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tween residential density and vehicle fuel efficiency chosen by the residents, this paper

presents a modified monocentric city model with endogenous vehicle-type choices. Con-

sumers are assumed to explicitly consider driving inconvenience in the choice of vehicle

sizes, and the resulting commuting cost is a function of residential density. This vehicle-

type choice problem is embedded in an otherwise standard monocentric city model. A

convenience-related advantage in less-dense areas makes our bid-rent curve flatter than that

in the standard model. Comparative static analyses suggest that an increase in commut-

ing cost per mile, especially from increased unit cost of driving inconvenience, may induce

spatial expansion of the city. Since driving inconvenience is lower in less-dense suburbs, the

increased unit cost of driving inconvenience pulls people toward suburbs, potentially lead-

ing to urban sprawl. Part of comparative static analysis shows how the city’s vehicle fuel

efficiency depends on the city characteristics such as population and agricultural rent.
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1 Introduction

There have been growing concerns about the increased energy consumption potentially

caused by urban sprawl, which has characterized the land development pattern in the US

since 1950.1 In response, many researchers attempted to estimate the causal influence of

land-use patterns (mostly measured by population density) on automobile travel demand

(Schimek (1996), Levinson and Kumar (1997), Boarnet and Sarmiento (1998), Boarnet and

Crane (2001), Bento et al. (2005)). These studies suggest that land-use patterns have

a statistically significant influence on household vehicle usage. Specifically, although the

empirical magnitudes differ, the findings indicate that lower neighborhood densities at the

residential location tend to induce a higher household vehicle usage (see Badoe and Miller

(2000) for literature review).

Meanwhile, several recent studies document that land-use patterns affect not only vehicle

usage but also the vehicle fuel efficiency chosen by residents (Fang (2008), Brownstone and

Golob (2009), Kim and Brownstone (2012), Newman and Kenworthy (1999)). Along with

automobile travel demand, vehicle fuel efficiency is an important determinant of total energy

consumption. Indeed, fuel efficiency regulations have been viewed as the key instruments for

reducing greenhouse gas emissions and the country’s oil dependence. Corporate Average Fuel

Economy (CAFE) standards, for example, impose fuel economy standards for new vehicles

sold in the US, and there has been wide interest among researchers about the program’s

cost and effectiveness (see Klier and Linn (2011) for literature review). The motivation of

this paper comes from these interests in fuel-efficiency control and its linkage with post war

suburbanization in the US, as evidenced by the empirical relationship between fuel efficiency

of the chosen vehicles and the resident’s location choice. This paper presents a modified

monocentric city model, which incorporates the link between the resident’s location and

land-consumption decisions and the decision on vehicle fuel efficiency.

1Kahn (2000) discusses the effects on energy usage and its environmental consequences of suburbaniza-
tion. Perry et al. (2007) discuss negative externalities from increased energy consumption.
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Several recent empirical findings provide evidence on the relationship between a partic-

ular neighborhood feature, population density, and the vehicle fuel efficiency chosen by the

resident, controlling for the resident’s other characteristics such as income. People residing

in less dense suburban areas drive more than people in high density areas, and their fuel

consumption shows a larger proportional increase than vehicle miles traveled (Brownstone

and Golob (2009), Kim and Brownstone (2012)). This disproportionate increase in fuel usage

suggests that households residing in less dense areas are more likely to use less fuel-efficient

(bigger) vehicles than households in denser areas. Unlike Brownstone and Golob (2009),

where vehicle choice is just implicit, Fang (2008) explicitly models vehicle choices, with res-

idential density used as a key explanatory variable. Fang (2008) finds that when density

increases, people tend to switch from trucks to cars and from large-size cars to small-size

cars, which implies a positive correlation between residential density and vehicle fuel effi-

ciency. Moreover, West (2004) finds that people choosing a less fuel-efficient bigger car tend

to utilize the vehicle more and are usually located in the mid-west and south of the US,

where residential density is lower. Reinforcing these findings, using a global sample of 32

cities, Newman and Kenworthy (1989) find a disproportionate increase in fuel consumption

in cities with low density, where automobile dependency is high.

While fuel cost per mile is higher when density is lower, as suggested by the studies

described above, other studies show that another factor, driving inconvenience, may work

in the opposite direction, tending to lower commuting cost per mile in less dense suburbs.

In an attempt to jointly estimate vehicle choice and vehicle utilization, several studies find

that high density at the residential location yields lower marginal utility from driving, or

a higher dislike of driving (Gillingham (2010), West (2004)). High density neighborhoods

may reduce the speed of travel, presumably because of longer search time for parking and

congestion (Levinson and Kumar (1997)). This finding suggests that a high neighborhood

density may actually lead to a higher per mile cost of travel through increased time cost,

despite the use of more fuel efficient vehicles.

3



In our model, the cost of driving inconvenience captures these incremental costs of travel

in high density areas. The goal is to analyze the consumer’s joint decision on land consump-

tion and vehicle size (fuel efficiency) from an urban economics perspective, reflecting the

empirical literature described above. As far as we know, no urban models exist that focus on

this joint decision.2 In the model, the consumer explicitly considers driving inconvenience,

a kind of subjective commuting cost indicating how much the driver dislikes driving, in the

choices of land consumption, residential location, and vehicle size. Driving inconvenience

is assumed to be influenced by vehicle size (inverse of fuel efficiency) and residential den-

sity. A larger vehicle gives lower driving inconvenience, which reflects the greater comfort

and safety offered by larger cars, holding neighborhood density fixed. We assume that high

neighborhood density gives higher driving inconvenience, motivated by higher parking cost,

congestion, and a worse driving environment in denser areas. Commuting cost per mile is

then comprised of driving inconvenience and monetary costs related to vehicle size, including

fuel costs. A resident chooses an optimal vehicle size that yields the lowest commuting cost

per mile. The resulting minimized commuting cost per mile is expressed as a function of

residential density.

This optimization problem is then imbedded in an otherwise standard monocentric city

model. While residential densities in such a model ultimately depend on commuting cost,

our framework also generates a reverse causal link running from density to commuting cost

via driving inconvenience. The goal is to analyze the properties of the modified model taking

this two-way linkage into account.

We first derive the modified bid-rent function to see how it differs from that in the stan-

dard model. Next, we carry out the kind of comparative static analysis originally done by

Wheaton (1974) and elaborated by Brueckner (1987). In spite of the joint determination

2The limitation of using a monocentric city model, however, is that vehicle utilization is actually the
same as the residential location choices. Once the consumers choose location, they commute the given length
from the residential location to the central business district (CBD). Thus, there is nothing new about vehicle
utilization in our model. The innovation in our model is the incorporation of the joint decision on residential
location and vehicle fuel efficiency, which determines the cost per mile of commuting.
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of density and commuting cost, the effects of increases in the urban population, agricul-

tural rent, and consumer income on utility and city size are qualitatively the same as in

the standard model. But, unlike the standard urban model, the influence on the city’s spa-

tial size of an increase in commuting cost per mile, especially from increased unit cost of

driving inconvenience, is ambiguous. We can identify the source of this ambiguity as the

better driving conditions that are more likely offered in less-dense suburbs. Because of the

convenience-related benefits in less-dense suburbs, the increased unit cost of driving incon-

venience actually pulls people toward the suburbs, where inconvenience is lower, potentially

leading to urban sprawl. The main findings are confirmed by a numerical analysis.

This new result may overcome a limitation of the standard commuting-cost-based ex-

planation for urban sprawl. The standard model suggests that a declining transport cost is

a major source of urban sprawl, and this result is used in many studies to explain urban

sprawl (Brueckner (2001), Glaeser and Kahn (2004), Baum-Snow (2007)). However, the

pattern of declining transport cost is not entirely satisfactory as an explanation for urban

sprawl because the time cost of travel, which is the largest portion of transport cost, would

have increased over the same period because of rising incomes (Anas, Arnott, Small (1998)).

Our model fills this gap by providing a way for the increased time cost of travel to generate

urban sprawl.

Part of the comparative static analysis shows how vehicle size (or fuel efficiency) depends

on city characteristics such as population and agricultural rent. Thus, we are able to rep-

resent the city’s fuel efficiency as a function of the exogenous parameters characterizing the

urban equilibrium, which would then provide empirical implications. Finally, as an exten-

sion of the model, we analyze the residential location and the vehicle choice patterns by

heterogeneous consumers.

The existing literature on endogenous commuting costs in the monocentric city frame-

work mostly focuses on policies for remedying the externalities caused by unpriced traffic

congestion (Arnott (1979), Pines and Sadka (1985), Wheaton (1998), Brueckner (2007)). In
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these congested-city models, commuting cost per mile is influenced by the volume of traffic

flows. In our model, the cost of commuting per mile is instead represented as a function of

density at the residential location. The reason is that we want to tie our modeling with the

empirical literature concerning the policy issue. As described above, the empirical literature

is concerned about the effect of the built environment (mostly measured by density), which

is the relevant policy instrument for urban planners, on vehicle usage and vehicle choice

patterns.

The rest of the paper is organized as follows. Section 2 proposes the model. Section

3 implements the comparative static analysis. Section 4 presents numerical examples. In

Section 5, we analyze the heterogeneity of households. Finally, section 6 concludes.

2 The model

2.1 Commuting cost function

Commuting cost per mile, denoted by t, is comprised of driving inconvenience and pecu-

niary cost, with t = αI +F , where I is driving inconvenience, F is pecuniary costs, and α is

the unit cost of driving inconvenience. The monetary commuting cost, F , captures vehicle

size because bigger cars are less fuel-efficient and typically cost more to purchase. Driving

inconvenience is a kind of subjective commuting cost, indicating how much the driver dislikes

driving. Driving inconvenience may also capture time costs of travel.3

Driving inconvenience (I) is assumed to be a function of population density at the res-

idential location (or residential density, denoted by D) and vehicle size (F ). First, driving

inconvenience (I) depends inversely on vehicle size (F ) holding residential density fixed,

reflecting the greater comfort, safety, and higher speed offered by larger cars. A consumer

purchasing a more expensive, larger car is compensated by a lower inconvenience. Second,

3Note that we could put the subjective cost of driving inconvenience (I) in the utility function. However,
following the traditional way of putting the subjective time cost of commuting (from sacrificing leisure) in
the budget constraint, we treat this subjective cost as being paid out of income.
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we assume that high neighborhood density gives higher inconvenience. As a result, driving

inconvenience follows the relationship I = Ĩ(D,F ), with ĨD > 0 and ĨF < 0 (subscripts

denote partial derivatives).

The link between driving inconvenience and population density could be motivated via the

greater difficulty of parking, worse driving environment, and higher congestion (greater time

cost) in a dense neighborhood. In the suburbs where land rent is cheaper and parking spaces

are larger, consumers may have a private garage and cars are also easier to park. People may

enjoy driving or dislike driving less when they drive in the less-dense suburbs because they

expect fewer traffic lights, wider streets, and more highways, which provide a better driving

environment. This intuition is evidenced by Gillingham (2010) and West (2004), where in

an attempt to jointly estimate vehicle choice and vehicle utilization, the authors found that

more-dense areas correspond to a lower marginal utility from driving, or higher dislike of

driving. High density may also lower the speed of travel, presumably because of longer search

time for parking and higher congestion in high density neighborhoods (Levinson and Kumar

(1997)). Then, driving inconvenience may be interpreted as being associated with the time

cost of travel.

It is also assumed that Ĩ is twice-differentiable, with ĨFF > 0, meaning that the con-

venience advantage of a bigger car increases at a diminishing rate. Also, the convenience

disadvantage of a denser area increases as cars get larger, so that ĨDF > 0. From the ob-

servation that a high density neighborhood tends to have smaller parking spaces, narrower

streets and more congestion, the incremental inconvenience cost from a higher density will

be higher for a bigger car than for a smaller car.

The consumer is then faced with a vehicle-type choice problem, choosing a vehicle size

that gives the lowest commuting cost per mile. The consumer minimizes t = αĨ(D,F ) + F

by choice of F , which yields the optimal vehicle size as a function of D, giving F = F̃ (D).

Totally differentiating the first-order condition, αĨF + 1 = 0, with respect to D and F and

using ĨFF > 0 and ĨDF > 0, it follows that ∂F̃ /∂D < 0. The empirical negative relationship
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between residential density and fuel cost per mile is confirmed in this way. This derivation

reflects our view that the empirical evidence on the relationship between residential density

and vehicle sizes is caused by households’ behavior of adjusting their vehicle-types to the

built environment around their residences.

Substituting the optimal vehicle size F = F̃ (D) into the commuting cost per mile yields

the commuting cost function t(D) = αĨ(D, F̃ (D)) + F̃ (D), which gives the minimized com-

muting cost per mile. While we made it clear that commuting cost per mile is a function of

neighborhood density, writing t as a function of 1/D is more convenient when we analyze

the general equilibrium in the next section. Letting ℓ denote land consumption per person

in the residential neighborhood, ℓ is equal to 1/D from the definitions. Let the commuting

cost function be written as a function of ℓ (= 1/D):

t(ℓ) = αI(ℓ, F (ℓ)) + F (ℓ), (1)

in which I and F are now written as functions of ℓ. Note that ˜ in Ĩ(D,F ) and F̃ (D) are

dropped with this replacement. Now the claim is that driving inconvenience is increasing in

D (ĨD > 0), or equivalently, decreasing in land consumption per person, ℓ, giving Iℓ < 0. In

the same manner, the optimal vehicle size is decreasing in D (∂F̃ /∂D < 0), or equivalently,

increasing in ℓ, giving ∂F/∂ℓ > 0. Note that ℓ must be distinguished from land consumption

“chosen” by the resident, denoted by q.4 While ℓ captures density at the neighborhood level,

q represents the individual’s choice. Although ℓ = q will hold in equilibrium, the resident

chooses q, not ℓ, a distinction that is made clearer in the next section.

Using the envelope theorem, the derivative of commuting cost per mile with respect to ℓ

equals

tℓ = αIℓ < 0. (2)

4Since housing production is suppressed in this model, housing consumption is equivalent to land con-
sumption.
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Thus, commuting cost per mile is an increasing function of residential density, or equivalently,

a decreasing function of land consumption per person, ℓ. While fuel cost per mile (F ) is

lower in denser areas, (2) shows that the cost of driving inconvenience (I) leads to an overall

commuting cost per mile (t) that is higher in denser areas.

2.2 Incorporating vehicle choice in the monocentric model

In this section, we add the vehicle choice framework to the monocentric city model. The

city is circular and contains the central business district (CBD) at its center. Each resident

in the city commutes to the CBD to earn income y, using a radial road network. Commuters

rely on only car travel, and commuting cost per mile is t(ℓ), as derived in the previous

section. The disposable income of a consumer at distance x is then y − t(ℓ)x. Consumer

utility depends on land consumption, q, and a composite non-housing good, c. The rental

price per unit of land is p and the price of the non-housing composite good is normalized

to unity. The budget constraint is then c + pq = y − t(ℓ)x. Consumers have the common

quasi-concave utility function, v(c, q), and elimination of c allows utility to be written as

v(y − t(ℓ)x − pq, q). The consumer maximizes this expression by choice of q subject to the

budget constraint.

Note that commuting cost per mile (t) in the housing consumption choice problem is a

function of residential density (or ℓ = 1/D), not a function of the resident’s housing consump-

tion (q). In effect, each resident in the city takes residential density (D) and consequently

commuting cost per mile (t) as fixed when she decides q, neglecting the influence of her

land consumption on neighborhood density. Hence, q is chosen viewing t as fixed, leading

to the first order condition, vq(y − t(ℓ)x − pq, q) = vc(y − t(ℓ)x − pq, q)p. But, ℓ = q must

hold in equilibrium. Although each individual resident takes residential density as fixed,

the aggregated q choices will determine residential density, so that ℓ = q holds in equilib-

rium. Therefore, the commuting cost function, t(ℓ), must be replaced by t(q) in writing the
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consumer equilibrium condition, which becomes

vq(y − t(q)x− pq, q) = vc(y − t(q)x− pq, q)p. (3)

An additional equilibrium condition requires that the identical consumers in the city

attain the same utility level u. Spatial variation in p provides the key to achieving equal

utilities throughout the city. Using ℓ = q, the equal-utility condition is written

v(y − t(q)x− pq, q) = u. (4)

The simultaneous equations (3) and (4) yield solutions for p and q as functions of location

and the other exogenous parameters. The solution for p as a function of x, p(x), gives the

‘bid-rent’ function for housing.

Our bid-rent function is comparable with that in the standard model. To derive the slope

of the bid-rent function, (4) is totally differentiated with respect to x using vq = vcp, which

yields

∂p

∂x
= −t(q)

q
− 1

q
tqx

∂q

∂x
, (5)

where tq denotes the partial derivative of t with respect to q (≡ 1/D). Given q = ℓ, we have

tq = tℓ = αIℓ < 0 from (2). The second term in (5) accounts for the change in commuting

cost from an increase in x, and it does not appear in the standard model, where the bid-rent

slope is given by −t/q. After totally differentiating (3) with respect to x and solving for

∂q/∂x, substituting it into (5) yields the following result:5

∂p

∂x
= −t(q)

q

[

η
tqx

q
+ η

]

< 0, (6)

5Totally differentiating (3) with respect to x gives
[

tqx(pvcc − vqc) + vqq − pvqc − pvcq + p2vcc
]

(∂q/∂x) =
(vqc − pvcc)t(q) + (vc − pvccq + vqcq)(∂p/∂x).
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where η ≡ (vqq − 2pvcq + p2vcc)/vc. By substituting p = vq/vc into η, it is easily seen that

η = ∂MRS/∂q|v=u, where MRS ≡ vq/vc. The convexity of indifference curves implies η < 0.

Recalling tq < 0, ∂p/∂x is then negative, meaning that an increase in x leads to a utility-

equalizing decline in p. Since utility is fixed, the increase in q with respect to x is exactly

the substitution effect of the decrease in p. Moreover, ∂q/∂x = (∂p/∂x)(1/η) (> 0) holds as

in the standard model, implying a decline in density as x increases.

Note that the bid-rent slope (6) contains an additional term, η (tqx/q + η)−1, which does

not appear in the standard urban model, where the bid-rent slope is given by −t/q. Also

note that the new factor, η (tqx/q + η)−1, is between zero and one.6 Since the fall in density

implies a benefit from lower driving inconvenience as x increases, we can say that additional

distance from the CBD (and thus extra commuting costs) can be compensated by a smaller

decrease in p than in the standard model. In other words, less of a decrease in p is needed

for compensation in this model since there is a convenience-related benefit from a decrease

in density as x increases.

The other partial derivatives (∂p/∂θ and ∂q/∂θ, where θ = y, α, u) hold less intrinsic

interest. But, these partial derivatives are needed in the comparative static analysis in the

next section. The partial derivative signs are as follows (see Appendix A):

∂p

∂y
> 0,

∂p

∂α
< 0, (7)

and the corresponding q derivatives have the opposite signs. The signs and the formu-

las match those of the standard model, except for the presence of the extra term in (6),

η (tqx/q + η)−1. So, the rule that makes the price derivatives smaller in absolute value than

in the standard model is applied here again. While ∂q/∂u > 0 holds unambiguously, a suf-

6A direct comparison between the magnitudes of the bid-rent slopes in the present model and that in
the standard model is not available since q and t would differ across models. Nevertheless, we can say that
a different rule is applied in this model.

11



ficient condition is needed to determine the sign of ∂p/∂u (see Appendix A). In particular,

∂p

∂u
< 0 if p+ tqx ≥ 0. (8)

The expression p+ tqx gives the marginal cost of an increase in q when the effect on driving

inconvenience is taken into account. If this expression were negative, then (taking general

equilibrium effects into account) the consumer could acquire more housing for a lower overall

cost. The implausibility of this outcome makes this assumption that p+tqx ≥ 0 a reasonable

one. In addition, p + tqx < 0 would imply ∂p/∂u > 0, so that a higher utility would be

implausibly associated with a higher housing price. Thus, the comparative static analysis is

carried out with the presumption that p+ tqx ≥ 0, and consequently ∂p/∂u < 0. We check

whether p+ tqx ≥ 0 holds in the numerical examples below.

3 Comparative static analysis

We carry out a comparative static analysis to explain the intercity differences in spatial

structures among cities. Through the analysis, we investigate how the qualitative and quan-

titative properties of the standard urban model are modified under the current framework.

Part of the comparative static analysis will show how vehicle fuel efficiency depends on city

characteristics such as population and agricultural rent.

As usual, the comparative static analysis requires two additional conditions that charac-

terize the overall equilibrium of the city. The first equilibrium condition requires that the

urban population, denoted by L, exactly fits inside the urban fringe, which is denoted by x̄.

The equilibrium condition is written as

∫ x̄

0

2πx

q(x, y, α, u)
dx = L. (9)

The second equilibrium condition requires that urban land rent equals the exogenous agri-
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cultural rent pA at the urban fringe. This condition is written as

p(x̄, y, α, u) = pA. (10)

Under the closed city assumption, which makes u and x̄ endogenous, we analyze the effects of

the exogenous variables, L, pA, y, and α, on u and x̄, using these two equilibrium conditions

as well as (3) and (4). Here, the income level is exogenous, which means that the urban

rent is paid to absentee landlords. This assumption is distinguished from the case of a fully

closed city, where the rent is redistributed to the urban residents.7 We also investigate the

nature of dependencies of vehicle size (F ) on the exogenous variables.

3.1 The effects of increases in population and agricultural rent

The standard derivation of the effects of L and pA on u and x̄ only makes use of the signs

of the p and q derivatives. These signs in the current model are the same as in the standard

model (see Appendix A). So, the standard proof applies, yielding

∂u

∂L
< 0,

∂x̄

∂L
> 0,

∂u

∂pA
< 0,

∂x̄

∂pA
< 0. (11)

Thus, an increase in the city population reduces the utility level while inducing expansion of

the city. An increase in the agricultural rent reduces both the utility level and the city size.

The urban population and the agricultural rent influence the vehicle fuel efficiency chosen

by residents by affecting population densities in the city. Since L and pA are not direct

arguments of F , L and pA have only an indirect effect on F , which operates through ℓ

(= 1/D). Since ℓ = q holds in equilibrium, this effect is given by

dF

dλ
=

∂F

∂q

dq

dλ
, λ = L, pA, (12)

7Pines and Sadka (1986) carry out the same kind of comparative static analysis under the fully-closed-
city assumption. Their comparative static results are quite consistent with that in Wheaton (1974) and
Brueckner (1987), where landlords are absentee, except for the influence of the city population.
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where ∂F/∂q > 0 holds as shown in Section 2.1. Since L and pA are not direct arguments of

q, there is only an indirect influence on q, which operates through u. The following holds:

dq

dλ
=

∂q

∂u

∂u

∂λ
, λ = L, pA. (13)

Using the partial derivative signs shown above, the following comparative static signs are

derived:

dF

dL
< 0,

dF

dpA
< 0. (14)

Thus, vehicle sizes get smaller (or fuel efficiency increases) throughout the city as L in-

creases. An increase in population leads to higher densities at all locations in the city, and

people adjust their vehicles toward smaller and more fuel efficient ones to fit their higher

neighborhood density. This conclusion is consistent with Newman and Kenworthy (1999),

where the authors found that big and more populous cities tend to have higher average

fuel efficiency. In the same manner, an increase in the agricultural rent, by inducing higher

densities throughout the city, improves vehicle fuel efficiency throughout the city.

3.2 The effects of an increase in income

An increase in income raises the utility level and induces expansion of the city. By

totally differentiating the equilibrium conditions (9) and (10), and using the partial derivative

expressions given in Appendix A, we get the following comparative static signs (Appendix

B shows the derivation):

∂u

∂y
> 0,

∂x̄

∂y
> 0. (15)

Although the above partial derivative signs are unambiguously determined and the same as

in the standard model, the current model has the additional terms in the partial derivatives
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(see (6) and (22) - (25) in Appendix A), which would modify quantitative influences of an

increase in y on x̄. Indeed, our new commuting cost function will accentuate the urban-sprawl

force of an increase in y (i.e., ∂x̄/∂y) because there is a convenience-related advantage from

an increase in q in our model. Since an increase in q has an additional benefit in our model

through lower driving inconvenience from a lowered density, the incremental demand for

housing from an increase in y will be larger in our model than in the standard model, which

would cause the city expand further in our model. The numerical examples below show that

the increase in x̄ from an increase in y is higher at higher α values, implying that y’s urban

sprawl force is accentuated as α increases. Thus, the presence of driving inconvenience in

our model, interacted with rising incomes, may help to explain post war suburbanization in

the US.

Consumer incomes in the city influence the optimal vehicle size at each location. Since y

is not a direct argument of F , y affects F only through the induced change in ℓ (= q).8 But,

the influence of y on q is not immediate since an increase in y has both a direct effect on q

and the effect operating through u. The total derivative of F with respect to y is written as

dF

dy
=

∂F

∂q

dq

dy
=

∂F

∂q

(

∂q

∂y
+

∂q

∂u

∂u

∂y

)

. (16)

Appendix D shows that dq/dy is ambiguous throughout the city, which leads to ambiguous

F changes at all locations.9 Our numerical examples below show, however, that q rises and

population density falls as y increases at all locations under reasonable parameter values,

leading to larger vehicles throughout the city.

The comparative static results discussed so far are summarized as follows:

Proposition 1 The effects of increases in population, agricultural rent, and consumer in-

8The vehicle-type choice problem in section 2.1 does not involve consumer income.
9In the standard model, q rises at central locations as y increases, but the change in q in response to the

increase in y is ambiguous in the other parts of the city. In our model, however, the q change is ambiguous
even at the city center because the convenience-related benefit from a higher q drives up the bid-rent further
than in the standard model, which results in ambiguous p and q changes at the city center.
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come on utility and city size are qualitatively the same as in the standard model. Increases

in population and agricultural rent, by making the city denser, reduce vehicle size and thus

raise fuel efficiency throughout the city. An increase in consumer income has an ambiguous

effect on vehicle fuel efficiency at all locations.

3.3 The effect of an increase in unit cost of driving inconvenience

We now investigate the effects of an increase in commuting cost per mile. In our model,

the increased commuting cost per mile comes from an increase in α, a component of t =

αI(ℓ, F (ℓ)) + F (ℓ). As easily predicted, a higher α value is associated unambiguously with

a lower utility level, so that ∂u/∂α < 0. However, the effect of an increase in α on the

city’s spatial size is ambiguous, unlike in the standard urban model, where the city shrinks

spatially in response to an increase in commuting cost per mile.

We formally show below how an increase in α can actually lead to spatial expansion of

the city. But here is a brief interpretation. The increase in α creates two opposite forces

that operate through the choices of location and land consumption. First, an increase in

commuting cost per mile makes commute trips of any given length more expensive, with the

result that the city center becomes more attractive while the suburbs become less attractive.

Furthermore, the household’s disposable income decreases at any given location. Therefore,

the resident would choose to consume less space in response.10 Consequently, the city tends

to shrink in response to an increase in commuting cost per mile.

However, there is an opposite force of the increase in α. Recall that commuting cost

per mile decreases with q through the convenience-related advantage in a less dense area

(tq = αIℓ < 0). The parameter α determines the magnitude of this convenience-related

advantage. Specifically, as α increases, the convenience-related advantage in the less dense

10But, not all residents decrease their space consumption. Based on the analysis of the standard urban
model (Brueckner (1987)), an increase in commuting cost per mile raises the rent at central locations while
lowering the rent at more distant locations, inducing a clockwise rotation of the bid-rent curve. Consequently,
housing consumption decreases in the central city, but the effect on land consumption in the suburbs is
ambiguous. In our model, the effect of an increase in α on bid-rent at the old x̄ is ambiguous, so the effect
on land consumption in the outer part of the city is still ambiguous.
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area gets larger. As α increases, the higher q in the suburbs and the resulting better driving

condition becomes more important to the resident in the choice of location. This is another

effect of the increase in α, which makes consumers prefer the wider spaces and pulls them

toward the suburbs. If this second effect of α dominates, the city size may actually increase

in response to an increase in α.11

The effect of α on x̄ depends on how rapidly driving inconvenience falls moving to-

ward the suburbs. Note that dI/dx is in fact negative, which is easily seen by dI/dx =

(Iℓ + IFFℓ) (∂q/∂x) < 0. The claim is that the city’s spatial expansion with the increase in

α (∂x̄/∂α > 0) is more likely to occur when driving inconvenience falls faster as x increases,

so that the gap between driving inconvenience at any given location and at the urban fringe

(I − Ī) becomes larger.

We now turn to analysis of the effect of an increase in α on vehicle sizes. The parameter

α has a direct influence on F as well as an indirect influence, which works through q (= ℓ).

Moreover, an increase in α has both a direct effect on q and the effect operating through u.

The total derivative of F with respect to α is given by

dF

dα
=

∂F

∂α
+

∂F

∂q

dq

dα
=

∂F

∂α
+

∂F

∂q

(

∂q

∂α
+

∂q

∂u

∂u

∂α

)

. (17)

Appendix E shows that the total effect of an increase in α on F is ambiguous throughout

the city, as was the effect of y.

The comparative static results with respect to α are summarized as follows:

Proposition 2 Higher commuting cost from an increase in the unit cost of driving incon-

venience reduces the utility level. However, its effect on the city’s spatial size is ambiguous.

11By the convenience-related benefit in less-dense areas, we mean that “per mile” cost of commuting
declines moving toward the less-dense suburban location, which is seen by dt/dx = tq(∂q/∂x) < 0. The
direction of the total commuting cost, d(tx)/dx = t+ tq(∂q/∂x)x, is analytically ambiguous. But, according
to our numerical results, the total commuting cost increases with x, but at a diminishing rate due to the
property of dt/dx < 0. Indeed, the property that “per mile” cost of commuting declines with an increase in
x is sufficient to generate the second force. The direction of the total commuting cost is not related to the
second force.
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The city may spatially expand with the increase in α when the gap between driving inconve-

nience at any given location and at the urban fringe (I− Ī) is large. The effect of an increase

in α on vehicle fuel efficiency is ambiguous at all locations.

Proof. See Appendix C.

Thus, the model’s notable difference from the standard model is the effect of α on city

size. An increase in α heightens the convenience advantage of the suburbs, with the gain

related to the magnitude of I − Ī. A large gain in the suburbs (large I − Ī) pulls people

toward the suburbs more strongly, raising the possibility that x̄ rises with α.

The potential positive influence of α on x̄ suggests that the increase in α could help

explain the post war suburbanization in the US. A declining commuting cost per mile, the

standard explanation for suburbanization, has drawbacks as an explanation for the post war

pattern. The reason is that the time cost of commuting, the largest portion of transport cost,

would have increased over this period as a result of secular wage increases, perhaps causing

commuting cost to rise rather than fall, despite investment in transportation infrastructure

(Anas, Arnott, Small (1998)). Our model overcomes this challenge faced by the standard

model by suggesting that an increased unit cost of driving inconvenience, which may be

associated with the increased time cost of travel, would contribute to urban sprawl.

However, our claim about the effect of an increase in α on city size may face a challenge.

Our commuting cost function depends on density only at the residential location, so it cannot

fully account for driving inconvenience along the whole route. In effect, our framework uses

population density at the residential location as a proxy for the average density along the

commute route. Denoting the average density the consumer encounters along the commute

route by Da, a possible representation for the total commuting cost would then be t(Da)x.
12

The use of t(D)x as the total commuting cost, instead of t(Da)x, simplifies the analysis,

allowing derivation of results. But, the property that induces urban sprawl by pulling con-

sumers to the suburban location would be the same regardless of whether t(D)x or t(Da)x is

12Alternatively, the total commuting cost would be gotten by integrating t over the entire route, which
equals

∫ x

0
t(D)dx. But, this representation would be much harder to handle analytically.
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used. The reason is that commuting cost per mile, t(Da), also falls with x because average

density the consumer encounters along the route will also fall as the consumer resides farther

from the center. This property, i.e., dt/dx < 0, is sufficient to generate the second force (see

footnote 11).

Nevertheless, the convenience benefit from residing farther toward the suburban location

may still be over-stated under our framework. Our commuting cost function, however,

may have some support from empirical perspective. According to Baum-Snow (2010), for

example, commute trips from suburban residences to other suburban areas have increased

drastically while commute trips from suburbs to city centers have declined. This change in

commute patterns has been associated with employment decentralization since 1950, with

polycentric cities becoming a more relevant feature of modern urban landscapes. Accounting

for this recent pattern of job decentralization, density at the residential location may properly

capture the driving inconvenience the consumer encounters.

4 Numerical Examples

Through the numerical analysis, we first investigate the effect of an increase in α on x̄,

which was ambiguous in general. Specifically, we want to see whether an increase in α can

actually lead to the spatial expansion of the city. The results below show that an increase in

α may lead to the increase in x̄ depending on the parameter values. Second, recall that the

effects of increases in y and α on F were analytically ambiguous at all locations. To clear

up the ambiguities, we draw F gradients, which plot the optimal F values at each x, and

see how the F gradients shift as y or α changes. Finally, we investigate the responsiveness

of x̄ to an increase in y, and see how the responsiveness changes as α changes.
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4.1 Functional form assumptions

4.1.1 Commuting cost function

Driving inconvenience, Ĩ(D,F ), is assumed to take a parametric form, b − d(
√
F )/D.

Note that this functional form satisfies all the maintained assumptions about Ĩ (ĨD > 0,

ĨF < 0, ĨFF > 0, ĨFD > 0). Then, the commuter minimizes α
[

b− d(
√
F )/D

]

+F by choice

of F . Solving this problem yields the following optimal vehicle size:

F =
α2d2

4

1

D2
=

α2d2

4
q2. (18)

We can observe that the optimal F is a decreasing function of D and thus an increasing

function of q. Substituting the optimal F into the commuting cost per mile yields t(q) =

αb − α2kq2, where k ≡ d2/4. Since tα = I > 0 must hold, when we choose values of α in

t(q), we limit the choice of α to those values where t(q) is increasing in α. In other words, α

values that generate tα (= b− 2αkq2) < 0 at any x are excluded. Note that tq (= −2α2kq)

is negative.

4.1.2 Utility function

Consumers are assumed to have Cobb-Douglas preferences over land, q, and the non-

housing good, c, with the utility function given by v(c, q) = c1−γqγ. The budget constraint

is c+ pq = y − t(ℓ)x. Since the influence of the q choice made by each resident is neglected,

commuting cost per mile is fixed at t. Maximizing utility and substituting for t using

t(q) = αb− α2kq2, the demand for q is then given by

q =
γ [y − (αb− α2kq2)x]

p
. (19)
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The second equilibrium condition, which requires that all residents in the city attain the

same utility level, is written

[

y − (αb− α2kq2)x− pq
]1−γ

qγ = u. (20)

Substituting p from (19) into (20) yields

(1− γ)1−γ
[

y − (αb− α2kq2)x
]1−γ

qγ = u. (21)

If all exogenous parameters are given, q is implicitly determined in (21) and the determined

q uniquely determines p from (19).

4.1.3 Parameter values

The numerical examples shown below rely on exogenous parameter values, given as fol-

lows. Following Brueckner (2007), the housing exponent γ in the Cobb-Douglas utility is set

at 0.15.13 Income (y) is set at $50000 per year, a figure approximately equal to the sample

average from the 2001 National Household Travel Survey. Agricultural rent (pA) is set at

$4 per square foot per year, which is equivalent to $500 per month for 1500 square feet of

housing. The urban population (L) is set at 1 million.

The initial parameter values in the commuting cost function are given as follows. The

baseline value of α is set at 0.012. The value of b is 100000 and k is set at 1.2. According

to this initial parameterization, the household living in 3 miles away from the CBD and

living in 1650 square feet of housing will spend about $1400 for fuel consumption per year.

The corresponding driving inconvenience (αI) amounts to about $800 per year. With these

parameters, the commuting cost per mile is t = 1200− 0.0001728q2.

13We also used a γ value of 0.2, and the results were qualitatively the same as in the case of γ = 0.15.
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4.1.4 Finding the equilibrium

The procedure for finding the equilibrium works as follows. The city is divided into

narrow, discrete rings indexed by i. The continuous distance measure x is replaced by xi

using the ring subscript i. Each ring has a small value of width ǫ, yielding the relationship,

xi = ǫi. Using this discrete distance measure, the endogenous variables, p(x) and q(x), can

also be replaced by pi and qi.

First, we generate land consumption at each xi, denoted by qi, from the equilibrium

condition (21). We can also generate pi at each xi from the equilibrium condition (19) using

the generated qi. Then, we find x value where the entire population fits in the city (i.e., x̄).

From the equilibrium condition (9), we find a value i∗ such that for i∗,
∑i∗

i=1

(

xi

qi

)

ǫ ≤ L/2π

and for i∗ + 1,
∑i∗+1

i=1

(

xi

qi

)

ǫ > L/2π, indicating that the city population just fits inside xi∗ .

In this way, we find x̄, which is equivalent to xi∗ = ǫi∗.

Note that the endogenous utility level, u, was predetermined before this numerical calcu-

lation was implemented. If the calculated x̄ does not satisfy the land-rent-equality condition

(10), the predetermined u is adjusted until we get a value where the equilibrium condition

(10) is satisfied. In this way, we can find a pair of equilibrium values of u and x̄, which

correspond to given parameter values.

4.2 Numerical results

First, we check whether the sufficient condition for negative ∂p/∂u, i.e., p + tqx ≥ 0, is

satisfied at all x. As seen later in Table 3, p + tqx is consistently greater than zero at all α

values used, satisfying the sufficient condition in our numerical examples.

4.2.1 Effects of income and unit cost of inconvenience on vehicle size

Figure 1 shows the F gradients (F as a function of x) drawn at different y values to

see how the F gradient moves as y increases. The influence of income on vehicle size is

analytically ambiguous at all locations, as shown in Proposition 1. But, from our numerical

22



results, we observe that vehicle size (F ) increases at all locations in response to an increase

in income (y). The figures are drawn from the baseline parameter values mentioned above.

But, to check for the possibility that the other parameters affect the result, we used different

sets of parameter values, and the result was robust. Thus, the numerical results indicate

that an increase in consumer income induces lower densities (higher q) throughout the city,

which leads to higher vehicle sizes at all locations.

Figure 2 shows the F gradients drawn at different α values, with the other parameters

being fixed. The influence of α on vehicle size is also analytically ambiguous. Under our rea-

sonable parameter ranges, however, vehicle size (F ) increases at all locations as α increases.

The positive direct effect (∂F/∂α > 0) thus dominates the indirect effect, which operates

through density (see Appendix E).

[Figure 1, 2 about here]

4.2.2 Effects of population, agricultural rent, and income on city size

Table 1 shows the effects of increases in L and pA on u and x̄, and the numerical results

confirm the analytical results derived above. Table 2 shows the effects of an increase in y on

x̄, evaluated at different α values. We can see that an increase in x̄ from an increase in y

is larger at higher α values, suggesting that the urban sprawl force of y is accentuated as α

increases. From this finding, the presence of driving inconvenience in our model, interacted

with rising incomes, may be claimed as a potential source of urban sprawl.

[Table 1, 2 about here]

4.2.3 Effects of unit cost of inconvenience on city size

Table 3 shows the comparative statics with respect to α. The values of the parameter α

range from 0.01000 to 0.01350 in increments of 0.00025, so that we have 15 observations.14

14The α values beyond 0.01350 are excluded because those α values generate the negative driving in-
convenience at some x. Likewise, α values below 0.01000 are unlikely since the corresponding driving
inconveniences are too high compared to monetary costs.
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Our first finding is that the utility level (u) globally decreases as α increases over the included

range (i.e., a ∈ [0.01000, 0.01350]). This is consistent with the model prediction.

Next, we find that x̄ decreases as α increases until α reaches 0.01200. But, x̄ increases

as α increases over the range α ∈ [0.01225, 0.01350]. Figure 3 shows the urban size (i.e.,

x̄) that corresponds to each α value. Accordingly, the curve in Figure 3 is U-shaped. The

corresponding αI, F , and t (= αI + F ), evaluated at x = 3, are presented in Table 3. The

relative magnitudes of αI and F are reasonable over the range α ∈ [0.01225, 0.01350], where

∂x̄/∂α is positive.

Table 3 also presents the gap between driving inconvenience evaluated at x = 0, denoted

by I(0), and driving inconvenience at x̄, denoted by Ī. We observe that I(0) − Ī is higher

over the range α ∈ [0.01225, 0.01350], where ∂x̄/∂α is positive, compared to when ∂x̄/∂α is

negative. Thus, the numerical results confirm the analytical prediction that urban sprawl in

response to an increase in α is more likely to occur when the gap between I at any given

location and Ī is larger.

[Figure 3, Table 3 about here]

5 Heterogeneity of households

The analysis so far assumes that households are homogeneous in all aspects such as income

and driving inconvenience. In this section, we ask which part of the city would be occupied by

different types of households. The standard theory of location by heterogeneous households

focuses on income differences across households and suggests that the relative magnitudes of

the income elasticity of land demand and the income elasticity of the time cost of commuting

determine location patterns (Wheaton (1977), Glaeser, Khan, Rappaport (2008)). In this

model, we focus on the role of the unit cost of inconvenience, α, on the location pattern.

We might expect that the importance of driving inconvenience, as captured by α, may differ

across heterogeneous households. While the comparative static analysis in Section 3 helps
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to explain the role of α in determining intercity differences in urban spatial structure, the

analysis of heterogeneous households focuses on the role of α in explaining the residential

location pattern within the city.

Suppose that there are two groups of households, who have different α values, with

αH > αL.15 Let pH(x) denote the bid-rent for the αH group and pL(x) denote the bid-

rent for the αL groups. Then, the group with a higher bid-rent at a given location will

occupy the land at that location. Let x̂ denote the boundary between the areas, satisfying

pH(x̂) = pL(x̂). Then, the usual approach is to compare the slopes of the bid-rent functions

evaluated at x̂. If p′H(x̂) < p′L(x̂), then the bid-rent curve for the αH group is steeper,

implying that the αH group occupies locations with x < x̂ and the αL group occupies

locations with x > x̂. If p′H(x̂) > p′L(x̂), the residential pattern is reversed. Due to the

complexity of the bid-rent slope in this model (see (6)), however, we cannot analytically

compare the magnitudes of the bid-rent slopes for the two groups.16 Thus, we carry out a

numerical analysis.

Even though the closed city model has been used in the analysis so far, the simpler

open-city model, where utility is exogenous, can be used to investigate the group location

pattern. The lessons learned will also apply to a closed-city model with two income groups,

where the equilibrium is harder to compute. Under the open-city assumption, the endogenous

population automatically satisfies the population-fits-inside-city condition (9) once u is given.

But, the utility values for the two groups must be chosen to make sure that the two groups

coexist in the city, with each being the highest bidder for some of the land. We adjust the

utilities so that each group’s population is around the half of the entire population.

The parameters are set at the baseline values shown in Section 4.1.3. Figure 4 shows the

bid-rent curves with α values of 0.009 and 0.012.17 As can be seen, the bid-rent curve of

15Since tα = I > 0, tH > tL follows.
16The reason is that the q choices for the two groups cannot be analytically ordered. Other components

in (6) further complicate ordering of the bid-rent slopes.
17The utility for the group with α = 0.009 is set at 25230, and the utility for the group with α = 0.012 is

set at 25105.
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the αH group is steeper than that of the αL group. So, consumers with the higher α will

occupy the central part of the city, where x < x̂ while consumers with the lower α occupy

the suburbs, where x > x̂ (in Figure 4, x̂ is 1.86). This result is natural since a higher α

value means a higher commuting cost per mile. The source of a higher commuting cost per

mile, which is α here, is different from that in the standard model. Nevertheless, the city

center is more attractive to households with the higher commuting cost per mile, so they

occupy it.

However, a different location pattern can emerge for a different range of α values. Figure

5 depicts the pattern when the parameters are set at αL = 0.012 and αH = 0.0135.18 This

α range contains the urban-sprawl-inducing α values, i.e., α values inducing ∂x̄/∂α > 0, in

Section 4.2.3. For α’s in this range, consumers with the higher α value both locate at the

city center and at the edge of the city while consumers with the lower α locate in middle

part of the city. So, there are two boundaries, with x̂1 = 1.45 and x̂2 = 3.368 in Figure 5.

So, the αH group occupies both locations where x < 1.45 and locations where x > 3.368

while the αL group occupies the intermediate locations, where 1.45 < x < 3.368.

Since commuting cost per mile is still higher for consumers with the higher α, they outbid

the low-α households at the city center. As before, consumers with the higher unit cost of

driving inconvenience want to reduce commute time by living near the city center. But,

these same consumers also flock to the suburban area, where inconvenience cost is lower

because of low densities, outbidding the low-α consumers for suburban locations. Therefore,

higher-α consumers are found both near the city center and in the suburbs when the α’s lie

in this higher range.

[Figure 4, 5 about here]

Finally, we investigate the vehicle choice pattern in a city where households have hetero-

geneous α values. Once the residential pattern is determined as shown above, households

adjust their vehicles to their residences. Figure 6 shows the F gradient when the parameters

18The utilities for the αL group and for the αH group are set at 25105 and 25065, respectively.
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are set at αL = 0.009 and αH = 0.012. Vehicle size (F ) tends to increase with x because

density falls as x is higher. But, the αH group, who occupies the central locations, tends to

choose bigger vehicles, reflecting the direct effect of the higher α (see Appendix E). So, the

F gradient is discontinuous at x̂, as shown in Figure 6. Figure 7 shows the F gradient when

the parameters are set at αL = 0.012 and αH = 0.0135. It is analytically clear that the αH

group occupying suburban locations where x > x̂2 would choose bigger vehicles than any

other households in the city. Since the residential pattern changes twice, the F gradient is

discontinuous both at x̂1 and at x̂2, as shown in Figure 7.

[Figure 6, 7 about here]

6 Conclusion

This paper has proposed a modified monocentric city model that incorporates the con-

sumer’s vehicle choice problem. The interdependency between residential density and com-

muting cost enables us to represent a city’s vehicle fuel efficiency as a function of exogenous

characteristics such as population and agricultural rent. Comparative static analyses suggest

that the qualitative properties of the present model are quiet similar to those of the standard

model. One notable difference from the standard model comes in the effect of an increase in

commuting cost per mile. Unlike the standard model, where an increase in commuting cost

per mile leads to shrinkage of the city, our model suggests that an increase in commuting

cost per mile, especially from increased unit cost of driving inconvenience, may cause the city

to expand. This finding may overcome a limitation of the standard commuting-cost-based

explanation for suburbanization.

We finally offer some comments about the efficiency implications of our model. In the

model, each resident takes residential density and consequently commuting cost per mile

as fixed. Since an individual household disregards the potential positive external effect

of consuming more space on commuting cost per mile, individual land consumption tends
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to be inefficiently small compared to the socially optimal level.19 However, there is an

opposing externality that leads to the reverse kind of inefficiency. In particular, the use of

less fuel-efficient vehicles generates higher social costs through greater pollution, an effect

that is ignored by consumers and not explicitly present in the model. Since people tend to

choose less fuel-efficient vehicles when their neighborhood density is lower, additional space

consumption may then generate unpriced social costs. With these offsetting effects present,

the direction of inefficiency in our model is unclear.

A related ambiguity arises in the model Riley (1974). In his model, a road-congestion ex-

ternality is present, but he also discusses an additional pollution externality. Because greater

space consumption causes the city to spread out and makes commutes trips longer, it raises

the amount of pollution generated. However, Riley argues that the difference between the

city where this externality is corrected by a location-specific pollution tax on each driver

and one where it is left uncorrected is unclear. Shorter trips would beneficially reduce pollu-

tion, making greater centralization optimal, but Riley’s assumption that pollution damage

depends on local traffic density, which is lower in the suburbs, might make it optimal for

city to be less rather than more centralized.

Although this ambiguity involves the spatial effects of correcting a single externality

(pollution), the ambiguity in our model is different, being due to the interaction of two

different externalities, the external effect of land consumption on driving inconvenience,

and effect of vehicle size on air pollution. Regardless, it seems worthwhile to research this

topic further, following Riley’s lead. Specifically, we may compare the equilibrium urban

spatial structure in our model to the optimal structure, both with and without a pollution

externality. This exercise would enable us to discuss the welfare implications of recent fuel

efficiency regulations, such as the Corporate Average Fuel Economy (CAFE) standards.

19As a similar view, Brueckner and Largey (2008) point out that, because the household would fail
to consider the external effect of consuming more land, the resulting density externality involving social
interaction gives rise to inefficiently high density, which leads to a less social interaction than the socially
desirable level.

28



References

Anas, A., Arnott, R., Small, K., 1998. Urban spatial structure. Journal of Economic Liter-

ature 36, 1426-1464.

Arnott, R., 1979. Unpriced transport congestion. Journal of Economic Theory 21, 294-316.

Badoe, D., Miller, E., 2000. Transportation-land use interaction: empirical findings in North

America, and their implications for modeling. Transportation Research D 5, 235-263.

Baum-Snow, N., 2007. Did highways cause suburbanization? Quarterly Journal of Eco-

nomics 122, 775-805.

Baum-Snow, N., 2010. Changes in transportation infrastructure and commuting patterns in

U.S. metropolitan areas, 1960-2000. American Economic Review Papers & Proceedings 100,

378-382.

Bento, A.M., Cropper, M.L., Mobarak, A.M., Vinha, K., 2005. The impact of urban spatial

structure on travel demand in the United States. Review of Economics and Statistics 87,

466-478.

Boarnet, M.G., Sarmiento, S., 1998. Can land-use policy really affect travel behavior? A

study of the Link between non-work travel and land-use characteristics. Urban Studies 35,

1155-1169.

Boarnet, M., Crane, R., 2001. The influence of land use on travel behavior: Specification

and estimation strategies. Transportation Research Part A 35, 823-845.

Brownstone, D., Golob, T.F., 2009. The impact of residential density on vehicle usage and

energy consumption. Journal of Urban Economics 65, 91-98.

Brueckner, J.K., 1987. The structure of urban equilibria: A unified treatment of the Muth-

Mills model. Handbook of Regional and Urban Economics Vol. II, 821-845.

29



Brueckner, J.K., 2001. Urban sprawl: Lessons from urban economics. Brookings-Wharton

papers on urban affairs, Brookings Institution, Washington, D.C., 65-89.

Brueckner, J.K., 2007. Urban growth boundaries: An effective second-best remedy for un-

priced traffic congestion? Journal of Housing Economics 16, 263-273.

Brueckner, J.K., Largey, A., 2008. Social interaction and urban sprawl. Journal of Urban

Economics 64, 18-34.

Fang, A., 2008. A discrete-continuous model of households’ vehicle choice and usage, with

an application to the effects of residential density. Transportation Research B 42, 736-758.

Gillingham, K., 2010. How do consumers respond to gasoline price shocks? Heterogeneity in

vehicle choice and driving behavior. Working paper.

Glaeser, E.L., Kahn, M.E., 2004. Sprawl and urban growth. Handbook of Regional and

Urban Economics Vol IV, 2481-2527.

Glaeser, E.L., Kahn, M.E., Rappaport, J., 2008. Why do the poor live in cities? The role of

public transportation. Journal of Urban Economics 63, 1-24.

Kahn, M., 2000. The environmental impact of suburbanization. Journal of Policy Analysis

and Management 19, 569-586.

Kim, J., Brownstone, D., 2012. The impact of residential density on vehicle usage and fuel

consumption: Evidence from national samples. Working Paper.

Klier, T., Linn, J., 2011. Corporate average fuel economy standards and the market for new

vehicles. Federal Reserve Bank of Chicago Working paper.

Levinson, D. M., Kumar, A., 1997. Density and the journey to work. Growth and Change

28, 147-172.

30



Newman, P., Kenworthy, J.R., 1989. Gasoline consumption and cities: A comparison of US

cities in a global survey. Journal of the American Planning Association 55, 24-36.

Newman, P., Kenworthy, J.R., 1999. Costs of automobile dependence: Global survey of

cities. Transportation Research Record 1670, 17-26.

Parry, I. W. H., Walls, M., Winston, H., 2007. Automobile externalities and policies. Journal

of economic literature 45, 373-399.

Pines, D., Sadka, E., 1985. Zoning, first-best, second-best and third-best criteria for allocat-

ing for roads. Journal of Urban Economics 17, 167-183.

Pines, D., Sadka, E., 1986. Comparative statics analysis of a fully closed city. Journal of

Urban Economics 20, 1-20.

Riley, J.G., 1974. Optimal residential density and road transportation. Journal of Urban

Economics 1, 230-249.

Schimek, P., 1996. Household motor vehicle ownership and use: How much does residential

density matter? Transportation Research Record 1552, 120-125.

West, S., 2004. Distributional effects of alternative vehicle pollution control policies. Journal

of Public Economics 88, 735-757.

Wheaton, W.C., 1974. A comparative static analysis of urban spatial structure. Journal of

Economic Theory 9, 223-237.

Wheaton, W.C., 1977. Income and urban residence: An analysis of consumer demand for

location. American Economic Review 67, 620-631.

Wheaton, W.C., 1998. Land use and density in cities with congestion. Journal of Urban

Economics 43, 258-272.

31



A The influences of y, α, and u on p and q

Totally differentiating (3) and (4) with respect to each parameter and rearranging the

terms provides the necessary partial derivatives. The expressions of ∂p/∂θ, where θ = y, α,

are given as follows:

∂p

∂y
=

1

q

[

η
tqx

q
+ η

]

> 0, (22)

∂p

∂α
= −tαx

q

[

η
tqx

q
+ η

]

< 0, (23)

where tα = I > 0, tq = αIℓ < 0, and η ≡ ∂MRS/∂q|v=u < 0. The effects of the

parameters on q are exactly the substitution effect of the associated changes in p, with

∂q/∂θ = (∂p/∂θ)(1/η), where θ = y, α.

Next, ∂q/∂u and ∂p/∂u are as follows:

∂q

∂u
=

[

− 1

qvc
− ∂MRS

∂c

1

vc

]

[

1
tqx

q
+ η

]

, (24)

∂p

∂u
= − 1

qvc

[

η − ∂MRS
∂c

tqx
tqx

q
+ η

]

. (25)

∂q/∂u > 0 holds given ∂MRS/∂c > 0 under the normality of q. For ∂p/∂u to be neg-

ative, as in the standard model, we need η − (∂MRS/∂c)tqx < 0. To check whether

η − (∂MRS/∂c) tqx < 0 holds, η is written as

η ≡ ∂MRS

∂q

∣

∣

∣

∣

v=u

=
∂MRS

∂q
− ∂MRS

∂c
MRS. (26)
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Using (26) and the first order condition (MRS = p), we have

η −
(

∂MRS

∂c
tqx

)

=
∂MRS

∂q
− ∂MRS

∂c
(p+ tqx) . (27)

Since ∂MRS/∂q < 0 and ∂MRS/∂c > 0 under the normality of q and c, (27) is negative

if p + tqx ≥ 0, making ∂p/∂u negative, as in the standard model. The sufficient condition

p + tqx ≥ 0 is thus the key for the consistency (i.e., ∂p/∂u < 0) with the standard model.

This sufficient condition is reasonable, as explained earlier.

B Proof of ∂u/∂y > 0 and ∂x̄/∂y > 0

Totally differentiating (9) with respect to y gives

∂x̄

∂y

x̄

q̄
+

∫ x̄

0

{(

− x

q2

)

∂q

∂u

∂u

∂y
+

(

− x

q2

)

∂q

∂y

}

dx = 0. (28)

Totally differentiating (10) with respect to y, and evaluating at x̄ gives

∂x̄

∂y
= −

(

∂p̄

∂x

)

−1
∂p̄

∂u

∂u

∂y
−

(

∂p̄

∂x

)

−1
∂p̄

∂y
. (29)

Substituting (29) into (28), and rearranging terms yields the following result:

∂u

∂y
= −

(

∂p̄

∂x

)−1
(

∂p̄

∂y

)

x̄
q̄
+
∫ x̄

0

x
q2

∂q

∂y
dx

(

∂p̄

∂x

)−1 ( ∂p̄

∂u

)

x̄
q̄
+
∫ x̄

0

x
q2

∂q

∂u
dx

> 0. (30)

Next, by multiplying (29) by −∂p̄/∂x, we can see that ∂x̄/∂y has the same sign as

∂p̄

∂u

∂u

∂y
+

∂p̄

∂y
. (31)
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Then, by substituting (30) into (31) and multiplying it by the denominator of (30), which is

positive, we can see that ∂x̄/∂y has the same sign as

∫ x̄

0

x

q2

(

∂q

∂u

∂p̄

∂y
− ∂q

∂y

∂p̄

∂u

)

dx. (32)

Then, by substituting (22), (24), and (25) into (32), we can see that ∂x̄/∂y has the same

sign as the following:

∫ x̄

0

η̄

q

(

1

v̄c
− 1

vc

)

dx+

∫ x̄

0

(

−∂MRS

∂c

1

vc
η̄ − 1

qv̄c

¯∂MRS

∂c
t̄qx̄

)

dx. (33)

The second term in (33) is positive under the normality of q and convex indifference curves.

The first term in (33) is also positive since ∂vc/∂x is positive. Thus, we have ∂x̄/∂y > 0.

C Proof of Proposition 2

Totally differentiating (9) with respect to α gives

∂x̄

∂α

x̄

q̄
+

∫ x̄

0

{(

− x

q2

)

∂q

∂u

∂u

∂α
+

(

− x

q2

)

∂q

∂α

}

dx = 0. (34)

Totally differentiating (10) with respect to α and evaluating at x̄ yields

∂x̄

∂α
= −

(

∂p̄

∂x

)

−1
∂p̄

∂u

∂u

∂α
−

(

∂p̄

∂x

)

−1
∂p̄

∂α
. (35)

Substituting (35) into (34) and rearranging terms yields

∂u

∂α
= −

(

∂p̄

∂x

)−1 ( ∂p̄

∂α

)

x̄
q̄
+
∫ x̄

0

x
q2

∂q

∂α
dx

(

∂p̄

∂x

)−1 ( ∂p̄

∂u

)

x̄
q̄
+
∫ x̄

0

x
q2

∂q

∂u
dx

< 0. (36)
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By multiplying (35) by −∂p̄/∂x, we can see that ∂x̄/∂α has the same sign as

∂p̄

∂u

∂u

∂α
+

∂p̄

∂α
. (37)

By substituting (36) into (37) and multiplying it by the denominator of (36), we can see

that ∂x̄/∂α has the same sign as

∫ x̄

0

x

q2

(

∂q

∂u

∂p̄

∂α
− ∂q

∂α

∂p̄

∂u

)

dx. (38)

By substituting (23), (24), and (25) into (38), and rearranging the terms, we can see that

∂x̄/∂α has the same sign as

∫ x̄

0

η̄

q

x̄

vc

[

t̄α − tα

(

x/v̄c
x̄/vc

)]

dx+

∫ x̄

0

(

t̄αx̄η̄
∂MRS

∂c

1

vc
+ tαx

1

qv̄c

¯∂MRS

∂c
t̄qx̄

)

dx. (39)

The second term in (39) is clearly negative under the conditions of normality of c and convex

indifference curves. However, the first term in (39) is potentially positive because t̄α (= Ī)

is smaller than tα (= I) at all x. Recall that dI/dx < 0 holds, making Ī < I at all x.

Although the first term in (39) is ultimately ambiguous because (x/v̄c)/(x̄/vc) is between

zero and one, the claim is that, as the gap between Ī and I at any given x is larger, making

Ī − I strongly negative, the first term in (39), which is potentially positive, may dominate,

tending to make ∂x̄/∂α > 0.

D Derivation of the sign of dq/dy

To investigate the influence of y on q, it is helpful to look at the change in p in response

to an increase in y by computing the following:20

dp̃

dy
=

∂p̃

∂u

∂u

∂y
+

∂p̃

∂y
, (40)

20Investigating the sign of dq/dy directly leads to the same conclusion.
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where˜indicates that the variable is evaluated at x̃ satisfying 0 < x̃ < x̄.

Substituting ∂u/∂y from (30) into (40) and multiplying it by the denominator of (30),

which is positive, dp̃/dy has the same sign as

−
(

∂p̄

∂x

)

−1
x̄

q̄

(

∂p̃

∂u

∂p̄

∂y
− ∂p̃

∂y

∂p̄

∂u

)

+

∫ x̄

0

x

q2

(

∂q

∂u

∂p̃

∂y
− ∂q

∂y

∂p̃

∂u

)

dx. (41)

To investigate the sign of (41), by substituting (22), (24), and (25) into (41) and evaluating

the expression both at x̃ = 0 and x̃ = x̄, we observe that (41) is ambiguous at x̃ = 0 and

positive at x̃ = x̄. Thus, the change in p in response to an increase in y is ambiguous at x̃ = 0,

but p increases as y increases at x̃ = x̄. Note that dq/dy > 0 holds at any location where p

falls while the sign of dq/dy is ambiguous at locations where p rises, the standard result that

continues to hold in this model (see Brueckner (1987)). Therefore, dq/dy is ambiguous both

at x̃ = 0 and at x̃ = x̄. By continuity, the sign of dq/dy is ambiguous at any intermediate

locations. Therefore, the total influence of y on q is ambiguous at all locations in the city.

E Derivation of the sign of dF/dα

First, to determine the sign of the direct effect, i.e., ∂F/∂α, totally differentiating the

first-order condition for the vehicle choice problem, αĨF + 1, with respect to α and F yields

∂F

∂α
= − ĨF

αĨFF

> 0. (42)

This partial derivative sign implies that holding density fixed, a higher unit cost of driving

inconvenience leads to a higher F , which would reduce driving inconvenience.

Second, to determine the sign of dq/dα, we investigate the influence of α on p by com-

puting:

dp̃

dα
=

∂p̃

∂u

∂u

∂α
+

∂p̃

∂α
, (43)
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where˜indicates that the variable is evaluated at x̃ satisfying 0 < x̃ < x̄.

Substituting ∂u/∂α (36) into (43) and multiplying it by the denominator of (43), which

is positive, dp̃/dα has the same sign as:

−
(

∂p̄

∂x

)

−1
x̄

q̄

(

∂p̃

∂u

∂p̄

∂α
− ∂p̃

∂α

∂p̄

∂u

)

+

∫ x̄

0

x

q2

(

∂q

∂u

∂p̃

∂α
− ∂q

∂α

∂p̃

∂u

)

dx. (44)

To evaluate the sign of (44), substituting (23), (24), and (25) into (44), dp̃/dα is positive at

x̃ = 0 and dp̃/dα is ambiguous at x̃ = x̄. Note that q falls and thus D rises at any location

where p rises, which then tends to reduce F . But, together with the direct influence of α on

F from (42), the total effect of an increase in α on F is ambiguous at x̃ = 0. At x̃ = x̄, given

the ambiguity of the indirect influence of α on q, the total effect of an increase in F is also

ambiguous. By continuity, the sign of dF/dα is ambiguous at any intermediate locations.

Therefore, the total effect of an increase in α on F is ambiguous throughout the city.
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Table 1: Effects of increases in L and pA on u and x̄
u x̄

Variables From To ∆ From To ∆

L 1 million → 1.5 million 25106 24760 -346 4.2893 5.1622 0.8730
pA $4 → $4.5 25106 24520 -586 4.2893 3.9978 -0.2915
aOther parameters are set at α = 0.012, b = 100000, k = 1.2, and y = 50000.

Table 2: Effect of an increase in y on x̄, evaluated at varying α
x̄

Income (y) increases from $50000 to $52000 From To ∆

Effect evaluated at α = 0.0100 4.2969 4.4069 0.1100
Effect evaluated at α = 0.0110 4.2911 4.4053 0.1142
Effect evaluated at α = 0.0120 4.2893 4.4079 0.1187
Effect evaluated at α = 0.0130 4.2917 4.4148 0.1231
Effect evaluated at α = 0.0135 4.2944 4.4201 0.1256

aOther parameters are set at b = 100000, k = 1.2, pA = 4, and L = 1 million.

38



Table 3: The effect of an increase in α on endogenous variables
α 0.01000 0.01025 0.01050 0.01075 0.01100 0.01125 0.01150 0.01175 0.01200 0.01225 0.01250 0.01275 0.01300 0.01325 0.01350

Radius (x̄) 4.2969 4.2951 4.2937 4.2923 4.2911 4.2902 4.2895 4.2893 4.2893 4.2895 4.2899 4.2907 4.2917 4.2931 4.2944
Utility (u) 25189 25175 25163 25151 25140 25130 25121 25114 25106 25101 25096 25093 25090 25089 25088

F 324 340 357 374 391 409 427 446 466 486 506 527 548 571 593
αI 352 345 336 327 318 307 295 282 269 254 238 221 203 184 164

αI + F b,c 676 685 693 701 709 716 723 729 734 739 744 748 752 754 757
I(0)− Ī d 35030 36124 37215 38291 39355 40413 41464 42501 43537 44534 45528 46509 47477 48421 49340

p+ tqx at x = 1 e 4.87 4.86 4.85 4.84 4.83 4.82 4.80 4.79 4.77 4.75 4.73 4.70 4.68 4.65 4.62
p+ tqx at x = 3 3.20 3.14 3.07 3.01 2.95 2.88 2.81 2.74 2.67 2.59 2.51 2.43 2.35 2.27 2.19
p+ tqx at x̄ 2.17 2.08 1.99 1.89 1.79 1.69 1.59 1.49 1.38 1.27 1.16 1.04 0.92 0.80 0.68

aOther parameters are set at b = 100000, k = 1.2, y = 50000, pA = 4, and L = 1 million.
bThe variables are evaluated at x = 3.
cFuel consumption (F ) and driving inconvenience (αI) are dollar values of per mile and per year.
dI(0) denotes driving inconvenience evaluated at x = 0, and Ī denotes driving inconvenience at x̄.
eThis is presented to check p+ tqx ≥ 0, the sufficient condition for ∂p/∂u < 0.
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Figure 2: F gradient with varying alpha 
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Figure 6: F pattern in heterogeneous city 
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