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Abstract: The aim of the paper is to study the nature of normalization in 

Structural VAR models. Noting that normalization is the integral part of 

identification of a model, we provide a general characterization of the 

normalization. In consequence some the easy–to–check conditions for a 

Structural VAR to be normalized are worked out. Extensive comparison 

between our approach and that of Waggoner and Zha (2003a) is made. 

Lastly we illustrate our approach with the help of five variables monetary 

Structural VAR model. 

 

 

 

I. INTRODUCTION 

The great merit of Waggoner and Zha (2003a) and Hamilton et al (2007) is 

that they made us realize how subtle the normalization in Structural VAR (SVAR) 

models is. That is contrary to the common view normalization can influence the small 

sample probabilistic inference in an uncontrollable and strange way. Poor 

normalization can lead to multimodal small sample distributions of maximum 

likelihood estimates or multimodal posterior distributions (of function) of parameters 

of interest. This phenomenon will manifest itself in a rather inaccurate description of 

statistical uncertainty. 

The reaction to the normalization puzzle in SVAR models was the so–called 

likelihood preserving (LP) normalization proposed by Waggoner and Zha (2003a). 

The procedure relies on the fact that in a SVAR model, which is identified up to a 
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sign of each equation, the likelihood possesses a multitude of global modes. In order 

to make the probabilistic statements reliable we should choose one mode and focus on 

the shape of the likelihood in the appropriate area around this mode (we should not 

mix “contents” of two or several modes in terms of their statistical uncertainty). 

Our position is different. We take seriously the statement of Hamilton et al. 

(2007) that “the normalization problem is fundamentally a question of identification”. 

Although Waggoner and Zha (2003a) motivated and justified their normalization rule 

in the context of well–behaved impulse response functions (IRF’s), our contribution is 

the remark that ill–behaved IRF’s are consequence of the lack of global identification. 

Building on this we proposed different normalization rule whose primary role is to 

achieve this global identification. The merit of our normalization rule is that it is 

mathematically deduced straight from the very basic definition of normalization. On 

the other hand the LP normalization is based on informal reasoning (though it 

possesses some desirable properties). Moreover our normalization is ordinal. That is 

we lay down a priori permissible sign for a subset of coefficients in the 

contemporaneous matrix. In contrast using the LP normalization we sometimes 

multiply coefficients in a given equation by 1 but sometimes by minus 1 (depending 

on what is closer to the mode). 

We offer theoretical insight (which is contrary to the common understanding) 

that sometimes it is not sufficient to restrict the sign of one coefficient in every 

equation to normalize a model. As we will show in non–recursive SVAR models we 

usually need more sign restrictions. In fact this may be also perceived as the 

significant contribution of our paper since at this level of the SVAR model design the 

economic theory must enter the scene e.g. you must take a stand a priori on whether 

supply is downward or upward sloping. 

It turns out that our normalization also sheds some new light on more and 

more popular sign restrictions used to identify the impact of some shocks in a SVAR, 

see e.g. Uhlig (2005). Although it is well understood that using only sign restrictions 

is insufficient to identify a model we claim that they may be necessary for 

identification. That is according to our theory sign restrictions may constitute 

inevitable part of the identification of a model i.e. without them a model may be 

unidentified even if the conditions given in Rubio–Ramírez et al. (2010) are met.  

Since the articles of Waggoner and Zha (2003a) and Hamilton, Waggoner and 

Zha (2007) are frequently cited in the sequel they will be referred to as WZ and 

HWZ, respectively. 
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II. GENERAL DEFINITION OF NORMALIZATION IN SVAR MODEL 

 The subject of this paper is to understand the nature of normalization in the 

following SVAR model 

 

1 1t t t p p ty A c y A y A ε− −′ ′ ′ ′= + + + +" ; for 1, ,t T= …    (1) 

 

where : ( )A m m×  is the nonsingular matrix of contemporaneous relations between 

the data : ( 1)ty m× , : ( )iA m m× , : (1 )c m×  is a vector of constants and 

1 2 1| , , (0 , I )t t t m my y Nε − − ×…∼ . Let us define [B c′ ′= 1 ]pA A′ ′… . Further let mO  denote 

the space of ( )m m×  orthogonal matrices i.e. { | I }m m

m mO g g g gg× ′ ′= ∈ = =\ . 

Assume that restrictions identify a SVAR model up to arbitrary sign of each 

equation. Let us denote this restricted parameter space as ,
r

A BΘ . To distinguish the 

identification up to arbitrary sign of each equation from the concept of global 

identification we term the former as the regional identification. The label “regional” 

prompts that this is more than local property. Formally 

 

Definition 1: The SVAR is regionally identified at ,( , ) r

A BA B ∈ Θ  if and only if (ifif)1 

, ,{ | ( , ) }r

A B m A BS g O Ag Bg D= ∈ ∈ Θ = , where 1{ ( ,..., ) | 1}m iD diag δ δ δ= = ± . 

 

Following the literature we confine ourselves to the normalization put only on 

elements of A . Hence we restrict permissible A ’s to some subset n m m

A

×Θ ⊂ \  which 

entails inequalities on some entries in A  matrix. It just amounts to augmenting ,
r

A BΘ  

with inequality constraints n

AΘ . Let R  be the space of all regionally identified 

parameter points such that n

AA ∈ Θ  i.e. ,{( , ) |r n

A B AR A B A= ∈Θ ∈Θ  and ( , )A B  is 

regionally identified} . Of course we must assume that R ≠ ∅ . Hence we have 

intuitively clear 

 

Definition 2: A normalization is a subset n m m

A

×Θ ⊂ \  such that for all ( , )A B R∈  we 

have ,{ | ( , ) , } {I }r n

m A B A mg O Ag Bg Ag∈ ∈ Θ ∈ Θ = . 

 

                                                 
1
 We use “ifif” instead of the usual “iff” following suggestion of I.J. Good. He used to say that “ifif” is at least 

pronounceable neologism (“iff” is the barbarism). 
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Hence to normalize a model means to achieve global identification on R  (uniformly). 

That is when a normalization is imposed the point that is regionally identified 

becomes globally identified. 

Let ( , )A B R∈ . Since  

, ,{ | ( , ) , } { | ( , ) } { | }r n r n

m A B A m A B m Ag O Ag Bg Ag g O Ag Bg g O Ag∈ ∈ Θ ∈ Θ = ∈ ∈ Θ ∩ ∈ ∈ Θ  

We obtain by definition 1 

 

,{ | ( , ) , } { | }r n n

m A B A m Ag O Ag Bg Ag D g O Ag D∈ ∈ Θ ∈ Θ = ∩ ∈ ∈ Θ ⊆   (2) 

 

Hence equivalent definition of normalization is 

 

Definition 2A: A normalization is a subset n m m

A

×Θ ⊂ \  such that for all ( , )A B R∈  we 

have ,{ | ( , ) , } {I }r n

A B A mg D Ag Bg Ag∈ ∈ Θ ∈ Θ = . 

 

WZ refer to “conventional” normalization as the sign choice of arbitrary 

(nonzero) element in each equation. With the help of simple 2–dimensional recursive 

model they demonstrate that “conventional” normalization may entail apparent ill–

behavior of the probability statements for impulse responses. Since this example 

constitutes the motivation to develop “appropriate” normalization rule by WZ we 

first analyze this example from our perspective (which is complementary to that 

adopted by WZ). To this end we ignore any lags in SVAR since they do not play any 

role in our reasoning. Consider the simple SVAR t ty A ε′ ′= , where 11

21 22

0a
A a a

⎡ ⎤
⎢ ⎥=
⎢ ⎥⎣ ⎦

 i.e. 

0r

A

⎡ ⎤
Θ = ⎢ ⎥

⎢ ⎥⎣ ⎦

\
\ \ . Evidently 2I

r

A∈ Θ  and 
2I 2 2{ | I }r

AS g O g D= ∈ ∈Θ = . Hence the model 

is regionally identified at 2IA = . As noted by WZ if we employ the normalization 

that all diagonal elements in A  are positive i.e. 2 2
11 22{ | 0, 0}n

A A a a×Θ = ∈ > >\ , 

which leads to 
0

{ | }r n r n

A A A AR A A
+

+
⎡ ⎤
⎢ ⎥= ∈ Θ ∈ Θ = Θ ∩Θ =
⎢ ⎥⎣ ⎦

\
\ \ , then 2I

r n

A A∈ Θ ∩Θ  and 

2 2 2{ | I } {I }r n

A Ag O g∈ ∈ Θ ∩Θ =  i.e. the model is globally identified at 2IA = . Using 

the “conventional” normalization argument we could replace n

AΘ  with 
2 2

21 22{ | 0, 0}n

A A a a×Θ = ∈ > >\ , which induces { | }r n

A AR A A= ∈Θ ∈Θ =  

0
r n

A A
+ +

⎡ ⎤
⎢ ⎥= Θ ∩Θ =
⎢ ⎥⎣ ⎦

\
\ \ . WZ show how strange results may appear when normalization 

n

AΘ  is used. However to point out clear unreasonableness of normalization n

AΘ  it is 

sufficient to realize that with this normalization 2I R∉  i.e. the point that is globally 
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identified using n

AΘ  ceased to be so with n

AΘ . Hence using n

AΘ  we “lose” from 

potentially normalized (globally identified) set some regionally identified points. The 

general question is this: Is it reasonable to sacrifice some points from globally 

identified set when they are economically reasonable? This suggests that the 

arbitrariness of “conventional” normalization is illusory and must be abandoned. 

Formal analysis is calling for. 

Using definition 2 we have a useful alternative characterization of 

normalization 

 

Proposition 1: A normalization is a subset n m m

A

×Θ ⊂ \  such that for all ( , )A B R∈ ; 

1 {I }n

A mD A−∩ Θ = , where 1 1{ | }n n

A AA A A A− −Θ = ∈Θ . 

Proof: Let ( , )A B R∈ . We have ,{ | ( , ) , }r n

m A B Ag O Ag Bg Ag∈ ∈ Θ ∈Θ =  

{ | }n

m AD g O Ag= ∩ ∈ ∈ Θ  by (2). We shall prove { | }n

m Ag O Ag∈ ∈ Θ =  
1{ | }n

m Ag O g A−= ∈ ∈ Θ . We get 
n

AAg ∈ Θ  ⇒  Ag A=  for some n

AA ∈ Θ  ⇔ 1g A A−=  for some n

AA ∈ Θ ⇒ 1 n

Ag A−∈ Θ  

On the other hand 
1 n

Ag A−∈ Θ  ⇒  1g A A−=  for some n

AA ∈ Θ  ⇔ Ag A=  for some n

AA ∈ Θ ⇒ n

AAg ∈ Θ  

Then for arbitrary ( , )A B R∈  
1 1

,{ | ( , ) , } { | }r n n n

m A B A m A m Ag O Ag Bg Ag D g O g A D O A− −∈ ∈ Θ ∈ Θ = ∩ ∈ ∈ Θ = ∩ ∩ Θ =  

1 n

AD A−= ∩ Θ  

The result follows by replacing ,{ | ( , ) , }r n

m A B Ag O Ag Bg Ag∈ ∈ Θ ∈Θ  with 1 n

AD A−∩ Θ  in 

definition 2. 

 

Proposition 1 is the most general and valid for all kinds of homogenous 

restrictions (i.e. linear or nonlinear, whether the restricted parameter space is 

variation free or not etc.). However if the restricted parameter space is variation free 

i.e. when restrictions on A  and B  are independent of each other, then more intuitive 

and easily checkable condition is available (see below). Proposition 1 says that a 

model is normalized ifif for all ( , )A B R∈  the only common element of the two 

subsets D  and 1 n

AA− Θ  is the identity matrix. In principle, to achieve this global 

identification we must have that ( , )A B R∀ ∈ , 1 n

AA− Θ  is a subset with all diagonal 

elements strictly greater than minus one (since 1{ ( ,..., ) | 1}m iD diag δ δ δ= = ± ). 

However even in very special cases this is not feasible e.g. when A  is lower triangular 

and B  unrestricted. That is why we are left with other condition. In particular we 
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must ensure that ( , )A B R∀ ∈ , 1 n

AA− Θ  is a subset with strictly positive diagonal 

elements. Using proposition 1 we automatically rule out cases when A  is singular 

and/or 1 n

AA− Θ  is empty. The very reason for this is that our definition of 

normalization is uniform i.e. it has to be fulfilled for all ( , )A B R∈ . 

In the rest of paper we focus on the case when ,
r r r

A B A BΘ = Θ ×Θ  i.e. restricted 

parameter space is variation free so as the restrictions on A  and B  are independent 

of each other. This covers unquestionably the most common use of SVAR model in 

which restrictions are confined to A  matrix only. The main reason for that is to have 

a close contact with WZ (and to be concise). 

Anyway though in general case our starting point to study normalization 

would be proposition 1, when ,
r r r

A B A BΘ = Θ ×Θ  we have 

 

Proposition 2: Suppose ,
r r r

A B A BΘ = Θ ×Θ . If ( , )A B R∀ ∈ ; −∩ Θ ∩Θ =1( ) {I }r n

A A mD A  

then n

AΘ  is a normalization, where − −Θ ∩Θ = ∈Θ ∩Θ1 1( ) { | }r n r n

A A A AA A A A . 

Proof: First note that given ,
r r r

A B A BΘ = Θ ×Θ  we have 

,{ | ( , ) , } { | , }r n r n r

A B A A A Bg D Ag Bg Ag g D Ag Bg∈ ∈ Θ ∈Θ = ∈ ∈Θ ∩Θ ∈Θ =  

{ | } { | }r n r

A A BD g D Ag g D Bg= ∩ ∈ ∈Θ ∩Θ ∩ ∈ ∈Θ  

Analogously as in the proof of proposition 1 we can show { | }r n

A Ag D Ag∈ ∈ Θ ∩Θ  
1{ | ( )}r n

A Ag D g A−= ∈ ∈ Θ ∩Θ . Hence 
1

,{ | ( , ) , } ( ) { | }r n r n r

A B A A A Bg D Ag Bg Ag D A g D Bg−∈ ∈ Θ ∈ Θ = ∩ Θ ∩Θ ∩ ∈ ∈ Θ  

Note that if ,
r r r

A B A BΘ = Θ ×Θ  then { , |r n r

A A BR A B= ∈Θ ∩Θ ∈Θ ( , )A B  is regionally 

identified}. Let ,A B R∈  be arbitrary. It follows  
1

,{ | ( , ) , } ( ) { | }r n r n r

A B A A A Bg D Ag Bg Ag D A g D Bg−∈ ∈ Θ ∈ Θ = ∩ Θ ∩Θ ∩ ∈ ∈ Θ  

If 1( ) {I }r n

A A mD A−∩ Θ ∩Θ =  then ,{ | ( , ) , } {I }r n

A B A mg D Ag Bg Ag∈ ∈ Θ ∈Θ =  since 

∈ ∈ Θ{ | }r

Bg D Bg  is non–empty and contains Im . This proves that n

AΘ  is a 

normalization. 

 

Proposition 2 gives sufficient condition for normalization when ,
r r r

A B A BΘ = Θ ×Θ  and 

there are some restrictions imposed on B . However if the restrictions are confined to 

A  only, then proposition 2 constitutes necessary and sufficient condition for 

normalization. For future reference let us denote rn r n

A A AΘ ≡ Θ ∩Θ . 

A normalization consistent with proposition 2 will be refereed to as PL 

normalization (you can think of PL as an abbreviation for “plain” or alternatively as 

the ISO country code for certain medium–sized country in Europe). PL normalization 
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is appropriate when restricted parameter space is variation free and requires that for 

all ( , )A B R∈ , the only common element from two subsets D  and 1 rn

AA− Θ  is the 

identity matrix. This will be achieved by the condition that all elements in 1 rn

AA− Θ  

have strictly positive diagonal elements. In the important special case when all 

restrictions are confined to A  only we must ensure that for all A ∈ rn

AΘ  such that A  

is regionally identified, 1 rn

AA− Θ  has strictly positive diagonal elements. Or simply for 

every , rn

AA A ∈ Θ , 1A A−  has strictly positive diagonal elements. 

The inevitable question from which we could not escape is how PL 

normalization looks like when using recursive SVAR models i.e. A  is lower or upper 

triangular and B  unrestricted. It is easy to note that restricting all elements on the 

diagonal of A  to be positive or negative works well. Let us show this. Without loss of 

generality assume A  is lower triangular with positive diagonal elements. Then 1A−  is 

lower triangular with positive diagonal elements too. If we postmultiply 1A−  by any 

A , which is also lower triangular with positive diagonal elements, then a product 
1A A−  is lower triangular with positive diagonal elements. Lastly the only common 

element of D  and the space of lower triangular matrices with positive elements is the 

identity matrix. 

 

III. FIRST ILLUSTRATION OF PL NORMALIZATION 

As a first illustration of our approach we use the example of orange demand 

and supply discussed in detail in HWZ. Let ( , , )t t t ty q p w′ = , where tq  denotes the log 

of the number of oranges sold in year t, tp  is the log of the price and tw  is the 

number of days with below–freezing temperatures in year t. The model is as follows 

 

11 12

21 22 1 1

31 33

0

0

0
t t t p p t

a a

y a a c y A y A

a a

ε− −

⎡ ⎤
⎢ ⎥
⎢ ⎥′ ′ ′ ′= + + + +⎢ ⎥
⎢ ⎥
⎣ ⎦

"      (3) 

 

where iA ’s are unrestricted. Of course the restricted parameter space is variation free 

hence proposition 2 applies. First equation represents a supply, second – a demand 

and the last one depicts the exogenous process tw . One may show that the model (3) 

is regionally identified almost everywhere [Lebesgue] (in fact provided that 
11 12

21 22

a a
a a
⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

 is 

nonsingular and 31 0a ≠ ). By assumption A  must be also non–singular hence 

33 0a ≠ . Then 
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11 12

21 22

31 33

0

0

0

a a

A a a

a a

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎣ ⎦

⇒ 1A− =
22 33 12 33

1
21 33 11 33

31 22 31 12 11 22 21 12

0

[det( )] 0

a a a a

A a a a a
a a a a a a a a

−

⎡ ⎤−⎢ ⎥
⎢ ⎥⋅ −
⎢ ⎥− −⎢ ⎥⎣ ⎦

 

where det( )A 11 22 33 33 12 21a a a a a a= − . 

Let 
11 12

21 22

31 33

0

0

0

a a

A a a

a a

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎣ ⎦

 be arbitrary. Then diagonal elements of 1A A−  are given as 

11 22 33 11 12 33 21 11 22 33 33 12 21( )/( )d a a a a a a a a a a a a= − −  

22 11 33 22 21 33 12 11 22 33 33 12 21( )/( )d a a a a a a a a a a a a= − −       (4) 

33 11 22 33 21 12 33 11 22 33 33 12 21( )/( )d a a a a a a a a a a a a= − −  

 

Our goal is to guess n

AΘ  such that for every , rn

AA A ∈ Θ , 1A A−  has strictly positive 

diagonal elements i.e. 0iid > ; i∀ . It is easily verified that taking n

AΘ  to be the space 

of A ’s with strictly positive diagonal elements is insufficient to complete the global 

identification of the model. We need one more assumption: 12a  is positive and 21a  is 

negative (or vice versa). Interestingly this requires economic reasoning. Since the first 

equation is a supply and the second is a demand it is natural to assume 21 0a <  and 

12 0a >  (note that all coefficients of each contemporaneous relation are on the left 

side in SVAR (1))2. Hence  

 

11 22 33 21 12{ | 0, 0, 0, 0, 0}n m m

A A a a a a a×Θ = ∈ > > > < >\    (5) 

 

Imposing PL normalization allows us to postmultiply (3) by 1 1 1
11 22 33( , , )diag a a a− − −  to get 

(with some abuse of notation) 

 

1 1

1 0

1 0

0 1
t t t p p ty c y A y A u

h

η
γ − −

⎡ ⎤
⎢ ⎥
⎢ ⎥′ ′ ′ ′= + + + +⎢ ⎥
⎢ ⎥
⎣ ⎦

"       (6) 

 

Note that with PL normalization 12 22/ 0a aη = > , 21 11/ 0a aγ = < , 31 11/h a a=  and 
2 2 2

3 1 11 22 33(0 , ( , , ))tu N diag a a a− − −
×∼ . The notation used in (6) is not accidental. The 

specification (6) “almost” corresponds to the so–called η −normalization in HWZ. 

                                                 
2
 This for example precludes downward sloping supply curve. We are aware that sometimes such a description of 

the market phenomenon is quite reasonable. The point is that complete identification of the SVAR model requires 

that you must take a stand a priori on whether supply is downward or upward sloping. 
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We wrote “almost” since η −normalization in HWZ does not take into account the 

sign restrictions 0η >  and 0γ < , which are in fact necessary for global 

identification. The interesting fact about (6) under the PL normalization is that it 

roughly conforms to the so–called identification principle i.e. normalization rule 

proposed by HWZ. Identification principle applied to (6) says that boundaries for 

allowable entries of A matrix should correspond to the loci along which the log 

likelihood is −∞ . In our case this locus is 1γη = 3. Although the locus of 1γη =  is 

not on the boundary of the parameter space in (6) what PL normalization does 

instead is to exclude the parameter points for which 1γη =  holds (since 0η >  and 

0γ < ). 

To illustrate all these issues we simulated the sample of 100  observations from 

 

1

1 0.1 0 0.2 0.5 0 0.1

0.5 1 0 0.12 0.3 1 0.1

0.5 0 1 0.3 0 0.1 0.4
t t ty y ε−

′⎡ ⎤ ⎡ ⎤ ⎡ ⎤−⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥′ ′ ′− = + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

;  3 1 3(0 , I )t Nε ×∼  (7) 

 

Since 1iia =  for 1,2,3i = ; we have 12 0.1a η≡ = , 21 0.5a γ≡ = −  and 31 0.5a h≡ = . 

The first picture in Figure 1 shows the contours of concentrated log likelihood for η  

and γ  evaluated at the true values for 0.5h =  and 1iia = , for 1,2,3i = . The true 

values of η  and γ  are marked with “×”. The likelihood has one global maximum 

and two local peaks (of unequal height). The areas of great concentration of the 

contour levels correspond to the loci along 1γη =  (at which the log likelihood 

approaches −∞ ). Using the PL normalization we restrict the support to the second 

quadrant i.e. 0η >  and 0γ < . Thus we automatically exclude parameters along and 

in the vicinity of 1γη =  that are situated both in the first and the third quadrant. It 

is instructive to find out how these problems carry over into the posterior results. 

Although the multimodality naturally characterizes the marginal posterior of η  and 

γ  (derived under the flat prior for all parameters in SVAR), see the last picture in 

Figure 1, the contribution of these modes to the visible shape of the posterior is none, 

see the middle picture in Figure 1. The reason is that the ratio of the height of the 

marginal posterior of η  and γ  at the global maximum to that of the second largest 

peak (around 2γ = − , 1.2η = − ) is about 150e . In consequence the IRF’s computed 

from (6) even without inequality constraints 0η >  and 0γ <  are well behaved too 

                                                 
3
 Which is also the locus of local non–identification that arises at 0h = . 
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i.e. the error bands for IRF’s are not too wide and quite conclusive, see HWZ. 

However in contrast to HWZ we interpret these results differently. For HWZ the 

parameterization (6) without inequality restrictions 0η >  and 0γ <  is acceptable 

since “for practical purposes it is sufficiently close […] to a true identification–based 

normalization”. As we will show in section VI, this conclusion is case–sensitive. In 

this particular 3–dimensional SVAR subject to the particular identifying scheme, 

restricting the diagonal elements in A results in well behaved posterior of parameters 

and its functions e.g. IRF’s. In general this is not a rule. In fact this is the message 

from WZ. Using the PL normalization guarantees well behaved posteriors of 

parameter and its functions in larger models when the simple visual inspection of the 

shapes of the likelihood and/or posterior is not readily available and ad–hoc 

normalization rules are not an option. 

Quite obviously those inequality constraints turn out to be also sign 

restrictions for impulse responses. For example instantaneous response of the price to 

a one standard deviation positive shock to a quantity supplied is 

12 12 33 11 22 33 33 12 21/( )a a a a a a a aϕ = − − . Using PL normalization we have 12 0ϕ < . 

Moreover the instantaneous effect of a one standard deviation increase in quantity 

demanded on the price is strictly positive under PL normalization (since 

22 11 33 11 22 33 33 12 21/( ) 0a a a a a a a aϕ = − > ). This ensures that we avoid all pitfalls 

connected with “conventional” normalizing rules which were convincingly illustrated 

in Figure 4 in HWZ.  

 

 
Figure 1: From the left: a) contours of concentrated log likelihood of γ  and η  evaluated at the true value of 0.5h =  and the 

diagonal elements in A matrix i.e. 1iia =  for 1,2, 3i = ; b) marginal posterior of γ  and η  under the flat prior for all 

parameters in SVAR; c) contours of the log marginal posterior of γ  and η  under the flat prior for all parameters in SVAR. 

 

IV. SUFFICIENT CONDITION FOR PL NORMALIZATION 

In our example of the orange demand–supply, n

AΘ  turns out to be equivalent 

to assumption that rn

AA∀ ∈ Θ ; det( ) 0A > . Was it a coincidence? We will show that 
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provided that the restricted parameter space is variation free this requirement is all 

we need to complete the global identification of SVAR model. 

Among basic model assumptions is that det( ) 0A ≠ . Commonly this 

assumption was thought as unimportant because the set of singular matrices has zero 

Lebesgue measure. For instance using Bayesian simulation methods to estimate 

SVAR, in practice we could not encounter a draw which entails singular A . However 

the theoretical importance of the singularity of A  has been recognized and discussed 

by WZ and HWZ. The message from these both articles is that the permitted 

parameter space should exclude the subspace on which the likelihood vanishes. The 

goal of this section is to demonstrate that the latter informal statement can be 

formally justified. 

To proceed further we need one more notation. Given two matrices ( )ijX x=  

and ( )ijY y=  of the same dimension we write cX Y≤  if ij ijx y≤  for each ,i j . Hence 

“ c≤ ” denotes component–wise inequality. We have 

 

Proposition 3: Assume ,
r r r

A B A BΘ = Θ ×Θ . Let A  and A  be given matrices in r

AΘ . 

Assume that { | }rn r

A A c cA A A AΘ = ∈Θ ≤ ≤  is such that each rn

AA ∈ Θ  is nonsingular. 

Then for every rn

AA ∈ Θ , 1 rn

AA− Θ  is a subset with strictly positive diagonal elements. 

Proof: This is the application of theorem 1.2 in Rohn (1989), which states that 

under hypothesis of our proposition, 1
1 2A A A−

∗ = , for every 1 2, rn

AA A ∈ Θ , is the so–

called P −matrix (a square matrix A∗  is the P −matrix if all its principal minors are 

positive). In particular since each diagonal element is the principal minor, the 

proposition follows. 

 

Needless to say some entries in A  may be set to ∞  and that in A  to minus ∞ .  

Proposition 3 forms a basis for useful sufficient condition to achieve global 

identification. One has to derive analytically det( )A . If it happens that imposing 

inequalities on some or all entries in A  restricts the latter so as det( ) 0A >  or 

det( ) 0A <  then setting { | det( ) 0}rn r

A AA AΘ = ∈Θ >  or { | det( ) 0}rn r

A AA AΘ = ∈Θ <  

will complete the identification of a model. The choice between 

{ | det( ) 0}n

A AA AΘ = ∈Θ >  and { | det( ) 0}n

A AA AΘ = ∈Θ <  depends on the model at 

hand (but is only illusory, see right below). Thus instead of finding n

AΘ  such that 
rn

AA∀ ∈ Θ ; 1 rn

AA− Θ  is a subset with strictly positive diagonal elements all we have to 

do is 1) to derive the determinant of A  and 2) to impose inequalities on some 
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elements of A  in the form c cA A A≤ ≤  so as det( ) 0A >  or det( ) 0A < . Note that 

derivation of det( )A  even in large SVAR model is usually not very difficult. This is 

because of many zero restrictions imposed on A . In fact prior to derivation of 

det( )A , we can permute the rows and columns of A  so as there appear blocks of 

zeros (which usually simplify derivation of det( )A ). The permutation operation is 

permissible since it only changes the sign of the determinant but both det( ) 0A >  and 

det( ) 0A <  restriction is acceptable. 

Note that when A  is lower or upper triangular (or its subset) then if diagonal 

elements of A  are restricted to be positive we immediately get det( ) 0A > . This 

justifies our conviction that the correct normalization is the same for recursive and 

non–recursive model provided that we follow the rule to restrict A  so as det( ) 0A > . 

 

V. COMPARISON OF PL NORMALIZATION TO LP NORMALIZATION 

It is instructive and desirable to compare our theory with the LP 

normalization proposed by WZ. The first step to apply LP normalization is the 

derivation of the maximum likelihood (ML) estimator of A  to be denoted as Â . 

 

Proposition 4: Assume that ,
r r r

A B A BΘ = Θ ×Θ . Suppose there is a mode Â  in rn

AΘ . Then 

the PL normalization implies the LP normalization restricted to rn r

A BΘ ×Θ . 

Proof: PL normalization implies that for every two distinct , rn

AA A ∈ Θ , 1A A−  

must have strictly positive diagonal elements. Since a mode Â  belongs to rn

AΘ  it 

follows that for every rn

AA ∈ Θ , 1 ˆA A−  has also strictly positive diagonal elements. The 

latter is the LP normalization. 

 

Otherwise, if we operate on ,
r r r

A B A BΘ = Θ ×Θ  (and not on rn r

A BΘ ×Θ ), the LP and PL 

normalizations are incomparable notions. However if ˆ rn

AA ∈ Θ , by proposition 4, any 
rn

AA ∈ Θ  is consistent with the LP normalization. On the other hand the parameter 

points that are chosen using the LP normalization may not belong to rn

AΘ 4. Thus as a 

general principle we may expect that error bands for IRF’s in a model under PL 

normalization will be narrower than those in a model under the LP normalization. 

                                                 
4
 Consider the model of the orange demand–supply from section III. Let us focus on the first diagonal element of 

1 ˆA A− . Suppose 1iia = ; i∀ , 12 0.1a =  and 21 0.2a =  (note that 21a  violates the PL normalization). Further 

suppose that ML estimators are 11ˆ 1a =  and 21ˆ 0.1a = − . Then the first diagonal element of 1 ˆA A−  is 

(1 0.1 0.1)/(1 0.1 0.2) 0+ ⋅ − ⋅ > . It follows that 21 0.2a =  is consistent with the LP normalization. 
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Utilizing the PL normalization we may hope for more clear–cut economic conclusions 

as far as IRF’s are concerned. That this hope is justified will be illustrated in section 

VI. 

Without loss of generality assume { | det( ) 0}rn r

A AA AΘ = ∈Θ > . Then we have 

the following 

 

Proposition 5: Assume that ,
r r r

A B A BΘ = Θ ×Θ . Suppose { | det( ) 0}rn r

A AA AΘ = ∈Θ >  

entails the inequalities so as proposition 3 holds. Let 11( , , )mmdiag γ γΓ = …  be any 

matrix with [0,1]iiγ ∈ . Then for all , rn

AA A ∈ Θ  we have det( (I )) 0mA AΓ + −Γ > . 

Proof: By assumption 1det( (I )) det( ) det((I ) )m mA A A A A−Γ + −Γ = ⋅ − Γ + Γ . 

Then det( (I )) 0mA AΓ + −Γ >  ifif 1det((I ) ) 0m A A−−Γ + Γ > . By theorem 1.2 in 

Rohn (1989), for all , rn

AA A ∈ Θ , 1A A−  is a P −matrix (hence all principal minors of 
1A A−  are positive). Proposition follows by expansion of 1det((I ) )m A A−−Γ + Γ  by the 

diagonal (I )m −Γ  (see e.g. Seber (2008), pp. 61–62 or Harville (1997), p. 196) and 

noting that for every Γ  and , rn

AA A ∈ Θ , the determinant is positive. 

 

In particular under hypothesis of proposition 5 and provided that ˆ rn

AA ∈ Θ  we 

get ˆdet( (I ))mA AΓ + −Γ = 11 1 11 1ˆ ˆdet([ (1 ) , , (1 ) ]) 0mm m mm ma a a aγ γ γ γ+ − + − >…  for all 

[0,1]iiγ ∈ , where îa  denotes the i − th column of Â  and ia  that of A . In contrast 

the LP normalization works column–wise so as given 1 1 1,i i ma a a a− +… … , we choose ia  

such that 1 1 1ˆdet([ , , , (1 ) , , , ]) 0i i i i ma a a a a aγ γ− ++ − >… … , for all [0,1]γ ∈ , i.e. îa  and 

ia  lie on the same side of the hyperplane { | det( ) 0,m

ia A∈ =\  given 

1 1 1, }i i ma a a a− +… … . Evidently the PL normalization ensures that îa  and ia  lie on the 

same side of the hyperplane but simultaneously for all 1, ,i m= …  and 

unconditionally (i.e. without conditioning on 1 1 1,i i ma a a a− +… … ). 

 

VI. A MONETARY POLICY EXAMPLE 

As a second (real–data) example we consider a monetary SVAR proposed by 

Kim (1999). The contemporaneous matrix A  is restricted as follows (B  unrestricted) 

              MP MD PS PS Inf 

A =
log

log

log

log c

R

M

P

Y

P

11 12 15

21 22 25

32 33 35

42 43 44 45

51 55

0 0

0 0

0 0

0

0 0 0

a a a

a a a

a a a

a a a a

a a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

       (8) 
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The identifying scheme is quite similar to that used in Waggoner and Zha (2003b) 

(except that (8) does not include unemployment). The model includes 5 variables: the 

federal funds rate (R), logarithm of the monetary aggregate M2 ( logM ), logarithm of 

the consumer price index ( logP ), logarithm of the real GDP interpolated on a 

monthly frequency and logarithm of the Commodity Research Bureau price index for 

raw industrial commodities ( log cP ). Each column in (8) represents a behavioral 

equation that is signified at the top. “MP” stands for monetary policy (or money 

supply) equation and “MD” stands for money demand. Equations labeled with “PS” 

succinctly describe production sector and “Inf” stands for the information market.  

We employed the US dataset used in Waggoner and Zha (2003b), which is 

available at http://www.tzha.net/computercode (where detailed description of the 

data may be also found). The data are monthly and cover 01.1959–12.2000. 

 By theorem 7 in Rubio–Ramírez et al. (2010) the model under the identifying 

scheme (8) is exactly identified i.e. globally identified almost everywhere. In our 

language it means that we can define the set of regionally identified parameter points. 

Since the restricted parameter space is variation free, to get complete identification 

we need to impose the PL normalization. To this end we use proposition 3 and we 

have to derive the determinant of A . We easily get 

det( )A 44 55 44 51 22 33 15 51 12 33 25( )a a a a a a a a a a a a∗= − −  

where 11 22 33 33 21 12a a a a a a a∗ = − . Kim (1999) implicitly assumed that all diagonal 

elements in A  are strictly positive. However it is not sufficient for global 

identification (i.e. PL normalization). We need to find inequalities on the parameters 

so as det( ) 0A > . Hence in addition to 0iia >  ( 1, ,5i = … ), we must assume that 

21 12 0a a < , 51 15 0a a <  and 51 12 25 0a a a > . To use proposition 3 we must derive from the 

last three inequalities the implied inequalities for single elements. This should be in 

principle assisted by the economic theory. Using standard economic reasoning since 

the second equation is money demand we assume 12 0a >  (by assumption 22 0a >  and 

we use a convention that all contemporaneous variables are on the left in SVAR). 

Moreover 21 0a <  is also reasonable since we can think of the first equation as money 

supply (note that we also assume 11 0a > ). Since cP  is the commodity price index in 

dollars we should expect that monetary authority should increase the interest rates 

when world commodity price rises. Hence 51 0a < . Then we must assume 15 0a >  to 

fulfill 51 15 0a a < . With these choices we must also restrict 25 0a <  (so as 

51 12 25 0a a a > ). To rationalize 15 0a >  and 25 0a < , Kim (1999) treated the last 
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equation as “an arbitrage equation which describes a kind of financial market 

equilibrium”. Thus in case of large economy (like US) domestic interest rates and 

money aggregates may affect cP  through the direct pressure on world commodity 

price. When the interest rate rises in large economy it should have tendency towards 

lowering the commodity prices. That is 15 0a > . Moreover when the money aggregate 

increases in large economy there is a natural pressure to increase the commodity 

prices, hence 25 0a < . Needless to say the above inequality restrictions put on A  give 

rise to sign restrictions for IRF’s (at least for immediate responses). 

 We estimated the model with 12p =  lags using Bayesian approach. To this 

end we used the flat prior for A  and B  in order to preserve the likelihood shape. 

Figures 2 and 3 present IRF’s of all variables to a one standard deviation 

contractionary monetary policy shock and a money demand shock, respectively. 

These are shocks identified with the first two equations. The solid line presents the 

IRF evaluated at the maximum likelihood (ML) estimators of A  and B . The dashed 

line (usually very close to the solid one) is median response, two “dots–dashes” lines 

cover 68% of the posterior probability (point–wise). Lastly two dotted lines are 90% 

posterior probability bands. In each figure a panel A shows results using naïve 

normalization i.e. diagonal elements in (8) are positive, panel B demonstrates the 

output using LP normalization and panel C – the PL normalization. 

The ML estimates imply IRF’s expected by economists. For instance, the 

interest rate rises and a money falls initially, the real GDP declines quite quickly 

reaching the minimum within half a year and consumer prices decline persistently. 

Since error bands are meant to describe uncertainty around “mean” response, the 

probabilistic conclusion may not be so certain and depends on how you normalize the 

model. With naïve normalization the matter is hopeless which was already nicely 

demonstrated in WZ. We found out nothing about the most important aspects of the 

monetary policy shock i.e. its impact on interest rate, real GDP and consumer prices. 

In general probability bands of all IRF’s are suspiciously wide. As we emphasized this 

is a consequence of the methodological fault and not the “uninformativeness” of the 

data. Adoption of the LP normalization results in more conclusive probability 

statements for IRF’s. However the question of great importance is how LP and PL 

normalizations differ from each other and whether these differences are economically 

important. Firstly using the PL normalization we get particularly well determined 

IRF of the interest rate to a monetary policy shock. We are quite certain that the 

immediate impact is positive and becomes negative after, say eight months (in 



 16

anticipation of falling prices and by realizing by monetary policy decision makers that 

output has already declined). In contrast the analogous IRF using the LP 

normalization gives an ambiguous impression5. Secondly with the PL normalization 

we definitely get rid of the “price puzzle” i.e. prices move up after a contractionary 

monetary policy shock. In this respect probabilistic conclusions are much sharper 

with PL normalization than LP normalization. 

In fact in all cases PL normalization makes the probabilistic statement more 

informative than when employing the LP normalization. Sometimes it is not a critical 

difference but sometimes it is economically crucial (e.g. compare the response of 

consumer prices to a money demand shock).  

 

VII. CONCLUSION 

Our goal was to properly grasp the notion of normalization in SVAR models. 

Using basic definition of normalization in SVAR models we proposed the easy 

working condition for normalization in SVAR models when the restricted parameter 

space is variation free. It was called the PL normalization. We emphasized that 

normalization is an integral part of the identification of SVAR. To put it another 

way, only properly normalized parameter point becomes globally identified.  

 We compared our theory to the likelihood preserving (LP) normalization 

proposed by Waggoner and Zha (2003a). Our basic attitudes to normalization are 

quite different. We maintain that a correct approach is to trace the overall shape of 

the likelihood of the globally identified model whereas Waggoner and Zha (2003a) 

focus on its shape in the close area around the mode in a model which is “almost” 

identified (up to arbitrary sign of each equation). In our opinion a proper 

normalization is not a matter of appropriate description of uncertainty around the 

maximum likelihood estimate of IRF (as suggested by Waggoner and Zha (2003a)), 

but is the last and necessary step towards achieving the global identification of 

SVAR model. 

However our theoretical findings are in line with the recommendation of 

Waggoner and Zha (2003a) and Hamilton et al. (2007) to put the parameter points 

which imply the zero likelihood or failure of local identification on the boundary of 

                                                 
5
 As a matter of fact the immediate response of the interest rate to a contractionary monetary policy shock is 

more reasonable when using naïve normalization than the LP normalization. In the former case it is “probably” 

positive. 
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the parameter space. On the other hand we disagree with Waggoner and Zha (2003a) 

claim that “the correct normalization for recursive models turns out to be, in general, 

inappropriate for nonrecursive models”. Our conclusion is that the correct 

normalization is the same for recursive and non–recursive SVAR provided that we 

fully understand what the normalization is (the appropriate normalization rule is the 

same). 

We demonstrated theoretically and in practice that using PL normalization we 

get narrower IRF’s error bands than when employing the LP normalization. Hence 

the PL normalization may be welcomed by applied macroeconomists as it will tend to 

confirm more firmly their intuition. 

Although general nonlinear identifying restrictions may make the 

normalization irrelevant (see e.g. Waggoner and Zha (2003a)) there is an important 

class of nonlinear restrictions (e.g. short–run and long–run impulse response 

restrictions) that also require normalization rule. Though we provided useful 

characterization of normalization in such a case (see proposition 1) we really did not 

study it and leave these aspects of normalization for future research. 
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Figure 2 A: Naive normalization i.e. diagonal elements of A matrix are positive 

 

Figure 2 B: LP normalization 

 

Figure 2 C: PL normalization 
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Figure 3 A: Naive normalization i.e. diagonal elements of A matrix are positive 

 

Figure 3 B: LP normalization 

 

Figure 3 C: PL normalization 

 


