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ABSTRACT

This paper investigates the asymptotic validity of the bootstrap for Durbin-Wu-

Hausman (DWH) specification tests when instrumental variables (IVs) may be arbi-

trary weak. It is shown that under strong identification, the bootstrap offers a better

approximation than the usual asymptotic χ2 distributions. However, the bootstrap

provides only a first-order approximation when instruments are weak. This indicates

clearly that unlike the Wald-statistic based on a k-class type estimator (Moreira et

al., 2009), the bootstrap is valid even for the Wald-type of DWH statistics in the

presence of weak instruments.
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1. Introduction

Specification tests of the type proposed by Durbin (1954), Wu (1973, 1974), and

Hausman (1978), henceforth DWH tests, are widely used in applied work to decide

whether the ordinary least squares (OLS) or instrumental variables (IV) method

is appropriate. Although research on exogeneity testing in linear IV regressions is

widespread1, most studies in this topic usually consider the case of strong instruments.

Recent studies focusing on the behavior of the DWH-type tests document that they

never over-rejects the null hypothesis of exogeneity when IVs are weak. However,

some of these tests can be overly conservative even in large-sample, and have low

power when identification is weak.2 Doko Tchatoka and Dufour (2011b) propose a

size correction of these tests through the exact Monte carlo test procedure [ Dufour

(2006)], which remains valid even when identification is weak and the sample size

is small. However, the Monte Carlo test procedure suggested requires the a priori

knowledge of the distribution of model disturbance, at least up to an unknown scale

factor. But in practice, researchers usually do not know the exact distribution of the

errors and implementing the simulated method can be difficult, even infeasible.

This paper aims to relax this distributional assumption by resorting to bootstrap

methods. We mainly focus on linear structural models and establish the asymptotic

validity of the bootstrap for DWH exogeneity tests, when IVs may be arbitrary weak

(weak instruments).

Moreira et al. (2009) show in the context of hypotheses specified on structural

1See, for example, Durbin (1954), Wu (1973, 1974, 1983a, 1983b), Revankar and Hartley (1973),
Farebrother (1976), Hausman (1978), Revankar (1978), Dufour (1979, 1987), Hwang (1980), Kariya
and Hodoshima (1980), Hausman and Taylor (1981), Spencer and Berk (1981), Nakamura and
Nakamura (1981), Engle (1982), Holly (1982), Reynolds (1982), Smith (1983, 1984), Thurman (1986),
Smith and Pesaran (1990), Ruud (1984, 2000), Newey (1985a, 1985b), Wong (1996), Ahn (1997),
Baum, Schaffer and Stillman (2003).

2See, for examples, Staiger and Stock (1997), Guggenberger (2010), and Doko Tchatoka and
Dufour (2011a, 2011b). Staiger and Stock (1997, Section D) show that with weak IVs, the size of
Hausman (1978) tests that exploit the residuals from the 2SLS estimation, and that of the Wu (1973)
T3 test depends on identification strength through the concentration matrix. Since the concentration
matrix cannot be estimated consistently when IVs are weak, Staiger and Stock (1997) conclude that
size adjustment of these statistics is infeasible. But Doko Tchatoka and Dufour (2011b) show the
size of all DWH-type statistics can be adjusted using the simulated methods; see also Dufour (2006).
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parameters, that the bootstrap is valid for the score test. This not however the case

for Wald-type tests based on the 2SLS or LIML estimators when IVs are weak. We

use the LM and Wald interpretation of the DWH staistics in Engle (1982) and Smith

(1983) to propose a slight modification of Moreira et al.’s (2009) bootstrap. Our anal-

ysis of the bootstrap validity provides some new insights and extensions of Moreira

et al.’s (2009). We show that when identification is strong, the bootstrap offers a

better approximation than the usual asymptotic χ2 distributions (similar to Moreira

et al., 2009). However, the bootstrap provides only a first-order approximation when

identification is weak, meaning that the bootstrap is valid even for the wald-type of

the DWH test, despite the lack of identifiability. This contrasts with the bootstrap

of the Wald-statistic based on the 2SLS or LIML estimators, which is invalid with

weak IVs (Moreira et al., 2009).

The paper is organized as follows. Section 2 formulates the model and assump-

tions, and presents the statistics studied. Section 3 presents the statistics and provides

their Lagrange multiplier or Wald interpretation, following Engle (1982) and Smith

(1983). Section 4 details the proposed bootstrap implemented as well as its validity

in both strong and weak instrument setups. Conclusions are drawn in Section 5 and

the proofs and auxiliary lemmas are presented in the Appendix.

2. Framework

We consider the standard linear structural model described by the following equations:

y1 = y2β + Z1γ + u, (2.1)

y2 = Zπ2 + Z1π1 + v2 (2.2)

where y1 and y2 are n×1 vectors of observations on two endogenous variables, Z1 is a

n×k1 matrix of included exogenous variables, Z1 is a n×k2 matrix instruments, u =

(u1, . . . , un)
′ ∈ R

n is a vector of structural disturbances, v2 = [v21, . . . , v2n]
′ ∈ R

n is
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a vector of reduced form disturbances, β, γ ∈ R are unknown structural parameters,

while π1 ∈ R
k1 and π2 ∈ R

k2 is the unknown reduced-form coefficient vector. The

results in this paper can easily be extended to setups where y2 contains more than one

regressors. We assume that Z = [Z1 : Z2] : n× k has full column-rank k = k1 + k2.

The reduced-forms for y1 and y2 can be expressed from (2.1)-(2.2) as:

y1 = Z1(π1β + γ) + Z2π2β + v1

y2 = Z1π1 + Z2π2 + v2, (2.3)

where v1 = u + v2β. For any random matrix X , let Xi denote the i-th row of X,

written as column vector. Let Y = [y1 : y2] and define

Qn = vech
(

(Y ′
n, Z

′
n)

′

(Y ′
n, Z

′
n)
)

= (f1(Y
′
n, Z

′
n), f1(Y

′
n, Z

′
n), . . . , fl(Y

′
n, Z

′
n)) , (2.4)

where fi, i = 1, . . . , l, l = (k + 2)(k + 3)/2, k = k1 + k2, are elements of the matrix

(Y ′
n, Z

′
n)

′

(Y ′
n, Z

′
n). Let Q̄n = n−1

∑n
i=1Qi denote the empirical mean of the Qi. The

following assumptions are made on the behavior of model variables.

Assumption 2.1 (a) Qn in (2.4) satisfies: E[‖Qn‖s] < ∞ for some s ≥ 3,

lim sup‖t‖→∞ | E [exp(it′Qn)] |< 1; and (b) when the sample size n converges to infin-

ity, the following convergence results hold jointly:

M1. n−1[u : v2]
′[u : v2]

p→ Σ =







σ2
u δ

δ σ2
v2






, n−1Z ′Z

p→ QZ , n
−1Z ′[u : v2]

p→ 0

M2. n−1/2Z ′[u : v2]
d→
[

ψZu : ψZv2

]

, where ψZu = (ψ′
Z1u

, ψ′
Z2u

)′ : k × 1,

ψZv2 = (ψ′
Z1v2

, ψ′
Z2V−2)

′ : k × 1, and vech
([

ψZu : ψZv2

])

∼ N(0, Σ ⊗QZ).

The first moment condition in Assumption 2.1-(a) holds if E[‖(Y ′
n, Z

′
n)‖2s] <∞, and

the second is the commonly used Cramér’s condition [see Bhattacharya and Ghosh
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(1978)]. In Assumption 2.1-(b), M1 is the weak law of large numbers (WLLN)

property, where IVs and disturbances are asymptotically uncorrelated, while M2 is

the central limit theorem (CLT) property.

From Assumption 2.1, the exogeneity hypothesis of y2 can be expressed as:

H0 : δ = 0. (2.5)

We are concerned with the asymptotic validity of the bootstrap for the DWH statistics

often used to assess H0, especially when identification is weak. Section 3 presents the

DWH statistics and their LM or Wald interpretation.

3. Lagrange Multiplier and Wald Nature of the

Standard DWH Tests

We consider the statistics Tl, l = 2, 3, 4, by Wu (1973, 1974) and three alternative

Hausman (1978) type statistics, namely, Hj , j = 1, 2, 3. Let A1 = In−Z1(Z
′
1Z1)

−1Z ′
1

and A2 = In −Z(Z ′Z)−1Z ′ denote the orthogonal matrices to the spaces spanned by

the columns of Z1 and Z, respectively. The statistics Tl and Hj can be expressed in

the unified formulation as:

Tl = κl(β̃ − β̂)2/ω̃2
l , l = 2, 3, 4, (3.1)

Hj = n(β̃ − β̂)2/ω̂2
j , j = 1, 2, 3 (3.2)

where β̂ = (y′2A1y2)
−1y′2A1y1 and β̃ = [y′2(A1 − A2)y2]

−1y′2(A1 − A2)y1 are the OLS

and IV estimators of β, respectively, and

ω̃2
2 = σ̃2

2∆̂, ω̃
2
3 = σ̃2∆̂, ω̃2

4 = σ̂2∆̂,
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ω̂2
1 = σ̃2ω̂−1

iv − σ̂2ω̂−1
ls , ω̂

2
2 = σ̃2∆̂, ω̂2

3 = σ̂2∆̂,

∆̂ = ω̂−1
iv − ω̂−1

ls , ω̂iv = y′2(A1 − A2)y2/n, ω̂ls = y′2A1y2/n,

σ̃2 = (y1 − y2β̃)
′A1(y1 − y2β̃)/n, σ̂

2 = (y1 − y2β̂)
′A1(y1 − y2β̂)/n,

σ̃2
2 = σ̂2 − (β̃ − β̂)2/∆̂, κ2 = n− 2− k1, κ3 = κ4 = n− 1− k1.

Engle (1982) and Smith (1983) show that each statistic in (3.1)-(3.2) has a score or

Wald interpretation. The statistics T2, T4, and H3 are LM-type, while T3,H1, andH2

are quasi-Wald type.3 Under H0 and if further Assumption 2.1-(b) holds, all DWH

statistics have the usual chi-square asymptotic distributions if model identification

is strong. However, T3, H1, and H2 are overly conservative, and all DWH tests

have a low power if IVs are weak, even in large-sample. We question whether a

bootstrap technique can improve4 the properties of the DWH tests, with or without

weak instruments.

4. Bootstrap Validity for DWH Tests

Let π̂ = (Z ′Z)−1Z ′y2 denotes the OLS estimator of π = (π′
1, π

′
2)

′ in the first stage

regression (2.2). Let θ̂ be an estimator of β and γ̂ those of γ. The bootstrap procedure

consists of the following steps:

3See Smith (1983) for the score interpretation (Eqs. [6] and [9]) and for the quasi-Wald inter-
pretation (Eqs. [7], [8] and [10]). The regression interpretation of these statistics is provided in
Hausman (1978), Dufour (1979, 1987), Wooldridge (2009), and Doko Tchatoka and Dufour (2011b).

4Due to the LM nature of T2, T4, H3, and the result in Moreira et al. (2009), one can project the
bootstrap validity for these statistics. But formal proof needs to be established, especially because
the primary focus in Moreira et al. (2009) is not exogeneity testing, and there is no discussion in
Moreira et al. (2009) related to exogeneity testing. On the other hand, because of the Wald nature of
T1, T3, H1, H2, and the bootstrap invalidity result for the Wald-statistic in Moreira et al. (2009), it
is not clear whether the bootstrap applies to these statistics. Hence, this note is useful in clarifying
these issues. Wong (1996) illustrates through a Monte Carlo experiment that bootstrapping the
Hausman (1978) exogeneity test improves both the size and power of the test. Li (2006) extends
Wong’s (1996) results by allowing for serial correlated errors. Both papers are referenced in the weak
instrument literature. However, neither Wong (1996) nor Li (2006) provides a formal proof of the
large-sample validity of their bootstrap, even when IVs are strong. Furthermore, the Monte Carlo
designs in both papers exclude cases where IVs are poor, because the smallest correlation between
each IV and the (possibly) endogenous regressors is set at 0.1. Although a correlation of 0.1 is not
hight, it is not zero or close to either.
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1. From observed data, compute π̂ and θ̂ along with all other things necessary to

get the realizations of the statistics Tl, Hj , and the residuals from the reduced-form

equation (2.3): v̂1 = y1 − Z1(π̂1θ̂ + γ̂) − Z2π̂2θ̂, v̂2 = y2 − Zπ̂. These residuals are

then re-centered by subtracting sample means to yield (ṽ1, ṽ2).

2. For each bootstrap sample r = 1, . . . , B, data are generated as:

y∗1 = Z∗
1(π̂1θ̂ + γ̂) + Z∗

2 π̂2β̂ + v∗1, y∗2 = Z∗π̂ + v∗2 (4.1)

where Z∗ = [Z∗
1 : Z∗

2 ] and (v∗1, v
∗
2) are drawn independently from the empirical

distribution of Z and (ṽ1, ṽ2). The corresponding bootstrap statistics T ∗r
l and H∗r

j

are then computed for each bootstrap sample r = 1, . . . , B.

3. The simulated bootstrap p-value is obtained as the proportion of bootstrap

statistics that are more extreme than the statistics computed from observed data.

4. The bootstrap test rejects the null hypothesis of exogeneity at level α if its

p-value is less than α.

The above bootstrap steps, though similar to those by Moreira et al. (2009), have

a slight difference in the appropriate5 estimator of θ̂ to be used; see fn.4 for further

details. We now show the asymptotic validity of the bootstrap.

5Moreira et al. (2009) show that θ̂ must be strongly consistent, i.e.,

π̂
p→ π and θ̂π̂

p→ θπ, (4.2)

for the bootstrap to be valid. In a linear classical setting, the 2SLS and LIML estimators satisfy
the sufficient conditions for strong consistency; see Moreira et al (2009, Proposition 4 and fn.3,
p.55). The OLS estimator is not qualified for (4.2) if δ 6= 0 (endogeneity). However, under the null
hypothesis of exogeneity (δ = 0), as it is the case here, the OLS estimator is consistent and further
efficient, no matter how weak the IVs are. For this reason, we prefer OLS to an alternative 2SLS or
LIML estimator.
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4.1. High-order approximation with strong instruments

In this section, we focus on the case where π 6= 0 is fixed (strong IVs). We can express

the bootstrap DHW statistics T ∗

l and H∗

j based on the re-centering residuals as:

T ∗

l =
(√

nG( ¯̃Q∗
n)
)2

, H∗

j =
(√

nG̃( ¯̃Q∗
n)
)2

for all l and j (4.3)

where ¯̃Qn and ¯̃Q∗
n are analogous of Q̄n in (2.4). ¯̃Qn is based on the sample re-centering

residuals and ¯̃Q∗
n is based on the bootstrap sample residuals. The functions G(.) and

G̃(.) are real-valued Borel measurable functions on R
l, which satisfy G( ¯̃Qn) = 0 and

G̃( ¯̃Qn) = 0, due to the re-centered mechanism [similar to Eqs. (A.5)-(A.6) in the

Appendix]. Under strong identification, all derivatives of order s and less of the

functions G(.) and G̃(.) are continuous. So, Edgeworth-type expansion6 applies and

we have the following theorem.

Theorem 4.1 Bootstrap validity with Strong IVs. Suppose Assumption

2.1 is satisfied. Under H0 and if further π 6= 0 is fixed, we have:

‖ P
∗

(T ∗

l ≤ x)− [Φ(x) +

s−2
∑

m=1

n
−m/2

pm
Tl
(x;Fn, β̂, π̂)Φ(x)]

2 ‖∞ = o(n
(s−2)

),

‖ P
∗

(H∗

j ≤ x)− [Φ(x) +

s−2
∑

m=1

n
−m/2

pm
Hj
(x;Fn, β̂, π̂)Φ(x)]

2 ‖∞ = o(n
(s−2)

) as n→ ∞

for all l and j, where pm
Tl

and pm
Hj

are polynomials in x with coefficients depending on

β̂, π̂, and the moments of the distribution Fn of Q̃∗

n = vech
(

(Ỹ ∗′
n , Z̃

∗′
n )

′

(Ỹ ∗′
n , Z̃

∗′
n )

)

conditional on F̂n = {(Y ′
1 , Z

′
1), . . . , (Y

′
n, Z

′
n)} ; Φ(.) is the cdf of N(0.1) and ‖.‖∞ is

the supremum norm.

First, Theorem 4.1 shows that the bootstrap approximates the empirical Edge-

worth expansion in Lemma A.1 up to the o(n
(s−2)

) order. This is not surprising

because the conditional moments of Q∗
n, given the data F̂n, converge almost surely

6Such as in Bhattacharya and Ghosh (1978, Theorem 2).
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to those of Qn when identification is strong. Second, the results shows that the

error based on the bootstrap simulation is of order n−1. Therefore, the bootstrap

offers a better approximation than the usual asymptotic χ2 distributions, even for

the Wald-type versions of the DWH statistics.

4.2. First-order Validity with Weak Instruments

High-order approximation of the limiting distributions of the bootstrap as in Theorem

4.1 is not achievable now due to the lack of identification. Indeed, when π2 = π0/
√
n

where π0 is a k2 × 1 constant vector, the functions G(.) and G̃(.) in (4.3) are non-

differentiable.7 So, the Edgeworth expansion is not applicable. However, we can

prove the following theorem on the first-order approximation of the bootstrap when

IVs are weak.

Theorem 4.2 Bootstrap validity with weak IVs. Suppose Assumptions

2.1 and H0 are satisfied. If for some δ > 0, E(‖Zi‖4+δ, ‖vi‖2+δ) <∞, then we have:

T ∗

l | F̂n
d→ χ2(1), H∗

j | F̂n
d→ χ2(1) a.s., for all l = 2, 3, 4; j = 1, 2, 3

when π = π0/
√
n, π0 is a k×1 constant vector, and F̂n = {(Y ′

1 , Z
′
1), . . . , (Y

′
n, Z

′
n)} .

First, since the statistics T2, T4, and H3 are LM-type and following Moreira et al.

(2009), the bootstrap validity for these statistics is predictable. However, the result

of the Wald-type of the DWH statistics, T3, H1, and H2, is less obvious, because the

bootstrap is not valid for the Wald-statistic of Hβ : β = β0 (see Moreira et al., 2009).

The key reason behind the bootstrap validity for the Wald-statistic here is that their

asymptotic distributions, even when δ 6= 0, do not depend on the unknown nuisance

parameter8 β, with or without weak IVs. Meanwhile, the asymptotic distribution of

7Note that all DWH statistics depends on y′
2
(A1 −A2)y2/n. However, it is straightforward to see

that the derivative of the functions G(.) and G̃(.) with respect to y′
2
(A1−A2)y2/n is not well-defined

when π = 0 or does not exist if π = π0cn for any sequence cn ↓ 0. So, G(.) and G̃(.) are not smooth
when IVs are weak, and Edgeworth-type expansion does not apply.

8See Wu(1973, Section 3; 1974, Eqs. [3.11]-[3.16]) and Doko Tchatoka and Dufour (2011a, 2011b).
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the Wald-statistic of Hβ : β = β0, based on 2SLS or LIML, depends heavily9 on β

under the weak instrument scenario.

4.3. Monte Carlo experiment

We use simulation to examine the size performance of the proposed bootstrap. The

DGP is described10 by Eqs. (2.1) and (2.2) where the n rows of [u, v2] are drawn

i.i.d. with mean zero and unit variance, and the correlation between ui and v2i is

set at ρ = 0 under H0. Z2 contains k2 instruments, each generated i.i.d N(0, 1)

independently of [u, v2]. We vary k2 in {2, 5, 20} within the experiment, but the

results are consistent with alternative values. The true value of β is set at 2 and the

reduced-form coefficient π2 is chosen as π2 = ( µ2

n‖Z2π0‖)
1/2
π0, where π0 is a vector of

ones, µ2 is the concentration parameter characterizing the strength of the IVs. In this

experiment, µ2 varies in {0, 413, 1000}.11 To account for non-normal errors, [u, v2] is

generated following Kotz et al. (2000):

ui = a+ bε1i + cε21i + dε31i, v2i = a+ bε2i + cε22i + dε32i (4.4)

where (ε1i, ε2i)
′ i.i.d.∼ N(0, I2) for all i = 1, . . . , n. We consider two setups: (1) a =

c = d = 0 and b = 1 (normal errors), and a = c = 0, b = d = 1/
√
22 (non-normal

errors) such that12 Sknew = 0 and Kurt ≈ 27.72.

Table 1 presents the results for the standard DWH tests, and Table 2 reports those

of the bootstrap tests. The first column of each table contains the test statistics, the

second reports the number of IVs k2, while the others present, for each sample size (n)

9See Nelson and Startz (1990); Staiger and Stock (1997); Dufour (1997, 2003); Wang and Zivot
(1998), among others.

10There is no exogenous Z1 in the simulations but the results do not alter when such exogenous
IVs are included.

11Following Hansen et al. (2008), µ2 = 0 is a design of complete non-identification, µ2 = 413
designs weak identification, and µ2 = 1000 is for strong identification.

12We run the simulations with alternative values of (Skew, Kurt) and the results are qualitatively
similar.
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and the IV strength (µ2), the empirical rejections of the tests. The bootstrap rejection

probability is estimated using 10, 000 pseudo-sample sets, each of size n varying in

{50, 100, 200, 500, 1000}. The nominal level for both the standard and bootstrap

tests is 5%. It is clear from Table 1 that the standard Wald-type of the DWH tests,

namely, T3, H1, and H2, are highly conservative with weak IVs (see columns µ2 = 0

and µ2 = 413). The rejection frequencies of the LM-type tests —T2, T4, and H3—

are close to the nominal level of 5% even when IVs are weak. These results are

similar for normal and non-normal errors. Meanwhile, Table 2 shows clearly that the

bootstrap method improves the size of the tests, especially for the Wald-type of the

DWH tests. As seen, even the rejection frequencies of T3, H1, and H2 are very close

to the nominal level, no matter how weak the IVs are, with or without normal errors,

even with relatively small-sample sizes.

5. Conclusion

This paper considers the standard linear IV models and investigates the asymptotic

validity of the bootstrap for the standard DWH exogeneity tests. We propose a

slight modification of Moreira et al.’s (2009) bootstrap, which provides some new

insights and extensions of earlier results. When identification is strong, we show

that the bootstrap offers a better approximation of the distributions of the statistics

than the usual asymptotic χ2 distributions. However, it provides only a first-order

approximation when instruments are weak. Unlike the Wald-statistic based on the

2SLS estimator (see Moreira et al., 2009), ours results show that the bootstrap is valid

even for the Wald-type of the DWH statistics. This is mainly because even when

identification is weak, the asymptotic distributions of all DWH statistics, including

the Wald-type ones, do not depend on the unknown structural parameters, while

those of the Wald-statistic based on 2SLS or LIML estimator does.
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Table 1. Rejection frequencies (in %) of the standard DWH tests

Normal errors
n = 50 n = 100 n = 200 n = 500 n = 1000

Statistics k2 ↓ µ2 → 0 413 1000 0 413 1000 0 413 1000 0 413 1000 0 413 1000

T2 2 6.3 6.4 7.1 5.7 5.2 5.7 6.0 5.6 5.7 6.2 5.6 5.6 6.1 5.5 5.6
T2 2 5.6 5.4 5.0 5.1 5.1 5.4 4.9 5.2 5.0 4.9 5.2 5.0 4.9 4.7 4.9
T3 2 0.1 4.0 4.2 0.0 3.7 4.6 0.0 3.7 4.2 0.1 2.9 3.8 0.0 2.0 3.6
T4 2 4.7 4.7 4.3 4.8 4.7 4.9 4.7 5.0 4.8 4.9 5.1 4.9 4.9 4.7 4.9
H1 2 0.1 3.5 3.6 0.0 3.4 4.2 0.0 3.6 4.0 0.1 2.8 3.7 0.0 1.9 3.6
H2 2 0.1 4.2 4.3 0.0 3.8 4.7 0.0 3.8 4.3 0.1 2.9 3.8 0.0 2.0 3.6
H3 2 5.0 4.9 4.5 4.9 4.8 5.1 4.8 5.1 4.9 4.9 5.1 4.9 4.9 4.7 4.9

T2 5 5.5 5.5 5.4 5.3 5.4 5.4 4.9 5.5 5.1 4.7 5.2 5.0 5.3 4.9 5.2
T3 5 0.3 4.5 4.7 0.3 4.9 5.0 0.3 4.6 4.8 0.4 4.2 4.6 0.3 3.9 4.5
T4 5 5.0 4.8 4.8 4.9 5.2 5.1 4.8 5.3 5.0 4.6 5.1 5.0 5.3 4.9 5.1
H1 5 0.2 3.9 4.0 0.3 4.5 4.6 0.2 4.5 4.6 0.3 4.2 4.6 0.2 3.8 4.5
H2 5 0.3 4.8 4.9 0.3 4.9 5.1 0.3 4.7 4.8 0.4 4.2 4.7 0.3 3.9 4.5
H3 5 5.2 5.1 5.0 5.1 5.2 5.2 4.8 5.4 5.0 4.6 5.2 5.0 5.3 4.9 5.1

T2 20 5.6 5.1 5.7 5.0 5.3 5.4 5.0 5.2 5.1 4.9 4.5 5.1 5.2 4.9 5.2
T3 20 3.3 4.5 5.1 3.0 4.9 5.0 2.8 5.0 4.8 2.9 4.3 4.9 2.8 4.6 5.1
T4 20 4.8 4.5 5.1 4.7 4.9 5.0 4.9 5.1 4.9 4.8 4.5 5.0 5.2 4.9 5.2
H1 20 2.7 3.9 4.4 2.7 4.6 4.6 2.7 4.8 4.6 2.8 4.2 4.9 2.8 4.5 5.1
H2 20 3.5 4.6 5.3 3.1 5.0 5.1 2.8 5.0 4.9 2.9 4.3 5.0 2.9 4.6 5.1
H3 20 5.0 4.7 5.3 4.8 5.1 5.2 4.9 5.2 5.0 4.9 4.5 5.0 5.2 4.9 5.2

Non-normal errors
n = 50 n = 100 n = 200 n = 500 n = 1000

Statistics k2 ↓ µ2 → 0 413 1000 0 413 1000 0 413 1000 0 413 1000 0 413 1000

T2 2 5.0 6.3 6.1 5.2 5.0 5.6 4.8 5.0 5.0 5.0 5.0 4.7 4.9 4.9 5.4
T3 2 0.0 5.0 5.4 0.0 3.8 5.0 0.0 3.4 4.3 0.1 2.8 3.8 0.0 2.2 4.0
T4 2 4.2 5.6 5.6 4.8 4.7 5.4 4.6 4.9 4.8 5.0 5.0 4.6 4.9 4.9 5.4
H1 2 0.0 4.4 4.8 0.0 3.5 4.7 0.0 3.3 4.1 0.0 2.8 3.7 0.0 2.1 3.9
H2 2 0.0 5.2 5.6 0.0 3.9 5.0 0.0 3.5 4.4 0.1 2.8 3.8 0.0 2.2 4.0
H3 2 4.5 5.9 5.7 5.0 4.9 5.5 4.7 5.0 4.9 5.0 5.0 4.6 4.9 4.9 5.4

T2 5 5.3 6.0 5.9 5.2 5.4 5.9 5.2 5.1 5.0 5.0 4.3 5.2 4.9 4.8 5.0
T3 5 0.3 5.3 5.2 0.3 4.8 5.6 0.3 4.3 4.5 0.2 3.6 4.7 0.2 3.7 4.5
T4 5 4.6 5.5 5.3 4.8 5.2 5.7 5.0 4.8 4.9 4.9 4.3 5.2 4.9 4.8 5.0
H1 5 0.2 4.7 4.6 0.2 4.5 5.2 0.2 4.2 4.3 0.2 3.5 4.6 0.2 3.7 4.5
H2 5 0.3 5.5 5.4 0.3 4.9 5.6 0.3 4.4 4.6 0.2 3.6 4.7 0.2 3.7 4.5
H3 5 4.8 5.6 5.4 4.9 5.2 5.8 5.1 4.9 4.9 4.9 4.3 5.2 4.9 4.8 5.0

T2 20 5.5 5.8 5.8 5.1 5.2 5.6 5.2 5.1 5.4 4.9 5.2 5.0 4.8 4.9 4.8
T3 20 3.5 5.2 5.1 2.8 4.8 5.1 3.1 4.8 5.1 2.7 4.8 4.8 2.6 4.6 4.7
T4 20 4.9 5.2 5.2 4.8 4.9 5.2 5.0 4.9 5.1 4.8 5.1 4.9 4.8 4.9 4.8
H1 20 2.8 4.6 4.5 2.6 4.5 5.0 2.9 4.6 5.0 2.7 4.8 4.8 2.6 4.6 4.7
H2 20 3.8 5.4 5.3 2.9 4.9 5.3 3.1 4.8 5.2 2.8 4.9 4.9 2.6 4.7 4.7
H3 20 5.1 5.5 5.3 4.9 5.0 5.3 5.1 5.0 5.2 4.9 5.1 5.0 4.8 4.9 4.8
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Table 2. Rejection frequencies (in %) of the bootstrap DWH tests

Normal errors
n = 50 n = 100 n = 200 n = 500 n = 1000

Statistics k2 ↓ µ2 → 0 413 1000 0 413 1000 0 413 1000 0 413 1000 0 413 1000

T ∗
2 2 6.3 6.4 7.1 5.7 5.2 5.7 6.0 5.6 5.7 6.2 5.6 5.6 6.1 5.5 5.6

T ∗
3 2 6.5 6.4 7.1 5.9 5.2 5.7 6.1 5.6 5.7 6.3 5.6 5.6 6.2 5.5 5.6

T ∗
4 2 6.3 6.4 7.1 5.7 5.2 5.7 6.0 5.6 5.7 6.2 5.6 5.6 6.1 5.5 5.6

H∗
1 2 6.5 6.4 7.1 5.9 5.2 5.7 6.1 5.6 5.7 6.3 5.6 5.6 6.2 5.5 5.6

H∗
2 2 6.5 6.4 7.1 5.9 5.2 5.7 6.1 5.6 5.7 6.3 5.6 5.6 6.2 5.5 5.6

H∗
3 2 6.3 6.4 7.1 5.7 5.2 5.7 6.0 5.6 5.7 6.2 5.6 5.6 6.1 5.5 5.6

T ∗
2 5 6.8 5.9 5.9 6.6 6.0 6.7 7.2 5.6 5.4 6.2 5.8 5.6 7.6 5.8 5.1

T ∗
3 5 6.8 5.9 5.9 6.6 6.0 6.7 7.2 5.6 5.4 6.2 5.8 5.6 7.6 5.8 5.1

T ∗
4 5 6.8 5.9 5.9 6.6 6.0 6.7 7.2 5.6 5.4 6.2 5.8 5.6 7.6 5.8 5.1

H∗
1 5 6.8 5.9 5.9 6.6 6.0 6.7 7.2 5.6 5.4 6.2 5.8 5.6 7.6 5.8 5.1

H∗
2 5 6.8 5.9 5.9 6.6 6.0 6.7 7.2 5.6 5.4 6.2 5.8 5.6 7.6 5.8 5.1

H∗
3 5 6.8 5.9 5.9 6.6 6.0 6.7 7.2 5.6 5.4 6.2 5.8 5.6 7.6 5.8 5.1

T ∗
2 20 6.0 5.9 6.1 7.1 6.3 6.7 6.6 6.3 6.3 6.7 5.2 5.1 7.1 5.8 5.5

T ∗
3 20 6.0 5.9 6.1 7.1 6.3 6.7 6.6 6.3 6.3 6.7 5.2 5.1 7.1 5.8 5.5

T ∗
4 20 6.0 5.9 6.1 7.1 6.3 6.7 6.6 6.3 6.3 6.7 5.2 5.1 7.1 5.8 5.5

H∗
1 20 6.0 5.9 6.1 7.1 6.3 6.7 6.6 6.3 6.3 6.7 5.2 5.1 7.1 5.8 5.5

H∗
2 20 6.0 5.9 6.1 7.1 6.3 6.7 6.6 6.3 6.3 6.7 5.2 5.1 7.1 5.8 5.5

H∗
3 20 6.0 5.9 6.1 7.1 6.3 6.7 6.6 6.3 6.3 6.7 5.2 5.1 7.1 5.8 5.5

Non-normal errors
n = 50 n = 100 n = 200 n = 500 n = 1000

Statistics k2 ↓ µ2 → 0 413 1000 0 413 1000 0 413 1000 0 413 1000 0 413 1000

T ∗
2 2 6.4 5.8 6.4 6.0 5.7 6.0 5.7 5.2 5.2 5.5 5.3 5.8 5.5 5.0 5.2

T ∗
3 2 6.4 5.8 6.4 5.9 5.7 6.0 5.9 5.2 5.2 5.7 5.3 5.8 5.7 5.0 5.2

T ∗
4 2 6.4 5.8 6.4 6.0 5.7 6.0 5.7 5.2 5.2 5.5 5.3 5.8 5.5 5.0 5.2

H∗
1 2 6.4 5.8 6.4 5.9 5.7 6.0 5.9 5.2 5.2 5.7 5.3 5.8 5.7 5.0 5.2

H∗
2 2 6.4 5.8 6.4 5.9 5.7 6.0 5.9 5.2 5.2 5.7 5.3 5.8 5.7 5.0 5.2

H∗
3 2 6.4 5.8 6.4 6.0 5.7 6.0 5.7 5.2 5.2 5.5 5.3 5.8 5.5 5.0 5.2

T ∗
2 5 6.9 6.6 5.9 6.0 5.3 6.0 6.3 5.3 5.5 6.7 5.8 5.1 6.9 5.5 5.4

T ∗
3 5 6.9 6.6 5.9 6.0 5.3 6.0 6.3 5.3 5.5 6.7 5.8 5.1 6.9 5.5 5.4

T ∗
4 5 6.9 6.6 5.9 6.0 5.3 6.0 6.3 5.3 5.5 6.7 5.8 5.1 6.9 5.5 5.4

H∗
1 5 6.9 6.6 5.9 6.0 5.3 6.0 6.3 5.3 5.5 6.7 5.8 5.1 6.9 5.5 5.4

H∗
2 5 6.9 6.6 5.9 6.0 5.3 6.0 6.3 5.3 5.5 6.7 5.8 5.1 6.9 5.5 5.4

H∗
3 5 6.9 6.6 5.9 6.0 5.3 6.0 6.3 5.3 5.5 6.7 5.8 5.1 6.9 5.5 5.4

T ∗
2 20 6.1 6.2 6.2 6.2 6.2 6.5 6.4 5.9 6.2 7.1 5.9 5.8 6.9 5.7 5.1

T ∗
3 20 6.1 6.2 6.2 6.2 6.2 6.5 6.4 5.9 6.2 7.1 5.9 5.8 6.9 5.7 5.1

T ∗
4 20 6.1 6.2 6.2 6.2 6.2 6.5 6.4 5.9 6.2 7.1 5.9 5.8 6.9 5.7 5.1

H∗
1 20 6.1 6.2 6.2 6.2 6.2 6.5 6.4 5.9 6.2 7.1 5.9 5.8 6.9 5.7 5.1

H∗
2 20 6.1 6.2 6.2 6.2 6.2 6.5 6.4 5.9 6.2 7.1 5.9 5.8 6.9 5.7 5.1

H∗
3 20 6.1 6.2 6.2 6.2 6.2 6.5 6.4 5.9 6.2 7.1 5.9 5.8 6.9 5.7 5.1
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APPENDIX

A. Auxiliary Lemmata and Proofs

This appendix presents some useful auxiliary lemmas and their proofs, as well as the

proofs of the main theorems in the text.

A.1. Auxiliary Lemmata

Lemma A.1 Suppose Assumption 2.1 is satisfied and that π 6= 0 is fixed. Under H0,

we have:

(a) ‖ P(
√
n
(β̃ − β̂)

ω̃l
≤ x)− [Φ(x) +

s−2
∑

m=1

n
−m/2

pm
Tl
(x; F̃ , π)Φ(x)] ‖∞= o(n

(s−2)/2
) (A.1)

‖ P(
√
n
(β̃ − β̂)

ω̂j
≤ x)− [Φ(x) +

s−2
∑

m=1

n
−m/2

pm
Hj

(x; F̃ , π)Φ(x)] ‖∞= o(n
(s−2)/2

) (A.2)

(b) ‖ P(Tl ≤ x)− [Φ(x) +

s−2
∑

m=1

n
−m/2

pm
Tl
(x;F,π)Φ(x)]2 ‖∞= o(n

(s−2)
) , (A.3)

‖ P(Hj ≤ x)− [Φ(x) +

s−2
∑

m=1

n
−m/2

pm
Hj

(x; F̃ , b0,π)Φ(x)]2 ‖∞= o(n
(s−2)

) (A.4)

for all l and j, where pm
Tl

and pm
Hj

are polynomials in x with coefficients depending on

moments of the distribution F of Qn and π, and Φ(.) is the cdf of a standard normal

random variable.

Lemma A.2 Suppose Assumption 2.1 is satisfied. If for some δ > 0, we have

E(‖Zi‖2+δ, ‖vi‖2+δ) < ∞, then E
∗

(|Z∗
jiv

∗
mi|2+δ) is bounded a.s. under H0, for all

j = 1, . . . , k and m = 1, 2; where Z∗ and v∗ = [v∗1 : v∗2] are the bootstrap draws

from the empirical distribution of Z and the re-centered residuals ṽ = [ṽ1 : ṽ2].

Corollary A.3 Under the assumptions of Lemma A.2, E
∗

(|Z∗
jiu

∗
i |2+δ) is bounded a.s.

under H0 for all j = 1, . . . , k and m = 1, 2; where u∗ = v∗1 − v∗2β.
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Lemma A.4 Suppose Assumption 2.1 is satisfied. If for some δ > 0,

E(‖Zi‖4+δ, ‖vi‖2+δ) <∞, then under H0, we have:











Z∗u∗/
√
n

Z∗v∗2/
√
n

√
n(W

∗
′
1

n
− W

′
1

n
)











| F̂n
d→ N



0,





diag(σ2
u, σv2 )⊗QZ 0

0 Σw







 a.s.

where W = (w1, . . . , wn), wi = vech(ZiZ
′
i), W ∗ = (w∗

1, . . . , w
∗
n), w∗

i =

vech(Z∗
i Z

∗′
i ) ∈ R

k(k+1)/2
, Σw = var(wi), and 1 is a (n by 1) constant vector of ones,

F̂n = {(Y ′
1 , Z

′
1), . . . , (Y

′
n, Z

′
n)} .

Lemma A.5 Suppose Assumption 2.1 is satisfied. If for some δ > 0,

E(‖Zi‖4+δ, ‖vi‖2+δ) <∞, then under H0, we have:

√
n(β̃

∗ − β̂
∗
)

ω̃∗
l

| F̂n
d→ N(0, 1),

√
n(β̃

∗ − β̂
∗
)

ω̂∗
j

| F̂n
d→ N(0, 1) a.s.

when π = π0/
√
n, π0 is a (k by 1) constant vector (and π0 = 0 is allowed), where

β̃
∗
, β̂

∗
, ω̃∗

l , ω̂
∗
j are the bootstrap counterparts of β̃, β̂, ω̃l, and ω̂j defined in (3.1)-(3.2).

A.2. Proofs

To shorten the exposition, note that the proofs of Theorem 4.1 and Lemma A.2 are

similar to those in Moreira et al. (2009) and are omitted.

Proof of Lemma A.1 First, it is easy to see that Tl = cnl

(√
n (β̃−β̂)

ω̃l

)2

and

Hj =
(√

n (β̃−β̂)
ω̂j

)2

for all l and j, where cnl
= 1+ o(1). Now, we can observe

√
n (β̃−β̂)

ω̃l

and
√
n (β̃−β̂)

ω̂j
as:

√
n
(β̃ − β̂)

ω̃l

=
√
n
(y′2y2/n)

−1(y′2y1/n) − [(y′2Z/n)(Z
′Z/n)−1(Z′y2/n)]−1[(y′2Z/n)(Z

′Z/n)−1(Z′y1/n)
√

y′
1My2y1

n
[(

y′
2PZy2

n
)−1 − (

y′
2y2
n

)−1]− [(
y′
2y2
n

)−1(
y′
2y1
n

)− (
y′
2PZy2

n
)−1(

y′
2PZy1

n
)]2

=
√
n
(y′2y2/n)

−1(y′2u/n)− [(y′2Z/n)(Z
′Z/n)−1(Z′y2/n)]−1[(y′2Z/n)(Z

′Z/n)−1(Z′u/n)
√

y′
1My2y1

n
[(

y′
2PZy2

n
)−1 − (

y′
2y2
n

)−1]− [(
y′
2y2
n

)−1(
y′
2y1
n

)− (
y′
2PZy2

n
)−1(

y′
2PZy1

n
)]2

=
√
nG(Q̄n)

under H0=
√
n
[

G(Q̄n)−G(µ)
]

(A.5)
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√
n
(β̃ − β̂)

ω̂j

=
√
n
(y′2y2/n)

−1(y′2y1/n) − [(y′2Z/n)(Z
′Z/n)−1(Z′y2/n)]−1[(y′2Z/n)(Z

′Z/n)−1(Z′y1/n)
√

y′
1My2y1

n
[(

y′
2PZy2

n
)−1 − (

y′
2y2
n

)−1]

=
√
n
(y′2y2/n)

−1(y′2u/n)− [(y′2Z/n)(Z
′Z/n)−1(Z′y2/n)]−1[(y′2Z/n)(Z

′Z/n)−1(Z′u/n)
√

y′
1My2y1

n
[(

y′
2PZy2

n
)−1 − (

y′
2y2
n

)−1]

=
√
nG̃(Q̄n)

under H0=
√
n[G̃(Q̄n)− G̃(µ)] (A.6)

where G(.) and G̃(.) are real-valued Borel measurable functions in R
l such that

G(µ) = G(E(Qn)) = 0 and G̃(µ) = G̃(E[Qn]) = 0 under H0.
13 Since π 6= 0 is

fixed (strong identification), all derivatives of G(.) and G̃(.) of order s and less are

continuous in the neighborhood of µ = 0. So, if further Assumption 2.1-(b) holds,

then (A.1)-(A.2) follow directly from Bhattacharya and Ghosh (1978, Theorem 2)

and (A.3)-(A.4) hold by the definition of Tl and Hj.

Proof of Lemma A.4 Let (c′, d′)′ be a nonzero vector with c = (c′1, c
′
2)

′ ∈ R
2k

and d ∈ R
k(k+1)/2

. Define

Xni = c′1Z
∗
i u

∗
i /
√
n+ c′2Z

∗
i v

∗
2i/

√
n + d′(w∗

i − w̄)/
√
n

where [u∗i : v∗2i] is the i-th bootstrap draw of the (re-centered) residuals, and w̄ =

n
−1 ∑n

i=1wi, wi = vech(ZiZ
′
i) ∈ R

k(k+1)/2
, and w∗

i = vech(Z∗
i Z

∗′
i ) ∈ R

k(k+1)/2
.

We want to use the Cramér-Wold device. For this, it suffices to show Xni satisfies

all the conditions of the Liapunov Central Limit Theorem.

1. The first condition is obvious. Indeed, we have E
∗

(Xni) = 0 by the independence

between Z∗ and [u∗i : v
∗
2i], and the fact that E

∗{[u∗i : v∗2i]} = 0.

2. The second condition is E
∗

(X2
ni) <∞. Again, by the independence between Z∗

13This holds because E(y′2u) = 0 under H0 and E(Z ′u) = 0 by Assumption 2.1-(a).
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and [u∗i : v
∗
2i] and because u∗ is uncorrelated with v∗2 under H0, we have

E
∗

(X2
ni) = n

−1

{

c′1

(

Z ′ũũ′Z

n

)

c1 + c′2

(

Z ′ṽ2ṽ
′
2Z

n

)

c2 + d′Σ̃wd

}

<∞ a.s.,

where Σ̃w = n
−1 ∑n

i=1(wi − w̄)(wi − w̄)′.

3. To check the final condition of the Liapunov Central Limit Theorem, it requires

to show that limn→∞
∑n

i=2 E
∗

(|Xni|2+δ) = 0 a.s. for some δ > 0. Now, note

that

n
∑

i=2

E
∗

[|Xni|2+δ] = n−δ/2n−1
n
∑

i=2

E
∗
[

|c′1Z∗
i u

∗
i + c′2Z

∗
i v

∗
2i + d′(w∗

i − w̄)|2+δ
]

≤ C1n
−δ/2

E
∗
[

|c′1Z∗
i u

∗
i |2+δ + |c′2Z∗

i v
∗
2i|2+δ + |d′(w∗

i − w̄)|2+δ
]

≤ C2n
−δ/2







k
∑

j=1

|c1j |2+δ
E

∗

[|Z∗
jiu

∗
i |2+δ] +

k
∑

j=1

|c2j |2+δ
E

∗

[|Z∗
jiv

∗
2i|2+δ]+







+ C2n
−δ/2







k(k+1)/2
∑

p=1

|dp|2+δ
E

∗

[|w∗
pi −





1

n

n
∑

j=1

wji



 |2+δ]







= C2n
−δ/2[A1 +A2 +A3]

for large enough constants C1 and C2. From Lemma A.2 and Corollary A.3,

we have A1 = O(1) and A2 = O(1) a.s. If further E[‖Zi‖4+δ] <∞, then e have

A3 = O(1) a.s. Therefore, we get limn→∞
∑n

i=2 E
∗

[|Xni|2+δ] = 0 a.s., and the

last condition of the Liapunov Central Limit Theorem is satisfied. Lemma A.4

is the Central Limit Theorem property once we realize that p limn→∞
(

Z′ũũ′Z
n

)

=

σ2
uQZ , p limn→∞

(

Z′ṽ2ṽ′2Z

n

)

= σ2
v2QZ , and p limn→∞ (Σ̃w) = Σw.

Proof of Lemma A.5 First, note that E
∗

(Z∗′Z∗/n) = Z ′Z/n, E
∗

(Z∗′u∗/n) =

Z ′ũ/n, E
∗

(Z∗′v∗2/n) = Z ′ṽ2/n, and E
∗

[(u∗ : v∗2)
′(u∗ : v∗2)/n] = (ũ : ṽ2)

′(ũ : ṽ2)/n. So,
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the Markov law of large numbers entails that

Z∗′Z∗

n
− Z ′Z

n
| F̂n

a.s.→ 0,
Z∗′u∗

n
− Z ′ũ

n
| F̂n

a.s.→ 0,
Z∗′v∗2
n

− Z ′ṽ2
n

| F̂n
a.s.→ 0

1

n
(u∗ : v∗2)

′(u∗ : v∗2)−
1

n
(ẽ : ṽ2)

′(ũ : ṽ2) | F̂n
a.s.→ 0; a.s.

Since Z ′Z/n
p→ QZ , and Z ′ṽ2/n

p→ 0, we have Z ′ũ/n
p→ 0 and if H0 holds, (ũ :

ṽ2)
′(ũ : ṽ2)/n

p→ diag(σ2
u, σ

2
v2
). So, it is clear that: Z∗′Z∗/n

a.s.→ QZ , Z
∗′u∗/n

a.s.→ 0,

Z∗′v∗2/n
a.s.→ 0, and (u∗ : v∗2)

′(u∗ : v∗2)/n
a.s.→ diag(σ2

u, σ
2
v2
) under H0.

Now, from the above results along with Lemma A.4 and the fact that

π = c/
√
n, we have: y∗

′

2 y
∗
2/n = π

′
0(Z

∗′Z∗/n2)π0 + 2π′
0Z

∗′v∗2/n
3/2 + v∗

′

2 v
∗
2/n |

F̂n
a.s.→ σ2

v2
and y∗

′

2 PZ∗y∗2 = (y∗
′

2 Z
∗/
√
n)(Z∗′Z∗/n)−1(Z∗′y∗2/

√
n) | F̂n

d→ (ψZv2 +

QZπ0)
′Q−1

Z (ψZv2 + QZπ0) a.s., where ψZv2 ∼ N(0, σ2
v2
QZ). Therefore, we have

β̃
∗ − β̂

∗
= (y∗

′

2 PZ∗y∗2)
−1(y∗

′

2 PZ∗u∗)− (y∗
′

2 y
∗
2/n)

−1(y∗
′

2 u
∗/n) = (y∗

′

2 PZ∗y∗2)
−1(y∗

′

2 PZ∗u∗) +

op(1) | F̂n
d→ [(ψZv2 +QZπ0)

′Q−1
Z (ψZv2 +QZπ0)]

−1(ψZv2 +QZπ0)
′Q−1

Z ψZu a.s. under

H0. Similarly, we can show that ω̃∗2
l /n, ω̂

∗2
j /n | F̂n

a.s→ σ2
u[(π0ψZv2 +QZ)

′Q−1
Z (ψZv2 +

QZπ0)]
−1 a.s. for all l and j. Thus we get

√
n(β̃

∗ − β̂)

ω̃∗
l

| F̂n
d→ 1

σu

[(ψZv2 +QZπ0)
′Q−1

Z (ψZv2 +QZπ0)]
−1/2(ψZv2 +QZπ0)

′Q−1
Z ψZu

√
n(β̃

∗ − β̂
∗
)

ω̂∗
j

| F̂n
d→ 1

σu
[(ψZv2 +QZπ0)

′Q−1
Z (ψZv2 +QZπ0)]

−1/2(ψZv2 +QZπ0)
′Q−1

Z ψZu a.s.

Moreover, ψZu and ψZv2 are independent and jointly normal under H0 (see also Lemma

A.4), thus we have 1
σu
[(ψZv2 +QZπ0)

′Q−1
Z (ψZv2 +QZπ0)]

−1/2(ψZv2 +QZπ0)
′Q−1

Z ψZu |

ψZv2 ∼ N(0, 1). Because the conditional distribution of 1
σu
[(ψZv2+QZπ0)

′Q−1
Z (ψZv2+

QZπ0)]
−1/2(ψZv2 + QZπ0)

′Q−1
Z ψZu, given ψZv2 , does not depend on ψZv2 , it is equal

to the unconditional distribution. It follows that
√
n(β̃

∗−β̂)
ω̃∗
l

| F̂n
d→ N(0, 1) and

√
n(β̃

∗−β̂
∗
)

ω̂∗
j

| F̂n
d→ N(0, 1) for all l = 2, 3, 4 and j = 1, 2, 3.
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Proof of Theorem 4.2 First, recall that T ∗

l =
(√

n(β̃
∗−β̂

∗
)

ω̃∗
l

)2

and H∗

j =
(√

n(β̃
∗−β̂

∗
)

ω̂∗
j

)2

. By Lemma A.5, we have
√
n(β̃

∗−β̂
∗
)

ω̃∗
l

| F̂n
d→ N(0, 1) and

√
n(β̃

∗−β̂
∗
)

ω̂∗
j

|

F̂n
d→ N(0, 1) a.s. It is clear that T ∗

l | F̂n
d→ [N(0, 1)]2 ≡ χ2(1) and H∗

j | F̂n
d→

[N(0, 1)]2 ≡ χ2(1) a.s.
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Smith, R. J. , Pesaran, M. , 1990. A uniÖed approach to estimation and orthogonal-

ity tests in linear single-equation econometric models. Journal of Econometrics

44, 41–66.

Spencer, D. E. , Berk, K. N. , 1981. A limited-information specification test. Econo-

metrica 49, 1079–1085.

Staiger, D. , Stock, J. H. , 1997. Instrumental variables regression with weak instru-

ments. Econometrica 65(3), 557–586.

Thurman, W., 1986. Endogeneity testing in a supply and demand framework. Review

of Economics and Statistics 68(4), 638–646.

Wang, J., Zivot, E., 1998. Inference on structural parameters in instrumental variables

regression with weak instruments. Econometrica 66(6), 1389–1404.

Wong, K.-f. , 1996. Bootstrapping Hausman’s exogeneity test. Economics Letters

53, 139–143.

22



Wooldridge, J. M. , 2009. Introductory Econometrics: A Modern Approach fourth

edn. South-Western, USA.

Wu, D.-M., 1973. Alternative tests of independence between stochastic regressors and

disturbances. Econometrica 41, 733–750.

Wu, D.-M., 1974. Alternative tests of independence between stochastic regressors and

disturbances: Finite sample results. Econometrica 42, 529–546.

Wu, D.-M. , 1983a. A remark on a generalized specification test. Economics Letters

11, 365–370.

Wu, D.-M., 1983b. Tests of causality, predeterminedness and exogeneity. International

Economic Review 24(3), 547–558.

23


