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THE VALUE OF (BOUNDED) MEMORY IN A CHANGING WORLD

1. INTRODUCTION

This paper explores the value of memory in decision making in dynamic environments. In par-

ticular, we examine the decision problem faced by an agent with bounded memory who receives

a sequence of noisy signals from a partially observable Markov decision process: signals are infor-

mative about the state of the world, but this underlying state evolves in a Markovian fashion.

An example may help clarify the basic framework of our setting. Consider a firm that decides in

each period whether to produce a particular product or not. Demand for the product may be high

or low, but sales are only a stochastic function of demand. Thus, the firm’s profits depend on both

its decision and on the state of the world: if demand is high, then production yields (on average)

a high payoff, whereas if demand is low, production yields (on average) a low payoff. If the state

of the world is dynamic but not perfectly observable, how should the firm behave after a negative

shock? What about two negative shocks? More generally, how many signals does the firm need to

track in order to maximize its profits? We show that when the environment is sufficiently unstable

(but still persistent), only a single period of records is required.

We then study the optimal behavior in such an environment by a decision maker whose mem-

ory is exogenously constrained.1 Formally, our decision maker is restricted to a finite number of

memory states and must choose both a transition rule and an action rule.2 Characterizing the op-

timal behavior of an agent with cognitive limitations in dynamic environments may shed light on

the behavioral biases that are present in such settings.3 Moreover, such characterizations aid in

understanding when “simple” heuristics or plans perform well in dynamic environments.4

In our first result, we show that if the underlying environment is sufficiently unstable (but still

persistent), only two memory states are needed to reproduce the optimal behavior of an uncon-

strained Bayesian decision maker. This contrasts sharply with static, unchanging environments,

where replicating an unconstrained Bayesian decision maker requires an infinite number of mem-

ory states—see Hellman and Cover (1970) and Wilson (2004). This suggests that the importance of

additional memory stems primarily from its role in relatively stable environments. Even in those

environments, however, additional memory need not increase a decision maker’s payoff.

To make this point clear, our analysis proceeds by completely characterizing the optimal mem-

ory system for a decision maker who is restricted to a small memory of either two or three memory

states. We show that, regardless of the uncertainty inherent in the environment or the noisiness

of the signals, the optimal two-state memory deterministically uses the last observed signal as

a sufficient statistic for decision making. This contrasts with results from the bounded memory

1Other recent work in decision problems with limited memory includes Kocer (2010); Miller and Rozen (2012); Mul-
lainathan (2002); and Wilson (2004).
2Unlike models of bounded recall (see Lehrer (1988) or Aumann and Sorin (1989), among others) in which a decision
maker knows only a finite truncation of history, a decision maker with bounded memory has a finite number of states
that summarize all her information. Such models have been studied extensively in repeated-game settings: Kalai and
Stanford (1988); Neyman (1985); and Rubinstein (1986) are some of the early contributions to this literature, while
Compte and Postlewaite (2012b,a); Monte (2010); and Romero (2011) are more recent.
3For broad overviews of related work on bounded rationality and behavioral biases, the curious reader may wish to
consult Lipman (1995) or Rubinstein (1998), as well as the references therein.
4Kalai and Solan (2003) also consider a model of dynamic decision making with bounded memory, but focus on the
role and value of simplicity and randomization.
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literature, starting as early as Hellman and Cover (1970), suggesting that randomization can com-

pensate for memory restrictions. Indeed, Cover and Hellman (1971) show that, in a large class

of problems, a two-state memory employing randomization performs arbitrarily better than any

deterministic memory system. Similarly, Kalai and Solan (2003) show that randomization can

lead to payoff improvements over deterministic memory systems, even in highly separable Mar-

kovian environments. Our result contributes to this literature by demonstrating that, in certain

environments, randomization need not be beneficial.

Finally, we show that the optimal three-state memory involves randomization at the extremal

states when the environment is sufficiently persistent relative to the informativeness of signals;

this corresponds to the optimal memory system characterized by Hellman and Cover (1970) and

Wilson (2004), who studied the optimal bounded memory system in a setting where the under-

lying state of the world is perfectly persistent. As the degree of instability in the environment

increases, however, randomization is no longer optimal. More surprisingly, when the environ-

ment is sufficiently unstable (but still persistent), the third memory state becomes redundant—the

optimal three-state memory only makes use of two states. Thus, unlike much of the previous

literature on decision problems with bounded memory, the optimal memory system may not be

irreducible, and the decision maker’s optimal expected payoff need not be strictly increasing in

the bound on memory. Moreover, when restricting attention to irreducible memory systems that

make use of all states, the optimal expected payoff may not even be weakly monotonic in the num-

ber of possible memory states. Thus, the marginal value of additional memory states may be zero

or, in some circumstances, may even be negative.

2. MODEL

We consider the following single-agent decision problem. Let Ω := {H, L} denote the set of

states of the world, where H represents the “high” state and L represents the “low” state, and

let ρ0 ∈ [0, 1] be the decision maker’s ex ante belief that the initial state of the world is H. In

each period t ∈ N, the decision maker must take an action at ∈ A := {h, l}, and her objective

is to “match” the state of the world ωt. In particular, taking the action at in state ωt yields a

positive payoff (normalized to one) with probability π(at, ωt), and zero payoff with probability

1 − π(at, ωt), where

π(a, ω) :=

{
γ if (a, ω) ∈ {(h, H), (l, L)},

1 − γ otherwise.

Thus, if the action matches the state, a payoff of one is received with probability γ; and if the action

and state do not “match,” then the probability of receiving a positive payoff is 1 − γ. We assume

that γ ∈ ( 1
2 , 1), implying that receiving a positive payoff is an informative (but not perfectly so)

signal of the underlying state of the world.

We make the additional assumption that the state of the world may change in each period.5 In

particular, we assume that this evolution follows a Markov process with

Pr(ωt+1 = ωt) = 1 − α,

5This is the main contrast with the stationary models of, for instance, Hellman and Cover (1970) and Wilson (2004).
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where α ∈ (0, 1
2 ). The parameter α measures the persistence (or, inversely, the instability) of this

process: as α approaches 0, the state of the world is increasingly likely to remain the same from

one period to the next, while as α approaches 1
2 , the process governing the state of the world

approaches a sequence of independent flips of a fair coin.

To summarize, the timing of the problem in each period t ∈ N is as follows:

• Nature draws a state of the world ωt ∈ Ω, where Pr(ω1 = H) = ρ0 and, for all t > 1,

Pr(ωt = ωt−1) = 1 − α.

• The decision maker takes an action at ∈ A.

• A payoff πt ∈ {0, 1} is realized according to the distribution π(at, ωt).

• The decision maker observes the payoff πt, and we proceed to period t + 1.

We assume that the agent evaluates payoffs according to the limit of means criterion. In partic-

ular, the decision maker’s expected utility can be written as

U = E

[
lim

T→∞

1

T

T

∑
t=1

πt

]
.

The use of this payoff criterion allows us to focus on the accuracy of the decision maker’s learning

and the long-run “correctness” of her actions.6 Note that if γ were equal to one (that is, if payoffs

are perfectly informative about the state of the world), then the agent’s payoff is precisely the

long-run proportion in which her action is the same as the true state of the world. Payoffs are not

perfectly informative and γ < 1, however; thus, letting δ ∈ [0, 1] denote the long-run proportion

of periods in which the “matching” action is taken, the agent’s expected utility may be written as

U = γδ + (1 − γ)(1 − δ).

It is helpful to think of the decision maker’s payoffs πt as signals about the underlying state

of the world; in particular, we may classify action-payoff pairs as being either a “high” signal or

“low” signal. To see why, consider any belief ρt = Pr(ωt = H), and notice that

Pr(ωt = H|at = h, πt = 1) = Pr(ωt = H|at = l, πt = 0) =
ρtγ

ρtγ + (1 − ρt)(1 − γ)
;

thus, observing a payoff of 1 after taking action h provides exactly the same information as ob-

serving a payoff of 0 after taking action l. Moreover, observing either of these two action-payoff

pairs is more likely when the true state is H than when it is L, as

Pr(πt = 1|at = h, ωt = H)

Pr(πt = 1|at = h, ωt = L)
=

Pr(πt = 0|at = l, ωt = H)

Pr(πt = 0|at = l, ωt = L)
=

γ

1 − γ
> 1,

where the inequality follows from the fact that 1
2 < γ < 1. Symmetrically, observing a payoff of

1 after l or a payoff of 0 after h is more likely when the true state is L. Thus, we may partition

the set of possible action-payoff pairs into a signal space S := {H, L}, where s = H represents

6With discounting, the optimal bounded memory system will be somewhat present biased, with distortions that are
dependent on the decision maker’s initial prior. Kocer (2010, Lemma 1) suggests, however, that discounting and the
limit of means criterion are “close”—the payoff to the discounted-optimal memory system converges, as the discount
rate goes to zero, to the payoff to the limit-of-means-optimal memory system.
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the “high” action-payoff pairs {(h, 1), (l, 0)} and s = L represents the “low” action-payoff pairs

{(h, 0), (l, 1)}.

Finally, notice that the action taken by the agent does not affect either state transitions or infor-

mation generation—in the language of Kalai and Solan (2003), the decision maker faces a noninter-

active Markov decision problem.7 This lack of action-dependent externalities implies that, in each

period t, the agent will simply take the action that maximizes her expected period-t payoff alone.

Since γ >
1
2 , her (myopic) action rule, as a function of her beliefs ρt that ωt = H, is given by

a∗t (ρt) :=

{
h if ρt ≥ 1

2 ,

l if ρt <
1
2 .

3. MINIMAL MEMORY FOR UNSTABLE ENVIRONMENTS

Intuitively, one would presume that memory is an important and valuable resource in a deci-

sion problem. As first shown by Hellman and Cover (1970), the optimal payoff for a bounded

memory agent in a static environment is strictly increasing in her memory size. In our dynamic

setting, however, we show that for some parameter ranges, the (not-too-distant) past becomes

irrelevant, and the agent’s optimal choice of action depends only on the previous period. Specif-

ically, if the environment is sufficiently noisy or unstable, only a minimal memory (one bit, or,

equivalently, two memory states) is required in order to achieve the same optimal payoffs as a

perfectly Bayesian decision maker.

We begin by considering this decision problem from the perspective of a fully Bayesian agent

who has no constraints on her memory or computational abilities. Recall that ρt denotes the

agent’s belief that the state of the world is H at the beginning of period t. Then beliefs ρs
t+1 af-

ter a signal s ∈ S , taking into account the possibility of state transitions between periods, are

given by

ρH
t+1(ρt) =

ρtγ(1 − α) + (1 − ρt)(1 − γ)α

ρtγ + (1 − ρt)(1 − γ)
and ρL

t+1(ρt) =
ρt(1 − γ)(1 − α) + (1 − ρt)γα

ρt(1 − γ) + (1 − ρt)γ
.

Notice that ρH
t+1(ρ) + ρL

t+1(1 − ρ) = 1 for all ρ ∈ [0, 1], implying that Bayesian belief revision is

fully symmetric. Also, notice that ρs
t+1(0) = α and ρs

t+1(1) = 1− α for s = H, L; even if the agent is

absolutely sure of the state of the world in some period t, there will be uncertainty in the following

period about this state due to the underlying Markov process. Moreover, it is useful to note the

following result:

LEMMA 1. The decision maker’s period-(t+ 1) beliefs ρs
t+1(ρt) are strictly increasing in her period-t beliefs

ρt, regardless of the realized signal s ∈ S .

PROOF. Notice that

∂ρH
t+1(ρ)

∂ρ
=

γ(1 − γ)(1 − 2α)

(ργ + (1 − ρ)(1 − γ))2
and

∂ρL
t+1(ρ)

∂ρ
=

γ(1 − γ)(1 − 2α)

(ρ(1 − γ) + (1 − ρ)γ)2
.

Since 0 < α <
1
2 < γ < 1 and ρ ∈ [0, 1], each of these two expressions is strictly positive. �

7Therefore, this decision problem is very different from a multi-armed bandit problem and departs from the optimal
experimentation literature. See Kocer (2010) for a model of experimentation with bounded memory.
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With this in hand, it is straightforward to show that a Bayesian decision maker’s beliefs con-

verge to a closed and bounded “absorbing” set. In particular, we can pin down the upper and

lower bounds on long-run beliefs:

LEMMA 2. Fix any ǫ > 0. For any α ∈ (0, 1
2 ) and γ ∈ ( 1

2 , 1), there exits a time t̄ǫ ∈ N and a bound

ρ̄ ∈
(

1
2 , 1
)

such that

Pr (1 − ρ̄ ≤ ρt ≤ ρ̄) > 1 − ǫ for all t > t̄ǫ,

where ρt is the decision maker’s belief at time t that the state of the world is H. Moreover, if ρt ∈ [1 − ρ̄, ρ̄]

for any t ∈ N, then ρt′ ∈ [1 − ρ̄, ρ̄] for all t′ > t.

PROOF. Note that the belief revision process has a “long-run upper bound” given by the the fixed

point of ρH
t+1(·). The equation ρ = ρH

t+1(ρ) has only one non-negative solution ρ̄, where

ρ̄ :=
(2γ − 1)− α +

√
α2 + (2γ − 1)2(1 − 2α)

2(2γ − 1)
=

1

2
+

√
α2 + (2γ − 1)2(1 − 2α)− α

2(2γ − 1)
. (1)

Because 0 < α <
1
2 < γ < 1, we have

√
α2 + (2γ − 1)2(1 − 2α)− α

2(2γ − 1)
>

√
α2 − α

2(2γ − 1)
= 0,

so ρ̄ >
1
2 . Likewise,

√
α2 + (2γ − 1)2(1 − 2α)− α

2(2γ − 1)
<

√
α2 + (2γ − 1)2 − α

2(2γ − 1)
<

√
α2 + (2γ − 1)2 + 2α(2γ − 1)− α

2(2γ − 1)

=

√
(α + (2γ − 1))2 − α

2(2γ − 1)
=

1

2
,

so ρ̄ < 1. Moreover, Lemma 1 implies that ρH
t+1(ρ) > ρ̄ if, and only if, ρ > ρ̄; thus, a period-t belief

ρt can only be larger than this upper bound if the initial belief ρ0 is greater than ρ̄ and sufficiently

few L signals have been observed (which occurs with diminishing probability as t grows).

Similarly, the belief revision process has a “long-run lower bound” given by the fixed point of

ρL
t+1(·). The equation ρ = ρL

t+1(ρ) has only a single solution ρ that is smaller than one, where

ρ :=
(2γ − 1) + α −

√
α2 + (2γ − 1)2(1 − 2α)

2(2γ − 1)
= 1 − ρ̄.

Moreover, Lemma 1 implies that ρL
t+1(ρ) < ρ if, and only if, ρ < ρ; thus, a period-t belief ρt can

only be smaller than this lower bound if the initial belief ρ0 is less than 1 − ρ̄ and sufficiently few

H signals have been observed (which occurs with diminishing probability as t grows).

Finally, let k̄ ∈ N be such that

[ρL
t+1]

k̄(1) < ρ̄;

this is the number of L signals sufficient for beliefs to fall below ρ̄, regardless of how high the

initial belief is. (Equivalently, it is the number of H signals sufficient for beliefs to go above the

boundary 1 − ρ̄, regardless of how low initial beliefs may be.) As we are in a world with noisy

signals of the underlying state, it is clear that t̄ǫ ∈ N can be chosen such that the probability of
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observing at least k̄ low signals in the first t̄ǫ periods is at least 1 − ǫ. Since each additional period

yields another opportunity for a low signals to arrive, we have our desired result. �

With these preliminary results in hand, we can go on to show that a one-bit memory suffices

for optimal behavior in certain circumstances—specifically, when the environment is sufficiently

unstable or noisy (in a sense we will make precise shortly). This result relies on the fact that, in

such environments, Bayesian beliefs are sufficiently responsive to new signals that only the most

recent signal is a sufficient statistic determining the optimal action.

THEOREM 1. If α and γ are such that α ≥ γ(1 − γ), then a decision maker with only two memory states

has the same optimal expected payoff as an unconstrained perfectly Bayesian decision maker.

PROOF. Note first that ρH
t+1(0) = α > 0 and that (as shown in Lemma 1) ρH

t+1 is strictly increasing.

Since ρ̄ (defined in Equation (1)) is the unique fixed point of ρH
t+1, it must be the case that (ρ −

ρH
t+1(ρ))(ρ − ρ̄) ≥ 0 for all ρ ∈ [0, 1], with equality only when ρ = ρ̄. In addition, note that when

α ≥ γ(1 − γ),

γ − ρH
t+1(γ) = γ

γ2 + (1 − γ)2

γ2 + (1 − γ)2
− γ2(1 − α) + (1 − γ)2α

γ2 + (1 − γ)2
=

(α − γ(1 − γ))(2γ − 1)

γ2 + (1 − γ)2
≥ 0.

Therefore, we must have ρ̄ ≤ γ whenever α ≥ γ(1 − γ)

In addition, notice that ρL
t+1(γ) = 1

2 . Since belief revision is monotone increasing in current

beliefs (as shown in Lemma 1), an application of Lemma 2 implies that, for all ρt ∈
[

1
2 , γ
]
,

1 − γ ≤ ρL
t+1(ρt) ≤

1

2
≤ ρH

t+1(ρt) ≤ γ.

Thus, if α ≥ γ(1−γ) and ρt ∈
[

1
2 , γ
]
, a single L signal is sufficient to convince a standard Bayesian

decision maker who is following the optimal action rule a∗ to switch from taking action h to taking

action l.

Because Bayesian updating is symmetric in this environment and ρH
t+1(ρ) = 1 − ρL

t+1(1 − ρ),

an analogous property holds when a Bayesian decision maker believes that state L is more likely

than state H. In particular, if α ≥ γ(1 − γ) and ρt ∈ [1 − γ, 1
2 ], a single H signal is sufficient to

convince a Bayesian agent who is following the optimal action rule a∗ to switch from taking action

l to taking action h.

Thus, when α ≥ γ(1 − γ) and beliefs at some time t̄ ∈ N are such that ρt ∈ [1 − γ, γ], the

signal in period t ≥ t̄ is a sufficient statistic for a Bayesian agent’s decision in period t + 1. Since

Lemma 2 implies that t̄ < ∞ with probability one, this implies that the long-run optimal payoff

(under the limit of means criterion) of a Bayesian decision maker is exactly equal to that generated

by a two-state automaton that simply chooses the action that matches the previous signal. �

This result is intuitive: if the underlying Markov process is sufficiently unstable, then informa-

tion about the past is not useful. Indeed, in the case where α = 1
2 , so the state of the world in any

period is determined by an independent coin toss, it is obvious that history is entirely uninforma-

tive. However, the result above shows that this can also be the case when the environment is very

persistent and α is arbitrarily small.
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In particular, as γ increases and approaches 1 (that is, as signals become more informative

about the true state of the world), the set of values of α such that the conditions of Theorem 1

hold increases. Thus, when signals become more and more informative, a restriction to only two

memory states does not harm a decision maker. Thus, memory is most valuable when the decision

problem is noisy but not too unstable. Therefore, in the following section, we investigate the more

interesting cases where α < γ(1 − γ) and the bound on memory may be a binding constraint.

4. BOUNDED MEMORY

We now consider a decision maker with a finite set of memory states M. Her transition rule is

a function ϕ : M×S → ∆M, where ϕ(m, s) is the probability distribution governing transitions

after observing signal s ∈ S while in state m ∈ M. For notational convenience, we will use ϕs
m,m′

to denote ϕ(m, s)(m′). The decision maker also chooses an initial distribution over memory states

ϕ0 ∈ ∆M and an action rule a : M → A. Note that since actions affect neither state transitions nor

information generation, the decision problem is noninteractive; Kalai and Solan (2003, Theorem

1) then implies that the restriction to deterministic action rules is without loss of generality.

Notice that the combination of state transitions and memory transitions generate a Markov

process on an “extended” state space Ω̂ := M×Ω. In principle, such a process may admit several

recurrent communicating classes and multiple stationary distributions. We show, however, that it

is without loss of generality to restrict attention to memory transition rules that generate a unique

recurrent communicating class (and hence a unique stationary distribution).

LEMMA 3. Fix any memory system (ϕ, ϕ0, a) with expected payoff U. There exists a memory system

(ϕ′, ϕ′
0, a′) with expected payoff U′ ≥ U that admits a unique recurrent communicating class and unique

stationary distribution on Ω̂.

PROOF. Note first that any recurrent communicating class R ⊆ Ω̂ may be written as R = M × Ω,

where M ⊆ M; that is, (m, H) ∈ R for some m ∈ M if, and only if, (m, L) ∈ R. To see why this

is true, note that

Pr(ω̂t = (m′, ω′)|ω̂t−1 = (m, ω)) = ∑
s∈S

Pr(ωt = ω′|ωt−1 = ω)Pr(st = s|ωt = ω′)ϕs
m,m′

for any (m, ω), (m′, ω′) ∈ Ω̂. Recall that both signals occur with positive probability in both

underlying states (since γ < 1), and that both underlying states may occur in any period with

positive probability (since α > 0). Therefore, Pr(ω̂t = (m′, ω′)|ω̂t−1 = (m, ω)) > 0 if, and only

if, ϕs
m,m′ > 0 for some s ∈ S . Thus, it is the memory transition rule ϕ alone which determines

whether states in Ω̂ communicate or not. Since these memory transitions are independent of the

underlying state, it must be the case that (m, H) ∈ R if, and only if, (m, L) ∈ R.

Now notice that, since both M and Ω are finite, Stokey and Lucas (1989, Theorem 11.1) implies

that we may partition the extended state space Ω̂ into k ≥ 1 recurrent communicating classes

{R1, . . . ,Rk} and a transient set T . The result immediately above then implies that this partition

induces a partition on the memory M; abusing notation slightly, we therefore write m ∈ Ri or

m ∈ T whenever (m, ω) ∈ Ri or (m, ω) ∈ T , respectively.
7
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For all i = 1, . . . , k, denote by ui the decision maker’s payoff (under action rule a) conditional

on her starting in a memory state m ∈ Ri. (Because payoffs are evaluated according to the limit of

means and each recurrent communicating class has a unique stationary distribution, ui is constant

across all m′ ∈ Ri.) The decision maker’s payoff is then

U = ∑
m∈M

k

∑
i=1

ϕ0(m)P(Ri|m)ui,

where P(Ri|m) denotes the probability that any state in Ri is reached from initial state m. Since

ϕ0 ∈ ∆M and ∑
k
i=1 P(Ri|m) = 1 for all m ∈ Ω, the decision maker’s payoff U is a convex

combination of the payoffs {u1, . . . , uk}. In particular, this implies that U ≤ max{u1, . . . , uk}.

We now define an alternative memory transition rule ϕ′ : M× S → ∆M, where as before

we use ϕ′s
m,m′ to denote ϕ′(m, s)(m′). In particular, we fix any i∗ ∈ arg maxi=1,...,k{ui} and let

N := |{m : (m, ω) ∈ Ri∗ for some ω ∈ Ω}|. Then define, for all m, m′ ∈ M and all s ∈ S ,

ϕ′s
m,m′ :=





ϕs
m,m′ if m ∈ Ri∗ ,

1/N if m /∈ Ri∗ , m′ ∈ Ri∗ ,

0 otherwise.

Thus, ϕ′ replicates the transitions of ϕ within the recurrent communicating class Ri∗ , and transi-

tions uniformly at random into Ri∗ from any memory state outside of it. This implies that Ω̂ can be

partitioned into a single recurrent communicating class R′ = Ri∗ and a transient set T ′ = Ω̂ \R′.

Moreover, since transitions within R′ under ϕ′ are the same as those under ϕ, R′ has the same

stationary distribution as Ri∗ , and hence (under the same action rule a) the same payoff ui∗ . Fi-

nally, since there is only a single recurrent communicating class, Stokey and Lucas (1989, Theorem

11.2) implies that the transition rule ϕ′ induces that same (unique) stationary distribution. Thus,

for any initial distribution ϕ′
0 ∈ ∆M, the decision maker’s payoff is now U′ = ui∗ ≥ U. �

As profits are evaluated by the limit of means criterion, the initial conditions of the memory

system are relevant only insofar as they influence the long-run distribution on the extended state

space Ω̂. Given Lemma 3 above, however, we are free to consider memory transition rules that

generate a unique stationary distribution µ ∈ ∆Ω̂, where µi denotes the mass on state i ∈ Ω̂; there-

fore, we simply assume that the initial memory state is chosen uniformly at random. Note that the

marginals of the steady-state distribution µ must agree with those generated by the underlying

stochastic processes; in particular, we must have

∑
m∈M

µ(m,H) = ∑
m∈M

µ(m,L) =
1

2
. (2)

Moreover, a steady state must satisfy the standard stationarity condition: for all (m, ω) ∈ Ω̂,

µ(m,ω) = ∑
m′∈M

∑
ω′∈Ω

µ(m′,ω′)

(

∑
s∈S

Pr(ωt = ω|ωt−1 = ω′)Pr(st = s|ωt = ω)ϕs
m′,m

)
. (3)

It is useful to note that, when the decision maker takes the same action in all memory states

(that is, when a(m) = a(m′) for all m, m′ ∈ M), her expected payoff is equal to 1
2 . This is because

8
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1 21 − ϕH

1,2

ϕH

1,2
1

FIGURE 1. A generic symmetric and monotone two-state memory.

1 2 3

1 − ϕH

1,2
− ϕH

1,3

ϕH

1,2

ϕH

1,3

1 − ϕH

2,3

ϕH

2,3

1

FIGURE 2. A generic symmetric and monotone three-state memory.

the long-run distribution of the underlying state of the world puts equal mass on both states.

Hence, the action taken will be correct half the time, and incorrect half the time, implying that the

expected payoff is 1
2 γ + 1

2 (1 − γ) = 1
2 . This is, of course, also the payoff resulting from a single-

state memory. With this benchmark in mind, we will restrict attention to memory systems that

use both actions. Moreover, we focus on symmetric and montone memory systems:

DEFINITION (Symmetric and monotone memory systems). An n-state memory system is symmetric

if ϕL
j,k = ϕH

n+1−j,n+1−k for all j, k = 1, . . . , n. An n-state memory system is monotone if ϕL
j,k = ϕH

k,j = 0

for all 1 ≤ j < k ≤ n.

Symmetry of the memory system is a natural restriction given the underlying symmetry in the

problem.8 Clearly, such memory systems induce a symmetric stationary distribution µ with

µ(k,L) = µ(|M|−k+1,H) for all k = 1, . . . , |M|.

Monotonicity implies that the decision maker never transitions to a “higher” state after a low sig-

nal or to a “lower” state after a high signal. Since high signals increase posterior beliefs (and low

signals decrease them), monotonicity corresponds to the natural ordering of memory states where

higher states are associated with greater posterior beliefs that the true state is H. Figures 1 and 2

present a visual representation of the transition probabilities in generic symmetric and monotone

two- and three-state memory systems, respectively.

Thus, the decision maker’s optimization problem is to

max
ϕ,a

{

∑
m:a(m)=h

(
γµ(m,H) + (1 − γ)µ(m,L)

)
+ ∑

m:a(m)=l

(
(1 − γ)µ(m,H) + γµ(m,L)

)}
,

subject to the constraint that µ is the (endogenously determined) steady state of the process in-

duced by ϕ on Ω̂. Given the steady state distribution µ, determining the optimal action in each

state is trivial: the decision maker should set a(m) = h whenever

γµ(m,H) + (1 − γ)µ(m,L) ≥ (1 − γ)µ(m,H) + γµ(m,L),

8Recall that Bayesian updating in this environment is symmetric, with ρH
t+1(ρ) + ρL

t+1(1 − ρ) = 1 for all ρ ∈ [0, 1].

9
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and a(m) = l when this inequality is reversed. This implies that the optimal action is h whenever

the posterior belief in memory state m is
µ(m,H)

µ(m,H)+µ(m,L)
>

1
2 , and l when this posterior is less than

1
2 . (If the posterior belief in some state m is exactly 1

2 , then both a(m) = h and a(m) = l are

optimal.) Since we consider symmetric and monotone memory systems, the ordering of the states

then immediately implies that the optimal action rule is

a(m) =





l if m ≤ (|M|+ 1)/2,

h otherwise.

We begin by characterizing the optimal symmetric and monotone two-state memory.

THEOREM 2. For any α ∈ (0, 1
2 ) and γ ∈ ( 1

2 , 1), the optimal symmetric and monotone two-state memory

is given by ϕH
1,2 = 1.

PROOF. The proof may be found in the appendix. �

Thus, regardless of the instability of the underlying environment or the informativeness of pay-

off signals, the optimal symmetric two-state memory is deterministic: the decision maker simply

chooses actions based solely on the most recent signal.

With three memory states, the situation is somewhat more subtle. Recall from Theorem 1 that

using only two of the three memory states allows the decision maker to achieve the expected

payoff of a perfect Bayesian whenever α ≥ γ(1 − γ). However, this condition is only sufficient,

but not necessary: even when α < γ(1 − γ), using only two memory states may be superior to

irreducibly using all three states. Moreover, if the underlying state of the world is sufficiently

persistent (when α is small relative to the noisiness of the payoff signals in a sense to be formally

defined), then the optimal three-state memory system may involve randomization. As before, we

consider only memory systems that are both symmetric and monotone.

THEOREM 3. For any α ∈ (0, 1
2 ) and γ ∈ ( 1

2 , 1), the optimal symmetric and monotone three-state memory

system is given by

(a) ϕH
1,2 =

√
2α

(1−2α)γ(1−γ)
, ϕH

1,3 = 0, and ϕH
2,3 = 1 if α

1−2α <
γ(1−γ)

2 ;

(b) ϕH
1,2 = 1, ϕH

1,3 = 0, and ϕH
2,3 = 1 if γ(1−γ)

2 ≤ α
1−2α < γ(1 − γ); or

(c) ϕH
1,2 = 0, ϕH

1,3 = 1, and ϕH
2,3 = 1 if α

1−2α ≥ γ(1 − γ).

PROOF. The proof may be found in the appendix. �

Unlike the case of a two-state memory, the optimal three-state memory depends on the fea-

tures of the underlying environment. Figure 3 presents the three possibilities. In region (a), where
α

1−2α <
γ(1−γ)

2 , the state of the world is very persistent relative to the informativeness of sig-

nals. Therefore, the optimal memory requires multiple (in expectation) signals contradicting an

extremal state in order to shift to the state with intermediate beliefs—as in Wilson (2004), the opti-

mal memory leaves the extremal states only stochastically. In our model, however, this is in order

to account for the noisiness of signals relative to instability of the underlying state. Note that as α

approaches zero, the probability of departing the extremal states also approaches zero; the more
10
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FIGURE 3. Classification of optimal three-state memory systems.

stable the underlying environment, the larger the expected number of contradictory signals re-

quired to leave an extremal state. On the other hand, when α increases and we enter region (b),

the optimal three-state memory becomes deterministic, stepping “linearly” through the memory

states. This reflects the fact that the greater variability in the underlying state necessitates addi-

tional responsiveness to signals. Finally, in region (c), the environment is sufficiently unstable that

the optimal memory only makes use of two state—the memory “jumps” from one extremal state

to the other, skipping the middle state entirely. To understand the rationale for skipping the inter-

mediate memory state, consider an increase in ϕH
1,2 to a small ǫ > 0 (and hence a commensurate

decrease in ϕH
1,3 to 1 − ǫ). This change keeps the probability of departing memory state 1 after a

high signal unchanged; however, this change decreases the arrival rate into state 1 after low signals

since a strictly positive fraction of time is spent in the intermediate memory state. The net effect of

these changes is to slow the response time to contradictory signals observed while in the extremal

states. When α is large relative to the informativeness of signals, this dampened response rate has

an overall negative effect on the steady-state probability of matching actions to the underlying

state of the world.

It is crucial to note that region (c) in Figure 3 is larger than the region described by Theorem 1.

In particular, when α < γ(1 − γ), the previous period’s signal alone is not a sufficient statistic for

the decision of a fully rational perfect Bayesian. Therefore, using only two memory states leads to

an expected payoff strictly less than the Bayesian benchmark. However, when

α < γ(1 − γ) <
α

1 − 2α
,

a decision maker limited to three memory states optimally makes use of only two states. Therefore,

while the decision maker’s expected payoff is nondecreasing in the number of possible memory

states (since increasing the number of states relaxes a constraint in her optimal memory choice

problem), this payoff need not be (strictly) increasing. In other words, the “shadow price” of an

additional memory state may be zero. Therefore, even in settings where Theorem 1 does not apply
11
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1 2 3 4l

h

l

h

l

h

l

h

FIGURE 4. A deterministic and irreducible four-state memory system.

and bounded memory is a binding constraint, a decision maker may not be willing to invest in an

additional memory state, regardless of how small the cost of such an investment.

Moreover, this observation suggests that restricting attention to irreducible memory systems

(as is frequently done in the literature) is not without loss of generality.9 In particular, within the

natural class of symmetric and monotone memory systems, the value of memory need not be

monotonic if we impose irreducibility.

THEOREM 4. There exists an open set O ⊂ (0, 1
2 )× ( 1

2 , 1) of parameters such that, for all (α, γ) ∈ O, the

payoff of the optimal irreducible, monotone, and symmetric memory system is nonmonotonic in the number

of memory states.

PROOF. Recall from Theorem 3 that, when γ(1 − γ) ≤ α/(1 − 2α) (region (c) in Figure 3), the

optimal three-state memory is not irreducible, but instead makes use of only the two extremal

states; indeed, the optimal three-state memory in this region replicates the (irreducible) optimal

two-state memory. Therefore, whenever γ(1 − γ) < α/(1 − 2α), the optimal irreducible three-

state memory performs strictly worse than the optimal irreducible two-state memory.

Now consider the four-state memory system depicted in Figure 4. This irreducible memory sys-

tem deterministically transitions to a “higher” state after high signals, and to a “lower” state after

low signals. Lemma 4 (in the appendix) shows that this memory system generates an expected

payoff of

U4 :=
1 − α2 − 3γ + 4αγ + 3γ2 − 4αγ2

1 + α(1 − 2α)− 2(1 − 2α)γ(1 − γ)
.

Meanwhile, Theorem 2 shows that the optimal two-state memory is irreducible, and Equation (4)

implies that it yields an expected payoff of U2 := 1 − 2γ(1 − γ). Therefore, we may write U4 −U2

as

1 − α2 − (3 − 4α)γ(1 − γ)

1 + α(1 − 2α)− 2(1 − 2α)γ(1 − γ)
− (1 − 2γ(1 − γ)) (1 + α(1 − 2α)− 2γ(1 − γ)(1 − 2α))

1 + α(1 − 2α)− 2(1 − 2α)γ(1 − γ)

=
α − α2 − γ − 2αγ + 4α2γ + 5γ2 − 6αγ2 − 4α2γ2 − 8γ3 + 16αγ3 + 4γ4 − 8αγ4

1 + α(1 − 2α)− 2(1 − 2α)γ(1 − γ)

=
(2γ − 1)2

(
α(2γ(1 − γ) + 1)− γ(1 − γ)− α2

)

1 + α(1 − 2α)− 2(1 − 2α)γ(1 − γ)
=

(2γ − 1)2 (α(1 − α)− (1 − 2α)γ(1 − γ))

1 + α(1 − 2α)− 2(1 − 2α)γ(1 − γ)
.

Note, however, that both (2γ− 1)2
> 0 and 1+ α(1− 2α)− 2(1− 2α)γ(1−γ)) > 0 since α ∈ (0, 1

2 )

and γ >
1
2 . Therefore, U4 > U2 if, and only if, α(1 − α)− (1 − 2α)γ(1 − γ) > 0, or, equivalently,

when α(1 − α)/(1 − 2α) < γ(1 − γ).

9A memory system is irreducible if the entire state space of its induced Markov process forms a single communicating
class with no transient states. This rules out “redundant” memory states as in, for example, part (c) of Theorem 3.

12
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Of course, the four-state memory system in Figure 4 need not be optimal (either globally or

within the class of irreducible memory systems); thus, U4 is only a lower bound on the payoff

of the optimal irreducible four-state memory. Combining this fact with the payoff comparisons

above, we may conclude that, the optimal irreducible four-state memory yields a greater payoff

than the optimal irreducible two-state memory, which in turn yields a greater payoff than the

optimal irreducible three-state memory for all (α, γ) ∈ O, where

O :=

{
(α, γ)

∣∣∣∣
α(1 − α)

1 − 2α
< γ(1 − γ) <

α

1 − 2α

}
.

Therefore, the value of memory (within the class of irreducible memory systems) is not monotonic

in the number of memory states for all (α, γ) ∈ O. �

Thus, the marginal value of an additional memory state, when restricting attention to irre-

ducible memory systems (where there is no “free disposal” of individual states), can be strictly

negative—even though the incremental payoff from adding multiple memory states may be strictly

positive. Therefore, investment decisions in additional memory must consider the costs and ben-

efits of acquiring multiple states at once, as a naive marginal analysis alone may not suffice.

5. CONCLUSION

We have shown that, in a dynamic environment where the state of the world is imperfectly

persistent and signals are noisy but informative, the marginal value of additional memory may

be zero or even negative. In particular, when the environment is sufficiently unstable, a decision

maker needs only two memory states in order to perfectly replicate the behavior of an unbound-

edly rational Bayesian, and additional memory states are of no extra value. On the other hand,

when the environment is relatively stable, a decision maker with bounded memory achieves a

lower payoff than her unbounded Bayesian counterpart; in these cases, more memory may be

of some value to the decision maker.10 However, we have shown that there are a non-negligible

subset of such environments in which a decision maker optimally leaves some memory resources

unused—without “free disposal” of memory states, the decision maker may be made worse off

with greater memory resources.

In addition to their independent interest, our results have implications for other work in eco-

nomics. For instance, we have characterized some dynamic environments in which the optimal

memory is deterministic. This suggests that, in a changing world, a decision maker with bounded

memory may exhibit relatively large swings in beliefs and behavior. Likewise, the payoff rankings

for different memory sizes suggest that, even if the cost of additional memory is arbitrarily small

but positive, smaller memory systems may be more likely than larger ones; this reinforces the

focus of, for instance, Compte and Postlewaite (2012b,a) on relatively simple models of “mental

states” and Romero (2011) on “simple heuristics.”

10Quantifying the loss from bounded memory (relative to an unbounded Bayesian decision maker) is certainly a natural
avenue for further inquiry. Such an attempt is complicated, however, by the difficulty of analytically characterizing the
general solution to a partially observable Markov decision problem such as our own, and is thus beyond the scope of
the present work.
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APPENDIX

PROOF OF THEOREM 2. Note that symmetry implies µ(1,L) = µ(2,H) and µ(2,L) = µ(1,H); therefore,

the decision maker solves

max
ϕH

1,2∈[0,1]

{
2
(

γµ(2,H) + (1 − γ)µ(1,H)

)}
.

We may write the steady-state condition in Equation (3) for state (2, H) as

µ(2,H) = (αµ(1,L) + (1 − α)µ(1,H))(γϕH
1,2 + (1 − γ)ϕL

1,2)

+ (αµ(2,L) + (1 − α)µ(2,H))(γϕH
2,2 + (1 − γ)ϕL

2,2)

= (αµ(2,H) + (1 − α)µ(1,H))(γϕH
1,2 + (1 − γ)ϕH

2,1)

+ (αµ(1,H) + (1 − α)µ(2,H))(γϕH
2,2 + (1 − γ)ϕH

1,1),

where the second equality follows from symmetry. Recalling that ϕH
1,1 = 1 − ϕH

1,2, and that mono-

tonicity implies ϕH
2,1 = 0, this may be written as

µ(2,H) = (αµ(2,H) + (1 − α)µ(1,H))(γϕH
1,2)

+ (αµ(1,H) + (1 − α)µ(2,H))(γϕH
2,2 + (1 − γ)(1 − ϕH

1,2))

= µ(1,H)

(
αγ + α(1 − γ)(1 − ϕH

1,2) + (1 − α)γϕH
1,2

)

+ µ(2,H)

(
αγϕH

1,2 + (1 − α)γ + (1 − α)(1 − γ)(1 − ϕH
1,2)
)

.

Combining this expression with the observation from Equation (2) that µ(1,H) =
1
2 − µ(2,H), we can

then solve for µ(2,H). In particular, we must have

µ(2,H) =
1

2

(
α + (γ − α)ϕH

1,2

2α + (1 − 2α)ϕH
1,2

)
.

With this in hand, we may write the decision maker’s payoff as

U2(ϕH
1,2) = (1 − γ) + (2γ − 1)

α + (γ − α)ϕH
1,2

2α + (1 − 2α)ϕH
1,2

. (4)

Differentiating with respect to ϕH
1,2 yields

U′
2(ϕH

1,2) = (2γ − 1)
(2α + (1 − 2α)ϕH

1,2)(γ − α)− (α + (γ − α)ϕH
1,2)(1 − 2α)

(2α + (1 − 2α)ϕH
1,2)

2

= α

(
2γ − 1

2α + (1 − 2α)ϕH
1,2

)2

.

Since α ∈ (0, 1
2 ) and γ ∈ ( 1

2 , 1), this expression is strictly positive for all ϕH
1,2 ∈ [0, 1]; therefore, the

maximum is achieved when ϕH
1,2 = 1, yielding a payoff of U2(1) = 1 − 2γ(1 − γ). �

PROOF OF THEOREM 3. Notice first that symmetry implies that µ(1,L) = µ(3,H), µ(2,L) = µ(2,H),

and µ(3,L) = µ(1,H). Thus,
µ(2,H)

µ(2,L)+µ(2,H)
= 1

2 , implying that the expected payoff, conditional on being

14
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in state 2, is 1
2 γ + 1

2 (1 − γ) = 1
2 . Therefore, the agent solves

max
ϕH

1,2,ϕH
1,3,ϕH

2,3

{
2

(
γµ(3,H) +

1

2
µ(2,H) + (1 − γ)µ(1,H)

)}

s.t. 0 ≤ ϕH
1,2, ϕH

1,3, ϕH
2,3 ≤ 1

and ϕH
1,2 + ϕH

1,3 ≤ 1.

We begin by writing the steady-state condition for states (1, H) and (3, H) from Equation (3) as

µ(1,H) = (αµ(1,L) + (1 − α)µ(1,H))(γϕH
1,1 + (1 − γ)ϕL

1,1)

+ (αµ(2,L) + (1 − α)µ(2,H))(γϕH
2,1 + (1 − γ)ϕL

2,1)

+ (αµ(3,L) + (1 − α)µ(3,H))(γϕH
3,1 + (1 − γ)ϕL

3,1) and

µ(3,H) = (αµ(1,L) + (1 − α)µ(1,H))(γϕH
1,3 + (1 − γ)ϕL

1,3)

+ (αµ(2,L) + (1 − α)µ(2,H))(γϕH
2,3 + (1 − γ)ϕL

2,3)

+ (αµ(3,L) + (1 − α)µ(3,H))(γϕH
3,3 + (1 − γ)ϕL

3,3).

Imposing symmetry and monotonicity, these may be written as

µ(1,H) = (αµ(3,H) + (1 − α)µ(1,H))(γ(1 − ϕH
1,2 − ϕH

1,3) + (1 − γ)) + µ(2,H)(1 − γ)ϕH
2,3

+ (αµ(1,H) + (1 − α)µ(3,H))((1 − γ)ϕH
1,3)

= µ(1,H)

(
1 − α − (1 − α)γϕH

1,2 − (γ − α)ϕH
1,3

)
+ µ(2,H)(1 − γ)ϕH

2,3

+ µ(3,H)

(
α − αγϕH

1,2 + (1 − α − γ)ϕH
1,3

)
and

µ(3,H) = (αµ(3,H) + (1 − α)µ(1,H))(γϕH
1,3) + µ(2,H)γϕH

2,3

+ (αµ(1,H) + (1 − α)µ(3,H))(γ + (1 − γ)(1 − ϕH
1,2 − ϕH

1,3))

= µ(1,H)

(
α − α(1 − γ)ϕH

1,2 + (γ − α)ϕH
1,3

)
+ µ(2,H)γϕH

2,3

+ µ(3,H)

(
1 − α − (1 − α)(1 − γ)ϕH

1,2 − (1 − α − γ)ϕH
1,3

)
.

Combining the two equations above with the observation in Equation (2) that

µ(2,H) =
1

2
− µ(1,H) − µ(3,H),

we can solve for µ(1,H) and µ(3,H). In particular, we have

µ(1,H) =
1

2

(α + (ϕH
1,2 + ϕH

1,3)(1 − γ − α)− ϕH
1,2(1 − 2α)γ(1 − γ))ϕH

2,3

α(ϕH
1,2 + 2ϕH

2,3) + (1 − 2α)((ϕH
1,2 + ϕH

1,3)ϕH
2,3 + ϕH

1,2(ϕH
1,2 + 2(ϕH

1,3 − ϕH
2,3))γ(1 − γ))

,

µ(3,H) =
1

2

(α + (ϕH
1,2 + ϕH

1,3)(γ − α)− ϕH
1,2(1 − 2α)γ(1 − γ))ϕH

2,3

α(ϕH
1,2 + 2ϕH

2,3) + (1 − 2α)((ϕH
1,2 + ϕH

1,3)ϕH
2,3 + ϕH

1,2(ϕH
1,2 + 2(ϕH

1,3 − ϕH
2,3))γ(1 − γ))

.

Furthermore, note that the decision maker’s expected payoff is

2

(
γµ(3,H) +

1

2
µ(2,H) + (1 − γ)µ(1,H)

)
=

1

2
+ (2γ − 1)(µ(3,H) − µ(1,H)),
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where we have again substituted for µ(2,H) using Equation (2). This implies that the decision

maker maximizes

U3(ϕH
1,2, ϕH

1,3, ϕH
2,3) :=

1

2
+

1

2

(2γ − 1)2(ϕH
1,2 + ϕH

1,3)ϕH
2,3

α(ϕH
1,2 + 2ϕH

2,3) + (1 − 2α)((ϕH
1,2 + ϕH

1,3)ϕH
2,3 + ϕH

1,2(ϕH
1,2 + 2(ϕH

1,3 − ϕH
2,3))γ(1 − γ))

.
(5)

Note first that, if ϕH
1,2 = 0 (and, by symmetry, ϕL

3,2 = 0), then the “middle” memory state

(state 2) is effectively redundant—the memory system only makes use of the two extremal states.

Applying Theorem 2, the optimal memory, conditional on ϕH
1,2 = 0, must have ϕH

1,3 = 1. As in the

optimal two-state memory from Theorem 2, this memory yields an expected payoff of

U3(0, 1, ϕH
2,3) = 1 − 2γ(1 − γ).

Clearly, the value of ϕH
2,3 is irrelevant in this case. However, in order to ensure that there is only a

single recurrent communicating class, we simply set ϕH
2,3 = 1 when ϕH

1,2 = 0.

Suppose instead that ϕH
1,2 > 0. Then differentiating the payoff in Equation (5) with respect to

ϕH
2,3 yields

∂U3(ϕH
1,2, ϕH

1,3, ϕH
2,3)

∂ϕH
2,3

=

ϕH
1,2(ϕH

1,2 + ϕH
1,3)(α + (1 − 2α)(ϕH

1,3 + 2ϕH
2,3)γ(1 − γ))(2γ − 1)2

2
(

α(ϕH
1,2 + 2ϕH

2,3) + (1 − 2α)((ϕH
1,2 + ϕH

1,3)ϕH
2,3 + ϕH

1,2(ϕH
1,2 + 2(ϕH

1,3 − ϕH
2,3))γ(1 − γ))

)2
.

Clearly, the denominator is positive. Moreover, ϕH
1,2 > 0 implies that the numerator is positive.

Thus, it is without loss of generality to set ϕH
2,3 = 1 whenever ϕH

1,2 > 0.

With this in mind, we consider two cases. We first assume that ϕH
1,2 > 0 and ϕH

1,2 + ϕH
1,3 = 1. In

this case, the decision maker’s payoff is U3(ϕH
1,2, 1 − ϕH

1,2, 1). Note, however, that

∂2U3(ϕH
1,2, 1 − ϕH

1,3, 1)

∂(ϕH
1,3)

2
=

(2γ − 1)2
(

κ + α2 − 3ακϕH
1,2 + (κϕH

1,2)
2
)

(
1 + αϕH

1,2 − κ(ϕH
1,2)

2
)3

,

where we define κ := (1 − 2α)γ(1 − γ). Since α ∈ (0, 1
2 ) and γ ∈ ( 1

2 , 1), we must have κ ∈ (0, 1).

Thus, ϕH
1,2 ∈ [0, 1] implies that

1 + αϕH
1,2 − κ(ϕH

1,2)
2
> 1 − κ > 0.

In addition, we can write

κ + α2 − 3ακϕH
1,2 + (κϕH

1,2)
2 = (2κϕH

1,2 − α)(κϕH
1,2 − α) + κ.

Note that (2κϕH
1,2 − α)(κϕH

1,2 − α) is negative if, and only if, 2κϕH
1,2 − α > 0 > κϕH

1,2 − α. But

2κϕH
1,2 − α < 2κ and κϕH

1,2 − α > −α, implying that

(2κϕH
1,2 − α)(κϕH

1,2 − α) + κ > (2κ)(−α) + κ = (1 − 2α)κ > 0.
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Thus, U3(ϕH
1,2, 1 − ϕH

1,2, 1) is a convex function of ϕH
1,2, and is therefore maximized either when

ϕH
1,2 = 0 or ϕH

1,2 = 1. The decision maker’s expected payoff in each of these cases is

U3(0, 1, 1) = 1 − 2γ(1 − γ) and U3(1, 0, 1) =
2 + α − 4γ(1 − γ)− κ

2(1 + α − κ)
.

Then we have

U3(1, 0, 1)− U3(0, 1, 1) =
(2 + α − 4γ(1 − γ)− κ)− 2(1 + α − κ)(1 − 2γ(1 − γ))

2(1 + α − κ)

= − (α − γ + 2αγ + γ2 − 2αγ2)(2γ − 1)2

2(1 + α − κ)
=

(κ − α)(2γ − 1)2

2(1 + α − κ)
.

Recalling the definition of κ, we may then conclude that U3(1, 0, 1) > U3(0, 1, 1) if, and only if,

α

1 − 2α
< γ(1 − γ).

Turning to our second case, suppose that ϕH
1,2 > 0 and ϕH

1,2 + ϕH
1,3 < 1. In addition, assume that

ϕH
1,3 > 0. Therefore, the first-order conditions for both ϕH

1,2 and ϕH
1,3 must hold; that is, we have

∂U3(ϕH
1,2, ϕH

1,3, 1)

∂ϕH
1,2

=
(2γ − 1)2

(
(2 − ϕH

1,3)(α + κϕH
1,3)− κ(ϕH

1,2 + ϕH
1,3)

2
)

2
(

ϕH
1,2 + ϕH

1,3 + (2 − ϕH
1,2 − 2ϕH

1,3)(α − κϕH
1,2)
)2

= 0 and

∂U3(ϕH
1,2, ϕH

1,3, 1)

∂ϕH
1,3

=
(2γ − 1)2(2 + ϕH

1,2)(α − κϕH
1,2)

2
(

ϕH
1,2 + ϕH

1,3 + (2 − ϕH
1,2 − 2ϕH

1,3)(α − κϕH
1,2)
)2

= 0.

Solving these two equations yields

ϕH
1,2 =

α

κ
and ϕH

2,3 = 1 − α

2κ
.

Note, however, that these two expressions sum to more than 1, a contradiction. Thus, we must

have ϕH
1,3 = 0, and only the first of the FOCs above can hold. This implies that

ϕH
1,2 =

√
2α

κ
.

(Of course, this is less than 1 if, and only if, 2α
(1−2α)

< γ(1 − γ); otherwise, we are at the corner

solution where ϕH
1,2 = 1.) Note, however, that

U3(ϕH
1,2, 0, 1)− U3(0, 1, 1) =

2ϕH
1,2(1 − 2γ(1 − γ) + (2 − ϕH

1,2)(ϕH
1,2 − κϕH

1,2)

2(ϕH
1,2 + (2 − ϕH

1,2)(α − κϕH
1,2))

− (1 − 2γ(1 − γ))

=
(ϕH

1,2 − 2)(α − κϕH
1,2)(2γ − 1)2

2(ϕH
1,2 + (2 − ϕH

1,2)(α − κϕH
1,2))

> 0

if, and only if, α < κϕH
1,2. Since ϕH

1,2 =
√

2α/κ, this implies that U3(
√

2α/κ, 0, 1) > U3(0, 1, 1) if,

and only if, α
2(1−2α)

< γ(1 − γ). �
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LEMMA 4. The expected payoff of the four-state memory system depicted in Figure 4 is

U4 :=
1 − α2 − 3γ + 4αγ + 3γ2 − 4αγ2

1 + α(1 − 2α)− 2(1 − 2α)γ(1 − γ)
.

PROOF. Note that we can write the Equation (3) steady-state condition for states (1, H), (2, H),

and (3, H), for the case of the four-state memory in Figure 4, as

µ(1,H) = α(1 − γ)µ(1,L) + (1 − α)(1 − γ)µ(1,H) + α(1 − γ)µ(2,L) + (1 − α)(1 − γ)µ(2,H),

µ(2,H) = αγµ(1,L) + (1 − α)γµ(1,H) + α(1 − γ)µ(3,L) + (1 − α)(1 − γ)µ(3,H), and

µ(3,H) = αγµ(2,L) + (1 − α)γµ(2,H) + α(1 − γ)µ(4,L) + (1 − α)(1 − γ)µ(4,H),

where we have made use of the fact that the memory transition rule is given by

ϕs
m,m′ :=





1 if (m, m′, s) = (1, 2, H), (2, 3, H), (3, 4, H), (4, 4, H),

1 if (m, m′, s) = (1, 1, L), (2, 1, L), (3, 2, L), (4, 3, L),

0 otherwise.

Symmetry also implies that µ(1,L) = µ(4,H), µ(2,L) = µ(3,H), µ(3,L) = µ(2,H), and µ(4,L) = µ(1,H);

therefore, we may write

µ(1,H) = (1 − α)(1 − γ)µ(1,H) + (1 − α)(1 − γ)µ(2,H) + α(1 − γ)µ(3,H) + α(1 − γ)µ(4,H),

µ(2,H) = (1 − α)γµ(1,H) + α(1 − γ)µ(2,H) + (1 − α)(1 − γ)µ(3,H) + αγµ(4,H), and

µ(3,H) = α(1 − γ)µ(1,H) + (1 − α)γµ(2,H) + αγµ(3,H) + (1 − α)(1 − γ)µ(4,H).

In addition, recall from Equation (2) that µ(1,H) + µ(2,H) + µ(3,H) + µ(4,H) =
1
2 . Solving this system

of four equations in four unknowns yields the stationary distribution of this memory system,

which is given by

µ(1,H) =
(1 − γ) (1 − α − (2 − α − γ)(1 − 2α)γ)

2 (1 + α(1 − 2α)− 2(1 − 2α)γ(1 − γ))
,

µ(2,H) =
α(1 − α) + (1 − α − γ)(1 − 2α)γ(1 − γ)

2 (1 + α(1 − 2α)− 2(1 − 2α)γ(1 − γ))
,

µ(3,H) =
α(1 − α) + (γ − α)(1 − 2α)γ(1 − γ)

2 (1 + α(1 − 2α)− 2(1 − 2α)γ(1 − γ))
, and

µ(4,H) =
γ (2α(1 − α) + (γ − α)(1 − 2α)γ)

2 (1 + α(1 − 2α)− 2(1 − 2α)γ(1 − γ))
.

Therefore, the expected payoff of this memory system is

U4 := γ(µ(1,L) + µ(2,L) + µ(3,H) + µ(4,H)) + (1 − γ)(µ(1,H) + µ(2,H) + µ(3,L) + µ(4,L))

= 2γ(µ(3,H) + µ(4,H)) + 2(1 − γ)(µ(1,H) + µ(2,H))

=
αγ + αγ2 − 2αγ3 − α2γ + γ3

1 + α(1 − 2α)− 2(1 − 2α)γ(1 − γ)
+

1 − α2 − 3γ + 3αγ + α2γ + 3γ2 − 5αγ2 − γ3 + 2αγ3

1 + α(1 − 2α)− 2(1 − 2α)γ(1 − γ)

=
1 − α2 − (3 − 4α)γ(1 − γ)

1 + α(1 − 2α)− 2(1 − 2α)γ(1 − γ)
. �
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