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A theorem of existence of the non-zero restrictions for the mean 

of a function on a finite numerical segment at a non-zero dispersion 
of the function is proved.  The theorem has an applied character.  It is 
aimed to be used in the probability theory and statistics and further in 
economics.  Its ultimate aim is to help to answer the Aczél-Luce 
question  whether  W(1)=1  and to explain, at least partially, the well-
known problems and paradoxes of the utility theory, such as the 
underweighting of high and the overweighting of low probabilities, the 
Allais paradox, the four-fold pattern paradox, etc., by purely 
mathematical methods.   
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Introduction 

 
The research, which first part is presented in this article, was initiated by the 

paradoxes of the decision and utility theories.  The analysis of such paradoxes was 
started in 1738 by Bernoulli in [1].  The examples of these paradoxes are the Allais 
paradox [2], the Ellsberg paradox [3], the "four-fold pattern" paradox (see, e.g. [4]), 
etc.  In 2002 Kahneman got the Prize in Memory of Nobel for the research in this 
field.  In 2006 in [5], Kahneman and Thaler pointed out the preferences 
inconsistencies in the paradoxes are still not overcome adequately.   
 

One of possible ways of solution of these paradoxes was proposed in [6] and 
in other works (see, e.g. [7] and [8]).  The essence of this way consists in a proper 
attention to noises, imprecision and other reasons those may cause the dispersion, 
scattering, variation, spread of data.   

Aczél and Luce [9] stated a fundamental question (problem) whether  W(1)=1  
(whether the Prelec’s weighting function is equal to  1  at  p=1).  This question 
opens one more way which consists in a proper attention to boundaries.   

The research partially presented in this article combines these two ways.  That 
is to say, it considers a dispersion of data near boundaries.   
 

The research has an applied character.  Its aim is to provide a mathematical 
support for works those are based on the dispersion of data and for works those 
concern the Aczél-Luce question.   
 

This article, as the first part of the research, deals with the general case of the 
restrictions for the mean of a function on finite numerical segments in the presence 
of a non-zero dispersion of the function.   

The second part of the research will deal with the estimations of restrictions 
values.   

The third part of the research will deal with the restrictions for the probability 
estimation and for the probability.   

The fourth part of the research will deal with possible explanations of the 
abovementioned paradoxes of the utility theory and with the Aczél-Luce question.   
 
 



3 
 

 
An illustrative example of restrictions 

Two points 
 

Let us suppose a numerical segment  [A; B]  (see figure 1).  Let us suppose 
two points are determined on this segment:  a left point  xLeft  and a right point    
xRight : xLeft<xRight.  The coordinates of the middle, mean point may be calculated as  
M=(xLeft+xRight)/2.   
 

 
 

Figure 1. A segment  [A, B].  Left  xLeft,  right  xRight   
and middle,  mean  M  points on it 

 
Suppose the points can not escape outside the borders of this segment. This 

means  A≤xLeft  and  xRight≤B.   
Suppose the points can not approach each other closer than a non-zero 

distance of two sigma  2σ>0.  This means  xRight≥xLeft+2σ  or  xLeft≤xRight-2σ.  At that,  
M-xLeft=xRight-M≥σ>0.   
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For the sake of simplisity and obviousness, figures 1-3 represent a case:  

xRight=xLeft+2σ  and  xLeft=xRight-2σ  and  M-xLeft=xRight-M=σ.   
One can easily see two types of zones can exist on the segment:   
The mean point  M  can be located only in the zone which may be named 

"allowed" (see figure 2).   
The mean point  M  can not be located in the zones which may be named 

"forbidden" (see figure 3).   
 

Allowed zone 
 

Due to the conditions of the example, the left point  xLeft  may not be located 
more left than the left border of the segment  A≤xLeft  and the right point  xRight  may 
not be located more right than the right border of the segment  xRight≤B.  For  M  we 
have  M-xLeft=xRight-M=σ.   
 

 
 

Figure 2. Allowed zone for  M 
 

The allowed zone for  M  is equal to  (B-A)-2σ.  It is less than the segment on  
2σ.  If the distance  2σ  between the left  xLeft  and right  xRight  points is non-zero 
then the difference between the allowed zone and the segment is non-zero also.   

So, the mean point  M  can not be located in any position of the segment.   
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Forbidden zones, restrictions 

 
If  A≤xLeft,  xRight≤B  and  xRight-xLeft≥2σ,  then there are the restrictions of one 

sigma  σ  between the mean point and the borders of the segment. So, the mean 
point  M  can not be located in two zones located near the borders of the segment. 
These zones may be named forbidden zones or restrictions.   
 

 
 

Figure 3. Forbidden zones, restrictions for  M 
 

As we can easily see, the restrictions exist between the allowed zone of the 
mean  M  and the borders of the segment  A  and  B. The width of every restriction 
is equal to  σ.  If the distance  2σ  between the left  xLeft  and right  xRight  points is 
non-zero then the forbidden zones, restrictions for  M  are non-zero also.   
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1.  Preliminary notes 

1.1.  Segment and function 
 

Let us suppose a both finitely big and finitely small numerical segment   
X=[A, B] : 0<ConstAB≤(B-A)<∞,  a set of points  xk : k=1, 2, … K : 2≤K≤∞,  and a 
finitely big non-negative function  fK(xk) : for  xk<A  and  xk>B  the statement  
fK(xk)≡0  is true; for  A≤xk≤B  the statement  0≤fK(xk)< ∞  is true, and   

K

K

k

kK Wxf =∑
=1

)( ,  

where a constant  WK  (the total weight of  fK(xk))  is such that   
∞<< KW0 .  

Keeping generality, the function  fK(xk)  may be normalized so that  WK=1.   
 
 

1.2.  Analog of moments 
 

Definition 1.1.  Let us define an analog of a moment of  n-th  order of the 
function  fK(xk)  relative to a point  x0  as   

∑∑
==

−=−=−
K
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n
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n
k

K

n xfxxxfxx
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XXE
1

0
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Let us further in this article, for brevity, name the analog of a moment of  n-th  
order or the  n-th  order moment analog as simply the moment of  n-th  order.   
 

Let us suppose the mean  M≡E(X)  of the function  fK(xk)  exists   

Mxfxxfx
W

XE
K

k
kKk

K

k
kKk

K

≡=≡ ∑∑
== 11

)()(
1

)( .  

Let us suppose at least one central moment  E(X-M)n : 2≤n<∞,  of the function  
fK(xk)  exists  

∑∑
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n
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n xfMxxfMx
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2.  Maximality  

 
Let us search a function which guarantees the maximal central moment and let 

us prove this choice.  The intuitively evident maximal possible absolute value of a 
central moment is obtained for the function which is concentrated at the borders of 
the segment.  
 

2.1.  A couple of elements 
 

Let us consider the mean  M  of the function  fK(xk),  a couple of points  xA  
and  xB,  such as   

BxMxA BA ≤≤≤≤  ,  
and a couple of elements  fK(xA)  and  fK(xB)  such as they are tied together by the 
conditions of the constant total weight  f  and the constant joint point  M   

fxfxf BKAK =+ )()(  ,  

)()()()( BKBAKA xfMxxfxM −=−  .  
A central moment  ECouple(X-M)n  of this couple of elements may be written as 

)()()()()( BK
n

BAK
n

A
n

Couple xfMxxfMxMXE −+−≡− . 

Its absolute value do not exceed the sum of absolute values of its parts   

)()()()(

)(|)(|)(|)(||)(|

BK
n

BAK
n

A

BK
n

BAK
n

A
n

Couple

xfMxxfxM

xfMxxfMxMXE

−+−=

=−+−≤−
. 

 
 

2.2.  Modification of the basic expression 
 

After substituting  fK(xB)  by  

)()()( AKAK

B

A
BK xffxf

Mx

xM
xf −=

−
−

=    

and replacing  fK(xA)  and  fK(xB)  by functions of  xA  and  xB   

fxf
Mx

xx
xf

Mx

xMMx
xfxf AK

B

AB
AK

B

AB
BKAK =

−
−

=
−

−+−
=+ )()()()( , 

we obtain the function  fK(xk):   

f
xx

Mx
xf

AB

B
AK −

−
=)(     and    f

xx

xM
xf

AB

A
BK −

−
=)( .  

At that, the expression for the central moment  ECouple(X-M)n  of the couple may be 
reorganized to the expression which depends only on  xA  and  xB   

f
xx

xM
Mxf

xx

Mx
xMMXE
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An
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AB

Bn
A

n
Couple −

−
−+

−
−

−≤− )()(|)(| . 
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2.3.  Derivatives 

 
Let us use the analysis of derivatives to find a maximum of the absolute value 

of central moments  |ECouple(X-M)n|  of this couple of elements.   
Let us differentiate the expression for the absolute value of a central moment 

by  xA   
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Since  n≥2  hence:  
 

If  (xB-xA)=(M-xA)  that is if  xB=M  then from  
)()()()( BKBAKA xfMxxfxM −=−  .  

we obtain  

0
)(
)(

)()( =−=−
AK

BK
A

xf

xf
MMxM    

or  xA=M  also, hence all the central moments equal zero.  
So, at  (xB-xA)=(M-xA)  that is at  xB=M=xA   

0])()[( =′
−
−

−+
−
−

−
Ax

AB

An
B

AB

Bn
A f

xx

xM
Mxf

xx

Mx
xM . 

This is an indifferently stable equilibrium state.  If  xB=M=xA  then all the central 
moments are not depended upon  xA  and are equal to zero. 
 

At  (xB-xA)>(M-xA)  that is at  xB>M   

0])()[( <′
−
−

−+
−
−

−
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AB
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AB

Bn
A f

xx

xM
Mxf

xx

Mx
xM . 

So, for non-zero  ECouple(X-M)n,  the first derivative by  xA  is strictly less than 
zero for any  A≤xA<M  independently of  xB  for any  M<xB≤B.  The closer is  xA  to  
A  the more is  |ECouple(X-M)n|.   

Hence, for any  xB : M<xB≤B,  the maximums of the absolute values of a 
central moments  ECouple(X-M)n  are attained at the minimal  xA,  that is at  xA=A.   
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Let us differentiate the expression for the absolute value of a central moment  

ECouple(X-M)n  of the couple  f  by  xB   
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Since  n≥2  hence:  
 

If  (xB-xA)=(xB-M)  that is if  xA=M  then  xA=M  also, hence all the central 
moments equal zero.  

So, at  (xB-xA)=(M-xA)  that is at  xB=M=xA   

0])()[( =′
−
−

−+
−
−

−
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AB
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B

AB

Bn
A f

xx

xM
Mxf

xx

Mx
xM . 

This is an indifferently stable equilibrium state.  If  xB=M=xA  then all the central 
moments are not depended upon  xB  and are equal to zero. 
 

At  (xB-xA)>(xB-M)  that is at  xA<M   

0])()[( >′
−
−

−+
−
−

−
Bx

AB

An
B

AB

Bn
A f

xx

xM
Mxf

xx

Mx
xM . 

So, for non-zero  ECouple(X-M)n,  the first derivative by  xB  is strictly more than 
zero for any  M<xB≤B  independently of  xA  for any  A≤xA<M.  The closer is  xB  to  
B  the more is  |ECouple(X-M)n|.   

Hence, for any  xA : A≤xA<M,  the maximums of the absolute values of the 
central moments  ECouple(X-M)n  are attained at the maximal  xB,  that is at  xB=B.   
 

So, for non-zero central moments  ECouple(X-M)n  of a couple  f  of elements  
fK(xA)  and  fK(xB), the maximums of the absolute values of  ECouple(X-M)n  are 
attained at  xA=A  and  xB=B.  That is, they are attained for the functions that are 
concentrated at the borders of the segment  [A, B]  and  

f
AB

AM
MBf

AB

MB
AMMXEMax nnn

Couple −
−

−+
−
−

−≤− )()(|))((| . 
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2.4.  Dividing by couples  

 
Let us analyze whether any function of the chapter 1 and its central moments 

may be completely divided and represented by such couples of elements.   
Let us divide the points  xk  into three groups:  xk(A)<M,  xk(M)=M  (zero central 

moments) and  xk(B)>M.  At that,  k(A)≤KA,  k(M)≤KM,  k(B)≤KB  and   
KKKK BMA =++ .  

Let us enumerate  the points  xk(A)  and  xk(B),  for example,  from utmost   
points and maximal weights to closest to  M  points and minimal weights.  So, for  
E(X-M)2>0  we have  k(A)=1, …, KA  and  k(B)=1, …, KB.   

The definition of the mean  

MxfxXE
K

k
kKk ≡≡∑

=1

)()(   

may be transformed to the first central moment   

0)()(
1

=−∑
=

K
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kKk xfMx  ,  

or, if  KA≥1  and  KB≥1,   
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=−+−=

=−+−+

+−=−

∑∑

∑∑

∑∑
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k
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,  

and it may be transformed to a balance  

∑∑
==

−=−
B

Bk

A

Ak

K

x
BkKBk

K

x
AkKAk xfMxxfxM

1
)()(

1
)()(

)()(

)()()()( .  

Let us consider cases with various numbers of elements  KAB=KA+KB.  
 

The case  0.  If  KAB=0,  then  E(X-M)n=0.   
 

The case  1.  Evidently, due to the definition of the mean, the case  KA=0  and  
KB≥1  and the case  KA≥1  and  KB=0   cannot exist.  
 

The case  2.  If  KAB=2,  KA=1  and  KB=1,  then   
)()()()( )(1)(1)(1)(1 BKBAKA xfMxxfxM −=−   

and the pair  fK(x1(A))  and  fK(x1(B))  is the couple of the previous subchapters.   
 

The case  3.  If  KAB=3,  KA=2  or  KB=2,  for example, if  KA=2  and  KB=1,  
then we divide the element  fK(x1(B))  into two parts  fK.1(x1(B))  and  fK.2(x1(B))  such as   

)()()( )(12.)(11.)(1 BKBKBK xfxfxf +=   

and   
)()()()( )(11.)(1)(1)(1 BKBAKA xfMxxfxM −=−  .   
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The pair  fK(x1(A))  and  fK.1(xB1)  is the couple.  The balance remains 

)()()()(

)()()()(

)(12.)(1)(11.)(1

)(2)(2)(1)(1

BKBBKB

AKAAKA

xfMxxfMx

xfxMxfxM

−+−=

=−+−
 ,   

and we come to the case 2   
)()()()( )(12.)(1)(2)(2 BKBAKA xfMxxfxM −=−  .   

The pair  fK(x2(A))  and  fK.2(xB1)  is the couple also.   
 

The general case  L.  Suppose a case  KAB=L≥4,  KA≥2  or  KB≥2.  If  
)()()()( )(1)(1)(1)(1 BKBAKA xfMxxfxM −=−  ,  

then the pair  fK(x1(A))  and  fK(x1(B))  is the couple.  The number of uncoupled 
elements is diminished by two and we come to the case  L-2.  If   

)()()()( )(1)(1)(1)(1 BKBAKA xfMxxfxM −≠−  ,  

then, as in the case  3,  let us divide the appropriate element as in the case  3  and we 
diminish the number of uncoupled elements by one and come to the case  L-1.   

So, we may consecutively diminish the number of uncoupled elements from 
any  L  to  2  and, so, we may come to fully coupled elements.  Hence, any function 
of the chapter 1 may be completely divided by couples of elements, except of  xk(M).   
 

So, any function of the chapter 1 and its central moments may be completely 
divided and represented by couples of elements except of points  xk(M)  which do not 
contribute to central moments.  So, the function  fMax.K(xk),  which possesses 
maximal central moments modules, should be concentrated at the borders  x1=A  
and  x2=B  of the segment.  At the condition of the unit norm of the chapter  1  and 
for the mean  M,  the function  fMax.K(xk)≡fBorders.K(xk)  should have a form   

AB

MB
Af KBorders −

−
=)(.    and   

AB

AM
Bf KBorders −

−
=)(.  .  

The central moments  EBorders(X-M)n  of the function  fBorders.K(xk)  are  

AB

AM
MB

AB

MB
MAMXE nnn

Borders −
−

−+
−
−

−=− )()()( . 

The modules of the central moments  EBorders(X-M)n  of the function  fBorders.K(xk)  are 
not more, than  

AB

AM
MB

AB

MB
AMMXE nnn

Borders −
−

−+
−
−

−≤− )()(|)(| . 

For the even orders  2n  of the central moments  EBorders(X-M)n  the inequality is 
reduced to the equality without the modules  

AB

AM
MB

AB

MB
AMMXE nnn

Borders −
−

−+
−
−

−=− 222 )()()( . 

 
So, the modules of the central moments of any function  fK(xk)  of the chapter 1 are 
not more, than  

AB

AM
MB

AB

MB
AMMXEMax nnn

−
−

−+
−
−

−≤− )()(|))((|    (2.1). 
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2.5.  Two notes  

 
Let us analyze the maximal central moments  EBorders(X-M)n  for  M=(B-A)/2  

and for  M  which is near  A  or  B.   
 
 

The mean is in the center of the segment 
 

Let us analyze the maximal central moments for M=(B-A)/2.   
Let us differentiate the expression for the absolute value of a central moment  

EBorders(X-M)n  by  M   

])()()(

)()()([
1

])()()()[(
1

1

1
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M
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MBAMMBn

AMMBAMn
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AMMBMBAM
AB

−+−−−

−−−−−
−

=

=′−−+−−
−

−

−   

and, at  M=(B-A)/2,   

0]11[)
2

(
1

])()()(

)()()([
1

1

1

=+−−
−

−
=

=−+−−−

−−−−−
−

−

−

nn
AB

AB

MBAMMBn

AMMBAMn
AB

n

nn

nn

.  

So, at  M=(B-A)/2,  for any  n≥2  there is an extremum or a point of inflection.   
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Let us differentiate  EBorders(X-M)n  once more   

])(2)())(1(

)(2)())(1([
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])()()())(1(
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and, at  M=(B-A)/2,   
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.  

That is, at  M=(B-A)/2:   
For  n=2  there is a well-known maximum, the moment of inertia of two 

material points which weights are equal to each other   

222

222

)
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(
2
1

)
2

(
2
1

)
2

(
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2

(
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−
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−
+
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−
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−
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−=
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−
 .  

For  n=3  there is a point of inflection and for  n>3  there are minimums.   
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The mean is near a border of the segment 

 
Let us search maximums which are close to the borders of the segment.   
Let us differentiate the absolute value of a central moment  EBorders(X-M)n  by  M  

for  M≈A  and  n>>1   
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The second derivative gives  
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For  M≈A  and  n>>1   
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and, for  M≈A+(B-A)/(n+1)  and  n>>1,   
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So, the second derivative is negative and there are the maximums at the 
points  M≈A+(B-A)/(n+1).   

 
The analog of the central moments  EBorders(X-M)n  of  the function  

fBorders.K(xk)  for  M-A≈(B-A)/(n+1)  and  n>>1  may be counted as  
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So, for  M≈A+(B-A)/(n+1)  and  n>>1,  the maximums (those are attained for even  
n)  of  EBorders(X-M)n  are curiously   
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Evidently, for  M≈B-(B-A)/(n+1),  at  n>>1,  the maximums (those are attained for 
even  n)  of  EBorders(X-M)n  are analogously  
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3.  Theorem  

3.1.  General lemma about tendency to zero for central moments 
 

Lemma 3.1.  If, for the function  fK(xk),  defined in the section 1,  M≡E(X)  
tends to  A  or to  B,   

then, for  n : 2≤n<∞,  E(X-M)n  tends to  zero.   
Proof.  For  MA,  the estimation (2.1) gives  
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This rough estimation is already sufficient for the purpose of this article.  But a 
more precise estimation may be obtained:   

Let us transform  
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Let us consider the terms  (M-A)/(B-A)  and  (B-M)/(B-A).  Keeping in mind  
A≤M≤B  we obtain  0≤(M-A)/(B-A)≤1  and  0≤(B-M)/(B-A)≤1.  For  n≥2  we have   
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So,  
0)()(|)(| 1  →−−≤− →

−
AM

nn AMABMXE      (3.1). 

For  MB,  the proof is similar and gives   
0)()(|)(| 1  →−−≤− →

−
BM

nn MBABMXE      (3.2). 

So, if  (B-A)  and  n  are finite and  MA  or  MB,  then  E(X-M)n0.   
The lemma has been proved.   
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3.2.  General theorem of existence of restrictions for mean 

 
Definition 3.1.  Let us define the term "restriction for dispersion of  n-th 

order"  rDispersion.n≡rDisp.n>0  (where dispersion is implied in the broad sense, as 
scattering, spread, variation, etc) as a minimal absolute value of the analog of the   
n-th  order central moment  E(X-M)n  such as  |E(X-M)n|≥rn

Disp.n>0.   
For  n=2  the restriction for dispersion of second order is equal to the minimal 

possible standard deviation  rDisp.2=σMin.   
Note,  rDisp.n<(B-A).  This follows from   
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Theorem 3.2.  If,  for the finite nonnegative discrete function  fK(xk)  defined 

in the section 1,  with the mean  M≡E(X)  of the function  and the analog of an       
n-th : 2≤n<∞,  order central moment  E(X-M)n  of the function, a non-zero 
restriction for dispersion of the  n-th  order  rDisp.n : |E(X-M)n|≥rn

Disp.n>0,  exists  
then the non-zero restriction  rMean>0  for the mean  E(X)  exists such as  

A<(A+rMean)≤M≡E(X)≤(B-rMean)<B.   
 

Proof.  From the conditions of the theorem and from (3.1) for  MA,   
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For  MB,  the proof is similar and gives   
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So, as long as  rDisp.n  is finitely small,  n  is finitely big,  (B-A)  is both finitely 
big and finitely small,  

then  rMean  is finitely small and both  (M-A)≥rMean>0  and  (B-M)≥rMean>0.   
The theorem has been proved.   

 
Note.  This estimation is an ultra-reliable one.  It is, in a sense, as ultra-reliable 

as the Chebyshev inequality.  Preliminary calculations [10] which were performed 
for real cases, such as normal, uniform and exponential distributions with the 
minimal values  σ2

Min  of the analog of the dispersion  (in the particular sense), gave 
the restrictions  rMean  for the mean of the function, those are not worse than   

3
Min

Meanr
σ

≥  .  
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Comments to the theorem  

 
We may reformulate the essence of the theorem in some variants:   

 
If the analog of a finite  (n<∞)  central moment  E(X-M)n  of a finite non-

negative function, which is defined for a finite segment,  cannot approach zero 
closer, than by a non-zero value  |E(X-M)n|≥rn

Disp.n>0,  then the mean of the 
function also cannot approach any border of this segment closer, than by the non-
zero value  rMean>0.   

More particular:   If the analog of the dispersion  (in the particular sense)  
E(X-M)2  of a finite non-negative function, which is defined for a finite segment,  
cannot approach zero closer, than by a non-zero value  E(X-M)2≥σ2

Min>0,  then the 
mean of the function also cannot approach any border of this segment closer, than 
by the non-zero value  rMean>0.   
 

In other words:  If for a finite non-negative function, which is defined for a 
finite segment, a non-zero restriction  rDisp.n>0  exists between the zone of possible 
values of the analog of a finite  (n<∞)  central moment  E(X-M)n  of the function 
and zero  |E(X-M)n|≥rn

Disp.n>0, then the non-zero restrictions  rMean>0  also exist 
between the zone of possible values of the mean of this function and any border of 
the segment.   

More particular:  If for a finite non-negative function, which is defined for a 
finite segment,  a non-zero restriction  σMin>0  exists between the zone of possible 
values of the analog of the dispersion (in the particular sense)  E(X-M)2  of the 
function and zero  E(X-M)2≥σ2

Min>0, then the non-zero restrictions  rMean>0  also 
exist between the zone of possible values of the mean of this function and any 
border of the segment.   
 

In other words:  If there is zero restriction  rDisp.n=0  for dispersion (in the 
broad sense)  E(X-M)n  of a function then there are zero restrictions  rMean=0  for the 
mean of the function.  The more restriction  rDisp.n>0  for the dispersion the more 
restrictions  rMean>0  for the mean.   

So, a restriction  rDisp.n>0  for the dispersion biases the boundaries of the zone 
of possible values of the mean from the borders of the segment to the middle of the 
segment.   

So, a restriction  rDisp.n>0  for the dispersion biases the mean from the borders 
to the middle of the segment.   
 

Simplified:  A non-zero dispersion of a finite non-negative function leads to 
the non-zero restrictions for the mean of this function. 

More simplified:  A non-zero dispersion leads to the non-zero bias of the 
mean. 

Most simplified:  Dispersion biases mean.  
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4.  Applications of the theorem in economics 

 
The theorem has been preliminary proved (see, e.g., [11]) in the probability 

theory and statistics for probability estimation and for the probability as the limit of 
the probability estimation.  In the presence of data dispersion, scattering, spread, 
variation, the restrictions can exist for probability estimation and for the probability 
near the borders of the probability scale.   

Further, the theorem has been preliminary used in economics (see, e.g., [12]) 
and has explained the well-known problems and paradoxes of decision theory and 
utility theory, such as the underweighting of high and the overweighting of low 
probabilities, the four-fold pattern paradox, etc.   

In the presence of a data dispersion, the restrictions, those can exist for the 
probability near the borders of the probability scale, can bias the results of 
experiments in comparison with no data dispersion.  The preliminary researches, 
including considerations of the restrictions as a hypothesis, showed this bias can 
explain (at least partially) the well-known problems and paradoxes of decision and 
utility theories.  It should be noted, this explanation is true not only for a particular 
combination of parameters but both for high and low probabilities and both for 
gains and losses (see, e.g., [12]).   

The new field of applications of the theorem may be concerned with the 
Aczél-Luce question [9] whether  W(1)=1  (whether the Prelec’s weighting function 
is equal to  1  at  p=1).   
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Conclusions 

 
Possibility of existence of non-zero restrictions in the presence of a non-zero 

dispersion (both in the particular sense, as the analog of the second central moment, 
and in the broad sense, as the scattering, spread) has been analyzed in this article.   

The theorem of existence of the non-zero restrictions for the mean of a 
discrete finite non-negative function on a segment  X=[A, B]  at a non-zero analog 
of a central moment of the function has been proved.  The theorem states if there is 
a non-zero restriction  rDispersion.n≡rDisp.n>0  for the analog of the  n-th central 
moment  |E(X-M)n| : ∞>n≥2,  of a discrete finite nonnegative function such as  
|E(X-M)n|≥rn

Disp.n>0,  then the non-zero restriction  rMean>0  exists for the mean of 
this function.  The value of the restriction  rMean  at  A  is (see (3.3))  
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The value of the restriction  rMean  at  B  is also (see (3.4)) 
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For  n=2  the analog of the central moment is the analog of the dispersion (in 

the particular sense) and  rMean  at  A  may be rewritten for the minimum  σMin  of the 
analog of the standard deviation  σ  such as  σ≥σMin≡rDisp.2>0  as  
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The value of the restriction  rMean  at  B  may be also rewritten for the minimum  
σMin  of the analog of the standard deviation  σ  such as  σ≥σMin≡rDisp.2>0  as 
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The function, which ensures the maximal absolute values of the analog of the  

central moments relative to the mean  M,  is the function  fBorders.K(xk),  which is 
concentrated at the opposite borders of the numerical segment  X=[A, B]   
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For the module of the analog of the central moments  EBorders(X-M)n   
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of the function  fBorders.K(xk)  we have:  
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For  M=(B-A)/2:   
for  n=2  there is a well-known maximum, for  n=3  there is a point of 

inflection and for  n>3  there are minimums.   
 

For  M≈A  and for  M≈B,  at  n>>1:   
there are the maximums of the analog of the modules of the central moments  

EBorders(X-M)n  at   

1+
−

+≈
n

AB
Ax     and    

1+
−

−≈
n

AB
Bx  .  

For  M≈A+(B-A)/(n+1),  the maximums (those are attained for even  n)  of  
EBorders(X-M)n  are (curiously with  ≈1/e  coefficient)  
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For  M≈B-(B-A)/(n+1),  the maximums (those are attained for even  n)  of  
EBorders(X-M)n  are also   
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The above estimations for the restrictions  rMean  for the mean  are, in a sense, 

as ultra-reliable as the Chebyshov inequality.  For real cases such as normal 
distribution, for the minimal values  σ2

Min  of the analog of the dispersion  (in the 
particular sense), the preliminary calculations [10] give the restrictions  rMean  for 
the mean, those are no worse than   

3
Min

Meanr
σ

≥  .  

 
The theorem may have a significant practical value (It is considered and 

proved here mainly due to this value):   
 

The theorem has been preliminary proved [11] in the probability theory and 
statistics for probability estimation and for the probability as the limit of the 
probability estimation.   

The hypothesis of the restrictions and the preliminary proof of the theorem 
have been used in economics and have qualitatively explained the well-known 
problems and paradoxes of decision theory and utility theory, such as the 
underweighting of high and the overweighting of low probabilities, the four-fold 
pattern paradox, etc. (see, e.g., [12]).   

New applications of the theorem may be concerned with researches of the 
Aczél-Luce question [9] whether the Prelec’s weighting function is equal to  1  at  
p=1.   
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