to B would be envy-ensuring (Brams and King, 2005).   

 In Example 4, both EF allocations are LPO, because they can be produced by 

sincere sequences.  A sincere sequence that produces (i) is ABABABAB, whereas a 

sincere sequence that produces (ii) is ABABAABB (there are several other sincere 

sequences that give each allocation).  

In all examples so far in which there is a complete EF allocation (Examples 1, 2, 

and 4), A and B rank all the items differently (they also do so in Example 3 for the four 

items that do not go into CP).  By contrast, if they ranked all items the same, there would 

be no EF allocation, because all items would go into CP.  It seems plausible, therefore, 

that different rankings by the players might be a sufficient condition for there to be a 

complete EF allocation.  However, we have the following: 

Proposition 7.  Even if the players rank all items differently, there may be no 

complete EF allocation. 

Proof.  Consider the following example, in which the premise of Proposition 7 is 

satisfied: 

Example 5:  A:  1 2 3 4 5 6 

 B:  2 3 1 5 6 4 
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Condition C(3) holds, because the top k = 3 items, {1, 2, 3}, are the same for both A and 

B.  Condition D, therefore, fails.  By Proposition 2, there can be no complete EF 

allocation.       

Condition D does not tell us what partial EF allocation is possible in Example 5. 

For this purpose, we apply AL, which in stage 0 assigns item 1 to A and item 2 to B. 

In stage 1, there is a tie on item 3.  The tie cannot be resolved by assigning i = 3 to 

B, because jA1 = 4, and the assignment of two items (2 and 3) to B would mean that of the 

items A prefers to 4, fewer than half (only item 1) are assigned to A.  Likewise, if i = 3 is 

assigned to A, because jB1 = 5, the assignment of two items (1 and 3) to A would mean 

that of the items B prefers to 5, fewer than half (only item 2) are assigned to B. 

Therefore, we must put item 3 into CP, after which AL allocates item 4 to A and 

item 5 to B.  Because item 6 is then the only remaining unallocated item, it also must go 

into CP.  In summary, for Example 5, AL gives {1, 4} to A and {2, 5} to B, with CP = 

{3, 6}.  Coincidentally, BT produces the same EF allocation. 

Our next example shows that AL may give several complete EF allocations, all of 

which are maximin (unlike Example 4). 

 

Example 6:  A:  1 2 3 4 5 6 7 8 

 B:  7 8 3 4 5 6 1 2 

In stage 0, AL assigns item 1 to A and item 7 to B.  In stage 1, AL assigns item 2 to A 

and item 8 to B.  Now notice that both players have exactly the same ranking of the 

unallocated items (3, 4, 5, and 6).  It is not hard to show that AL allows the assignment of 

any two of these items to one player and the other two to the other player, which makes 
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for a total of  EF allocations.  Because all can be generated by the 6 sincere 

sequences (AABB, ABAB, ABBA, BAAB, BABA, BBAA), they are LPO.  They are 

also maximin, because in every one, either A or B receives item 6, which is ranked 6th by 

both players.  

Up to now we have assumed that the players rank items sincerely.4  Call an 

algorithm manipulable if a player, by submitting an insincere preference ranking, can 

obtain a preferred allocation.  

Proposition 8.  AL and BT are manipulable. 

Proof.  We begin with AL, for which there are two allocations in Example 7: 

Example 7:                   (i) A:  1 2 3 4 5 6          (ii) A:  1 2 3 4 5 6 

                                 B:  2 6 4 5 3 1                B:  2 6 4 5 3 1 

Allocation (i) is minimax (lowest rank of a player is 4th), whereas allocation (ii) is not 

(lowest rank of a player is 5th).  BT comes close to this allocation, assigning {1, 3} to A 

and {2, 6} to B, but putting {4, 5} in CP.  This is presumably unsatisfying for the players 

compared to what AL yields, which gives two complete PO and EF allocations, one of 

which, (i), is maximin. 

Now assume that instead of reporting its sincere preferences in Example 7, B 

reports its preferences to be B’—interchanging items 4 and 6—whereas A continues to be 

sincere.  This yields the following unique AL allocation: 

                                                 
4 The implications of insincere behavior are studied in Vetschera and Kilgour (2013).  Variations on the 

rules for making fair allocations, such as claiming or rejecting one or more items in a round, are analyzed in 

Vetschera and Kilgour (2014). 
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Example 7 (manipulated by B):                          A: 1 2 3 4 5 6 

                                                                    B’: 2 4 6 5 3 1 

Thereby B obtains its top three items, whereas without manipulation B’s allocation of 

these items was only one of two possibilities—and not the minimax one (had this 

property been used to choose between the two AL allocations without manipulation).  BT 

gives exactly the same result, so B’s misrepresentation helps it under BT, compared with 

obtaining only its top two items when it is sincere.    

We conclude that both AL and BT are manipulable if one player (B in Example 7) 

knows its adversary’s (A’s) sincere ranking and exploits its knowledge.  But such 

manipulation seems improbable, short of A’s having complete information about B’s 

ranking of items, and A’s being in the dark about the possibility of B’s misrepresentation.  

Furthermore, the determination of an optimal misrepresentation strategy, especially when 

the number of items is large, is far from trivial, particularly in the case of AL because of 

its greater complexity.  It is further complicated if there is a random selection from 

multiple EF and PO assignments. 

In the face of these difficulties, we think that A and B, especially when using AL, 

are likely to be sincere in submitting preference rankings to a referee.  This presumption 

is reinforced by the fact that if the players are sincere, they can ensure themselves of an 

EF, LPO, and maximal allocation, though it may not be complete. 

5.  The Probability of Envy-Free Allocations 

There are many pairs of preference rankings (of an even number of items) for 

which there is no EF allocation.  This is certainly true if both players rank all items the 
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same, but it is in fact true if both players agree only on their top-ranked item, because 

whoever does not get that item will envy the other player (according to our definition of 

envy in section 2).  Similarly, no EF allocation is possible if the two players agree on 

only the least-preferred item, because whoever gets it will envy the other. 

On the other hand, if an EF allocation exists, it need not be unique.  Examples 5, 6, 

and 7 have multiple EF allocations, which raises the question of which one is fairest (in 

some sense), a question we will turn to later.   

To calculate the probability of an EF allocation, fix A’s preference ranking as 1 2 3 

…, and assume all preference rankings of B are equiprobable.  If n = 2 items, and A’s 

ranking is 1 2, then B’s ranking can be 1 2 or 2 1.  In the former case, there will be envy 

if A receives item 1 and B receives item 2, whereas in the latter there will not be envy, 

making the probability of an EF allocation ½.  

If n = 4, B can have any of  4! = 24 possible preference rankings.  To calculate the 

probability of an EF allocation, we use Condition D.  It requires that (i) the first choices 

of A and B be different and (ii) the top three choices of A and B be different.   

Let us instead count the number of ways that Condition D can fail.  For (i) to fail, 

B’s first choice must be 1; there are 3! = 6 orderings in which B’s first choice is 1.  For 

(ii) to fail, B’s fourth choice must be 4; there are 3! = 6 orderings that satisfy this 

condition.  But Condition D fails if either (i) fails or (ii) fails, and both may fail 

simultaneously.   

We have counted the number of ways that (i) can fail without regard to (ii), and 

that (ii) can fail without regard to (i).  In so doing, we have double-counted the cases in 

which both (i) and (ii) fail, which requires that B’s first choice be 1 and B’s last choice be 
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4; there are 2 such rankings. We conclude that Condition D can fail in 6 + 6  − 2 = 10 

ways.  Thus, there are 24 − 10 = 14 preference rankings for B for which Condition D 

holds.   

We have shown that when there are n = 4 items, 14/24 = 0.5833 of the possible 

allocations admit a complete EF allocation.  Similarly, it can be shown that when n = 6, 

the probability of a complete EF allocation is 488/720 = 0.6778; when n = 8, the 

probability is 30,224/40,320 = 0.7496.  Unfortunately, a generalization of this calculation 

appears quite difficult, but we conjecture that, for even values of n, the probability of an 

EF allocation approaches , which approaches 1 as n approaches infinity. 

6.  Summary and Conclusions 

Given two players can rank a set of indivisible items from best to worst, the main 

algorithm we have analyzed (AL) finds an allocation, giving the players the same number 

of items, that is LPO, EF, and maximal—and complete if such an allocation exists.  A 

simpler algorithm (BT), which is also EF, may allocate fewer or less preferred items to 

the players and so may not be maximal or, if it is maximal, will be Pareto-dominated by 

an AL allocation if the BT allocation is different.  

An advantage of BT, however, is that because the players make sequential 

decisions, they can decide, based on the items they have already acquired, which of the 

remaining items to try to obtain next.  By contrast, AL requires that the players rank all 

items in advance, so if the players’ valuations are interdependent (i.e., the acquisition of 

one item affects the value of others that may be acquired), they cannot take advantage of 

possible synergies among the items.   
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Because AL and BT are manipulable, players can sometimes do better by 

misrepresenting their preferences.  But without complete information about an 

adversary’s preferences, AL, especially, because of its greater complexity, would be 

difficult to exploit.   

Indeed, trying but failing to do so could result in an allocation that is neither LPO 

nor EF.  Thus, players would seem to have good reason to be sincere in using AL.   

At least one, but not necessarily all, allocations produced by AL will be minimax.  

This seems an important property to ensure balanced allocations—one player does not 

suffer because it receives an especially low-ranked item.  If there is more than one 

minimax allocation, a random choice could be made from among them.  

It would also be desirable to investigate further how the size and distribution of 

LPO and EF allocations, and CP, depend on the number of items, assuming the 

preferences of the players are randomly chosen.  Of course, a complete allocation is 

impossible if the number of items of odd.  Our preliminary calculations suggest that the 

probability that a complete EF allocation exists increases rapidly with the number of 

items and approaches 1 as the number approaches infinity.  But we have not attempted 

any more realistic computation, for example by assuming that the players’ preferences 

are correlated, especially for more preferred items. We do not know how such conditions 

would affect the size and distribution of such allocations, and of CP.  

Brams, Kilgour, and Klamler (2012) have proposed the “undercut procedure” to 

allocate items in CP, based on players’ relative preferences for bundles of items.5  The 

allocations it produces are EF (based on a different definition of envy) but not necessarily 

                                                 
5 The extent to which this procedure is vulnerable to strategic manipulation is analyzed in Vetschera and 

Kilgour (2013, 2014).  
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LPO.   Combined with AL, it can be used to find an allocation of all the items, including 

those that AL puts into CP.   

Alternative two-person procedures—including “adjusted winner” (Brams and 

Taylor, 1996, 1999), in which players allocate points to items, and a swapping procedure 

in which player can make trades after an initial allocation (Brams and Kaplan, 2004)—

also lead to fair division of items with desirable properties.6  However, both procedures 

require that the players provide more information than a simple ranking of the items and, 

in the case of adjusted winner, that one item, which is not known in advance, be divisible.    

The fact that AL only requires that the players indicate their preferences is surely an 

advantage in some applications, but in others it may be desirable to elicit and use 

information on the strength of their preferences.  

                                                 
6 One such property is equitability, in which all players perceive that they received the same proportion of 

the total value.  Procedures for finding equitable as well as envy-free allocations of indivisible items are 

analyzed in Herreiner and Puppe (2002).  Unlike BT and AL, they require that players specify preferred 

bundles of items rather than individual items, which makes them more akin to the undercut procedure for 

dividing CP of Brams, Kilgour, and Klamler (2012). 
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