Uncertainty in optimal pollution levels: Modeling the benefit area

Halkos, George

Department of Economics, University of Thessaly

June 2013

Online at https://mpra.ub.uni-muenchen.de/47768/
MPRA Paper No. 47768, posted 22 Jun 2013 20:03 UTC
Uncertainty in optimal pollution levels:
Modeling the benefit area

By

George E. Halkos and Dimitra C. Kitsou
Laboratory of Operations Research
Department of Economics, University of Thessaly, Volos Greece

Abstract
This paper identifies the optimal pollution level under the assumptions of linear, quadratic and exponential damage and abatement cost functions and investigates analytically the certain restrictions that the existence of this optimal level requires. The evaluation of the benefit area is discussed and the mathematical formulation provides the appropriate methods, so that to be calculated. The positive, at least from a theoretical point of view, is that both the quadratic and the exponential case obey to the same form of evaluating the benefit area. These benefit area estimations can be used as indexes between different rival policies and depending on the environmental problem the policy that produces the maximum area will be the beneficial policy.

Keywords: Benefit area; damage cost; abatement cost; pollution.

JEL Classifications: C02; C62; Q51; Q52.

This research has been co-financed by the European Union (European Social Fund – ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) - Research Funding Program: Heracleitus II. Investing in knowledge society through the European Social Fund.
1. **Introduction**

Rationality in the formulation and applicability of environmental policies depends on careful consideration of their consequences on the nature and on the society. For this reason it is important to quantify the costs and benefits in the most accurate way. But the validity of any cost benefit analysis (hereafter CBA) is ambiguous as the results may have large uncertainties. Uncertainty is present in all environmental problems and this makes clear the need for thoughtful policy design and evaluation. We may have uncertainty over the underlying physical or ecological processes, as well as over the economic consequences of the change in environmental quality.

These sources of uncertainty and their impact on policy formulation may be represented by the non-linear nature of the damage and abatement cost functions. Damage or external costs can be estimated by an analysis of the chain of pollution emissions, their dispersion and “transportation” (in cases of transboundary pollution like the acid rain problem), their effect measured among others with a dose-response function and their final (if feasible) monetary valuation. A similar picture is realized when referring to abatement costs, which may be less uncertain, compared to damage costs, but they are quite severe. The main problem in this case is related to technological change which may be essentially difficult to predict or sometimes even to characterize.

Uncertainty is obvious not only in the parameters’ estimation, but also in the choice of the appropriate model that “fits” the problem. To make parameters’ uncertainty clearer, we may thing in terms of the fitted model assumed for the damage and abatement curves in a regression analysis that “lies” between the upper and the lower bound of a
95\% confidence interval. That is there are two curves creating an interval of values for the fitted model and in this way uncertainty due to variation of the estimated coefficients.

As uncertainty may be due to the lack of appropriate abatement and damage cost data, we apply here a method of calibrating non-existing damage cost estimates relying on individual country abatement cost functions. In this way a “calibrated” Benefit Area (BAc) is estimated. Specifically, we try to identify the optimal pollution level under the assumptions of linear, quadratic and exponential abatement and damage cost functions. As far as the parameters are concerned the first two are linear while the third is a non-linear function. That is we improve the work of Halkos and Kitsos (2005) extending the number of different model approximations of abatement and damage cost functions and thus the assumed correct model eliminates uncertainty about curve fitting. The target of this paper is to develop the appropriate theory whatever the model choice is.

The structure of the paper is the following. Section 2 discusses the background of the problem and reviews the relative existing literature. Section 3 identifies analytically the intersection of the marginal abatement cost curve (hereafter MAC) with the marginal damage cost curve (hereafter MD), in order to examine when and if an optimal pollution level exists. The existence of the intersection, despite the general belief, is not always true and the conditions are analytically examined here. In section 4 an empirical application for a sample of European countries, with different industrial structure, is presented. For these countries, the “calibrated” Benefit Area (BAc) is evaluated explicitly, provided there is an intersection of the MD and MAC functions. The last section concludes the paper and comments on the policy implications related to this analysis providing evidence useful to researchers and policy makers.
2. **Background to the problem**

Abatement and damage cost functions are highly non-linear and the precise shapes of the functions are unknown. At the same time, environmental policies are related with significant irreversibilities, which usually interact in a very complex way with uncertainty. This complexity becomes worse, if we think of the very long time periods that characterize environmental problems (Pindyck, 2007).

The damage cost function relates pollution and emissions of a specific pollutant. Damages are measured as the effect of these emissions on health, monuments, recreational activities, lakes, buildings etc. Efforts to measure the existence or other indirect use values are made with the help of contingent valuation and other methods (Halkos and Jones, 2012; Halkos and Matsiori, 2012; Bjornstad and Kahn, 1996; Freeman, 1993). As expected, the accurate measurement of damage is significant but also difficult due to many practical problems as presented in Farmer *et al.* (2001), Georgiou *et al.* (1997) and Barbier (1998).

Uncertainties in the functions of damage and control costs influence the policy design in a number of ways (Halkos, 1996). The first effect is in terms of the choice of the appropriate policy instrument. Weitzman (1974), in his seminal paper, showed that in the presence of uncertainty in cost functions, the instrument choice depends on the slopes of the curves. In certainty conditions either instrument will be equally effective but in uncertainty the choice is important and depends on the slopes of the marginal damage and abatement cost curves. In the case of steep marginal damage and flat marginal control cost curves, quantity-based instruments are more adequate; while in the case of steep marginal abatement cost and flat marginal damage curves, a price-based instrument is to be chosen (Halkos, 2000).
A number of studies have extended the Weitzman’s thesis and showed that in the case of uncertainty “hybrid” policies of combining both instruments will dominate to the single instrument (Roberts and Spence, 1976; Weitzman, 1978; Pizer 2002; Jacoby and Ellerman, 2004).

It is worth mentioning that uncertainty may also affect the optimal timing of policy implementation if there are sunk costs in the implementation of that policy or the environmental damage from the lack of any policy is at least partly irreversible. The consequences of irreversibility have been studied extensively in the literature (Pindyck 2000, 2002; Fisher and Hanemann 1990; Gollier et al., 2000; Ulph and Ulph, 1997; Kolstad, 1996).

As mentioned, damage and abatement cost functions seem to have a large curvature and in many cases to be non-linear functions. A number of studies have tried to assess the cause and extent the uncertainty over the benefits from emissions reduction. Rabl et al. (2005) compare damage and abatement costs for a number of air pollutants. They distinguish between discrete and continuous policy choices. Setting a limit for sulphur dioxide emissions from power plants is an example of a continuous choice while the decision to demand a specific abatement method associated with a constant rate of emissions may be considered as a case of a discrete choice. They have also focused on uncertainties not only in damage costs but also in abatement costs claiming that the extent

The cost functions may not behave well or may not satisfy the conditions of convexity or concavity. In the case of the damage cost function this may take place by threshold effects as well as by any irreversibility where pollution reaches a critical point at which the receptor (rivers, lakes, etc) is damaged completely and cannot sustain any life. If one or both of the cost functions are not well behaved then our results will be different. At the same time the distinction between flow and stock pollutants is important as for stock pollutants the persistence has to be taken into consideration due to the accumulation (and decay) of pollutant(s) in time (Perman et al., 2011). As an example, we may consider the case of F-Gases with the very high global warming potentials (Halkos, 2010).
of uncertainties in the control costs are similarly important. They find a remarkable insensitivity to uncertainties for continuous choices claiming that for NO\textsubscript{X} and SO\textsubscript{2} an error by a factor of 3 will raise total social cost by a maximum of 20\%. For dioxins and CO\textsubscript{2} uncertainties of damage costs are larger compared to the case of NO\textsubscript{X} and SO\textsubscript{2}. Similarly in the case of discrete choices there is no general conclusion and there is a cost penalty only in the case of wrong choice with the difference between abatement and damage costs to be higher than the uncertainties.

Exploration of resources, extraction and processing may cause environmental damages like habitat disruption from exploration and drilling activities, oil spills, water and air pollution etc (Litman, 2013). In the case of US oil spills cleanup and damage-compensation costs were around $300 per barrel in the case of 1979 Ixton I spill in the Gulf of Mexico and around $25,000 per barrel for the 1980 Exxon Valdez spill in Alaska (Cohen, 2010a). These costs are undervalued as a number of ecosystem services are difficult to be estimated. According to various surveys wildlife damages were almost $3 billion compared to around $1.0 billion in total wildlife cleanup and compensation costs (Cohen, 2010a). This implies that total damage costs and willingness to pay of the society to avoid damages are a lot higher (2 to 5 times) compared to the financial costs imposed by the oil industry (Cohen, 2010b).

Resources exploration, extraction and processing together with distribution may cause health problems to people like accidents or pollution related health illness. In 2006 workers in petroleum production faced almost 21 fatalities per 100,000 workers, a number much higher compared to the typical service industry but lower than the other
heavy industries like coal miners (almost 50) and loggers (around 87.5) (Bureau of Labor

Table 1 presents the number of cases in Europe and Denmark related to the
impacts of Danish anthropogenic emissions for the year 2000 as presented in Brandt et al.
(2013). The total health-related external costs with respect to impacts in the whole of
Europe due to Danish emissions and for the year 2000 are estimated to be 4.9 bn € per
year, of which 817 million € per year account for the external costs in Denmark alone. It
is also shown that the major Danish contributors are agriculture (43%), road traffic
(18%), power production (10%), non-industrial (domestic) combustion plants including
wood combustion (9%) and other mobile sources (8%).

Table 1: Number of cases of different health impacts related to Danish anthropogenic
emissions for the year 2000

<table>
<thead>
<tr>
<th>Health impact</th>
<th>Number of cases (in Europe)</th>
<th>Number of cases (in Denmark)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chronic Bronchitis</td>
<td>4350</td>
<td>802</td>
</tr>
<tr>
<td>Restricted Activity Days</td>
<td>4,440,000</td>
<td>820,000</td>
</tr>
<tr>
<td>Respiratory Hospital Admissions</td>
<td>234</td>
<td>44</td>
</tr>
<tr>
<td>Congestive Heart Failure</td>
<td>324</td>
<td>69</td>
</tr>
<tr>
<td>Lung Cancer</td>
<td>666</td>
<td>123</td>
</tr>
<tr>
<td>Bronchodilator Use Children</td>
<td>128,000</td>
<td>21,600</td>
</tr>
<tr>
<td>Bronchodilator Use Adults</td>
<td>851,000</td>
<td>157,000</td>
</tr>
<tr>
<td>Cough Children</td>
<td>441,000</td>
<td>74,600</td>
</tr>
<tr>
<td>Cough Adults</td>
<td>876,000</td>
<td>162,000</td>
</tr>
<tr>
<td>Lower Respiratory Symptoms Children</td>
<td>170,000</td>
<td>52,800</td>
</tr>
<tr>
<td>Lower Respiratory Symptoms Adults</td>
<td>316,000</td>
<td>58,300</td>
</tr>
<tr>
<td>Infant mortality</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>7,277,220</td>
<td>13,559,51</td>
</tr>
</tbody>
</table>

Source: Modified from Brandt et al. (2013)

These figures are compared to a higher difference of approximately 15% (impact
in Europe) and 19% (impacts in Denmark), that is costs of 5.68 billion € and 971 million
€ per year, when the sum of individual assessments is considered. This difference may be
justified from the atmospheric chemical regime in the region of interest. In general and in cases where non-linear processes are involved, the sum of individual processes is expected to be different compared to all processes together (Brandt et al., 2013).

Litman (2013) provides estimates of US external costs of petroleum production, importation and distribution of $90-160 per barrel and a total of $635-1.080 billion yearly. This implies that the internal cost of every $ spend by consumers on petroleum imposes $0.63-1.08 in terms of external costs. In these external cost the estimated costs of uncompensated environmental damage (ground and surface water pollution, production, loss and aesthetic degradation) range from $10 - 30 billions.

Concerning air pollution and in the case of GHGs the first CBA was carried out by Nordhaus (1991). As found in Tol (2013) there are 16 studies and 17 estimates of the global welfare impacts of climate change (Nordhaus 1994a,b, 2006, 2008, 2011; Fankhauser, 1994, 1995; Tol, 1995, 2002a,b; Bosello et al., 2012; Maddison, 2003; Mendelsohn et al., 2000a,b; Maddison and Rehdanz, 2011; Rehdanz and Maddison, 2005). The welfare effect of doubling the atmospheric concentration of GHGs is relatively small (just a small percentage of GDP).

Tol (2013) presents a list of 75 studies with 588 estimates of the social cost of carbon emissions. He applies a kernel density estimator to the 588 observations expressed in 2010 US$ and pertaining to emissions in 2010. Tol finds that the mean marginal cost of carbon estimated value in these studies equals to $196 per metric tone of carbon with a mode estimate of $49/tC. This implies a high asymmetry due to some very high estimates explained mainly by the use of different pure rates of time preference. A higher rate of time preference indicates that the costs of climate change taking place in the future have a
lower present value. Tol extracts a mean social cost of carbon for the studies with 3% and 0% rate of time preference equal to $25/tC and $296/tC respectively.

Recently, the Department of Energy and Climate Change (2009) estimated the social cost of carbon (including control of emissions costs) in a range between £35 and £140 per tonne of CO$_2$. Miyoshi and Mason (2013) present the estimated marginal damage cost of CO$_2$ for Manchester Airport. Specifically, in the case of the central price of carbon (£51/t), the total damage cost caused by carbon dioxide produced by passengers’ surface access is almost £11 m (in 2009 prices) while the cost of CO$_2$ due to ‘drop off and pick up’ users is almost £0.72 per passenger compared with £0.62 for ‘taxi’, £0.41 for ‘car and parking’ and £0.77 for ‘minicab’ users. Given that the average number of occupants is around 3.8, this implies a damage cost of CO$_2$ per trip for ‘drop off and pick up’ users equal to around £2.74 compared with £0.87 for ‘car and parking’, £3.23 for ‘minicab’ and £2.48 for ‘taxi’ users.

Damage costs estimates can be also found among others in three well-known integrated assessment models (IAMs): the Dynamic Integrated Climate and Economy (DICE), the Policy Analysis of the Greenhouse Effect (PAGE), and the Climate Framework for Uncertainty, Negotiation, and Distribution (FUND). For emission changes taking place in 2010, the value of the central social cost of carbon (hereafter SCC) is $21/t of CO$_2$ emissions increasing to $26/t of CO$_2$ in 2020 (Greenstone et al., 2013).

Each of the three models is given equal weight in the SCC values developed by the interagency group. A number of simplifying assumptions and judgments underlie the three IAMs, reflecting the modellers’ best attempts to synthesize the available scientific
and economic research. Although the frameworks of other IAMs may better reflect the complexity of the science, they do not link physical impacts to economic damages, an essential step for estimating the social cost of carbon.

Nordhaus (1994a) presents estimates of the percentage loss in gross world product, while Roughgarden and Schneider (1999) relying on Nordhaus’ survey, together with other surveys, constructed confidence intervals for a damage function. Similarly Heal and Kriström (2002) and Pizer (2006) assess uncertainty using subjective analysis and the opinions of experts. Specifically Pizer (2003) modified the DICE model developed by Nordhaus (1994b) replacing the original quadratic relationship between damage and temperature change with a more complex function. The main conclusion from the empirical studies so far is that although there is a level of uncertainty we are unable to quantify it.

In terms of marginal damages of pollutants, Nordhaus (2008) presents a range of between $6 and $65/t carbon with a central estimate of $27. Interagency Working Group on Social Cost of Carbon (2010) provides a three model mean cost of $21/t, as well as a $65/t in the 95th% estimate. These are in line with the estimates by Nordhaus (2008).

3. **Determining the optimal level of pollution**

Economic theory suggests that the optimal pollution level occurs when the marginal damage cost equals the marginal abatement cost. Graphically the optimal pollution level is presented in Figure 1 where the marginal abatement (MAC=g(z)) and the marginal damage (MD=φ(z)) are represented as typical mathematical cost functions. The point of intersection of the two curves, I=I(z_o, k_o), reflects the optimal level of pollution with k_o corresponding
to the optimum cost (benefit) and z_0 to the optimum damage restriction. It is assumed (and we shall investigate the validity of this assumption in the sequence) that the curves have an intersection and the area created by these curves (region AIB) is what we define as Benefit Area (Kneese, 1972, among others).

Our previous analysis (Halkos and Kitsos, 2005) examined only three cases for the abatement cost function $\text{MAC}=g(z)$:

- Linear $[\text{MAC}(z)=\beta_0+\beta_1z, \beta_1 \neq 0]$;
- Quadratic $[\text{MAC}(z)=\beta_0+\beta_1z+\beta_2z^2, \beta_2 > 0]$;
- Exponential $[\text{MAC}(z) = \beta_0e^{\beta_1z}, \beta_1 \neq 0]$.

and linearity for the marginal damage cost function $\text{MD}(z) = \phi(z) = \alpha+\beta z_0$). We briefly review it, so that the extensions to be more clear, and cover all the possible, in practice, cases.

Under these assumptions the extracted benefit areas were calculated. We shall examine in the sequence of this paper how this crucial benefit area can be evaluated, providing an index, when different areas are investigated (like countries or provinces), adopting different rival models and policies as are expressed by the two curves under consideration.

Let A and B be the points of the intersection of the curves MD and MAC (see Figure 1) with the ‘Y-axis”. Obviously we are restricted to positive values. For these points $A=A(0, a)$ and $B=B(0, b)$ the values of a and b are the constant terms of the assumed curves that approach MD and MAC respectively. For the linear case we have
A=A(0, α) and B=B(0, β_0) (see Figure 1) and it is assumed that α>β_0 in Figure 1, provided that MAC is an increasing function and MD is a decreasing one.⁡

Figure 1: Graphical presentation of the optimal pollution level (general case)

Specifically, we are now considering a number of cases in order to examine under what restrictions the two curves have an intersection, which is presented as I =I(z_0, k_0).

That is the equivalent mathematical problem is: what are the values of the points z_0 and k_0 in order to have the optimal damage restriction and the corresponding value of the

This is clear as if it is assumed that α<β_0 there is no intersection (no benefit area) and if we let α=β_0 the benefit area coincides with the point, namely A=B=I, that is a one point area is created.
optimal cost respectively. It is clear that, in principle, the intersection satisfies that
\(\text{MAC}(z_0) = g(z_0) = \phi(z_0) = \text{MD}(z_0) \), with \(z_0 \) being the optimal restriction in damages. We are
emphasizing that the coefficients of the abatement cost functions \((\beta_0, \beta_1, \beta_2) \) can be
estimated by applying the OLS method to the appropriate dataset (Hutton and Halkos,
1995). Let us examine each assumption and case in turn.

Case 1: MD and MAC functions are both linear

In the case of linearity of both MAC and MD the intersection \(I = I(z_0, k_0) \) satisfies
the following relationship:
\[
\beta_0 + \beta_1 z_0 = \alpha + \beta z_0
\]
and therefore \(z_0 \) can be evaluated as:
\[
z_0 = \frac{\beta_0 - \alpha}{\beta - \beta_1}
\]
(1)

Now we are asking for \(z_0 \) to be positive, i.e. to lie on the right half of \(z'z \) axis as in Figure
1. If both \(g(z) \) and \(\phi(z) \) are linear the intersection exists at \(z_0 \) as in (1) if \(\beta_1 > \beta \) as already
\(\alpha > \beta_0 \). The corresponding optimal cost or benefit values should be equal for both curves.

\[
k_0 = \phi \left(\frac{\beta_0 - \alpha}{\beta - \beta_1} \right) = \alpha + \beta \frac{\beta_0 - \alpha}{\beta - \beta_1} \quad \text{or} \quad k_0 = g \left(\frac{\beta_0 - \alpha}{\beta - \beta_1} \right) = \beta_0 + \beta_1 \frac{\beta_0 - \alpha}{\beta - \beta_1}
\]

This is true as their difference is zero. The benefit area, \(BA \), is evaluated, in principle,
through the following relation:

\[
BA = (ABI) = (AIZ_00) - (BIZ_00) \quad (2)
\]

Where in parenthesis are the corresponding evaluated areas of Figure 1.

The benefit area for the case linear-linear (LL), \(BA_{LL} \), can be evaluated as the area
of the triangle ABI, namely:

\[
BA_{LL} = \frac{(AB)(Ik_0)}{2} = \frac{(\alpha - \beta_0)(0z_0)}{2} = \frac{(\alpha - \beta_0)^2}{2(\beta_1 - \beta)} \quad (3)
\]
Similarly, using (2) the area can be evaluated by subtraction of the areas of the two trapezoids ending up to expression (3) (for details see Halkos and Kitsos. 2005).

Case 2: MD linear and MAC quadratic functions

Let us consider now the case of a quadratic abatement cost function, which is the most likely case, i.e. \(g(z) = \text{MAC}(z) = \beta_0 + \beta_1 z + \beta_2 z^2 \). It is assumed that \(b = \text{MAC}(0) = \beta_0 > 0 \) and \(\frac{dg(z)}{dz} = \beta_1 + 2 \beta_2 z > 0 \), i.e. positive marginal abatement cost, that is \(z > -\frac{\beta_1}{2 \beta_2} \), which also means that \(g \) is increasing. The intersection point with the marginal damage can be evaluated as:

\[
\text{MAC}(z_0) = \text{MD}(z_0) \Rightarrow \beta_0 + \beta_1 z_0 + \beta_2 z_0^2 = \alpha + \beta z_0.
\]

Recall that for the points \(A = A(0, a), B = B(0, b) \), and \(a = \alpha \) and \(b = \beta_0 \), we assume that \(\alpha > \beta_0 \), therefore we have

\[
(\beta_0 - \alpha) + (\beta_1 - \beta) z_0 + \beta_2 z_0^2 = 0 \tag{4}
\]

If we set \(K = \beta_0 - \alpha \), \(L = \beta_1 - \beta \) then (4) becomes: \(\beta_2 z_0^2 + L z_0 + K = 0 \), with roots:

\[
z_0 = \frac{-L \pm \sqrt{D}}{2 \beta_2}, \quad D = (\beta_1 - \beta)^2 - 4 \beta_2 (\beta_0 - \alpha) \geq 0 \tag{5}
\]

Actually the negative \(D \) has no economical meaning, so a zero \(D \), leads from (4) to a double or unique optimal restriction of damages of the form:

\[
z_0 = -\frac{L}{2 \beta_2} = -\frac{\beta_1 - \beta}{2 \beta_2} \tag{6}
\]

When assuming \(\beta_1 < \beta \) the value of \(z_0 \) is positive, as \(\beta_2 \) has been assumed positive already. Thus the corresponding \(k_0 \) value, for the evaluated \(z_0 \) is:

\[
k_0 = \varphi(z_0) = \alpha - \beta \left(\frac{\beta_1 - \beta}{2 \beta_2} \right) \quad \text{or} \quad k_0 = g(z_0) = \beta_0 + \beta_1 \left[-\frac{\beta_1 - \beta}{2 \beta_2} \right] + \beta_2 \left[-\frac{\beta_1 - \beta}{2 \beta_2} \right]^2
\]
Under the assumptions of $\beta_0-\alpha<0$ and $\beta_2>0$ the quantity $-4\beta_2(\beta_0-\alpha)>0$ and therefore the value of the determinant is $D>0$. This is true because the sum of the roots (equals to $2z_0$) is positive, while the product of the roots (equals to $[(\beta_0-\alpha)/\beta_2]$) is negative. We are interested for at least a positive root z_0 in (4), which under the assumption $\alpha>\beta_0$ can be evaluated only when $\beta_1<\beta$ and eventually from (5) we choose the positive z_0.

The corresponding benefit area for linear MD and quadratic MAC case, BA_{LQ}, is evaluated through the general form (2) subtracting from the trapezoidal $AIz_0,0$ the area $Blz_0,0$, namely:

$$BA_{LQ} = \frac{(OA) + (Iz_0)}{2} - \int_0^{z_0} g(z)dz = \frac{\alpha + g(z_0)}{2} z_0 - [G(z_0) - G(0)]$$ \hspace{1cm} (7)

with

$$G(z) = \beta_0 z + \beta_1 \frac{z^2}{2} + \beta_2 \frac{z^3}{3}$$

which implies that $G(0)=0$. So (7) is reduced to:

$$BA_{LQ} = \frac{\alpha + g(z_0)}{2} z_0 - G(z_0), \quad g(z)=MAC(z)$$ \hspace{1cm} (8)

The value of z_0 as in (6) and the assumptions $\beta>\beta_1$ and $\alpha>\beta_0$. That is as in (3) a general form for the benefit area was produced, when a linear marginal abatement cost $\varphi(z)$ was examined.

Case 3: MD linear and MAC exponential functions

Let us consider the case of an exponential MAC function, i.e. $MAC(z)=\beta_0 \exp(\beta_1 z)$. In such a case $b=MAC(0)=\beta_0$ with $a=\alpha$ and the general line of thought for the intersection leads to:

$$\beta_0 e^{\beta_1 z_0} = \alpha + \beta z_0 \iff \exp(\beta_1 z_0) = \alpha^* + \beta^* z_0, \quad \text{with} \quad \alpha^* = \frac{\alpha}{\beta_0}, \beta^* = \frac{\beta}{\beta_0} \quad \text{with} \quad \beta_0 \neq 0.$$
This results to (Halkos and Kitsos, 2005):

\[\beta_1 z_0 = \ln(\alpha^* + \beta^* z_0) \Leftrightarrow z_0 = \frac{1}{\beta_1} \ln(\alpha^* + \beta^* z_0) = F(z_0) \quad (9) \]

Now equation (9) is of the form \(z_0 = F(z_0) \), can be only solved adopting numerical analysis techniques, through the fixed-point theorem (see Ortega and Rheinbolt, 1970; Halkos and Kitsos, 2005 for details). That is the iteration formed as:

\[z_{0,n+1} = \frac{1}{\beta_1} \ln(\alpha^* + \beta^* z_{0,n}) \quad n=0,1,2\ldots \quad (10) \]

converges to \(z_0 \), i.e. \(\lim_{n \to \infty} z_{0,n+1} \to z_0 = F(z_0) \). Specifically, the optimal restriction of damages level, \(z_0 \), in the exponential case of MAC only approximately can be evaluated and therefore the corresponding optimal cost or benefit level is approximately evaluated too.\(^3\)

The corresponding benefit area (AIB) for the linear-exponential case, \(BA_{LE} \), is then evaluated through (2) as:

\[BA_{LE} = (A_I)(z_0) - \int_0^{z_0} g(z)dz = \frac{\alpha + g(z_0)}{2} z_0 - [G(z_0) - G(0)] \quad (11) \]

With:

\[G(z_0) - G(0) = \int_0^{z_0} \beta_0 e^{\beta_1 z} dz = \frac{\beta_0}{\beta_1} \int_0^{z_0} e^{\beta_1 z} d(\beta_1 z) = \frac{\beta_0}{\beta_1} (e^{\beta_1 z_0} - 1) \quad (11.1) \]

i.e. \(G(0)=1 \), while (7) still holds, providing an index for the benefit area for both quadratic and exponential cases, but with \(G(z_0) \) as in (11.1) and \(z_0 \) approximated as in (10).

\(^3\) Practically that results the value of the difference \(MAC(z_0) - MD(z_0) \) is not zero, but close to zero, with a certain accuracy \(\pm \xi \), say \(\xi = 10^{-3} \) or \(10^{-4} \).
Case 4: MD quadratic and MAC linear functions

Let us now consider that

$$\text{MAC} = g(z) = \beta_0 + \beta_1 z, \quad \beta_1 \neq 0$$
and
$$\text{MD} = \varphi(z) = \alpha z^2 + \beta z + \gamma, \quad a > 0$$

Here the values of a and b, the intersections of MD and MAC with the Y-axis are $b=\text{MAC}(0) = \beta_0$ and $a=\text{MD}(0) = \gamma$, see Figures bellow. To insure that an intersection between MAC and MD occurs we need the restriction $0 < \beta_0 < \gamma$. Considering $\alpha > 0$ three cases can be discussed, through the determinant of $\varphi(z)$, say D, $D = \beta^2 - 4\alpha\gamma$. If $D=0$ (see Figure 2), $D>0$ (see Figure 3), while the case $D<0$ is with no economical interest (due to the complex roots). Therefore the two cases are discussed below, while for the dual case $\alpha<0$ see case 4c.

Case 4a: $\alpha > 0$, $D = \beta^2 - 4\alpha\gamma = 0$.

In such a case there is a double real root for $\text{MD}(z)$, say $\rho = \rho_1 = \rho_2 = -\frac{\beta}{2\alpha}$. We need the root $\rho>0$ and hence is required that $\beta<0$. To identify the optimal pollution level point $I(z_0, k_0)$ the evaluation of point z_0 is the one that

$$\text{MD}(z_0) = \varphi(z_0) = g(z_0) = \text{MAC}(z_0) \iff \alpha z_0^2 + \beta z_0 + \gamma = \beta_0 + \beta_1 z_0$$
$$\iff \alpha z_0^2 + (\beta - \beta_1)z_0 + (\gamma - \beta_0) = 0$$ \hspace{1cm} (12)

In order relation (12) to provide the unique (double) solution we need the quantity the determinant of (12) $D = (\beta - \beta_1)^2 - 4\alpha(\gamma - \beta_0)$ to be zero i.e. $D=0$ which is equivalent to

$$z_0 = -\frac{\beta - \beta_1}{2\alpha} = \frac{\beta_1 - \beta}{2\alpha}$$ \hspace{1cm} (13)

As z_0 is positive and $\alpha > 0$ we conclude that $\beta_1 > \beta$. So for $\alpha > 0$, $\beta_1 > \beta$, $0 < \beta_0 < \gamma$ we can easily calculate
\[k_0 = MAC(z_0) = \beta_0 + \beta_1 \frac{B_1 - \beta_0}{2\alpha} > 0 \quad (14) \]

and therefore \(I(z_0, k_0) \) is well defined. The corresponding Benefit Area (BA_{QL}) in this case is

\[
BA_{QL} = \langle AB \rangle = \int_{z_1}^{z_2} \left(\varphi(z) - g(z) \right) dz = \int_{z_1}^{z_2} (ax^2 + (\beta - \beta_1)z + (\gamma - \beta_0)) dz
\]

\[
= \left[\frac{ax^3}{3} + (\beta - \beta_1) \frac{x^2}{2} + (\gamma - \beta_0)x \right]_{z_1}^{z_2} = \frac{ax^3}{3} + (\beta - \beta_1) \frac{x^2}{2} + (\gamma - \beta_0)z_0 \quad (15)
\]

Case 4a

![Graph showing \(\phi(z) \), \(g(z) \), and \(\Lambda(0,\gamma) \), \(\Phi(\rho) \), and \(B(0,\rho) \) for different values of \(z \).]

Figure 2: \(C = C \left(-\frac{\beta}{2\alpha}, 0 \right), \quad \alpha > 0 \)

Case 4b: \(\alpha > 0, \quad D = \beta^2 - 4\alpha\gamma > 0. \)

In such a case for the two roots \(\rho_1, \rho_2 \) it is \(|\rho_1| \neq |\rho_2|, \quad \varphi(\rho_1) = \varphi(\rho_2) = 0 \) and we suppose \(0 < \rho_1 < \rho_2 \), see Figure 3. The fact that \(D > 0 \) is equivalent to

\[
0 < a\gamma < \left(\frac{\beta}{2} \right)^2, \quad \text{while the minimum value of the MD function is} \quad \varphi \left(-\frac{\beta}{2\alpha} \right) = \frac{4\alpha\gamma - \beta^2}{4\alpha}
\]
Proposition 1: The following order for the roots and the value which provides the minimum (see Figure 3) is true under the relation \(\beta < 0 < \alpha \gamma < \left(\frac{\beta}{2} \right)^2 \) \(\quad (16) \)

Proof

The order of the roots \(0 < \rho_1 < \rho_2 \) is equivalent to the set of relations:

\[
D > 0, \quad \alpha \varphi \left(-\frac{\beta}{2\alpha} \right) < 0, \quad \alpha \varphi(0) > 0, \quad 0 < \frac{\rho_1 + \rho_2}{2}.
\]

The first is valid, as we have assumed \(D > 0 \). For the imposed second relation from (16.1) we have

\[
\alpha \varphi \left(-\frac{\beta}{2\alpha} \right) < 0 \iff \alpha \varphi(0) > 0 \iff \alpha \varphi(0) > 0 \iff \Delta > 0,
\]

which holds. As both the roots are positive \(\rho_1, \rho_2 > 0 \), then the product \(\rho_1 \rho_2 > 0 \) therefore \(\gamma > 0 \iff \alpha \gamma > 0 \) which is valid as \(0 < a \gamma < \left(\frac{\beta}{2} \right)^2 \). The third relation \(\alpha \varphi(0) = \alpha > 0 \), in (16.1) is true already and \(0 < \frac{\rho_1 + \rho_2}{2} \Rightarrow 0 < -\frac{\beta}{2\alpha} \) equivalent to \(\beta < 0 \).

Therefore we get \(\beta < 0 < a \gamma < \left(\frac{\beta}{2} \right)^2 \).

We can then identify the point of intersection \(z_0 : MAC(z_0) = MD(z_0) \) as before. Therefore under (16) and \(\beta_1 > \beta_0 \) we evaluate \(k_0 \) as in (14) and the Benefit Area \(BA_{QL} \) can be evaluated as in (15).
Case 4b

Let us now consider the case $\alpha < 0$. Under this assumption the restriction $D = 0$ is not considered, as the values of $\varphi(z)$ have to be negative. Consider Figure 2, the graph of $\varphi(z)$ will be symmetric around the point C to this in Figure 2. Therefore we consider the following case.

Case 4c: $\alpha < 0, \quad D = \beta^2 - 4\alpha \gamma > 0$

Under the assumption of Case 4c, the value $\varphi\left(\frac{-\beta}{2\alpha}\right) = \frac{4\alpha \gamma - \beta^2}{4\alpha}$ corresponds to the maximum value of $\varphi(z)$. We consider the situation where $\rho_1 < 0 < -\frac{\beta}{2\alpha} < \rho_2$ (see Figure 4) while the case $0 < \rho_1 < -\frac{\beta}{2\alpha} < \rho_2$ has no particular interest (it can be also considered as in case 4b).
Case 4c

Proposition 2:

For the case 4c as above holds: \(\rho_1 < 0 < -\frac{\beta}{2\alpha} < \rho_2 \) when \(\alpha \gamma < 0 \).

Proof

The imposed assumption is equivalent to \(\alpha \varphi(0) < 0 \iff \alpha \gamma < 0 \) true as \(\rho_1, \rho_2 < 0 \)

\[\alpha \varphi \left(-\frac{\beta}{2\alpha} \right) < 0 \iff \alpha \gamma < \left(\frac{\beta}{2} \right)^2 . \]

Therefore the imposed restrictions are \(\alpha \gamma < 0 < \left(\frac{\beta}{2} \right)^2 \)

Actually \(\alpha \gamma < 0 \). In case 4c it is now asked \(\beta_0 < \gamma \) and \(\beta_1 > 0 \). To calculate \(z_0 \) we proceed as in (12) and \(z_0 \) is evaluated as in (13) with \(\alpha < 0 \), therefore \(\beta_1 - \beta < 0 \) i.e. \(\beta_1 < \beta \). Thus for \(\beta_1 < \beta, \ \alpha \gamma < 0 \), the BA as in (15) is still valid.

Therefore the following analysis is now considered, extending case 4 of both MD and MAC to be quadratic functions.

Figure 4: \(C = C \left(-\frac{\beta}{2\alpha}, 0 \right) \), \(E = E \left(0, \varphi \left(-\frac{\beta}{2\alpha} \right) \right) \), \(\varphi \left(-\frac{\beta}{2\alpha} \right) = \min \varphi(z), \ \alpha < 0 \)
Case 5: MD and MAC functions both quadratic

Let us consider that both curves, MAC and MD are of the second order as

\[\text{MAC} = g(z) = \beta_0 + \beta_1 z + \beta_2 z^2 \quad \beta_2 \neq 0 \] (with determinant d)

\[\text{MD} = \phi(z) = \alpha z^2 + \beta z + \gamma, \quad a \neq 0 \] (with determinant D)

In this case the intersections of MAC and MD with the Y-axis are \(b = \text{MAC}(0) = \beta_0 \) and \(a = \text{MD}(0) = \gamma \). The following two substances are investigated below.

Case 5a: \(D = \beta^2 - 4\alpha\gamma = 0, \quad a > 0 \) and \(d = \beta_1^2 - 4\beta_2 \beta_0 \leq 0, \quad \beta_2 > 0 \), see Figure 5.

For the identification of the optimal pollution level point \((z_0, k_0) \) we need to estimate \(z_0 \) such that

\[\varphi(z_0) = g(z_0) \iff \alpha z_0^2 + \beta z_0 + \gamma = \beta_0 + \beta_1 z_0 + \beta_2 z_0^2 \]

\[\iff (\alpha - \beta_2)z_0^2 + (\beta - \beta_1)z_0 + (\gamma - \beta_0) = 0 \] (17)

When the determinant of this equation \(\delta \) is zero,

\[\delta = (\beta - \beta_1)^2 - 4(\alpha - \beta_2)(\gamma - \beta_0) = 0 \]

the unique root of (17) equals

\[z_0 = -\frac{\beta - \beta_1}{2(\alpha - \beta_2)}. \] (18)

Recall case 2, relation (6). It is asked not only \(z_0 \) to be positive but to be less than the (double) root of MD (see Figure 5), i.e.

\[0 < z_0 = -\frac{\beta - \beta_1}{2(\alpha - \beta_2)} < -\frac{\beta}{2\alpha}, \]

Therefore we have the restriction

\[\frac{\beta}{\alpha} < \frac{\beta - \beta_1}{\alpha - \beta_2}. \]

Thus the corresponding to the optimal restriction in damage \(z_0 \), optimal cost \(k_0 \) point is
Thus the corresponding Benefit Area, \(BA_{\text{QQ}} \), can be evaluated as

\[
BA_{\text{QQ}} = \int_0^z (\varphi(z) - g(z))dz = (\alpha - \beta_1)\frac{z_0^3}{3} + (\beta - \beta_1)\frac{z_0^2}{2} + (\gamma - \beta_0)z_0
\]

Case 5a

![Graph showing \(\varphi(z) \) and \(g(z) \).]

\(\varphi(z) \) and \(g(z) \) intersect at point I.

\(B(0, \beta) \)

\(C = p_1 = p_2 \)

Figure 5: \(C = p_1 = p_2 = C\left(-\frac{\beta}{2\alpha}, 0\right) \), \(\varphi\left(-\frac{\beta}{2\alpha}\right) = 0 \), \(\alpha > 0 \)

Another interesting case is the following.

Case 5b: \(D = \beta^2 - 4\alpha\gamma > 0, \quad a > 0 \) and \(d = \beta_1^2 - 4\beta_2\beta_0 \leq 0, \quad \beta_2 > 0 \) (see Figure 6).

In this case we need the order of the points to be \(0 < z_0 < \rho_1 < -\frac{\beta}{2\alpha} < \rho_2 \). Recall also case 4b (see Figure 6). Therefore we need the following conditions

\[
\alpha \varphi\left(-\frac{\beta}{2\alpha}\right) < 0, \quad \text{which holds and} \quad D > 0, \quad \alpha \varphi (z_0) > 0, \quad z_0 < \frac{\rho_1 + \rho_2}{2} = -\frac{\beta}{2\alpha}.
\]

Eventually is needed to have the restrictions

\[
\alpha \varphi (z_0) > 0 \quad \text{and} \quad z_0 < -\frac{\beta}{2\alpha}.
\]
The point z_0 is eventually as in (18) and the corresponding k_0 as in (19) so $I(z_0, k_0)$ is identified. The BA is evaluated as in (20).

Case 5b

![Diagram showing Case 5b](image)

Case 6: MD quadratic and MAC exponential functions

We assume now that MD is quadratic function and MAC is exponential, that is

$$MAC(z) = g(z) = \beta_0 e^{\beta_0 z}, \beta_0 > 0 \quad MD(z) = \varphi(z) = \alpha z^2 + \beta z + \gamma, \quad a > 0$$

Here $b=MAC(0)=\beta_0$, and $a=MD(0)=\gamma$. In particular we are investigating the following sub-cases, which are within our target.

Case 6a: For MD it is $D = \beta^2 - 4\alpha \gamma > 0$, see also Figure 7.

Evaluating $I(z_0, k_0)$, z_0 has to obey to the relationship:

$$\varphi(z_0) = g(z_0) \iff \alpha z_0^2 + \beta z_0 + \gamma = \beta_0 e^{\beta_0 z_0} \iff \alpha z_0^2 + \beta z_0 + \gamma - \beta_0 e^{\beta_0 z_0} = 0 \quad (21)$$
This equation (21) is non-linear so we have to prove that there is one solution, which can be evaluated numerically.

Case 6

Figure 7: $C = C \left(-\frac{\beta}{2\alpha}, 0\right)$

Proposition 3: There is a $z_0 \in (0, \rho_1): \text{MD}(z_0) = \text{MAC}(z_0)$ function

Proof

If we consider the equation $F(z) = \alpha(z - \rho_1)(z - \rho_2) - \beta_0 e^{\rho_1 z}$ then under the imposed restrictions $F(0) = \gamma - \beta_0 > 0$ as $\rho_1 \rho_2 = \frac{\gamma}{\alpha}$ and $F(\rho_1) = -\beta_0 e^{\rho_1 \rho_1} < 0$. Therefore as $F(0)F(\rho_1) < 0$ there exists a number $z_0 \in (0, \rho_1): F(z_0) = 0$ and therefore (21) is true that is there exists a real solution (root) z_0 for it.

The evaluation of the root z_0 of (21) can be numerically calculated and one way is by adopting the Bisection method. The corresponding $k_0 = g(z_0) = \beta_0 e^{\rho_1 z_0}$ can be easily evaluated, as the corresponding Benefit Area (BA_{EQ}) is calculated as
\[BA_{\text{EE}} = \int_{0}^{z_0} (\varphi(z) - g(z))dz = \alpha \frac{z_0^3}{3} + \beta \frac{z_0^2}{2} + \gamma z_0 - \frac{\beta_0}{\beta_1} \left(e^{\beta_1 z_0} - 1 \right) \] (22)

The last case is to have both MAC and MD functions exponential as follows.

Case 7: MD and MAC both exponential functions

In this case it is assumed that both MB and MAC are exponential of the form

\[MAC(z) = g(z) = \beta_0 e^{\beta_1 z}, \quad \beta_0 > 0 \quad MD(z) = \varphi(z) = \theta_0 e^{\theta_1 z}, \quad \theta_0 > \beta_0 > 0 \]

The target is to evaluate the \(z_0 \) point of the optimal pollution level as

\[\varphi(z_0) = g(z_0) \iff \beta_0 e^{\beta_1 z_0} = \theta_0 e^{\theta_1 z_0} \iff \frac{\beta_0}{\theta_0} = e^{(\theta_1 - \beta_1) z_0} \iff (\theta_1 - \beta_1) z_0 = \ln \frac{\beta_0}{\theta_0} \]

\[\iff z_0 = \frac{1}{(\theta_1 - \beta_1)} \ln \frac{\beta_0}{\theta_0} = \frac{1}{(\beta_1 - \theta_1)} \ln \frac{\theta_0}{\beta_0} \]

From the above relation it is clear that there is no intersection when \(\theta_1 = \beta_1 \). The corresponding Benefit Area (BA_{EE}) is evaluated as

\[BA_{\text{EE}} = \int_{0}^{z_0} (\varphi(z) - g(z))dz = \frac{\beta_0}{\beta_1} \left(e^{\beta_1 z_0} - 1 \right) - \frac{\theta_0}{\theta_1} \left(e^{\theta_1 z_0} - 1 \right) \] (23)

Case 7

Figure 8: \(\theta_0 > \beta_0 \), MAC and MD functions exponential
Finally, the case that $\phi(z)$ is exponential and $g(z)$ is of second order is the dual of case 6a. In this way we have investigated all possible cases modeling MAC and MD.

A compact view of all the cases is presented in Table 2. The results obtained above have been adopted in an empirical application discussed in the next section.

Table 2: The compact presentation of the results

<table>
<thead>
<tr>
<th>Case</th>
<th>MD=$\phi(z)$</th>
<th>MAC=$g(z)$</th>
<th>$z_0>0$</th>
<th>BA</th>
<th>Restrictions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$\alpha+\beta z$</td>
<td>$\beta_0+\beta_1 z$</td>
<td>$\frac{\beta_0-\alpha}{\beta_1-\beta}$</td>
<td>(3)</td>
<td>$\alpha>\beta_0$ $\beta_1>\beta$</td>
</tr>
<tr>
<td>2</td>
<td>$\alpha+\beta z$</td>
<td>$\beta_0+\beta_1 z+\beta_2 z^2$</td>
<td>$\frac{-\beta_1-\beta}{2\beta_2}$</td>
<td>(7), (8)</td>
<td>$\beta_2>0$ $\beta_1>\beta_1$ $\alpha>\beta_0$</td>
</tr>
<tr>
<td>3</td>
<td>$\alpha+\beta z$</td>
<td>$\beta_0 e^{\beta_1 z}$</td>
<td>Numerically (10)</td>
<td>(11)</td>
<td>$\beta_1>0$</td>
</tr>
<tr>
<td>4</td>
<td>$\alpha z^2+\beta z+\gamma$</td>
<td>$\beta_0+\beta_1 z$</td>
<td></td>
<td></td>
<td>$0<\beta_0<\gamma$</td>
</tr>
<tr>
<td>4a</td>
<td>$\alpha>0$ $D=0$</td>
<td></td>
<td></td>
<td></td>
<td>$\beta_1>0$ $\beta<0$ $\beta_0<\gamma$</td>
</tr>
<tr>
<td>4b</td>
<td>$\alpha>0$ $D>0$</td>
<td></td>
<td></td>
<td></td>
<td>$\beta<0<\alpha<\beta/2$ $\beta_1>\beta_0$ $\beta_1<\beta$ $\alpha>\gamma<0$</td>
</tr>
<tr>
<td>4c</td>
<td>$\alpha<0$ $D>0$</td>
<td></td>
<td></td>
<td></td>
<td>$\alpha<0$ $\beta_2<0$</td>
</tr>
<tr>
<td>5</td>
<td>$\alpha z^2+\beta z+\gamma$</td>
<td>$\beta_0+\beta_1 z+\beta_2 z^2$</td>
<td></td>
<td></td>
<td>$\alpha<0$ $\beta_2<0$</td>
</tr>
<tr>
<td>5a</td>
<td>$\alpha>0$ $D=0$</td>
<td>$\beta_2>0$ $d\leq 0$</td>
<td>$Z_o = \frac{\beta_1 - \beta}{2\alpha}$</td>
<td>(15)</td>
<td>$\alpha<0$ $\beta_2<0$</td>
</tr>
<tr>
<td>5b</td>
<td>$\alpha>0$ $D>0$</td>
<td>$\beta_2>0$ $d\leq 0$</td>
<td>$Z_o = \frac{\beta_1 - \beta}{2(\alpha-\beta_2)}$</td>
<td>(20)</td>
<td>$\beta_1>\beta$ $\alpha>\beta_2$</td>
</tr>
<tr>
<td>6</td>
<td>$\alpha z^2+\beta z+\gamma$</td>
<td>$\beta_0 e^{\beta_1 z}$</td>
<td></td>
<td>(20)</td>
<td>$\beta_0>0$ $\alpha>0$</td>
</tr>
<tr>
<td>6a</td>
<td>$\alpha>0$, $D>0$</td>
<td></td>
<td></td>
<td>Numerically (22)</td>
<td>$\gamma>\beta_0$</td>
</tr>
<tr>
<td>7</td>
<td>$\theta e^{\theta_1 z}$</td>
<td>$\beta_0 e^{\beta_1 z}$</td>
<td>$z_o = \frac{1}{\beta_1-\theta_1} \ln \frac{\theta_o}{\beta_o}$</td>
<td>(23)</td>
<td>$\beta_1<\theta_1$</td>
</tr>
</tbody>
</table>

4. **An empirical application**

In our empirical application we shall use estimates for the available data for different European countries. For this purpose we discuss how the two curves, the abatement cost $g(z)$ and the damage cost $\phi(z)$, can be approximated.
Starting with the abatement cost function these measures the cost of reducing tonnes of emissions of a pollutant, like sulphur (S), and differs from country to country depending on the local costs of implementing best practice abatement techniques as well as on the existing power generation technology. For abating sulphur emissions various control methods exist with different cost and applicability levels (Halkos 1993, 1995, 1996, 1997):

(a) gas oil desulphurisation,

(b) heavy fuel oil desulphurisation,

(c) hard coal washing,

(d) in furnace direct limestone injection,

(e) flue gas desulphurisation and

(f) fluidised bed combustion.

To calculate total emissions from each source \((TE_p)\) the annual emissions for a given pollutant in each sector for each European country are calculated. Total emissions are then determined as:

\[
TE_p = \sum PR_{ijt} \times (1-\alpha_t) E_{pij} \times AR_{ijt}
\]

where \(i\) stands for country, \(j\) for sector, \(t\) for technology, \(f\) for fuel and \(p\) for pollutant. Similarly, \(PR\) stands for production levels; \(\alpha_t\) for the abatement efficiency of method \(t\) and \(AR\) for the application rate (Halkos, 2010).

In the same way, given the generic engineering capital and operating control cost functions for each efficient abatement technology, total and marginal costs of different levels of pollutant’s reduction at each individual source and in the national (country) level can be constructed. According to Halkos (1993, 1995, 2010), the cost of an emission abatement option is given by the total annualized cost (\(TAC\)) of this abatement option, including capital and operating cost components. Specifically:
\[TAC = \left(TCC \right) \left[\frac{r}{1 - (1+r)^{-n}} \right] + VOMC + FOMC \]

Where \(TCC \) is the total capital cost; \(VOMC \) and \(FOMC \) stand for the variable and fixed operating and maintenance cost respectively; \(\frac{r}{1-(1+r)^{-n}} \) is the capital recovery factor at real discount rate \(r \), which converts a capital cost to an equivalent stream of equal annual future payments, considering the time value of money (represented by \(r \)). Finally, \(n \) stands for the economic life of the asset (in years).

For every European country at least cost curve is derived by finding the technology on each pollution source with the lowest marginal cost per tone of pollutant removed in the country and the amount of pollutant removed by that method on that pollution source. In this way the first step on the country’s abatement curve is constructed. Iteratively the next highest marginal cost is found and is added to the country curve with the amount of pollutant (say sulphur) removed on the X-axis. In the national cost curve each step corresponds to a control measure that leads to an emission reduction of an extra unit at the least cost. Figure 9 presents the steps in deriving control cost curves; while Figure 10 shows the Total and Marginal Abatement Cost curves for Austria in the year 2000.

For analytical purposes, it is important to approximate the cost curves of each country adopting a functional form. Extending the mathematical models described above to stochastic models (as the error term from the Normal distribution with mean zero and variance \(\sigma^2 \)) we have found that least squares equations of the form

\[g(z) = AC_i = \beta_{0i} + \beta_{1i}SR_i + \epsilon_i \]

or

\[g(z) = AC_i = \beta_{0i} + \beta_{1i}SR + \beta_{2i}SR^2 + \epsilon_i \]

(26.1)

(26.2)
lead to satisfactory approximations for all the countries analyzed in this paper⁴. In these
equations \(\text{SR}_i \) represents sulphur removed in country \(i \), \(\text{AC}_i \) abatement cost in country \(i \) and
\(\varepsilon_i \) the disturbance term with the usual hypotheses (Halkos, 2006).

Figure 9: Steps in constructing Abatement Cost Curves

⁴ Equations were fitted across the range 5-55% of maximum feasible abatement. The estimated coefficients
of both specifications were statistically significant in all cases with only exception in the estimate of \(\beta_i \) in
the quadratic specification of Spain.
Next, the calculation of the damage function $\varphi(z)$ is necessary. The problem of estimating damage cost functions is a lot more difficult compared to the estimation of abatement costs, as the effects of pollution cannot be identified with any accuracy and sometimes it takes a long time to realize the consequences. In our case and in order to extract the damage estimates we use the case of acidification which is related to transboundary pollution, requiring that the model takes account of the distribution of the externality among the various countries (victims).
Each country receives a certain number of pollutant’s units whose deposition is due to the other countries' emissions as well as to its own emissions. The deposition of sulphur in country \(i \) is given by

\[
D_i = B_i + d_{ii}(1-a_i)E_i + \sum_{i\neq j} d_{ij}(1-a_j)E_j = B_i + \sum_{j} d_{ij}(1-a_j)E_j \tag{27}
\]

where \(E_j \) is the total annual sulphur emission in country \(j \); \(D_i \) is the total Annual sulphur Deposition in country \(i \); \(a_i \) is the abatement efficiency coefficient in country \(i \) and \(d_{ij} \) is the transfer coefficient from country \(j \) to \(i \), indicating what proportions of emissions from any source country is ultimately deposited in any receiving country; \(B_i \) is the level of the so-called background deposition attributable to natural sources (such as volcanoes, forest fires, biological decay, etc) in receptor-country \(i \), or to pollution remaining too long in the atmosphere to be tracked by the model, i.e. is probably attributable not only to natural sources but also to emissions whose origin cannot be determined. This assignment is summarized in the European Monitoring and Evaluation Programme transfer coefficient matrix (EMEP).

Due to difficulties, we do not directly estimate the damage function, but instead we infer its parameters assuming that countries currently equate national marginal damage cost with national marginal abatement cost\(^5\). The restrictions on the derivatives of the damage cost function are important. The total cost resulting from a specific level of pollutant (like sulphur) for country \(i \) is,

\[
TC_i = \text{abatement cost} + \text{damage cost} = AC_i + DC_i
\]

\(^5\) Rabl et al. (2013) approximate the damage function by a linear function of the pollution emissions and they claim that linearity is found to be appropriate approximation in the case of PM, \(SO_2 \) and \(NO_X \) emissions, while for \(CO_2 \) linearity is probably acceptable for emissions reductions in the “foreseeable” future period.
As mentioned, abatement costs are estimated by linear and quadratic functions of sulphur removed (as in 26.1 and 26.2) and we also assume that damage costs are linear and quadratic in deposits. Damage depends on deposits, which depend on the \([d_{ij}]\) matrix as explained before. In the more complex case of both quadratic abatement and damage cost functions the total cost function may be expressed as:

\[
TC_i = [\beta_0 + \beta_1_i \text{SR}_i + \beta_2_i \text{SR}_i^2] + [\gamma_0 + \gamma_1_i \text{D}_i + \gamma_2_i \text{D}_i^2] \quad i=1,2,\ldots,n
\] (28)

It follows that total cost is minimized when

\[
\gamma_1_i = [(\beta_1_i + 2\beta_2_i \text{SR}_i - 2\gamma_2_i d_{ii}^2 \text{SR}_i)/d_{ii}] \quad \text{and} \quad \gamma_2_i = [(\beta_1_i + 2\beta_2_i \text{SR}_i - \gamma_1_i d_{ii})/2d_{ii}^2 \text{SR}_i]
\]

where \(d_{ii}\) the transfer coefficient.\(^6\)

This is the only information available to "calibrate" the damage function, on the assumption that national authorities act independently (as Nash partners in a non-cooperative game with the rest of the world), taking as given deposits originating in the rest of the world. If we assume linear abatement and quadratic damage cost functions then

\[
\gamma_1_i = (\beta_1_i - 2\gamma_2_i d_{ii}^2 \text{SR}_i)/d_{ii} \quad \text{and} \quad \gamma_2_i = [(\beta_1_i + \gamma_1_i d_{ii})/2d_{ii}^2 \text{SR}_i]
\]

Finally in the case of linearity for both abatement and damage cost functions \(\gamma_1_i = \beta_1_i/d_{ii}\).

Table 3 presents the estimated damage and abatement cost coefficients in the more complex case of assuming both cost functions are quadratic.\(^7\) Similarly, Table 4 presents the corresponding “calibrated” Benefit Area (BA\(^5\)) indexes evaluated from the available parameter estimates in the case of linear-quadratic (LQ) and quadratic-quadratic (QQ) damage and abatement cost functions respectively for 20 European countries.\(^8\) In the first of the two case studies the associated efficiency index\(^9\) is

\(^6\) If like Mäler (1989, 1990) and Newbery (1990) we set \(\gamma_2_i = 0\) then \(\gamma_1_i = (\beta_1_i + 2\beta_2_i \text{SR}_i)/d_{ii}\).

\(^7\) Estimates of \(c_0\) were derived by assuming countries act in a Nash behavior.

\(^8\) The empirical results presented are indicative and very sensitive to the assumptions of calibration.
presented10. This is a measure of what percentage of the adopted policy covers that policy which provides the maximum benefit area. Similarly, the evaluation of the optimal damage reduction, z_0 as has been denoted in this paper, provides evidence, that the larger it is the better the adopted environmental policy.

As it can be seen, countries with high optimal damage reductions are the UK and France (in both cases LQ and QQ) and Former Czechoslovakia, Spain and Turkey (in the LQ case). On the other hand, countries with low damage reductions are Greece, Hungary, Italy, Romania (in the case of LQ cost functions), Finland, Sweden, Turkey (in the case of QQ) and Norway and Switzerland in both cases. Large industrial upwind counties (like Denmark, France and the UK) seem to have a very large benefit area. Looking at the EMEP transfer coefficients matrix it can be seen that the countries with large benefit areas are those with large numbers on the diagonal. This shows the importance of the domestic sources of pollution. The large off-diagonal transfer coefficients indicate in general the major effects of one country on another, and especially the externalities imposed by the Eastern European countries on the others.

Similarly downwind or near to the sea countries seem to have small benefit areas. Additionally, the damage caused by acidification depends on where the depositions occur. In the case of occurrence over the sea it is less likely to have much harmful effect, as the sea is naturally alkaline. In the same way, if it occurs over sparsely populated areas with acid tolerant soils then the damage is low (Newbery, 1990).

Following Halkos and Kitsos (2005) the efficiency (Eff) of the benefit area, in comparison with the maximum evaluated from the sample of countries under investigation, can be estimated using as measure of efficiency the expression:

\[
\text{Eff} = \left[\frac{BA}{\max BA} \right] \times 100
\]

9 Following Halkos and Kitsos (2005) the efficiency (Eff) of the benefit area, in comparison with the maximum evaluated from the sample of countries under investigation, can be estimated using as measure of efficiency the expression:

10 Germany dominates the picture in Europe as it has a very high initial abatement level (≈42\%) and its calibrated damage function ensures high abatement levels (Hutton and Halkos, 1995). For this reason the efficiency index was constructed on the second highest benefit area (former Czechoslovakia).
Table 3: Coefficient estimates in the case of quadratic MD and MAC functions

<table>
<thead>
<tr>
<th>Countries</th>
<th>c_0</th>
<th>c_1</th>
<th>c_2</th>
<th>b_0</th>
<th>b_1</th>
<th>b_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albania</td>
<td>0.7071</td>
<td>0.01888</td>
<td>-0.001397</td>
<td>-3.3818</td>
<td>0.015</td>
<td>0.0048</td>
</tr>
<tr>
<td>Austria</td>
<td>8.5714</td>
<td>0.055012</td>
<td>0.0001145</td>
<td>3.274</td>
<td>-0.221</td>
<td>0.004</td>
</tr>
<tr>
<td>Belgium</td>
<td>2.2424</td>
<td>0.03869</td>
<td>0.0001688</td>
<td>0.497</td>
<td>-0.124</td>
<td>0.003</td>
</tr>
<tr>
<td>Former Czechoslovakia</td>
<td>37.794</td>
<td>0.100323</td>
<td>0.000059</td>
<td>11.241</td>
<td>0.2358</td>
<td>0.0018</td>
</tr>
<tr>
<td>Denmark</td>
<td>10</td>
<td>0.1923</td>
<td>0.0060811</td>
<td>-2.49</td>
<td>0.099</td>
<td>0.0053</td>
</tr>
<tr>
<td>Finland</td>
<td>4.021</td>
<td>0.0781</td>
<td>0.0001458</td>
<td>2.343</td>
<td>-0.098</td>
<td>0.0046</td>
</tr>
<tr>
<td>France</td>
<td>33.158</td>
<td>0.277352</td>
<td>0.000197</td>
<td>42.374</td>
<td>-0.053</td>
<td>0.0018</td>
</tr>
<tr>
<td>Greece</td>
<td>3.7373</td>
<td>0.034133</td>
<td>0.0000491</td>
<td>-1.614</td>
<td>0.342</td>
<td>0.0006</td>
</tr>
<tr>
<td>Hungary</td>
<td>5.101</td>
<td>0.031488</td>
<td>0.0000417</td>
<td>2.506</td>
<td>0.216</td>
<td>0.0004</td>
</tr>
<tr>
<td>Italy</td>
<td>21.01</td>
<td>0.030036</td>
<td>0.000191</td>
<td>12.5</td>
<td>0.36</td>
<td>0.0003</td>
</tr>
<tr>
<td>Luxembourg</td>
<td>0.421</td>
<td>0.3161</td>
<td>0.0272381</td>
<td>-0.7272</td>
<td>0.01</td>
<td>0.09234</td>
</tr>
<tr>
<td>Netherlands</td>
<td>8.353</td>
<td>0.19513</td>
<td>0.00351442</td>
<td>-6.18</td>
<td>0.41</td>
<td>0.0009</td>
</tr>
<tr>
<td>Norway</td>
<td>1.421</td>
<td>0.07852</td>
<td>0.00017008</td>
<td>0.94</td>
<td>-0.244</td>
<td>0.0164</td>
</tr>
<tr>
<td>Poland</td>
<td>6.212</td>
<td>0.023153</td>
<td>0.000071</td>
<td>-0.823</td>
<td>0.324</td>
<td>0.0009</td>
</tr>
<tr>
<td>Romania</td>
<td>9.091</td>
<td>0.011364</td>
<td>0.00006237</td>
<td>5.502</td>
<td>0.19</td>
<td>0.0001</td>
</tr>
<tr>
<td>Spain</td>
<td>11.7</td>
<td>0.007288</td>
<td>0.00497419</td>
<td>10.21</td>
<td>-0.021</td>
<td>0.00014</td>
</tr>
<tr>
<td>Sweden</td>
<td>2.4</td>
<td>0.06423</td>
<td>0.0000932</td>
<td>4.074</td>
<td>-0.252</td>
<td>0.004</td>
</tr>
<tr>
<td>Switzerland</td>
<td>2.4</td>
<td>0.56027</td>
<td>0.002803</td>
<td>5.7543</td>
<td>-1.6289</td>
<td>0.11203</td>
</tr>
<tr>
<td>Turkey</td>
<td>14.9</td>
<td>0.01781</td>
<td>0.0001223</td>
<td>8.0622</td>
<td>0.011</td>
<td>0.00036</td>
</tr>
<tr>
<td>UK</td>
<td>19.1</td>
<td>0.06879</td>
<td>0.0000467</td>
<td>15.54</td>
<td>0.0264</td>
<td>0.0003</td>
</tr>
</tbody>
</table>

Table 4: Calculated “calibrated” Benefit Areas (BAc)

<table>
<thead>
<tr>
<th>Countries</th>
<th>D</th>
<th>z_0</th>
<th>$g(z_0)$</th>
<th>$G(z_0)$</th>
<th>BA</th>
<th>Eff</th>
<th>z_0</th>
<th>BA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albania</td>
<td>29.594</td>
<td>-3.38</td>
<td>-52.05</td>
<td>81.24</td>
<td>3.5872</td>
<td>0.416282</td>
<td>1.460084</td>
<td></td>
</tr>
<tr>
<td>Austria</td>
<td>84.649</td>
<td>3.3</td>
<td>294.1</td>
<td>628.6</td>
<td>27.756</td>
<td>35.51795</td>
<td>34.38386</td>
<td></td>
</tr>
<tr>
<td>Belgium</td>
<td>63.406</td>
<td>0.5</td>
<td>37.2</td>
<td>182.8</td>
<td>8.0715</td>
<td>28.73163</td>
<td>58.58427</td>
<td></td>
</tr>
<tr>
<td>Former Czechoslovakia</td>
<td>160.988</td>
<td>11.24</td>
<td>5119.8</td>
<td>2264.6</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Denmark</td>
<td>58.138</td>
<td>-2.5</td>
<td>369.72</td>
<td>536.7</td>
<td>23.698</td>
<td>-507.79</td>
<td>66016.29</td>
<td></td>
</tr>
<tr>
<td>Finland</td>
<td>46.182</td>
<td>3.4</td>
<td>154.72</td>
<td>114.3</td>
<td>5.0453</td>
<td>19.76705</td>
<td>1.578593</td>
<td></td>
</tr>
<tr>
<td>France</td>
<td>149.22</td>
<td>42.4</td>
<td>772.63</td>
<td>309.2</td>
<td>13.65</td>
<td>103.0412</td>
<td>950.4364</td>
<td></td>
</tr>
<tr>
<td>Greece</td>
<td>16.83</td>
<td>-1.62</td>
<td>22.23</td>
<td>45.5</td>
<td>2.0095</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hungary</td>
<td>13.66</td>
<td>2.51</td>
<td>54.72</td>
<td>17.9</td>
<td>0.7901</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Italy</td>
<td>25.22</td>
<td>12.5</td>
<td>431.19</td>
<td>108.1</td>
<td>4.7726</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Luxembourg</td>
<td>5.56</td>
<td>-0.73</td>
<td>1.4</td>
<td>5.8</td>
<td>0.2572</td>
<td>2.351007</td>
<td>2.359444</td>
<td></td>
</tr>
<tr>
<td>Netherlands</td>
<td>54.98</td>
<td>-6.18</td>
<td>329.7</td>
<td>424.4</td>
<td>18.741</td>
<td>-73.6549</td>
<td>85.02478</td>
<td></td>
</tr>
<tr>
<td>Norway</td>
<td>21.056</td>
<td>0.94</td>
<td>16.75</td>
<td>30.6</td>
<td>1.3508</td>
<td>9.93597</td>
<td>2.085391</td>
<td></td>
</tr>
<tr>
<td>Poland</td>
<td>46.67</td>
<td>-8.03</td>
<td>-18.57</td>
<td>333.7</td>
<td>14.734</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Romania</td>
<td>19.87</td>
<td>5.5</td>
<td>147.1</td>
<td>35.8</td>
<td>1.5803</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spain</td>
<td>245.43</td>
<td>10.2</td>
<td>2563.2</td>
<td>527.8</td>
<td>23.305</td>
<td>-2.92603</td>
<td>11.43726</td>
<td></td>
</tr>
<tr>
<td>Sweden</td>
<td>73.35</td>
<td>4.1</td>
<td>147.1</td>
<td>201.7</td>
<td>8.9075</td>
<td>40.47174</td>
<td>55.68209</td>
<td></td>
</tr>
<tr>
<td>Switzerland</td>
<td>17.87</td>
<td>5.56</td>
<td>55.8</td>
<td>76.5</td>
<td>3.378</td>
<td>10.02119</td>
<td>24.05788</td>
<td></td>
</tr>
<tr>
<td>Turkey</td>
<td>147.82</td>
<td>8.1</td>
<td>1698.5</td>
<td>698.65</td>
<td>30.851</td>
<td>9.819189</td>
<td>58.17368</td>
<td></td>
</tr>
<tr>
<td>UK</td>
<td>200.5</td>
<td>15.6</td>
<td>4452.1</td>
<td>759.9</td>
<td>33.551</td>
<td>83.67548</td>
<td>1813.895</td>
<td></td>
</tr>
</tbody>
</table>
5. Conclusions and Policy Implications

The analysis of the effectiveness of environmental programs and regulations requires the comparison of damage and control costs associated with the reduction of different pollutants. It is worth mentioning that although there is an obvious uncertainty in damage costs we cannot ignore that uncertainty is also present in the abatement cost functions due to abatement efficiencies that may differ between countries and between adopted scenarios.

The typical approach to define the optimal pollution level has been to equate the marginal damage of an extra unit of pollution with the corresponding marginal abatement cost. An efficient level of emissions maximizes the net benefit that is the difference between abatement and damage costs. Therefore the identification of this efficient level shows the level of benefits maximization, which is the output level resulting if external costs (damages) are fully internalized.

In this paper the corresponding optimal cost and benefit points were evaluated analytically. It is shown that this is feasible in the linear and quadratic cases while in the exponential case only approximated values can be obtained. The explicit evaluation of the benefit area was also discussed and analytical forms for this particular area were calculated for different policies. In this way the optimal level was also evaluated.

We show that the optimal pollution level can be evaluated only under certain conditions as were derived in section 3. Specifically, it is required that in all of the cases $\alpha > \beta_0$ if we assume that MAC is an increasing function and MD is a decreasing function. That is, the constant term in the damage cost function (we may think of the background deposition) is bigger than the abatement cost at level $z=0$ (we may think of fixed costs of
operating an abatement method at level \(z=0 \)). In cases of both linear or both quadratic functions we have \(\beta > \beta_1 \). That is the slope of the benefit function must be greater than the marginal abatement cost at level \(z=0 \). For the quadratic case it is required that \(\beta_2 > 0 \) while for the exponential case \(\beta_0, \beta_1 > 0 \). Both the quadratic and the exponential cases obey to the same form of evaluating the benefit area.

From our empirical findings is clear that the evaluation of the “calibrated” Benefit Area, as it was developed, provides an index to compare the different policies adopted from different countries on the basis of how large calibrated Benefit Area provides eventually. In this way a comparison of different policies can be performed. Certainly the policy with the maximum Benefit Area is the best, and the one with the minimum is the worst. Clearly the index \(BA^c \) provides a new measure for comparing the adopted policies.

An important finding (in the case of transboundary pollution) is that domestic pollution sources are important while big industrial upwind counties seem to have a very large benefit area. On the other hand, downwind near to the sea countries or over sparsely populated areas with acid tolerant soils seem to have small benefit areas. As mentioned the empirical results derived are only indicative and very sensitive to the assumptions of calibration.

Policy makers may have multiple objectives with efficiency and sustainability to be of high priority. Environmental policies should consider that economic development is not uniform across regions and may differ significantly (Halkos and Tzeremes, 2010). At the same time reforming economic policies to cope with EU enlargement may face problems and this may in turn affect their economic efficiencies (Halkos and Tzeremes, 2009).
REFERENCES

EMEP (various years). Airborne transboundary transport of sulphur and nitrogen over Europe: model description and calculations, EMEP/MSC-W Reports.

