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A non-zero dispersion leads to the non-zero bias of mean

Alexander Harin
aaharin @yandex.ru
Modern University for the Humanities

A theorem of existence of the non-zero restrictions for the mean
of a function on a finite numerical segment at a non-zero dispersion
of the function is proved. The theorem has an applied character. It is
aimed to be used in the probability theory and statistics and further in
economics. Its ultimate aim is to help to answer the Aczél-Luce
question whether W(1)=1 and to explain, at least partially, the well-
known problems and paradoxes of the utility theory, such as the
underweighting of high and the overweighting of low probabilities, the
Allais paradox, the four-fold pattern paradox, etc., by purely
mathematical methods.
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Introduction

The research, which first part is presented in this article, was initiated by the
paradoxes of the decision and utility theories. The analysis of such paradoxes was
started in 1738 by Bernoulli in [1]. The examples of these paradoxes are the Allais
paradox [2], the Ellsberg paradox [3], the "four-fold pattern" paradox (see, e.g. [4]),
etc. In 2002 Kahneman got the Prize in Memory of Nobel for the research in this
field. In 2006 in [5], Kahneman and Thaler pointed out the preferences
inconsistencies in the paradoxes are still not overcome adequately.

One of possible ways of solution of these paradoxes was proposed in [6] and
in other works (see, e.g. [7] and [8]). The essence of this way consists in a proper
attention to noises, imprecision and other reasons those may cause the dispersion,
scattering, variation, spread of data.

Aczél and Luce [9] stated a fundamental question (problem) whether W(1)=1
(whether the Prelec’s weighting function is equal to [/ at p=I). This question
opens one more way which consists in a proper attention to boundaries.

The research partially presented in this article combines these two ways. That
is to say, it considers a dispersion of data near boundaries.

The research has an applied character. Its aim is to provide a mathematical
support for works those are based on the dispersion of data and for works those
concern the Aczél-Luce question.

This article, as the first part of the research, deals with the general case of the
restrictions for the mean of a function on finite numerical segments in the presence
of a non-zero dispersion of the function.

The second part of the research will deal with the estimations of restrictions
values.

The third part of the research will deal with the restrictions for the probability
estimation and for the probability.

The fourth part of the research will deal with possible explanations of the
abovementioned paradoxes of the utility theory and with the Aczél-Luce question.



An illustrative example of restrictions
Two points

Let us suppose a numerical segment [A; B] (see figure 1). Let us suppose
two points are determined on this segment: a left point x;.; and a right point
XRight ° XLeft <XRigh- The coordinates of the middle, mean point may be calculated as
M=(X1efi+XRign:)/2.
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Figure 1. A segment [A, B]. Left x.n, right xgien
and middle, mean M points on it

Suppose the points can not escape outside the borders of this segment. This
means A<xz.; and Xgion=<B.

Suppose the points can not approach each other closer than a non-zero
distance of two sigma 2¢>(. This means Xgion>Xret20 OF Xiep<Xrign-20. At that,
M-x1ep=XRigh-M>0>0.



For the sake of simplisity and obviousness, figures 1-3 represent a case:
XRigh=XLefit20 and Xre=Xpign-20 and M-Xp.=Xgign-M=0.

One can easily see two types of zones can exist on the segment:

The mean point M can be located only in the zone which may be named
"allowed" (see figure 2).

The mean point M can not be located in the zones which may be named
"forbidden" (see figure 3).

Allowed zone

Due to the conditions of the example, the left point x;.; may not be located
more left than the left border of the segment 4A<x;.; and the right point xg; may
not be located more right than the right border of the segment xg;,,,<B. For M we
have M—XLeﬁ=XR,'gh,-M=O'.

b’
/// Allowed zone for M :
A+c <M <B-¢

Figure 2. Allowed zone for M

The allowed zone for M is equal to (B-A)-20. It is less than the segment on
20. If the distance 20 between the left x;.; and right xgis points is non-zero
then the difference between the allowed zone and the segment is non-zero also.

So, the mean point M can not be located in any position of the segment.



Forbidden zones, restrictions

If A<xief, Xrign<B and Xgign-x1.s>20, then there are the restrictions of one
sigma o between the mean point and the borders of the segment. So, the mean
point M can not be located in two zones located near the borders of the segment.
These zones may be named forbidden zones or restrictions.

\
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Forbidden zones, restrictions for M :

[A, A+a) and (B-c, BJ

s T
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Figure 3. Forbidden zones, restrictions for M

As we can easily see, the restrictions exist between the allowed zone of the
mean M and the borders of the segment A and B. The width of every restriction
is equal to o. If the distance 20 between the left xz.; and right xgq points is
non-zero then the forbidden zones, restrictions for M are non-zero also.



1. Preliminary notes
1.1. Segment and function

Let us suppose a both finitely big and finitely small numerical segment
X=[A, B] : 0<Constap<(B-A)<o, a set of points x; : k=1, 2, ... K : 2<K<oo, and a
finitely big non-negative function fx(xx) - for x;<A and x>B the statement
Jfx(x)=0 1is true; for A<x;<B the statement 0<fx(x;)< o is true, and

K
ZfK(xk):WK’
k=1

where a constant W (the total weight of fx(xi)) is such that
O<W; <o0.
Keeping generality, the function fx(x;) may be normalized so that Wx=1.

1.2. Analog of moments

Definition 1.1. Let us define an analog of a moment of n-th order of the
function fx(x;) relative to a point xp as

n 1 < n & n

E(X _Xo) :_Z(xk _xo) fK(xk) = Z(xk _xo) f[((xk) .
WK k=1 k=1

Let us further in this article, for brevity, name the analog of a moment of n-th

order or the n-th order moment analog as simply the moment of n-th order.

Let us suppose the mean M=E(X) of the function fx(x;) exists
1 K K
E(X)=—> % fc(x) =D 5 fr(x)=M.
WK k=1 k=1

Let us suppose at least one central moment E(X-M)" : 2<n<oo, of the function
Sfx(xix) exists

BOC-MY" =25 =M f(5) = Y5 =M fy ().
k=1

K k=1



2. Maximality

Let us search a function which guarantees the maximal central moment and let
us prove this choice. The intuitively evident maximal possible absolute value of a
central moment is obtained for the function which is concentrated at the borders of
the segment.

2.1. A couple of elements

Let us consider the mean M of the function fx(x;), a couple of points x,
and xp, such as
A<x,<M<x,<B,
and a couple of elements fx(x4) and fx(xg) such as they are tied together by the
conditions of the constant total weight f and the constant joint point M

S+ fexg) =1,
M —x) fe(x)=(x,—M) fr(x,) .
A central moment Ecoupe(X-M)" of this couple of elements may be written as
ECouple(X —M)" =(x,—M)" f(x)+(xzg=M)" fr(x5).
Its absolute value do not exceed the sum of absolute values of its parts
| ECouple(X —M)" | (x, =M)" | fi o)+ | (eg =M)" | fi(x5) =

:(M —XA)an(xA)-l-(XB —M)an()CB)

2.2. Modification of the basic expression

After substituting fx(xp) by
Sre(xg) = Z:;} S =71 —fx(xy)

and replacing fx(xa) and fx(xp) by functions of x4 and xp

Xp—M+M-—-x, _ Xg— X, _
S )+ fr(xp) = X, M fK(XA)_XB—M Se(x) =1
we obtain the function fx(xy):
fK(xA)ZXB_Mf and fK(XB):M_XAf-

Xp =~ X, Xp — X,
At that, the expression for the central moment Ecyp(X-M)" of the couple may be
reorganized to the expression which depends only on x4 and xp
S f ey MY

Xp =Xy Xp =Xy

| Ec

ouple

(X -M)"|<(M -x,)"




2.3. Derivatives

Let us use the analysis of derivatives to find a maximum of the absolute value
of central moments |Ecoup(X-M)"| of this couple of elements.

Let us differentiate the expression for the absolute value of a central moment
by xa

(M —x,)" Xy ~M f+(xB—M)"uf];A -~
Xp — Xy Xp — Xy
_—n(M —x,)"(x, —xAz)+(M—xA)” (x,~M)f +
(x5 —x,)
+(xB_M)n _(XB_XA)"'(AZ_)CA)][:
(XB—XA)
={[-n(x, —x)+ (M —x )M —x,)"" +
n—1 (XB—M)
+[_(XB_XA)+(M_XA)](XB_M) }—2f
(.XB—XA)

Since n>2 hence:

If (xg-xa)=(M-x,) thatis if xpg=M then from
(M —XA)fK(XA) = (XB —M)fK(XB) .
we obtain

M-x,)=WM —M)Mzo
Jr(x,)
or x4=M also, hence all the central moments equal zero.
SO, at (XB-XA)=(M-XA) that is at XB=M=XA
nX -M n M — ’
[(M —x)" 272 4 (x, = M) =2 f1, =0.
Xp =X,y Xp =Xy

This is an indifferently stable equilibrium state. If xzp=M=x4 then all the central
moments are not depended upon x4 and are equal to zero.

At (xg-x4)>(M-x,) thatis at xg>M
wXp—M M —x ,
[(M—x,) B [+, —M) —Af]XA<O.

Xp =Xy Xp =Xy
So, for non-zero Ecoupe(X-M)", the first derivative by x, is strictly less than
zero for any A<x4<M independently of xz for any M<x<B. The closeris x4 to
A the more is |Ecoupie(X-M)"|.
Hence, for any xp : M<xp<B, the maximums of the absolute values of a
central moments Ecou(X-M)" are attained at the minimal x,, thatis at x,=A.




Let us differentiate the expression for the absolute value of a central moment
Ecoupie(X-M)" of the couple f by xz

-M M —
[(M =) "2 f o+ (xy = M) =4 [T, =
Xp — Xy Xp ~ X4
:(M—XA)n (XB_-XA)_(XBZ_M)f+
(XB_XA)
_I_n(xB—M)”_ (xB—xAz—(xB—M)" (M=-x)f =
()CB—XA)

={[(-x3 —XA)—(XB _M)](M _xA)n_l +
(M —-x,)

+[n(-x3 —)CA)—(XB —M)](XB _M)nil} )
(XB —XA)

f

Since n>2 hence:

If (xg-xa)=(xg-M) that is if x,=M then xs,=M also, hence all the central
moments equal zero.
So, at (xp-xa)=(M-x4) thatis at xpg=M=x,

wXp—M M —x ,
(M —x,)" 2= f 4 (x, — M) A fT. =0.
Xp — X4 Xp — X4
This is an indifferently stable equilibrium state. If xzp=M=x4 then all the central
moments are not depended upon xp and are equal to zero.

At (xg-x4)>(xp-M) thatis at xu<M
n Xy —M M —x ,
[(M—x,) B_ f+(x;—M) —x*‘f]x5>0.

Xp =Xy Xp =Xy
So, for non-zero Ecoupi(X-M)", the first derivative by xp is strictly more than
zero for any M<xp<B independently of x4 for any A<x,<M. The closeris xp to
B the more is |Ecoupie(X-M)"|.
Hence, for any x4 : A<x4<M, the maximums of the absolute values of the
central moments Ecoup(X-M)" are attained at the maximal xg, thatis at xz=B.

So, for non-zero central moments Ecou(X-M)" of a couple f of elements
fr(xa) and fk(xp), the maximums of the absolute values of Ecoup(X-M)" are
attained at x4=A and xp=B. That is, they are attained for the functions that are
concentrated at the borders of the segment [A, B] and

B—-M M-A

f+B-M)

Max(| E,. A 2 A

ouple

(X -M)"|)<(M - A)

f.



2.4. Dividing by couples

Let us analyze whether any function of the chapter 1 and its central moments
may be completely divided and represented by such couples of elements.

Let us divide the points x; into three groups: xia)<M, xim=M (zero central
moments) and xp) >M. Atthat, k(4)<Ka, k(M)<Ku, k(B)<Kp and

K,+K,, +K;,=K.

Let us enumerate the points x4, and xp), for example, from utmost
points and maximal weights to closest to M points and minimal weights. So, for
E(X-M)*>0 we have k(A)=1, ..., K4 and k(B)=1, ..., Kp.

The definition of the mean

E(X)= ixka(xk) =M

may be transformedk:i) the first central moment
(=M fi (20 =0

or, if K,>1 k:alnd Kp>1,

> Gt = M) et = > (g = M) fi () +

k(A)=1

+ ZM(xk(M) -M)fy (Xk(M)) + ZB(xk(B) _M)fl((xk(B)) =,

k(M)=1 k(B)=1
KA KB
= Z(xk(A) —M) fi (x0) + Z(xk(s) -M)fy(x5)=0
k(A)=1 k(B)=1

and it may be transformed to a balance

ZA:(M _xk(A))fK (xk(A)) = zg(xk(B) _M)fK (xk(B)) :

xk(A):l xk(m:]

Let us consider cases with various numbers of elements K z=Ks+K3.
The case 0. If K,3=0, then E(X-M)"=0.

The case 1. Evidently, due to the definition of the mean, the case K4=0 and
Kp>1 and the case K >/ and Kp=0 cannot exist.

The case 2. If Kip=2, K4=1 and Kp=1, then
(M - x1(A))fK (xl(A)) = (x1(3) - M)fK (xl(B))
and the pair fx(x;4)) and fx(x;s)) is the couple of the previous subchapters.

The case 3. If Ksp=3, Ks=2 or Kp=2, for example, if K,=2 and Kp=I,
then we divide the element fx(x;p)) into two parts fx ;(x;) and fx(x;s) such as

fx ('xl(B)) = fx. (xl(B)) + fxo (xl(B))

and
(M - 'xl(A))fK (xl(A)) = (xl(B) M) [y, (xl(B)) .

10



The pair fx(x14)) and fxi(xp;) is the couple. The balance remains
(M - xl(A))fK (xl(A)) + (M - xz(A))fK (xz(A)) =

= (xl(B) -M)fy, (xI(B)) + (xl(B) M) fy, (xl(B)) ’
and we come to the case 2

(M - Xo04) ) fx (xz(A)) = (xl(B) -M)fy, (x1(3)) .
The pair fx(x24)) and fx2(xp;) 1s the couple also.

The general case L. Suppose a case Kyp=L>4, K4>2 or Kp>2. If
(M - xl(A))fK (xl(A)) = (‘xl(B) -M)fy (xl(B)) )

then the pair fk(x;a)) and fx(x;p) is the couple. The number of uncoupled
elements is diminished by two and we come to the case L-2. If

(M - x1(A))fK (x1(A)) * (xl(B) - M)f[( (x1(5)) s
then, as in the case 3, let us divide the appropriate element as in the case 3 and we
diminish the number of uncoupled elements by one and come to the case L-1.
So, we may consecutively diminish the number of uncoupled elements from
any L to 2 and, so, we may come to fully coupled elements. Hence, any function
of the chapter 1 may be completely divided by couples of elements, except of xu).

So, any function of the chapter 1 and its central moments may be completely
divided and represented by couples of elements except of points xxu) which do not
contribute to central moments. So, the function fi..k(xx), Wwhich possesses
maximal central moments modules, should be concentrated at the borders x;=A
and x;=B of the segment. At the condition of the unit norm of the chapter 1 and
for the mean M, the function fyuxx(X1)=fBorders.x(xr) should have a form

B-M M-A
fBorders.K (A) =

and fBurders.K (B) =
The central moments Ep,,q.rs(X-M)" of the function fgorersx(xx) are

B-A B-A
B—-M M-A
E (X-M)"=(A-M)" +(B-M)" .
Borders ( ) ( ) B _ A ( ) B i A
The modules of the central moments Eg,qers(X-M)" of the function fgorgers.x(xx) are

not more, than

| E

B-M M—-A
(X-M)" (M -A)" +(B-M)" .

B()rderb( ) | ( ) B—A ( ) B—A

For the even orders 2n of the central moments Epgouers(X-M)" the inequality is

reduced to the equality without the modules

B-M M—A
E.  (X=-M)"=(M-A)?™> +(B=M)*" )
B()rder‘\( ) ( ) B—A ( ) B—A

So, the modules of the central moments of any function fx(x;) of the chapter 1 are
not more, than

B-M _ p_pypM=A
B-—A B-—A

Max(|E(X —M)"|) < (M — A)" 2.1).

11



2.5. Two notes

Let us analyze the maximal central moments Ep,,q.rs(X-M)" for M=(B-A)/2
and for M which is near A or B.

The mean is in the center of the segment

Let us analyze the maximal central moments for M=(B-A)/2.
Let us differentiate the expression for the absolute value of a central moment
EBorders(X'M)n by M
1 n n !
— (M -A)'(B-M)+(B-M)" (M -A)], =
B-A
1

= B_A[n(M —A)" (B-M)—(M -A)" -

—n(B-M)"'(M -A)+(B-M)"]

and, at M=(B-A)/2,
1
B-A
—n(B-M)"'"(M -A)+(B-M)"]=
1 B-A,

_E(T) [n—1-n+1]=0

So, at M=(B-A)/2, for any n>2 there is an extremum or a point of inflection.

[n(M ~A)" (B-M)~(M —A)" -

12



Let us differentiate Ep,,qers(X-M)" once more
1

B-A
—n(B-M)"'"(M —A)+(B-M)"],, =

[n(M —A)" (B—M)~(M —A)" -

= B A [n(n—1)(M —A)">(B—M)—n(M —A)"" —n(M — A)"" +

+n(n=1)(B=M)"*(M - A)-n(B-M)"" —n(B-M)""]=

= ! —ln(n-H(M —A)"2(B—M)—2n(M — A" +

+n(n-1D)(B-M)"*(M-A)-2n(B-M)""]
and, at M=(B-A)/2,

) [n(n=1)(M — A" >(B=M)-2n(M — A)"" +
+n(n-1)(B-M)"*(M —A)-2n(B-M)"']=
- L(M)H[n(n ~D)=2n+n(n-1)-2n]=
" B-A 2 -
~ ) n(n-3)]

That is, at M=(B-A)/2:
For n=2 there is a well-known maximum, the moment of inertia of two
material points which weights are equal to each other
B - A 2 2 B - M 2 M - A
E X—)yr=WM-A +(B-M =
B()rderA( 2 ) ( ) B—A ( ) B_A
B - A 2 1 B - A 2 1 B - A 2
=-( ) -+ (———) —=(—
( 2 ) > ( 2 ) 2 ( 2 )

For n=3 there is a point of inflection and for n>3 there are minimums.

13



The mean is near a border of the segment

Let us search maximums which are close to the borders of the segment.
Let us differentiate the absolute value of a central moment Epg,4ers(X-M)" by M
for M=A and n>>1

1 n n '
m[(M—A) (B-M)+(B-M)"(M - A)],, =
1
" B-A
—n(B-M)"' M -A)+(B-M)"]=

1

B-A

[n(M — A" (B-M)~(M - A)" -

~
~

[(B-M)"—n(B-M)"(M —A)]
and
1
— [(B-M)"—n(B-M)""(M - A)]=
B_A[( )" —n( )" ( )]
_(B_M)nfl
 B-A
_(B_M)n—l
 B-A
_(B_M)nfl
 B-A

[(B-M)—n(M -A)]=

[(B-A—(M —A)—n(M - A)]=

[(B=A)—(n+D)(M -A)]=0

and

The second derivative gives
1

B-A
—n(B-M)"' (M -A)+(B-M)"], =
1
B-A
+n(n-1)(B-M)"*(M-A)-n(B-M)""'—n(B-M)""]=

[(M — A" (B-M)~ (M~ A)" ~

[n(n=1)(M = A)"*(B=M)—=n(M = A)""' —n(M - A)"" +

1 n-2 _ _ _ n—1
Z A[n(n—l)(M—A) (B-M)-2n(M -A)" +

+n(n-1)(B-M)"*(M -A)-2n(B-M)""]

14



For M=A4 and n>>1

1 n—-2 _ _ _ n—1
B_A[n(n—l)(M—A) (B—M)-2n(M - A)"" +
+n(n—1)(B-M)">(M —A)-2n(B-M)" "'~
n B M — A 2(B— M) =
~n—— [(n—1)(M — A)—2(B—M))]
=& (- - 4)- 2B~ )~ (M - )=
=n%[(n+1)(M—A)—2(B—A)]

and, for M=~A+(B-A)/(n+1) and n>>1,
n%[(n+l)(M—A)—2(B—A)]z
_(B-M)" B-A 0 o
s —— [(n+1)—n+1 2(B-A)]=.

=n(B-M)"’[1-2]<0
So, the second derivative is negative and there are the maximums at the
points M~A+(B-A)/(n+1).

The analog of the central moments Epyqers(X-M)" of the function
JBorders k(Xx) for M-A=(B-A)/(n+1) and n>>1 may be counted as

|EB(1rders(X _M) |S (M _A) B +(B_M) ~

—A B-A
z(B—M)”M_Az(B—A—B_A)”Lz
-A n+l" n+l
n 1 n 1
=(B=A)' (I-—)" —
n+l n+l
For n>>1
1 ., | . 1 ., 1
1-——)" =(1-—)"1-——)"~»—.
n+1 n+1 n+1 e

So, for M=A+(B-A)/(n+1) and n>>1, the maximums (those are attained for even
n) of Epyaers(X-M)" are curiously

Max(| E,

orders

n+l1 e n+l
Evidently, for M=B-(B-A)/(n+1), at n>>1, the maximums (those are attained for
even n) of Epyers(X-M)" are analogously
1 (B-A)"

B-A_,
Ma‘x(l EBarders(X _(B_ )) |) ~
n+l n+l1

15



3. Theorem
3.1. General lemma about tendency to zero for central moments

Lemma 3.1. If, for the function fx(x;), defined in the section 1, M=E(X)
tendsto A orto B,

then, for n : 2<n<co, E(X-M)" tends to zero.

Proof. For M A, the estimation (2.1) gives

B-M (B_M),,M—A:
B—A
,H](M —AB-M) _
B—A

(M -A)B-M) <

B-A B
<2B-A)"" (M -A)——0

M—A
This rough estimation is already sufficient for the purpose of this article. But a
more precise estimation may be obtained:
Let us transform

[(M —A)"" +(B-M)""]

| E(X -M)" |<(M - A)"

=[(M -A)""+(B-M)

<[(B-A)""'+(B-4)""]

(M—-A)(B-M) _

B-A
a, B-M ., i (M ~AYB-M)’
= B-A
[(B A) (B A) I( ) B A
Let us consider the terms (M-A)/(B-A) and (B-M)/(B-A). Keeping in mind
A<M<B we obtain 0<(M-A)/(B-A)<I and 0<(B-M)/(B-A)<I. For n>2 we have

M—-A n-1 B-M n-1
+ <
(B A) (B A)
M-A B-M_B-A_,
“B-A B-A B-A_
So,
M-A,., B-M,,, w1 (M —A)B-M)
+ B-A <
[(B_A) (B—A) I[¢ ) A
B-A
So,
|E(X -M)"|<(B-A)""'(M —A)——=—0 (3.1).
For M 2B, the proof is similar and gives
|E(X -M)"|<(B-A)""(B-M)———0 (3.2).

So, if (B-A) and n are finite and M 2A or M =B, then E(X-M)"=>0.
The lemma has been proved.
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3.2. General theorem of existence of restrictions for mean

Definition 3.1. Let us define the term "restriction for dispersion of n-th
order"  Tpigpersionn=Fpisp.n>0 (where dispersion is implied in the broad sense, as
scattering, spread, variation, etc) as a minimal absolute value of the analog of the
n-th order central moment E(X-M)" such as |E(X-M)"|>r"pisp..>0.

For n=2 the restriction for dispersion of second order is equal to the minimal
possible standard deviation 7p;g, 2=0in.

Note, rpisp.n<(B-A). This follows from

E(X M) =Y (5~ M) f (x)<(B=A'"Y. f (x)= (B~ A)".

Theorem 3.2. If, for the finite nonnegative discrete function fx(x;) defined
in the section 1, with the mean M=E(X) of the function and the analog of an
n-th : 2<p<oo, order central moment E(X-M)" of the function, a non-zero
restriction for dispersion of the n-th order rpisp., = |E(X-M)"|>" pispn>0, exists

then the non-zero restriction 7., >0 for the mean E(X) exists such as
A <(A+rMean)§MEE(X)S(B'rMean) <B.

Proof. From the conditions of the theorem and from (3.1) for M 2A,
0< 7" pign E(X —M)"|< (B—A)""' (M - A)

and
O< r Dixp.nil S(M—A)
(B_A)n
So,
rnDixp.n
M-Az2r, =——>0 3.3).
( ) Mean (B_A)nfl ( )

For M 2B, the proof is similar and gives

s _ 1" Disp.n
(B-M)zr,,, —(B mye >0 (3.4).
So, as long as rpjs., 1s finitely small, n is finitely big, (B-A) is both finitely
big and finitely small,
then 7peqn 1 finitely small and both (M-A)>rueq, >0 and (B-M)>1ppean>0.

The theorem has been proved.

Note. This estimation is an ultra-reliable one. It is, in a sense, as ultra-reliable
as the Chebyshev inequality. Preliminary calculations [10] which were performed
for real cases, such as normal, uniform and exponential distributions with the
minimal values o”y;, of the analog of the dispersion (in the particular sense), gave
the restrictions ry.., for the mean of the function, those are not worse than

O,
Min
rMeun Z .
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Comments to the theorem
We may reformulate the essence of the theorem in some variants:

If the analog of a finite (n<oo) central moment E(X-M)" of a finite non-
negative function, which is defined for a finite segment, cannot approach zero
closer, than by a non-zero value |E(X-M)"|>r"pisy,>0, then the mean of the
function also cannot approach any border of this segment closer, than by the non-
zero value ruean>0.

More particular:  If the analog of the dispersion (in the particular sense)
E(X-M)* of a finite non-negative function, which is defined for a finite segment,
cannot approach zero closer, than by a non-zero value E(X-M )ZEUZMm>0, then the
mean of the function also cannot approach any border of this segment closer, than
by the non-zero value 7zeqn>0.

In other words: If for a finite non-negative function, which is defined for a
finite segment, a non-zero restriction rp;s.,>0 exists between the zone of possible
values of the analog of a finite (n<oo) central moment E(X-M)" of the function
and zero |E(X-M)"|>r"pisp.n>0, then the non-zero restrictions 7., >0 also exist
between the zone of possible values of the mean of this function and any border of
the segment.

More particular: If for a finite non-negative function, which is defined for a
finite segment, a non-zero restriction oy, >0 exists between the zone of possible
values of the analog of the dispersion (in the particular sense) E(X-M )2 of the
function and zero E(X-M )2202 min>0, then the non-zero restrictions 7., >0 also
exist between the zone of possible values of the mean of this function and any
border of the segment.

In other words: If there is zero restriction rp;y,=0 for dispersion (in the
broad sense) E(X-M)" of a function then there are zero restrictions ry.q,=0 for the
mean of the function. The more restriction rp;s,,>0 for the dispersion the more
restrictions 7p.q, >0 for the mean.

So, a restriction rp;s,>0 for the dispersion biases the boundaries of the zone
of possible values of the mean from the borders of the segment to the middle of the
segment.

So, a restriction rpjs.,>0 for the dispersion biases the mean from the borders
to the middle of the segment.

Simplified: A non-zero dispersion of a finite non-negative function leads to
the non-zero restrictions for the mean of this function.

More simplified: A non-zero dispersion leads to the non-zero bias of the
mean.

Most simplified: Dispersion biases mean.
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4. Applications of the theorem in economics

The theorem has been preliminary proved (see, e.g., [11]) in the probability
theory and statistics for probability estimation and for the probability as the limit of
the probability estimation. In the presence of data dispersion, scattering, spread,
variation, the restrictions can exist for probability estimation and for the probability
near the borders of the probability scale.

Further, the theorem has been preliminary used in economics (see, e.g., [12])
and has explained the well-known problems and paradoxes of decision theory and
utility theory, such as the underweighting of high and the overweighting of low
probabilities, the four-fold pattern paradox, etc.

In the presence of a data dispersion, the restrictions, those can exist for the
probability near the borders of the probability scale, can bias the results of
experiments in comparison with no data dispersion. The preliminary researches,
including considerations of the restrictions as a hypothesis, showed this bias can
explain (at least partially) the well-known problems and paradoxes of decision and
utility theories. It should be noted, this explanation is true not only for a particular
combination of parameters but both for high and low probabilities and both for
gains and losses (see, e.g., [12]).

The new field of applications of the theorem may be concerned with the
Aczél-Luce question [9] whether W(1)=1 (whether the Prelec’s weighting function
isequal to / at p=1I).
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Conclusions

Possibility of existence of non-zero restrictions in the presence of a non-zero
dispersion (both in the particular sense, as the analog of the second central moment,
and in the broad sense, as the scattering, spread) has been analyzed in this article.

The theorem of existence of the non-zero restrictions for the mean of a
discrete finite non-negative function on a segment X=[A, B] at a non-zero analog
of a central moment of the function has been proved. The theorem states if there is
a Non-zero restriction  pigpersionn=rpisp.n >0 for the analog of the n-th central
moment |E(X-M)"| : o>n>2, of a discrete finite nonnegative function such as
|E(X-M)"|>r"pispn >0, then the non-zero restriction rpeq., >0 exists for the mean of
this function. The value of the restriction ry.., at A is (see (3.3))

n

14
M _ A >r = Disp.n
( ) Mean (B _ A)n—l

The value of the restriction ry,,, at B is also (see (3.4))

n

.
B-M)>r,,, =—"""—
( ) Mean (B _ A)nfl

For n=2 the analog of the central moment is the analog of the dispersion (in
the particular sense) and 7., at A may be rewritten for the minimum gy, of the
analog of the standard deviation o such as 6>0y;,=rpis.2>0 as

2
(M _A) 2 PMean = rDi5P~2 = Pt
(B-A) (B-A)
The value of the restriction ry.,, at B may be also rewritten for the minimum
owmin Of the analog of the standard deviation o such as 620y, =rpisp.2>0 as

2
GMin

2
I,
B-M)2rn,,, =—"—=
( ) Mean (B—A) (B—A)

The function, which ensures the maximal absolute values of the analog of the
central moments relative to the mean M, is the function fgorgers k(Xx), Which is
concentrated at the opposite borders of the numerical segment X=[A, B]

B-M M—A
fBordem.K (A) = and fBordgrs,K (B) = .

B-A B-A

For the module of the analog of the central moments Ep,,qers(X-M)"
B—-M M-A
E (X-M)"|K(M-A)" +(B-M)" .
| B()rders( ) | ( ) B —A ( ) B—A

of the function fgyders.x(Xx) We have:
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For M=(B-A)/2:
for n=2 there is a well-known maximum, for n=3 there is a point of
inflection and for n>3 there are minimums.

For M=A and for M=B, at n>>1:
there are the maximums of the analog of the modules of the central moments
EBorders(X'M)n at
B=A4 nd x~p-B=4
n+l n+l1
For M=A+(B-A)/(n+1), the maximums (those are attained for even n) of

Eorders(X-M)" are (curiously with =I/e coefficient)

1(B-A)"

e n+l

For M=B-(B-A)/(n+1), the maximums (those are attained for even n) of
EBorders(X-M)" are also

X~ A+

Max(| E,,,,,, (X — (A+B—_A))" )~
n+1

orders

1(B-ay

Max(| E
n+l1

x-B-5"Ay )~
n+1

Borders

The above estimations for the restrictions ry.., for the mean are, in a sense,
as ultra-reliable as the Chebyshov inequality. For real cases such as normal
distribution, for the minimal values azM,-n of the analog of the dispersion (in the
particular sense), the preliminary calculations [10] give the restrictions ryeq, for
the mean, those are no worse than

r GM in
Mean — .
3

The theorem may have a significant practical value (It is considered and
proved here mainly due to this value):

The theorem has been preliminary proved [11] in the probability theory and
statistics for probability estimation and for the probability as the limit of the
probability estimation.

The hypothesis of the restrictions and the preliminary proof of the theorem
have been used in economics and have qualitatively explained the well-known
problems and paradoxes of decision theory and utility theory, such as the
underweighting of high and the overweighting of low probabilities, the four-fold
pattern paradox, etc. (see, e.g., [12]).

New applications of the theorem may be concerned with researches of the
Aczél-Luce question [9] whether the Prelec’s weighting function is equal to 7 at

p=1.
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