
Munich Personal RePEc Archive

On Aumann and Serrano’s Economic

Index of Risk

Li, Minqiang

Bloomberg LP

2013

Online at https://mpra.ub.uni-muenchen.de/47466/

MPRA Paper No. 47466, posted 10 Jun 2013 14:37 UTC



Noname manuscript No.
(will be inserted by the editor)

On Aumann and Serrano’s Economic Index of Risk

Minqiang Li

Received: date / Accepted: The correct dates will be entered by the editor

Abstract We study the risk index of an additive gamble proposed in Aumann
and Serrano (2008). We establish a generalized duality result for this index and
use it to prove Yaari’s (1969) alternative characterization of DARA utilities. A
new characterization result for the risk index is obtained through essentially
monotonic risk aversion utilities. We also extend the domain of gambles by
introducing a price for gambles. We then develop a theory on the risk index
for multiplicative gambles. Relative risk aversion functions for multiplicative
gambles play the same role as absolute risk aversion functions for additive
gambles.
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1 Introduction

Decision under risk has been at the core of modern economic theory. For some
recent developments on this topic, see Cox et al (2013), Eguia (2013), Chen
and Luo (2013). One particularly interesting development is Aumann and Ser-
rano (2008), in which the authors proposed an index of riskiness that assigns
to each gamble (risky asset) a single fixed number. The index is designed in
isolation of a person’s risk attitude, that is, it only depends on the gamble’s
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own distributional attributes. Mathematically, the index is the reciprocal of
the parameter for a constant absolute risk aversion (CARA) agent to be indif-
ferent towards the gamble. The central ingredient in their development of the
theory is the duality axiom, which states that if an agent accepts a gamble at a
fixed wealth, then a uniformly less risk averse agent would accept any gamble
with smaller risk index at that wealth. Aumann and Serrano (2008) also dis-
cuss the relations between their risk index and other proposed risk measures in
the literature, such as different measures of dispersion (Markowitz 1952), the
Sharpe ratio (Sharpe 1966), Value at Risk (see Pearson 2002), and the “co-
herent” risk proposed in Artzner et al. (1999). The risk index in Aumann and
Serrano (2008) has some nice properties compared to other risk measures. It is
measured in dollars, and is positive homogeneous of degree one. It is also sub-
additive. Another very nice property is that it respects first- and second-order
stochastic dominance orders.

In this paper, we study the theoretical aspects of the risk index proposed
in Aumann and Serrano (2008) in further detail. The main contributions can
be divided into four groups, as we describe below.

First, we study the fundamental theoretical aspects of the risk index. We
define a gamble’s attractiveness index as the reciprocal of the risk index, as
many results are more naturally stated in terms of the attractiveness index.
We first give a necessary condition for an agent to accept or reject a gamble
as well as a sufficient condition. Roughly speaking, for a risk averse agent to
accept an additive gamble at a fixed wealth, there has to be at least one wealth
level in the wealth range of taking the gamble such that the local absolute risk
aversion is smaller than the attractiveness of the gamble. On the other hand,
if we know that the attractiveness index of a gamble is larger than the local
absolute risk aversions on the whole wealth range of taking the gamble, then
the gamble is accepted by the agent. This result is useful in practice as it allows
for the possibility of a quick decision on whether we should accept or reject
a gamble without a detailed computation of the expected utility. By utilizing
this result, we point out that the risk index actually allows for a more general
duality result. In order for the duality result to hold between two fixed gambles,
we only need to check the two agents’ risk aversions on two intervals on the
real line. This strengthened duality result is then used to derive an alternative
characterization of utilities with nonincreasing or nondecreasing absolute risk
aversions (DARA and IARA), first proposed in Yaari (1969) and rigorously
proven in Dybvig and Lippman (1983). It states that an agent’s absolute risk
aversion function is nonincreasing if and only if gambles accepted at a given
wealth level are also accepted at any higher wealth level. Furthermore, by
considering agents with essentially monotonic absolute risk aversions, we give
a characterization theorem for Aumann and Serrano’s risk index in place of
the duality axiom.

Second, we study in more detail sums of gambles. Aumann and Serrano
(2008) obtain that for any two independent gambles, the risk index of their
sum always lies between the risk indices of these two gambles. We study gam-
bles that are not necessarily independent. In particular, we show that if the
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dependent parts of two gambles are similarly ordered, or more generally pos-
itively quadrant dependent, then the risk index of the sum of two gambles is
always larger than the minimum of the risk indices of the two gambles. For
negative dependence, the risk index of the sum is always smaller than the
maximum of the two risk indices. The above results agree with our intuitions
well. For example, the result for negative dependence agrees with our intuition
of risk diversification. Thus this result can be considered another attractive
property of Aumann and Serrano’s risk index.

Third, we extend the domain of additive gambles to essentially any random
payoff by introducing a price for each gamble. The price can come from a
pricing functional or can be fixed exogenously. Each generalized gamble is
associated with an additive gamble which is the generalized gamble net of its
price. The additive gambles considered in Aumann and Serrano (2008) are
then special zero price gambles. We define the risk index of the generalized
gamble to be the risk index of its associated additive gamble. By considering
the associated additive gambles, all previous results on additive gambles can
be readily translated to the generalized gambles. An interesting result is that
the risk index for a generalized gamble is always strictly increasing and strict
convex with respect to the price.

The gambles considered in Aumann and Serrano (2008) are all additive
gambles. Our final contribution is that we show the whole theory on the risk
index for additive gambles can be translated into a theory on the risk index
for multiplicative gambles. If an agent takes a multiplicative gamble, his final
wealth will be the product of his current wealth and the random realization of
the gamble. The exponentials of additive gambles are all multiplicative gam-
bles, but not all multiplicative gambles are logarithms of additive gambles.
Nonetheless, the theories on the risk indices of additive and multiplicative
gambles are parallel to each other. For additive gambles, the risk index is the
level of constant absolute risk aversion for an agent to be indifferent about tak-
ing or not taking the gamble. For multiplicative gambles, we define a risk index
that is exactly the level of constant relative risk aversion for an agent to be
indifferent towards the gamble. A similar duality result holds for multiplicative
gambles. We then use this duality result to give an alternative characteriza-
tion for utilities with nonincreasing and nondecreasing relative risk aversions
(DRRA and IRRA). As far as we know, this alternative characterization for
DRRA and IRRA has not appeared in the literature. Thus, it complements
Yaari’s (1969) alternative characterization for DARA and IARA utilities well.
Finally, by considering agents with essentially monotonic relative risk aver-
sions, we give another characterization for the risk index of multiplicative
gambles, similar to what we do for additive gambles.

The paper is organized as follows. In Section 2, we study further properties
of the risk index for additive gambles. We use a generalized duality result
to to prove Yaari’s (1969) alternative characterization of monotone absolute
risk aversion utilities, and characterize the risk index in place of the duality
axiom. We also extend the domain of gambles. Section 3 studies multiplicative
gambles. Section 4 concludes.
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2 Additive gambles

2.1 Duality on intervals

Same as in Aumann and Serrano (2008), throughout the paper, a utility func-
tion u is a twice continuously differentiable function on R which is strictly in-
creasing and strictly concave. We write ρ(w) = −u′′(w)/u′(w) for the agent’s
absolute risk aversion function and r(w) = −wu′′(w)/u′(w) for the agent’s
relative risk aversion function as defined in Pratt (1964). A gamble g is a ran-
dom variable defined on a probability space (Ω,F ,P) with real values such
that Eg is finite and positive and P(g < 0) > 0. However, unlike Aumann and
Serrano (2008), we do not assume that g necessarily takes finitely many val-
ues. Furthermore, we do not assume that g is bounded or g has a continuous
density function. An agent i with wealth wi makes decisions with regard to
gambles according to his utility function ui. He accepts a gamble g at wealth
wi if and only if Eui(wi + g) > ui(wi), is indifferent about g if and only if
Eui(wi + g) = ui(wi), and rejects g if and only if Eui(wi + g) < ui(wi). No-
tice that here we followed the convention used in Aumann and Serrano (2008)
where acceptance means strict preference and does not include indifference.

For any gamble g, Aumann and Serrano’s index of risk R(g) is defined to
be the unique positive solution (if exists) of

Ee−g/R(g) = 1. (1)

In Aumann and Serrano (2008), g takes finitely many values, so the existence
is always guaranteed. In our treatment, it could be that a positive solution of
the above equation does not exist.1 If this is the case, we set R(g) = +∞.

It is obvious that R(g) is positive homogeneous of degree 1: R(tg) = tR(g)
for any t > 0. The reciprocal of R(g) is often of interest on its own. Thus, we
will write α(g) ≡ 1/R(g) and call it the attractiveness of the gamble g. It is
positive homogenous of degree −1. A graph of the function f(β) ≡ Ee−βg−1 is
very helpful in what follows and is presented schematically in Figure 1. Notice
that f(β) < 0 if and only if 0 < β < α(g), f(β) > 0 if and only if β < 0 or
β > α(g). In particular, if we know that β > 0, then f(β) > 0 if and only if
β > α(g).

One key concept in the development of Aumann and Serrano’s economic
index of risk R(g) is the following. Call agent i uniformly no less risk-averse
than agent j (written as i Q j) if whenever i accepts a gamble at some wealth,
then j accepts that gamble at any wealth. It is shown in Aumann and Serrano
(2008) that

i Q j if and only if inf
w∈R

ρi(w) ≥ sup
w∈R

ρj(w). (2)

1 An example would be a short position in a forward contract with final payoff K − ST ,
where future asset price ST follows a lognormal distribution. This is because the moment-
generating function for the log-normal distribution does not exist.
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f(β)

0 βα(g)

Fig. 1 The defining equation for an additive gamble’s attractiveness α(g). The
function f(β) ≡ Ee−βg

−1 for a fixed gamble g is drawn. For gambles with finite and positive
mean, f(β) is convex in β and has two roots, one at 0 and the other at α(g) > 0. Notice
also that f(β) is not monotonic. In particular, f ′(0) < 0 and f ′(α(g)) > 0.

Besides positive homogeneity, Aumann and Serrano’s risk index R(g) also
satisfies the following defining property. The intuition is that if the more risk-
averse of two agents (in the sense of Q) accepts a gamble, then the less risk-
averse agent should accept any less risky gambles (in the sense of R(·)). Au-
mann and Serrano (2008) actually use a stricter relation “⊲” which is defined
as follows: i ⊲ j if and only if we have i Q j but not j Q i.

Duality as in Aumann and Serrano (2008): Let g and h be two gambles
such that R(g) > R(h). If i ⊲ j and i accepts gamble g at wealth w, then j
accepts h at w.

One of our main purposes below is to give a generalization of the above
duality property, which states that for the duality result to hold, it is not
necessary to check the condition of uniform more risk aversion on the whole
real line. We also show that it is not necessary to have the two strict inequalities
in the conditions for duality. That is, it suffices to have weaker conditions
R(g) ≥ R(h) and i Q j. For this, we need some notational preparations.
The essential infimum ess inf h of a random variable h on (Ω,F ,P) is defined
to be the largest possible real number L such that P(h ≥ L) = 1. When g
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u2(w)

u1(w)

wL
wHŵ

ρ1(w) ≤ ρ2(w) ∀w ∈ (wL, wH)

Fig. 2 Nested utilities. This figure depicts two utilities nested at ŵ. Utility u2 is assumed
to be locally more risk-averse than u1 in terms of absolute risk aversion for all wealth levels
in (wL, wH). The values of u1 and u2 as well as their first-order derivatives are normalized
to be equal to each other at ŵ.

takes finitely many values with nonzero probabilities, this is exactly min g.
Similarly define ess sup. Notice that since any gamble g satisfies Eg > 0 and
P(g < 0) > 0, we always have ess inf g < ess sup g. For any wealth level w and
any gamble g, defineD(w, g) to be the closed interval [w+ess inf g, w+ess sup g]
if ess inf g and ess sup g are both finite, and with obvious modifications if either
is infinite. This is the smallest closed interval of R containing essentially all
the values of w + g. The reason we need to consider essential bounds rather
than the bounds themselves is that values of g taken on null sets of P do not
have any effect on computing the expected utility.

One fact that was used heavily in Aumann and Serrano (2008) and that
will be used repeatedly in this paper is the following. Let u1(w) and u2(w) be
two utility functions and suppose that for some ŵ we have u1(ŵ) = u2(ŵ) and
u′
1(ŵ) = u′

2(ŵ). Suppose further that the continuous absolute risk aversion
functions satisfy ρ1(w) ≤ ρ2(w) for all w in the interval (wL, wH) containing
ŵ. Then, we have u′

2(w) ≤ u′
1(w) for any w ∈ (ŵ, wH), and u′

2(w) ≥ u′
1(w)

for any w ∈ (ŵL, ŵ). Furthermore, u2(w) ≤ u1(w) for all w ∈ (ŵL, ŵH).
That is, the two utilities are “nested” at ŵ. If ρ1(w) < ρ2(w) for at least one
w ∈ (wL, wH), then there exists w ∈ (wL, wH) such that the above inequalities
become strict. Figure 2 depicts two nested utilities. A mechanic proof of the
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above claims is readily available if one notices that for any w and any utility
function, we have

u′(w) = u′(ŵ)e−
∫

w

ŵ
ρ(x)dx, (3)

and

u(w) = u(ŵ) + u′(ŵ)

∫ w

ŵ

e−
∫

y

ŵ
ρ(x)dx dy, (4)

with the understanding that the integrals above are Riemann integrals so that

we have
∫ b

a
= −

∫ a

b
whenever a > b.

First we need the following proposition, which is related to statement
(4.3.2) in Aumann and Serrano (2008). It gives a necessary condition for ac-
cepting or rejecting a gamble, as well as a sufficient condition. It roughly states
that if a gamble g is accepted at wealth wi, then its attractiveness has to over-
come at least some values of the local risk-aversions in the range D(wi, g).
On the other hand, if a gamble’s attractiveness is larger than all the local
risk-aversions in the range D(wi, g), then it is accepted.

Proposition 1 We have the following statements with respect to acception
and rejection of gambles:

1. If i accepts g at wealth wi, then there exists w ∈ D(wi, g) such that α(g) >
ρi(w). In particular, we must have α(g) > infw∈D(wi,g) ρi(w). On the other
hand, if i rejects g at wealth wi, then there exists w ∈ D(wi, g) such that
α(g) < ρi(w). In particular, we must have α(g) < supw∈D(wi,g) ρi(w).

2. If α(g) ≥ ρi(w) for any w ∈ D(wi, g) with strict inequality for at least one
such w, then i accepts g at wi. On the other hand, if α(g) ≤ ρi(w) for any
w ∈ D(wi, g) with strict inequality for at least one such w, then i rejects g
at wi.

Proof: We will only prove the two first sentences in statements 1 and 2. The
other claims can be proven similarly. Because utility functions are equivalent
up to an affine transformation, without loss of generality, we may assume
wi = 0, ui(0) = 0, and u′

i(0) = 1.
Now assume that i accepts g at wealth 0, but α(g) ≤ ρi(w) for all w ∈

D(0, g). Let uα(g)(w) = (1 − e−α(g)w)/α be a CARA utility function with
constant absolute risk aversion α(g). Then, ui and uα(g) are nested at w = 0.
In particular, ui(w) ≤ uα(g)(w) for all w ∈ D(0, g). However, this contradicts
the assumption that i accepts g at wi = 0 since then Eui(g) ≤ Euα(g)(g) =
0 = ui(0).

Now assume α(g) ≥ ρi(w) for any w ∈ D(wi, g) with strict inequality for at
least one such w. Notice by continuity of ρi(w), if α(g) ≥ ρi(w∗) for some w∗,
there is a neighborhood Vw∗

of w∗, such that α(g) ≥ ρi(w) for any w ∈ Vw∗
.

Let wL = sup{w ∈ D(0, g) : w < 0, α(g) > ρi(w)}, and wH = inf{w ∈
D(0, g) : w > 0, α(g) > ρi(w)}. Then [wL, wH ] is a proper subset of D(0, g).
Examining equation (4) then shows that ui(w) = uα(g)(w) on [wL, wH ], but
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ui(w) > uα(g)(w) for any w ∈ D(0, g) \ [wL, wH ]. Now by the definition of
D(0, g), P[g /∈ [wH , wH ]] > 0. Thus, Eui(g) > Euα(g)(g) = 0 = ui(0), and i
accepts g at wi = 0. ⊓⊔

Proposition 2 (Duality strengthened) Let g and h be two gambles defined
on the same probability space (Ω,F ,P) with R(h) ≤ R(g) < ∞. Suppose

inf
w∈D(wi,g)

ρi(w) ≥ sup
w∈D(wj ,h)

ρj(w). (5)

Then if i accepts gamble g at wealth wi, j accepts h at wealth wj. Furthermore,
if j rejects h at wealth wj, then i rejects g at wi.

Proof: We first prove the first statement in the conclusion. The two conditions
in the Proposition allow us to chain inequalities. Since i accepts gamble g at
wealth wi, by statement 1 of Proposition 1,

α(g) > inf
w∈D(wi,g)

ρi(w). (6)

Therefore, we have

α(h) ≥ α(g) > inf
w∈D(wi,g)

ρi(w) ≥ sup
w∈D(wj ,h)

ρj(w). (7)

By statement 2 of Proposition 1, j accepts h at wealth wj . Notice that since the
second inequality is strict, it is not necessary for the first and last inequalities
to be strict.

The proof of the second statement is similar except that now we have

inf
w∈D(wi,g)

ρi(w) ≥ sup
w∈D(wj ,h)

ρj(w) > α(h) ≥ α(g). (8)

The strict inequality in the middle is due to statement 1 of Proposition 1.
Statement 2 of Proposition 1 now tells us that i rejects g at wi. ⊓⊔

Notice that ρi(w) > ρj(w) says something about the local risk aversion
behavior around wealth level w, while i Q j concerns global risk aversion
behavior on the whole real line (see Section IV.A of Aumann and Serrano
(2008)). The condition in equation (5) can be thought of as something in
between since we are considering intervals of the real line.

The following numerical example illustrates a typical situation where we
can apply the duality on an interval, but not the duality on the whole real
line. For simplicity, assume wi = wj = 0. Let ρi(w) = 1/10 for all w ∈ R.
Let ρj(w) = Φ(−w − 4)/5, where Φ(·) is the cumulative normal distribution
function. The two functions ρi(w) and ρj(w) only cross each other once at
w = −4. Now let g be a gamble which pays off −4 and +2 with probabilities
1/4 and 3/4, and h a gamble which pays off−2 and +3 with equal probabilities,
respectively. The attractiveness can be computed to be α(g)

.
= 0.13 and α(h)

.
=

0.16. Thus R(g) > R(h). Since α(g) > ρi(w) for all w ∈ R, i accepts g at any
wealth, in particular, at wi = 0. Thus, by Proposition 2, we know that j
must accept h at wj = 0. Notice that in this example, the interval dominance
condition in equation (5) is satisfied, but we do not have the global dominance
i Q j.
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2.2 Alternative characterization of DARA and IARA utilities

A utility function is said to belong to the DARA class if and only if its absolute
risk aversion function is nonincreasing. As a nontrivial corollary of Proposition
2, we have the following alternative characterization of DARA utilities, first
proposed in Yaari (1969). This corollary was also rigorously proved in Dyb-
vig and Lippman (1983) based on Pratt’s well-known characterization that a
utility function u is in DARA if and only if for any gamble g, the risk pre-
mium function πg(w) is nonincreasing, where πg(w) is defined to be the unique
solution to u(w+Eg−πg(w)) = Eu(w+g). Our proof is an interesting alterna-
tive approach that makes use of Aumann and Serrano’s risk index. In Dybvig
and Lippman (1983), when u /∈ DARA, the counterexample gamble g that
is accepted at lower wealth but rejected at higher wealth is not constructed
explicitly, but rather its existence is guaranteed by referring to one of Pratt’s
theorems. Based on the concept of attractiveness, we give a completely explicit
construction for the counterexample g.

Proposition 3 A utility function is in DARA if and only if any gambles
accepted at a given wealth level will be accepted at all higher wealth levels.
More generally, assuming wl < wr, a utility’s absolute risk aversion function is
nonincreasing on [wl, wr] if and only if any gamble g accepted at a wealth level
wL will be accepted at any higher wealth level wH so long as D(wL, g) ∈ [wl, wr]
and D(wH , g) ∈ [wl, wr].

Proof: Suppose u is in DARA with absolute risk aversion function ρ(·). Let i
and j be two agents with the same utility function u(w) but different wealth
levels wL and wH , where wL < wH . Because utilities are equivalent up to an
affine transformation, we can assume that i and j have the same initial wealth
0, but agent i has the utility vi(w) = (u(wL +w)− u(wL))/u

′(wL) and agent
j has the utility vj(w) = (u(wH + w) − u(wH))/u′(wH). Now vi(0) = vj(0),
v′i(0) = v′j(0), and ρi(w) = ρ(w + wL) ≥ ρ(w + wH) = ρj(w) for any w ∈
D(0, g). Thus, vi and vj are nested at w = 0. In particular, vi(w) ≤ vj(w) for
any w ∈ D(0, g). Therefore, if g is accepted by i, then it is also accepted by j,
since Evj(g) ≥ Evi(g) > vi(0) = 0 = vj(0).

For the converse, let u /∈ DARA. We need to show that there exists a
gamble which is accepted by u at a lower wealth but rejected at a higher
wealth. Since u /∈ DARA, there exists two wealth levels wL and wH with
wL < wH such that ρ(wL) < ρ(wH). By continuity of ρ(·), there exists ǫ > 0,
such that the sets {|w − wL| < 2ǫ} and {|w − wH | < 2ǫ} are disjoint. In
particular,

sup
|w−wL|<2ǫ

ρ(w) < inf
|w−wH |<2ǫ

ρ(w). (9)

Now let g be a probability premium gamble which pays off +ǫ with probability
p and −ǫ with probability 1− p, where 1/2 < p < 1. It can be computed that
α(g) = log(p/(1 − p))/ǫ. As p varies in the range (1/2, 1), the attractiveness
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of g takes all values in (0,+∞). Fix p such that α(g) is sandwiched between
the left and right sides of equation (9). Then,

sup
w∈D(wL,g)

ρ(w) < α(g) < inf
w∈D(wH ,g)

ρ(w). (10)

By statement 2 of Proposition 1, g is accepted by u at wealth level wL but
rejected at wH .

The proof for the more general interval case is almost exactly the same and
thus omitted. ⊓⊔

It is clear that the above proposition could also be phrased in terms of
rejections instead of acceptions. Instead of doing this, we give the following
characterization for IARA utilities, which have nondecreasing absolute risk
aversion functions. The characterization on intervals is probably more useful
in this case as some economists have reservations for IARA utilities. Again,
the proposition below could be phrased in terms of rejections.

Proposition 4 A utility function is in IARA if and only if any gambles ac-
cepted at a given wealth level will be accepted at all lower wealth levels. More
generally, assuming wl < wr, a utility’s absolute risk aversion function is non-
decreasing on [wl, wr] if and only if any gamble g accepted at a wealth level wH

will be accepted at any lower wealth level wL so long as D(wL, g) ∈ [wl, wr]
and D(wH , g) ∈ [wl, wr].

Proof: Mimic the proof for Proposition 3 by switching the roles of wL and
wH . ⊓⊔

2.3 Attractiveness and essentially monotonic absolute risk aversion

Monotone risk aversion has long been a much-studied research topic in eco-
nomic theory. For some recent development, see Chateauneuf et all (2005) and
Nielsen (2005).

We now slightly generalize IARA and DARA utilities. We say that a util-
ity has essentially nondecreasing absolute risk aversion if there exists ŵ such
that supw<ŵ ρ(w) ≤ infw>ŵ ρ(w), and ρ(w) is nondecreasing on (ŵ,+∞). We
say that a utility has essentially nonincreasing absolute risk aversion if there
exists ŵ such that infw<ŵ ρ(w) ≥ supw>ŵ ρ(w), and ρ(w) is nonincreasing on
(−∞, ŵ). We say that a utility has essentially monotonic absolute risk aversion
if it has either essentially nondecreasing absolute risk aversion or essentially
nonincreasing absolute risk aversion. Essentially monotonic absolute risk aver-
sion utilities include IARA and DARA as special cases. The generalization is
that in essentially monotonic absolute risk aversion utilities, we do not require
that the absolute risk aversion function is monotonic on the half real line where
its values are small.

For a CARA utility agent, if he accepts a gamble at any wealth, then he also
accepts any gamble with higher attractiveness at any wealth. The following
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proposition generalizes this result to all utilities with essentially monotone
risk aversions. It can be considered as another characterization theorem for
Aumann and Serrano’s risk index in place of the duality axiom.

Proposition 5 If an agent with essentially monotonic absolute risk aversion
accepts a bounded additive gamble g at any wealth, then α(g) ≥ supw∈R

ρ(w)
and he also accepts any gamble h with α(h) ≥ α(g) at any wealth. Conversely,
if any essentially monotonic risk averse agent who accepts a gamble g at any
wealth also accepts h at any wealth, then α(h) ≥ α(g).

Proof: We first prove the first statement. Let wm and w′
n be two sequences on

R such that limm→∞ wm = +∞ and limn→∞ w′
n = −∞. The reason we take

two sequences is that this allows us to consider the essentially nondecreasing
absolute risk aversion and essentially nonincreasing absolute risk aversion cases
together. If ρ is essentially nonincreasing, actually we only need to take the
sequence w′

n, and vice versa. For any m and n, since the agent accepts g at
wm and w′

n, by Proposition 1, there exist w̃m ∈ D(wm, g) and w̃′
n ∈ D(w′

n, g)
such that α(g) > ρ(w̃m) and α(g) > ρ(w̃′

n). Since g is bounded, we must have
limm→∞ w̃m = +∞ and limn→∞ w̃′

n = −∞. Thus α(g) ≥ supw∈R
ρ(w) by the

essential monotonicity of the risk aversion function. The fact that g is accepted
means that we either have α(g) > supw∈R

ρ(w), or α(g) = supw∈R
ρ(w) with

α(g) > ρ(ŵ) for some ŵ ∈ R. In either cases, by Proposition 1, the agent
accepts h at any wealth. For the converse, suppose α(h) < α(g). Then a
CARA utility agent with parameter (α(h) + α(g))/2 accepts g at any wealth,
but rejects h at any wealth. Contradiction. ⊓⊔

We have required that g is bounded in the first statement of the above
proposition. When g is unbounded, the above proof does not work since
D(wm, g) and D(w′

n, g) could be the whole real line. Thus, we are not guar-
anteed that limm→∞ w̃m = +∞ or limn→∞ w̃′

n = −∞. It is unclear whether
the statement is still true if g. A closer examination of the proof above shows
that we actually only need g to be bounded from above if ρ is essentially
nonincreasing, and bounded from below if ρ is essentially nondecreasing.

The condition that the agent has essentially monotonic absolute risk aver-
sion function is very important. Without this condition, when an agent ac-
cepts a bounded gamble g at any wealth, we do not necessarily have that
α(g) ≥ supw∈R

ρ(w). It is also not necessarily true that the agent will accept
a more attractive gamble at any wealth. The following counterexample shows
these points. Let the utility of the agent be u(w) = log(1 + w) if w ≥ 0 and
u(w) = w−w2/2 if w < 0. One readily checks that this is a well-defined utility
function with absolute risk aversion function ρ(w) = 1/(1 + |w|). Notice that
supw∈R

ρ(w) = 1 and ρ(w) is not essentially monotonic. Now let g be an addi-
tive gamble which pays +1 with probability p = 7/10 and −1 with probability
3/10. It can be easily shown either graphically or analytically that g is accepted
at any wealth. However, the attractiveness of g is α(g) = log(p/(1−p))

.
= 0.847,

and thus we do not have α(g) ≥ supw∈R
ρ(w). Now let h be another proba-

bility premium gamble that pays off 1/2 with probability q and −1/2 with
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probability 1− q, where q = 0.605. Then α(h)
.
= 0.853 > α(g). However, h is

rejected at wealth 0 since Eu(h)
.
= −0.0016 < 0.

Proposition 5 also gives rise to the following open question. For what class
of utility functions do we have the property that if the agent accepts a bounded
gamble g at any wealth, then he accepts any gamble h at any wealth so long
as α(h) ≥ α(g)? Proposition 5 shows that utilities with essentially monotonic
risk aversions belong to this class. Are there other utility functions having this
property? Our intuition strongly suggests no for the last question, but so far
we have not been able to prove it or disprove it.

2.4 Sums of additive gambles

Considering sums of gambles are useful in practice. For example, an investor’s
portfolio might consist of different positions, each considered a different gam-
ble. It might be useful to be able to get some quick idea of the riskiness of
the whole portfolio given the riskiness of the components and their dependence
structure. From a financial engineering point of view, many new financial prod-
ucts can be thought of as the result of adding gambles (such as sector index
funds) or splitting a gamble into many others (such as collateralized mortgage
obligations).

In the following, we will always assume that g+ h is a well-defined gamble
for two gambles g and h. Aumann and Serrano (2008) show that the riskiness
(and thus the attractiveness) of g + h always lies between those of g and h.
In addition, even without independence, we still have subadditivity: R(g +
h) ≤ R(g) +R(h). In this section, we examine sums of additive gambles more
closely. In particular, we will generalize (5.8.1) of Aumann and Serrano to
situations where we do not necessarily have independence. It turns out that
in line with our intuition, if two gambles g and h are positively dependent (in
senses presented rigorously in Propositions 7 and 8), then the risk index of the
gamble g+h cannot be smaller than the minimum of the risk indices of g and
h. On the other hand, the risk index of the gamble g+h cannot be larger than
the maximum of the risk indices of g and h if we have negative dependence.

The following proposition is a straight-forward generalization of the results
in Aumann and Serrano (2008) to arbitrary number of additive gambles.

Proposition 6 Let gi where i = 1, · · · , N be N additive gambles.

1. (Subadditivity) Let λi > 0 for i = 1, · · · , N , then

R
( N∑

i=1

λigi

)
≤

N∑

i=1

λiR(gi); (11)

2. If all gambles are independent, the riskiness of
∑N

i=1 gi lies between the
minimum riskiness and the maximum riskiness. That is,

min
i

R(gi) ≤ R
( N∑

i=1

gi

)
≤ max

i
R(gi); (12)
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Proof: Statement 1 in the special two gambles case has been proven using the
convexity of the exponential function in Aumann and Serrano (2008) by Sergiu
Hart. The general statement follows from induction and the homogeneity of
the risk index. Below we give another proof based on generalized Hölder’s
inequality (see, for example, Finner 1992, or Kuptsov 2001). For any k =

1, · · · , N , let pk =
∑N

i=1 λiR(gi)/(λkR(gk)) > 1. Then
∑N

k=1 1/pk = 1. We
have

E exp

(
−

∑N
k=1 λkgk∑N

i=1 λiR(gi)

)
= E

N∏

k=1

exp

(
−

λkgk∑N
i=1 λiR(gi)

)

=

∣∣∣∣∣

∣∣∣∣∣

N∏

k=1

exp

(
−

λkgk∑N
i=1 λiR(gi)

)∣∣∣∣∣

∣∣∣∣∣
1

≤

N∏

k=1

∣∣∣∣∣

∣∣∣∣∣exp
(
−

λkgk∑N
i=1 λiR(gi)

)∣∣∣∣∣

∣∣∣∣∣
pk

(13)

=

N∏

k=1

(
Ee−gk/R(gk)

)1/pk

= 1.

This proves the subadditivity. In particular, the equality obtains if and only
if all the gi’s are multiples of each other. Statement 2 follows from (5.8.1) in
Aumann and Serrano (2008) and induction. ⊓⊔

The independence assumption in the second statement is quite strong for
actual applications. For example, the profit/loss of a call option (viewed as a
gamble) is positively correlated with that of a digital call option, and negatively
correlated with that of a put option. The following proposition gives some
partial results when we do not have independence. Notice that equation (12) in
the independence case follows immediately from the more general proposition
below.

Proposition 7 We have the following statements for sums of additive gam-
bles:

1. Suppose there exists a random variable Z such that g1 and g2 are both
nonincreasing functions (or both nondecreasing) in Z, then R(g1 + g2) ≥
min(R(g1), R(g2)). More generally, suppose there exist N + 1 indepen-
dent random variables g̃i (i = 1, · · · , N) and Z, such that gi − g̃i are all

nonincreasing functions (or all nondecreasing) in Z, then R(
∑N

i=1 gi) ≥
mini R(gi).

2. Suppose there exists a random variable Z such that g1 is nonincreasing
in Z and g2 is nondecreasing in Z (or vice versa), then R(g1 + g2) ≤
max(R(g1), R(g2)). More generally, suppose there exists three independent
random variables g̃1, g̃2 and Z, such that g1−g̃1 is a nonincreasing function
in Z while g2− g̃2 is nondecreasing in Z (or vice versa), then R(g1+ g2) ≤
max(R(g1), R(g2)).
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Proof: The main ingredient for the proof is Čebyšev’s algebraic inequality
(see Mitrinović, Pečarić, and Fink 1993, or Theorem 236 in Hardy, Littlewood
and Pólya 1934), which was used by Merton in his development of portfo-
lio selection theory (p. 25, Merton 1990). It states that if f1 and f2 are two
random variables both nonincreasing (or nondecreasing) functions in Z, then
cov(f1, f2) ≥ 0, and cov(f1, f2) ≤ 0 if one is nonincreasing and the other
nondecreasing.

For statement 1, we prove the more general conclusion. Let β > 0, then by
independence,

Ee−β
∑N

i=1
gi = E

N∏

i=1

e−βg̃ie−β(gi−g̃i) =

N∏

i=1

Ee−βg̃i · E

N∏

k=1

e−β(gk−g̃k). (14)

The product of two positive nonincreasing functions is still nonincreasing. The
same is true for nondecreasing functions. Thus, by repeated use of Čebyšev’s
algebraic inequality, we have

E

N∏

k=1

e−β(gk−g̃k) ≥ Ee−β(gN−g̃N ) · E

N−1∏

k=1

e−β(gk−g̃k)

≥ · · · ≥

N∏

k=1

Ee−β(gk−g̃k). (15)

Putting the above two equations together, we have by independence again

Ee−β
∑N

i=1
gi ≥

N∏

i=1

Ee−βg̃i ·

N∏

k=1

Ee−β(gk−g̃k) =

N∏

i=1

Ee−βgi . (16)

Now let β = maxi α(gi), then Ee−β
∑N

i=1
gi ≥ 1 since Ee−βgi ≥ 1 for all

i = 1, · · · , N . Thus,

β ≥ α
( N∑

i=1

gi

)
, (17)

or equivalently, R(
∑N

i=1 gi) ≥ mini R(gi).
The proof for statement 2 is similar and thus omitted. Notice we only con-

sider two gambles in statement 2, as it does not have a natural generalization
to N gambles. ⊓⊔

An interesting application of the above proposition is the following. Let g1
and g2 be multivariate normally distributed gambles with positive means µ1

and µ2, variances σ2
1 and σ2

2 and correlation coefficient ̺. We already know
that when ̺ = 0, min(R(g1), R(g2)) ≤ R(g1 + g2) ≤ max(R(g1), R(g2)) by
Proposition 6. Proposition 7 above allows us to draw conclusions when ̺ 6= 0.
Through a Gram-Schmidt orthogonalization, we see that when ̺ > 0, we
have min(R(g1), R(g2)) ≤ R(g1 + g2) ≤ R(g1) + R(g2). When ̺ < 0, we
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have R(g1 + g2) ≤ max(R(g1), R(g2)). With some elementary but interesting
algebra, these statements can be verified explicitly since we have R(gi) = σ2

i /µi

for i = 1, 2, and

R(g1 + g2) =
σ2
1 + σ2

2 + 2̺σ1σ2

µ1 + µ2
. (18)

When dealing with the sum of two gambles, Proposition 7 can be further
generalized. Two random variables X and Y are said to be positively quadrant
dependent (Lehmann 1966) if for any x and y we have

P(X ≤ x, Y ≤ y) ≥ P(X ≤ x) P(Y ≤ y). (19)

We say X and Y are negatively quadrant dependent if the above equation
reverses sign. Intuitively, X and Y are positively quadrant dependent if the
probability that they are simultaneously small (or simultaneously large) is
at least as great as it would be were they independent. In Proposition 7, the
dependent parts of g1 and g2, namely g1−g̃1 and g2−g̃2, are assumed to be con-
cordant (or in another terminology, similarly ordered). The positive quadrant
dependence is a weaker notion than concordance. Concordance implies positive
quadrant dependence but the reverse is not true. The proposition below shows
that we can replace the concordance with positive quadrant dependence.

Proposition 8 We have the following statements for sums of additive gam-
bles:

1. Suppose g1 and g2 are positively quadrant dependent, then R(g1 + g2) ≥
min(R(g1), R(g2)). More generally, suppose there exist independent random
variables g̃1, g̃2, such that g̃1 and g̃2 are both independent with g1 − g̃1 +
g2 − g̃2. If g1 − g̃1 and g2 − g̃2 are positively quadrant dependent, then
R(g1 + g2) ≥ min(R(g1), R(g2)).

2. Suppose g1 and g2 are negatively quadrant dependent, then R(g1 + g2) ≤
max(R(g1), R(g2)). More generally, suppose there exist independent ran-
dom variables g̃1, g̃2, such that g̃1 and g̃2 are both independent with g1 −
g̃1+ g2− g̃2. If g1− g̃1 and g2− g̃2 are negatively quadrant dependent, then
R(g1 + g2) ≤ max(R(g1), R(g2)).

Proof: A very useful characterization for positive quadrant dependence is as
follows. Two random variables X and Y are positively quadrant dependent
if and only if cov(s(X), t(Y )) ≥ 0 for all nondecreasing functions of s and t
such that the integrals in the covariance are well-defined. Notice that g1 − g̃1
and g2 − g̃2 are positively quadrant dependent, then so are e−β(g1−g̃1) and
e−β(g2−g̃2). The proof is almost exactly the same as that of Proposition 7
for N = 2. Instead of relying on Čebyšev’s algebraic inequality, we use the
characterization result for positive quadrant dependence. ⊓⊔

As one example of applying the above proposition, let S1, S2 and S3 be
three independent random variables standing for three future financial quanti-
ties. Let g1 ≡ max(S1+S2−K1, 0)−p1 be the profit or loss of a spread option
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with strike price K1 and price p1. Similarly for g2 ≡ max(S1+S3−K2, 0)−p2.
Assume that the strike prices and option prices are such that g1 and g2
are gambles. Then by Example 1.(iv) in Lehmann (1966), g and h are pos-
itively quadrant dependent. Proposition 8 then tells us that R(g1 + g2) ≥
min(R(g1), R(g2)).

2.5 Extending the Domain of Gambles

The original definition of additive gambles in Aumann and Serrano (2008)
considers gambles with a discrete distribution, positive mean, and a positive
probability of loss. We have extended the domain to allow for continuous
or mixed distributions and infinite support. However, we still only consider
positive probability of loss. On p. 821 of Aumann and Serrano (2008), the
authors suggest one simple way of extending the domain to gambles where
only positive gains are realized by setting their risk index to 0. This is a very
sensible choice if we focus on a single gamble. However, it does not allow us
to compare the riskiness across different gambles. Consider the following two
gambles of coin tossing for example. Gamble g gives 1 dollar if head and 3
dollars if tail. Gamble h gives 2 dollars if head and 4 dollars if tail. The simple
extension will say both gambles have zero risk index, but is silent on which one
is riskier. A look at the definition of the risk index in equation (1) shows that
there is no nontrivial solution for R(g) if g only has positive gains. Apparently,
some modification is needed in order to extend the concept of risk index to
gambles with positive gains only.

We define a (generalized) gamble to be a random variable on the probability
space (Ω,F ,P). A normal reaction to the two gambles above is that if they are
offered at the same price, then gamble h should be more attractive. Therefore,
the approach we take is to associate the gamble and risk index with an upfront
price P . That is, we assume that there is a price P ∈ R associated with
each gamble g, such that g − P is an additive gamble in the sense in earlier
subsections, and we define the risk index R(g, P ) of the gamble g with price
P to be the unique positive solution (if exists) of

Ee−(g−P )/R(g,P ) = 1. (20)

Although we associate P with g, P does not have to be internally determined
from g. It could be given exogenously. Of course, one interesting application
which is very relevant in practice is that P is determined from g by risk-
neutral pricing or utility indifference pricing. Notice that we also allow for
gambles with losses only and negative prices (an upfront compensation). The
only requirement we impose is that g − P is an additive gamble such that
Eg > P and P(g < P ) > 0. That is, on average there is a positive gain so
that there is some incentive to take the gamble, but there is also a positive
probability of losing money.

Apparently, the additive gambles we have considered previously are spe-
cial cases of the gambles here with a zero price. By focusing on the shifted
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additive gamble g − P , we can parallel translate the previous results to the
generalized gambles. For example, the duality in Aumann and Serrano (2008)
would generalize to the following.

Duality for generalized gambles: Let R(g, Pg) > R(h, Ph). If i ⊲ j and i
accepts gamble g with price Pg at wealth w, then j accepts h with price Ph at
wealth w.

These generalizations, while somewhat trivial, extend all previous results
for additive gambles to generalized gambles which are more relevant in real-life
applications. The introduction of a price P opens up a nontrivial new direction
to study the behavior of the risk index R(g, P ). As a first cut, we list some
of the properties of R(g, P ) in the following proposition. The first statement
shows that R(g, P ) is strictly increasing and convex in P .2 The last two state-
ments show that R(g, P ) is homogeneous of degree one and subadditive in g
if the pricing functional is linear.

Proposition 9 For any generalized gamble g, we define D(g) = {P ∈ R :
R(g, P ) exists}. We assume that g is well-behaved so that D(g) is not empty.

1. The set D(g) is connected. On the set D(g), R(g, P ) is strictly increasing
and strictly convex in P .

2. Let P ∈ D(g). Then λP ∈ D(λg) and we have R(λg, λP ) = λR(g, P ).
3. Let Pg ∈ D(g) and Ph ∈ D(h). Then Pg + Ph ∈ D(g + h). In addition, we

have

R(g + h, Pg + Ph) ≤ R(g, Pg) +R(h, Ph). (21)

If g and h are independent, then R(g + h, Pg + Ph) lies between R(g, Pg)
and R(h, Ph).

Proof: The second and third statements follow easily from considering the
shifted additive gambles g − Pg and h − Ph, and using the properties of the
additive gambles. Therefore, we focus on the first statement. To show that
D(g) is connected, let P1 ∈ D(g) and P2 ∈ D(g) with P1 < P2. For any
P ∈ (P1, P2), we have

E e−(g−P )/R(g,P1) = E e−(g−P1)/R(g,P1)+(P−P1)/R(g,P1)

= e(P−P1)/R(g,P1) > 1. (22)

Similarly we have E e−(g−P )/R(g,P2) < 1. Since the function f(z) ≡ E e−(g−P )/z

is continuous in z, there exists z0 between R(g, P1) and R(g, P2) such that
f(z0) = 1. Therefore, P ∈ D(g) and D(g) is connected. Notice that the equa-
tion above also shows that R(g, P ) is strictly increasing in P . To show the

2 In an earlier version of this paper, we prove the convexity of R(g, P ) where g is the
gamble in St. Petersburg’s paradox by using the implicit function theorem coupled with
Cauchy-Schwartz inequality. The current proof is much simpler. This idea of using the
convexity of the exponential function was inspired by the proof of (5.8.2) in Aumann and
Serrano (2008) which is due to Sergiu Hart.
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convexity of R(g, P ), let P = (P1 + P2)/2 and R = (R1 + R2)/2, where we
write R1 = R(g, P1) and R2 = R(g, P2) for notational ease. We need to show

that R > R(P ). This is equivalent to showing that E e−(g−P )/R < 1 (see Figure
1). It is easy to check that for λ = R1/(R1 +R2), we have

(g − P )/R = λ(g − P1)/R1 + (1− λ)(g − P2)/R2. (23)

The fact that E e−(g−P )/R < 1 now follows the convexity of e−z and Jensen’s
inequality. ⊓⊔

We make two remarks. First, a sufficient and necessary condition for the
non-emptiness of D(g) is that there exists λ > 0 such that Ee−λg < ∞.
Second, in incomplete markets with transaction costs, different borrowing and
lending rates, or non-hedgable default risk, the pricing functional Pg is often
subadditive in g. That is, Pg+h ≤ Pg + Ph. The subadditivity of R(g, Pg) in g
in the above proposition still holds when Pg is subadditive since

R(g + h, Pg+h) ≤ R(g + h, Pg + Ph) ≤ R(g, Pg) +R(h, Ph). (24)

Here in the first inequality we have used the monotonicity of R(g, P ) and the
subadditivity of Pg, and in the second inequality we have used the subaddi-
tivity of R(g, Pg) when the pricing functional is linear.

3 Multiplicative gambles

3.1 Multiplicative gambles and CRRA utilities

So far we have considered additive gambles, that is, an agent with wealth w
will have final wealth w+g if he takes an additive gamble g. In this subsection,
we will take a look at multiplicative gambles. We will assume that wealth is
always positive and utilities are defined on the positive real line. Operationally,
an agent with wealth w accepting a multiplicative gamble φ will have random
final wealth wφ. Mathematically, we define a multiplicative gamble φ to be a
random variable on (Ω,F ,P) with strictly positive values such that

1 < Eφ < +∞ and P[φ < 1] > 0. (25)

We also require that E log φ > −∞. The condition Eφ > 1 requires that the
gamble φ is actuarially attractive. An agent accepts a multiplicative gamble
φ if and only if Eu(wφ) > u(w). Similarly for indifference and rejection. We
will always use lowercase Greek letters to denote multiplicative gambles to
differentiate from additive gambles.

Recall that for any well-defined additive gamble g, we require Eg > 0. By
Jensen’s inequality, logEeg ≥ Eg > 0. Thus, φ ≡ eg satisfies Eφ > 1 and is
a well-defined multiplicative gamble. However, not all multiplicative gambles
come from this way. That is, there are multiplicative gambles whose logarithms
are not additive gambles. In the jargon of functional analysis, if let Ga and Gm
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Fig. 3 The defining equation for a multiplicative gamble’s attractiveness αm(φ).
The function f(β) ≡ Eφ1−β

− 1 for a fixed multiplicative gamble φ is drawn. For gambles
with 1 < Eφ < +∞, f(β) is convex in β and has at most two roots. The sign of E log φ is
always the same as that of αm(φ)− 1.

be the sets of additive and multiplicative gambles, respectively, and let the
mapping Υ : Ga → Gm be Υ (g) = eg, then Υ is injective, but not surjective.

For any multiplicative gamble φ, if there is a solution β 6= 1 to the following
equation

Eφ1−β = 1, (26)

we define the (multiplicative) attractiveness index αm(φ) = β. If β = 1 is
the only solution to the above equation, we define αm(φ) = 1. The risk in-
dex Rm(φ) of a multiplicative gamble is defined to be Rm(φ) ≡ 1/αm(φ). It
turns out that for any multiplicative gamble, the attractiveness index is al-
ways well-defined. Figure 3 depicts schematically the attractiveness index for
a multiplicative gamble. Unlike additive gambles, it is useful to consider three
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different cases in accordance to the signs of E log φ, as we do in the following
proposition.

Proposition 10 For any multiplicative gamble φ, its attractiveness index αm(φ)
is always well-defined. Furthermore, we have 0 < αm(φ) < 1 if and only if
E log φ < 0, αm(φ) = 1 if and only if E log φ = 0, and 1 < αm(φ) < +∞ if
and only if E log φ > 0. In the last case where E log φ > 0, log φ is a well-
defined additive gamble, and we have αm(φ) = 1 + α(log φ).

Proof: For any β ∈ R, define f(β) ≡ Eφ1−β−1. Notice that f(0) = Eφ−1 > 0,
f(1) = 0, and limβ→+∞ f(β) = +∞. Furthermore, f ′′(β) = Eφ1−β(log φ)2 > 0
so φ is globally strictly convex. The derivative of f(β) at β = 1 is given by
f ′(1) = −E log φ. It is easy to see that the sign of f ′(1) determines the sign of
αm(φ)− 1, as Figure 3 shows. Finally, when E log φ > 0, it is easy to see that
αm(φ) = 1 + α(log φ) since f(β) = Ee−(β−1) log φ. ⊓⊔

A CRRA utility is a utility with constant relative risk aversion function.
The relative risk aversion function r(w) of a utility u is defined to be r(w) =
−wu′′(w)/u′(w). A CRRA utility with parameter γ > 0 is given by

uγ(w) =
w1−γ − 1

1− γ
(27)

if γ 6= 1, and uγ(w) = logw if γ = 1. Notice that for uγ(w), r(w) ≡ γ is a
constant. Aumann and Serrano (2008) give R(g) an operational meaning by
showing that if we let wγ(g) denote the cutoff wealth of a CRRA agent with
parameter γ at which he is indifferent towards an additive gamble g, then
limγ→+∞ wγ(g)/γ = R(g). In this subsection, we explore the relations be-
tween multiplicative gambles and CRRA utilities. Later we will give a duality
result for multiplicative gambles. This in turn allows us to give an alternative
characterization for utilities with nonincreasing or nondecreasing relative risk
aversion functions.

We have the following proposition with respect to multiplicative gambles
and CRRA utilities. It states that just as α(g) is the critical absolute risk
aversion parameter for a CARA agent to accept an additive gamble g, αm(φ)
is the critical relative risk aversion parameter for a CRRA agent to accept a
multiplicative gamble φ.

Proposition 11 A CRRA agent with parameter γ > 0 accepts a multiplica-
tive gamble φ at any wealth w > 0 if and only if γ < αm(φ).

Proof: We first prove the “only if” part. If γ = 1, a CRRA agent (having a
log utility) accepts φ at any wealth only if E log φ > 0. By Proposition 10 or
Figure 3, this happens only if αm(φ) > 1 = γ. If 0 < γ < 1, he accepts φ
at any wealth only if Eφ1−γ > 1. There are three possible cases to consider:
E log φ > 0, E log φ = 0, and E log φ < 0. By Proposition 10 or Figure 3 again,
in all three cases, this happens only if γ < αm(φ). Finally, if γ > 1, he accepts
φ at any wealth only if Eφ1−γ < 1. Again this happens only if γ < αm(φ).

The proof for the “if” part is similar and thus omitted. ⊓⊔
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3.2 Duality for multiplicative gambles

Aumann and Serrano’s theory on additive gambles can be translated to mul-
tiplicative gambles without much modification, as the following propositions
show. For any multiplicative gamble φ, we define its essential range Dm(w, φ)
to be the closed interval [w ess inf φ,w ess supφ].

Proposition 12 We have the following statements with respect to acception
and rejection of multiplicative gambles:

1. If i accepts a multiplicative gamble φ at wealth wi, then there exists w ∈
Dm(wi, φ) such that αm(φ) > ri(w). In particular, we must have αm(φ) >
infw∈Dm(wi,φ) ri(w). On the other hand, if i rejects φ at wealth wi, then
there exists w ∈ Dm(wi, φ) such that αm(φ) < ri(w). In particular, we
must have αm(φ) < supw∈Dm(wi,φ) ri(w).

2. If αm(φ) ≥ ri(w) for any w ∈ Dm(wi, φ) with strict inequality for at least
one such w, then i accepts a multiplicative gamble φ at wi. On the other
hand, if αm(φ) ≤ ri(w) for any w ∈ Dm(wi, φ) with strict inequality for at
least one such w, then i rejects φ at wi.

Proof: The proof is very similar to that of Proposition 1. Thus we only give
proof for the first sentence in statement 1. Suppose ri(w) ≥ αm(φ) for all
w ∈ Dm(wi, φ). Let uαm(φ)(w) be the CRRA utility with parameter αm(φ).
By Proposition 11, Euαm(φ)(wiφ) = uαm(φ)(wi). Let

ũ(w) ≡
u′
αm(φ)(wi)

u′(wi)

(
u(w)− u(wi)

)
+ uαm(φ)(wi). (28)

Then ũ(w) is equivalent to u(w) since it is a positive affine transformation
of u(w). Furthermore, ũ(wi) = uαm(φ)(wi), and ũ′(wi) = u′

αm(φ)(wi). For

any w ∈ Dm(wi, φ), ρi(w) ≥ ραm(φ)(w) where ραm(φ)(w) is the absolute risk
aversion function of uαm(φ)(w). Thus, ũ and uαm(φ) are “nested” at wi: ũ(w) ≤
uαm(φ)(w) for any w ∈ Dm(wi, φ) except that we have equality at w = wi.
Therefore, Eũ(wiφ) ≤ Euαm(φ)(wiφ) = uαm(φ)(wi) = ũ(wi). This contradicts
the assumption that i accepts φ at wealth wi. ⊓⊔

The above proposition immediately gives the following duality result for
multiplicative gambles, which is completely parallel to Proposition 2.

Proposition 13 (Duality for multiplicative gambles) Let φ and ψ be
two multiplicative gambles defined on the same probability space (Ω,F ,P) with
Rm(ψ) ≤ Rm(φ) < ∞. Suppose

inf
w∈Dm(wi,φ)

ri(w) ≥ sup
w∈Dm(wj ,ψ)

rj(w). (29)

Then if i accepts gamble φ at wealth wi, j accepts ψ at wealth wj. Furthermore,
if j rejects ψ at wealth j, then i rejects φ at wi.
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Proof: The proof is very similar to that of Proposition 2 so we omit the
details. For example, the first conclusion can be seen from the following chain
of inequalities:

αm(ψ) ≥ αm(φ) > inf
w∈Dm(wi,φ)

ri(w) ≥ sup
w∈Dm(wj ,ψ)

rj(w), (30)

where the strict inequality in the middle is by Proposition 12. ⊓⊔

3.3 Alternative characterization of DRRA and IRRA utilities

A utility defined on the positive real line is said to be in the DRRA class
if its relative risk aversion function is nonincreasing. It is said to be in the
IRRA class if its relative risk aversion function is nondecreasing. Proposition
13 above allows us to derive an alternative characterization of DRRA and
IRRA utilities using multiplicative gambles, exactly parallel to Propositions 3
and 4 for DARA and IARA utilities using additive gambles.

Proposition 14 A utility function defined on R
+ is in DRRA if and only if

any multiplicative gambles accepted at a given wealth level will be accepted at
all higher wealth levels. More generally, assuming wl < wr, the relative risk
aversion function of a utility is nonincreasing on [wl, wr] if and only if any
multiplicative gamble φ accepted at a wealth level wL will be accepted at any
higher wealth level wH so long as Dm(wL, φ) ∈ [wl, wr] and Dm(wH , φ) ∈
[wl, wr].

Proof: If u is in DRRA, then Proposition 13 tells us that any multiplicative
gamble accepted by u at a lower wealth will be accepted at any higher wealth.

For the converse, suppose u is not in DRRA so that there exist two wealth
levels wL and wH with wL < wH and r(wL) < r(wH). We need to show that
there exists a multiplicative gamble which is accepted at wL but rejected at
wH . By continuity of r(w), there exists ǫ > 0, such that

sup
| log(w/wL)|<2ǫ

r(w) < inf
| log(w/wH)|<2ǫ

r(w). (31)

Now let φ be a multiplicative gamble taking two values: φ = eǫ with probability
p, and φ = e−ǫ with probability 1 − p, where p > 1/(1 + eǫ). The condition
p > 1/(1+ eǫ) is to guarantee that Eφ > 1. It can be computed that αm(φ) =
1 + log(p/(1 − p))/ǫ. As p varies in the range (1/(1 + eǫ), 1), αm(φ) takes all
values in (0,∞). Pick p such that αm(φ) is sandwiched between the two sides
of equation (31). Then, φ is accepted at wealth wL but rejected at wealth wH .

⊓⊔

Proposition 15 A utility function defined on R
+ is in IRRA if and only if

any gambles accepted at a given wealth level will be accepted at all lower wealth
levels. More generally, assuming wl < wr, the relative risk aversion function
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of a utility is nondecreasing on [wl, wr] if and only if any multiplicative gamble
φ accepted at a wealth level wH will be accepted at any lower wealth level wL

so long as Dm(wL, φ) ∈ [wl, wr] and Dm(wH , φ) ∈ [wl, wr].

Proof: Mimic the proof for Proposition 14 by switching the roles of wL and
wH . ⊓⊔

3.4 Attractiveness and essentially monotonic relative risk aversion

We now slightly generalize IRRA and DRRA utilities. We say that a utility
has essentially nondecreasing relative risk aversion if there exists ŵ such that
supw<ŵ r(w) ≤ infw>ŵ r(w), and r(w) is nondecreasing on (ŵ,+∞). We say
that a utility has essentially nonincreasing relative risk aversion if there ex-
ists ŵ such that infw<ŵ r(w) ≥ supw>ŵ r(w), and r(w) is nonincreasing on
(−∞, ŵ). We say that a utility has essentially monotonic relative risk aver-
sion if it has either essentially nondecreasing relative risk aversion or essentially
nonincreasing relative risk aversion. Essentially monotonic relative risk aver-
sion utilities include IRRA and DRRA as special cases. Similar to the case for
additive gambles, we have the following proposition.

Proposition 16 If an agent with essentially monotonic relative risk aver-
sion accepts a bounded multiplicative gamble φ at any wealth, then αm(ψ) ≥
supw∈R+ r(w) and he also accepts any multiplicative gamble ψ with αm(ψ) ≥
αm(φ). Conversely, if any essentially monotonic relative risk averse agent who
accepts a multiplicative gamble φ at any wealth also accepts multiplicative gam-
ble ψ at any wealth, then αm(ψ) ≥ αm(φ).

Proof: The proof is very similar to that of Proposition 5 for additive gambles.
Thus, we omit the details here. The main ingredient needed is Proposition
12. ⊓⊔

4 Conclusion

We study the risk index proposed in Aumann and Serrano (2008) in more
detail. First, we use a strengthened duality result to derive an alternative
characterization of utilities with nonincreasing or nondecreasing absolute risk
aversions. Furthermore, by considering agents with essentially monotonic ab-
solute risk aversions, we give a characterization theorem for Aumann and
Serrano’s risk index in place of the duality axiom. Second, we study in more
detail sums of gambles that are not necessarily independent. Third, we extend
the concept of risk index to essentially any random payoff by introducing a
price. An interesting result is that the generalized risk index is always strictly
increasing and strict convex with respect to the price. Finally, we translate
the theory on the risk index for additive gambles to multiplicative gambles.
Relative risk aversion functions for multiplicative gambles play the same role
as absolute risk aversion functions for additive gambles.
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