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Abstract

Three new approaches are proposed to handle mixed frequency Vector Au-

toregression. The first is an explicit solution to the likelihood and posterior

distribution. The second is a parsimonious, time-invariant and invertible

state space form. The third is a parallel Gibbs sampler without forward

filtering and backward sampling. The three methods are unified since all

of them explore the fact that the mixed frequency observations impose lin-

ear constraints on the distribution of high frequency latent variables. By a

simulation study, different approaches are compared and the parallel Gibbs

sampler outperforms others. A financial application on the yield curve fore-

cast is conducted using mixed frequency macro-finance data.
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1. Introduction

A standard Vector Autoregression (VAR) model assumes that data are

sampled at the same frequency since variables at date t are regressed on

variables dated at t−1, t−2, etc. However, economic and financial data may

be sampled at varied frequencies. For example, GDP data are quarterly,

while many financial variables might be daily or more frequent. In addition,

for a given variable, recent data can be observed at a higher frequency while

historical data are coarsely sampled. For instance, quarterly GDP data are

not available until 1947.

In the presence of mixed frequency data, a VAR practitioner usually aligns

variables either downward by aggregating the data to a lower frequency or

upward by interpolating the high frequency data with heuristic rules such

as polynomial fillings. Downward alignment discards valuable information

in the high frequency data. Furthermore, temporal aggregation can change

the lag order of ARMA models (Amemiya and Wu, 1972), reduce efficiency

in parameter estimation and forecast (Tiao and Wei, 1976), affect Granger-

causality and cointegration among component variables (Marcellino, 1999),

induce spurious instantaneous causality (Breitung and Swanson, 2002), and

so on. Silvestrini and Veredas (2008) provide a comprehensive review on the

theory of temporal aggregation. On the other hand, upward alignment on the

basis of ad hoc mathematical procedures is also problematic. Pavia-Miralles

(2010) surveys various methods of interpolating and extrapolating time se-

ries. The problem is that by using a VAR model we assume high frequency

data are generated by that model. However, interpolation is not based on

the multivariate model that generates the data, but on other heuristic rules,
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which inevitably introduce noises, if not distortion, to the data.

This paper focuses on VAR models that explicitly include heterogeneous

frequency data. In the literature, there are several directions to the mixed

frequency VAR modeling: state space solution, observed-data VAR and an

alternative Gibbs sampler without the Kalman filter. We review these meth-

ods and describe the contribution of this paper.

First, the state space model (SSM) can bridge frequency mismatch and

the Kalman filter yields the likelihood function and the posterior state distri-

bution in a recursive form. The seminal paper of Harvey and Pierse (1984)

outlines an SSM of the ARMA process subject to temporal aggregation. High

frequency variables of adjacent periods are stacked in the state vector, whose

linear combinations constitute observed mixed frequency data. This idea can

be easily extended to the VAR and dynamic factor models, which have been

explored by Zadrozny (1988), Mittnik and Zadrozny (2004), Mariano and

Murasawa (2003, 2010), Hyung and Granger (2008). With the aid of the

Kalman filter, a mixed frequency model can be estimated either by numeri-

cal maximum likelihood or the expectation-maximization algorithm. Recent

years have also seen Bayesian estimation of the mixed frequency VAR as in

Viefers (2011) and Schorfheide and Song (2012), who apply the forward filter-

ing and backward sampling (FFBS) for data augmentation. Refer to Carter

and Kohn (1994) for the original FFBS and Durbin and Koopman (2002),

Chan and Jeliazkov (2009), among others, for improved FFBS algorithms.

It is tempting to think that an SSM is employed because direct likeli-

hood evaluation of the mixed frequency VAR model is not obvious and the

Kalman filter offers a recursive solution. We show that the mixed frequency
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VAR model has analytic likelihood and posterior distribution of states if we

interpret mixed frequency observations as linear constraints on the distribu-

tion of high frequency latent variables, but it is the computation that makes

the state space solution numerically attractive. However, our explicit form

sheds light on a high-performance parallel Gibbs sampler that explores the

same idea but works on smaller observation chunks.

Second, a VAR system can be built on observed mixed frequency data,

without resorting to latent variables. Proposed by Ghysels (2012), this new

VAR is closely related to the Mi(xed) Da(ta) S(ampling), or MIDAS, regres-

sion introduced by Ghysels et al. (2006), Ghysels et al. (2007). The VAR

system includes both a MIDAS regression (projecting high frequency data

onto low frequency data with tightly parameterized weights) and autore-

gressions of observed high frequency variables plus low-frequency regressors.

The coexistence of mixed frequency data in a VAR is achieved by rewriting

a regular VAR model as a stacked and skip-sampled form.

Inspired by this new VAR representation, we propose a stick-and-skip

SSM within the latent variable VAR framework. It is more parsimonious

than the existing SSMs in that skip-sampling effectively shortens the recur-

sion periods of the Kalman filter. More importantly, our SSM observation

equation is time-invariant, non-cyclical, and not padded with artificial data

points. It is as standard as a usual ARMA state space form, and thus readily

applicable on any statistical software that supports SSM. Another advantage

of our SSM is that the predicted state covariance matrix is invertible, which

is not true for the existing SSMs for mixed frequency regression. Therefore,

our SSM is suitable for the classical state smoother or simulation smoother
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that requires inverting the state covariance matrix.

Third, given the latent variable framework, the state space form is not

the unique solution to data augmentation. Chiu et al. (2011) propose a non-

FFBS Gibbs sampler in which a single-period (say, period t) latent variables

are drawn conditional on all other latent values. In a VAR(1) model, two

neighbors (that is, values in periods t − 1 and t + 1) are relevant. Though

this is an innovative approach handling mixed frequency data, it works under

an assumption that low frequency data are the result of sampling every m

periods from the high frequency variable. This might be appropriate for

some types of stock variables. For example, the daily S&P 500 index can be

thought as the closing price. However, some other stock variables such as

monthly CPI might be more reasonably viewed as an average of the latent

“weekly CPI” in a month, or there is an ambiguity on whether it reflects the

price of the first or last week of a month. Similarly, flow variables such as

quarterly GDP are the sum of the latent “monthly GDP” in a quarter.

Our parallel Gibbs sampler overcomes that limitation and accommodates

the sampler of Chiu et al. (2011) as a special case. Low frequency obser-

vations are linear combinations of high frequency latent variables. If an

observation binds several high frequency data as their sum or average, it is

a temporal aggregation problem. If it binds only one high frequency data

point, it reduces to the algorithm of Chiu et al. (2011).

Note that the FFBS draws of all latent variables as a whole by decom-

posing the joint distribution into cumulative conditionals, while any non-

FFBS sampler increases the chain length of the Markov Chain Monte Carlo

(MCMC). However, it does not necessarily imply that a non-FFBS sampler
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is inferior. The FFBS is inherently sequential because the Kalman filter and

smoother are computed recursively. However, our Gibbs sampler as well as

that of Chiu et al. (2011) have an attractive feature that parallel computation

can be performed within a single MCMC chain, since it satisfies the blocking

property. For reasons that will be explained in Section 5, the parallel Gibbs

sampler only moderately increases the correlation of draws, but substantially

accelerates the sampler even on a personal computer. Perhaps a good way

to describe the speed of our parallel sampler is that it takes longer time to

sample the posterior VAR coefficients than the latent high frequency data.

In presenting our approaches, we do not label ourselves as frequentists or

Bayesians, for our explicit solution and stick-and-skip SSM can be applied

to both maximum likelihood and Bayesian inference. Also, for the sake of

exposition, we first describe a bivariate evenly mixed frequency VAR(1), and

then extend the method to a higher-order, higher-dimension VAR subject to

arbitrary temporal aggregation.

The rest of the paper is organized as follows. Section 2 discusses the

explicit likelihood and posterior states estimation of the mixed frequency

VAR model. Section 3 introduces the stick-and-skip SSM in contrast to the

standard state space solution. Section 4 shows the connections between the

explicit solution and the recursive Kalman filter. Section 5 explains how

the idea of the explicit solution can be adapted to a parallel Gibbs sampler.

Section 6 conducts a simulation exercise to compare the sampling speed and

efficiency of different mixed frequency VAR approaches. Section 7 applies

the parallel Gibbs sampler to the yield curve forecast with mixed frequency

macro-finance data. Section 8 concludes the paper.
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2. The Explicit Solution

To fix ideas, first consider a bivariate stationary VAR(1) model


 x∗

1,t

x∗
2,t


 =


 φ11 φ12

φ21 φ22




 x∗

1,t−1

x∗
2,t−1


+


 p11 0

p21 p22




 ε1,t

ε2,t


 , (1)

where ε1,t, ε2,t are independent standard normal noises.

To introduce mixed frequency data, assume the first series is fully ob-

served, while the second series is temporally aggregated every other period.

In other words, x1,t = x∗
1,t, for t = 1, . . . , T , while

x2,t =





NaN t = 1, 3, . . . , T − 1

x∗
2,t−1 + x∗

2,t t = 2, 4, . . . , T
.

If the average, instead of sum, of the high frequency data are observed, rescale

x2,t by a constant.

We are interested in the likelihood function for classical inference as well

as the posterior distribution of latent high frequency data for Bayesian in-

ference. For conciseness, throughout the paper, conditioning on model pa-

rameters is implicit when we mention “posterior distribution”. We only dis-

cuss posterior latent variables, since posterior model parameters conditional

on augmented data follow well-developed Bayesian VAR approaches. Refer

to Litterman (1986); Kadiyala and Karlsson (1997); Banbura et al. (2010),

among others.

The explicit solution can be obtained by the following three steps.

First, with the obvious vector (matrix) notation, rewrite Eq (1) in the

matrix form

x∗
t = Φx∗

t−1 + Pεt.
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Suppose x∗
1 comes from the stationary distribution N (0,Ω), where Ω sat-

isfies the Lyapunov Equation Ω = ΦΩΦ′ + PP ′. The stacked variable

x∗ ≡ (x∗′
1 , . . . , x

∗′
T )

′ will follow N (0,Γ), where Γ is a symmetric matrix with

T × T blocks and the (i, j) , i ≥ j block equals Φi−jΩ.

Next, construct a transformation matrix

Ã =




1

1

1

1 1




,

and a block diagonal matrix A ≡ diag
(
Ã, . . . , Ã

)
in which Ã repeats itself

T
2
times. Then we have Ax∗

∼ N (0, AΓA′). Essentially Ax∗ is a linear

transformation of x∗. For each t = 2, 4, . . . , T , the 2t− 3, 2t− 1, 2t elements

of Ax∗ contain the mixed-frequency observations x1,t−1, x1,t, x2,t, while its

2t−2 element corresponds to the unobserved variable x∗
2,t−1. Let e be a 2T×1

logical vector whose 2t− 3, 2t− 1, 2t elements are ones (logical true), which

serves as an indexing array to select entries of Ax∗ and AΓA′. Denote the

corresponding subvectors (submatrices) by x(0), x(1), Γ00,Γ01,Γ11,Γ10. For

example, Γ01 is a submatrix of AΓA with rows selected by 1− e and columns

selected by e. Basically, the subscript 0 stands for unobserved variables,

while 1 for observations.

Third, the likelihood function is given by the joint distribution of x(1),

that is, the density of N (0,Γ11). The posterior distribution x(0)

∣∣x(1) follows

N
(
Γ01Γ

−1
11 x(1),Γ00 − Γ01Γ

−1
11 Γ10

)
.

Note that x(0) only contains a fraction of high frequency series, namely
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x2,1, x2,3, . . . , x2,T−1. However, the rest high frequency variables are degener-

ated conditional on x(0), x(1) since x∗
2,t = x2,t − x∗

2,t−1.

This method can be extended to a general VAR(p) model with irregularly

mixed frequency data. Assume that the k dimensional latent series {x∗
t}

T

t=1

follow a stationary VAR(p) process:

x∗
t =

p∑

j=1

Φjx
∗
t−j + Pεt, (2)

The reference time unit is t, which indexes the highest frequency data in

the VAR system. Let
{
x∗
i,t

}T
t=1

be the ith component series. Suppose in some

time interval [a, b], 1 ≤ a ≤ b ≤ T , latent values x∗
i,a, . . . , x

∗
i,b are aggregated.

This interval is called an aggregation cycle. We then construct the data series

{xi,t}
T

t=1 such that xi,a = . . . = xi,b−1 = NaN and xi,b =
∑b−a

j=0 x
∗
1,a+j. As a

special case, a = b implies that the highest frequency data is observed. The

data series {xi,t}
T

t=1 contains both observations and aggregation structure,

since by counting a run of NaN entries preceding a data point reveals an

aggregation cycle. Define a kT -by-1 logical vector e whose (i− 1)T + t

element equals zero if xi,t is NaN , and equals one otherwise.

The explicit likelihood and posteriors can be found by three steps. First,

let x∗ be the kT -by-1 stacked latent series and let its joint distribution be

N (0,Γ). Essentially Γ consists of the auto-covariances of the VAR(p) series,

which can be obtained from its companion form (i.e., a giant VAR(1)). See

Hamilton (1994, p.265-266) for the auto-covariance formulae. Second, link

the aggregated and disaggregated data by a kT -by-kT transformation matrix

A such that for a m-period (m ≥ 1) temporal aggregation, the first m −

1 variates are retained, while the last one is replaced by the sum of the
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variates in the aggregation cycle. Then we have the transformed series Ax∗
∼

N (0, AΓA′). Third, the likelihood function and posteriors are given by x(1) ∼

N (0,Γ11) and x(0)

∣∣x(1) ∼ N
(
Γ01Γ

−1
11 x(1),Γ00 − Γ01Γ

−1
11 Γ10

)
, where x(0), x(1),

Γ00,Γ01,Γ11,Γ10 are defined similarly as in the bivariate VAR(1) example.

3. The Recursive Solution

The state space representation is the most popular solution to the mixed

frequency VAR. The existing SSMs are similar: the state equation is the

companion form of VAR(p), possibly with more lags if the length of an ag-

gregation cycle is larger than p. The observation equation extracts observed

components or takes linear combinations of the state vector. For example,

the state space form of Eq (1) with x∗
2,t being aggregated every other period

is given by


 x∗

t

x∗
t−1


 =


 Φ 0

I 0




 x∗

t−1

x∗
t−2


+


 P

0


 εt,

x1,t =
(

1 0 0 0
)

 x∗

t

x∗
t−1


 , t = 1, 3, . . . , T − 1,


 x1,t

x2,t


 =


 1 0 0 0

0 1 0 1




 x∗

t

x∗
t−1


 , t = 2, 4, . . . , T.

There are two problems of this state space form. First, mixed frequency

data imply both time-varying dimensions of the observation vector and time-

varying coefficients in the observation equation. Time-varying dimensions

can be circumvented by filling in pseudo realizations (say zeros) of some

exogenous process (say standard normal) that does not depend on model
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parameters, as proposed by Mariano and Murasawa (2003). However, the

coefficient matrix in the observation equation remains cyclical. It does not

pose a problem in theory, but a time-varying model is inconvenient for both

programmers and users. In addition, padding observations with artificial

data slows down the Kalman filter. Second, in the Kalman filter recursion,

states are predicted and updated conditional on past observations. In this

case, the covariance matrix of the predicted states is not invertible, because

x∗
1,t−1, the third component of the state vector, is known conditional on all

information up to period t − 1. Therefore, old smoothing algorithms that

require inverting that matrix cannot be applied directly, unless one carefully

squeezes non-random components out of the matrix before taking inversion.

We propose a parsimonious, time-invariant and invertible state space rep-

resentation (stick-and-skip form) for the mixed frequency VAR. The idea is

to stick two periods together so we only count a half periods t = 2, 4, ..., T

such that

 x∗

t

x∗
t−1


 =


 Φ2 0

Φ 0




 x∗

t−2

x∗
t−3


+


 P ΦP

0 P




 εt

εt−1


 ,




x1,t

x2,t

x1,t−1


 =




1 0 0 0

0 1 0 1

0 0 1 0





 x∗

t

x∗
t−1


 .

In the stick-and-skip form, the state vectors are non-overlapping, but the

state equation represents the same evolution as a VAR(1). As a result, the

covariance matrix of the predicted states is of full rank. As for the observation

equation, since period t and t−1 stick together, the coefficient matrix is time-

invariant and non-cyclical. In practice, after reshaping the mixed-frequency
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data of T periods as pooled data of T/2 periods, the model can readily work

on any statistical software that supports state space modeling.

Extension to a general VAR(p) model is straightforward. The state space

model is still time-invariant for balanced temporal aggregation. Suppose

the least common multiple of the aggregation cycles of the mixed frequency

data is m. Put r = ceil
(

p

m

)
· m, where ceil (·) rounds a number towards

positive infinity. Let ξt =
(

x∗′
t x∗′

t−1 · · · x∗′
t−r+1

)′

, and rewrite Eq (1) in

its companion form: ξt = Φ̃ξt−1 + P̃ εt, where Φ̃, P̃ are largely sparse with

Φ1, ...,Φp, P sitting in the northwest corner. By iteration we obtain the state

equation that glues variables of r periods 2

ξt = Φ̃rξt−r +
(

P̃ Φ̃P̃ · · · Φ̃r−1P̃
)(

ε′t ε′t−1 · · · ε′t−r+1

)′

.

The observation equation pools the mixed frequency data of period t, t−

1, . . . , t− r + 1, which can be extracted from the state vector. With pooled

data, the Kalman filter jumps through period r, 2r, . . . , T .

4. Comparison Between the Explicit and Recursive Form

Now we show the connections between the explicit and recursive solution.

Since the underlying data generating process is the same, different approaches

must lead to the same likelihood function and posterior states estimation.

Our finding is that the explicit solution is an unconscious recursive formula

implemented automatically by a computer.

2Computationally, it is more favorable to directly iterate the VAR(p) to obtain the

coefficients of the state equation, though iteration based on the companion form appears

more straightforward.
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As already explained, x(1) ∼ N (0,Γ11), and the explicit form of the

likelihood function is a multivariate normal density

(2π)−
n

2 |Γ11|
− 1

2 exp

(
−
1

2
x′
(1)Γ

−1
11 x(1)

)
,

where n is the total number of observed data points.

Evaluating this expression on a computer, we seldom directly compute

|Γ11| and Γ−1
11 due to concerns on numerical stability. Instead, the Cholesky

decomposition or its non-square-root version LDL decomposition is routinely

performed. Let Γ11 = LDL′, where L is lower triangular with unitary diag-

onals and D ≡ diag (d1, . . . , dn) is a diagonal matrix. It follows that

|Γ11| =
n∏

t=1

dt,

x′
(1)Γ

−1
11 x(1) =

n∑

t=1

v2t
dt
,

where (v1, . . . , vn)
′ ≡ L−1x(1), which can be computed easily by backward

substitution. Therefore, the multivariate density is effectively evaluated by

the product of univariate normal densities

n∏

t=1

(2πdt)
− 1

2 exp

(
−

v2t
2dt

)
.

The LDL decomposition itself is a numerical device, but Fact 1 gives it

a statistical interpretation. Proofs of Facts in this paper are provided in the

appendix.

Fact 1. Let x(1) ≡ (y1, . . . , yn)
′, then vt = yt − E (yt |yt−1, . . . , y1 ), dt =

V ar (vt).
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Recall that x(1) represents all mixed frequency observations. Fact 1 shows

that direct likelihood evaluation by LDL algorithm is equivalent to rewriting

the likelihood in the prediction error decomposition form, which can also be

achieved by the Kalman filter. We leave the details on how to obtain vt, dt by

the Kalman forward recursion in the Appendix. In spite of result equivalence,

the Kalman filter is a conscious recursion, since it critically explores the

AR(1) state transition which enables the iterative one-step prediction of the

states and observations. The computational complexity of the Kalman filter

is O (n). In contrast, the LDL algorithm is mechanical (say, by the rank-

one update scheme) and can decompose any covariance matrix. Though it

unconsciously obtains the same likelihood function in the prediction error

decomposition form, its computational complexity is roughly 1
3
n3.

Similar arguments apply to the simulation smoother. We focus on the

posterior mean, for posterior draws can be obtained solely from the mean-

adjusted smoother without computing its variance, as proposed by Durbin

and Koopman (2002). We show that the explicit form of the posterior mean is

indeed computed by an unconscious recursion, which ensembles the smooth-

ing algorithm of de Jong (1989).

We have shown E
(
x(0)

∣∣x(1)

)
= Γ01Γ

−1
11 x(1). In realistic computation, we

seldom invert Γ11 and then times this quantity by x(1). Instead, we treat it

as a linear equation and adopt LU, QR or Cholesky decomposition. Since

Γ11 is symmetric positive definite, the most appropriate numerical method is

Cholesky decomposition or its variant LDL decomposition. Let Γ11 = LDL′,
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then

Γ01Γ
−1
11 x(1) = E

[
x(0)x

′
(1)

]
(LDL′)

−1
x(1)

= E
[
x(0)

(
L−1x(1)

)′]
D−1

(
L−1x(1)

)

=
n∑

t=1

E
[
x(0)vt

]
d−1
t vt

In the appendix we show this expression can be obtained from a backward

recursion similar to the smoother of de Jong (1989). The computational

complexity of the backward recursion is O (n), while direct computation by

the LDL decomposition requires a complexity of O (n3).

Note that the variable n stands for the number of periods times number of

observations in a period. Clearly, n must be large in a typical empirical study

and the difference between O (n) and O (n3) is substantial. This, however,

does not imply the explicit solution is worthless. Note that O (n) and O (n3)

imply nothing but asymptotics. When n is small, O (n3) is not necessarily

larger than O (n). If we slightly adapt the explicit-form posterior distribution

and apply it on a small chunk of observations, we obtain a parallel Gibbs

sampler that works much faster than the Kalman simulation smoother.

5. Gibbs Sampler with Blocks

The sampling procedure in Section 2 allows us to draw latent variables all

at once. However, it is computationally unfavorable to transform the entire

sample at one time, so we partition the sample according to the aggregation

cycle and explore the (high order) Markov property of the VAR(p) process.
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Fact 2. Suppose {x∗
t}

T

t=1 follow a VAR(p) process as in Eq (2), then

p
(
x∗
s, . . . , x

∗
t

∣∣x∗
1, . . . , x

∗
s−1, x

∗
t+1, . . . , x

∗
T

)

= p
(
x∗
s, . . . , x

∗
t

∣∣x∗
s−p, . . . , x

∗
s−1, x

∗
t+1, . . . , x

∗
t+p

)
,

for 1 ≤ s ≤ t ≤ T , with proper adjustments for the initial and terminal

variables.

To fix ideas, consider again Eq (1) with
{
x∗
2,t

}
aggregated every other

period. Treat variables in each aggregation cycle as a chunk (the word block

is reserved for later use), so we have T
2
chunks. That is, cj ≡

(
x∗′
2j−1, x

∗′
2j

)′
, j =

1, . . . , T
2
. Suppose we want to sample latent variables chunk by chunk. For

each j, we sample x∗
2,2j−1 conditional on all other chunks and all observations.

Once x∗
2,2j−1 is sampled, other latent variables in jth chunk can be sampled

trivially. By the Markov property we actually work on

x∗
2,2j−1

∣∣x∗
1,2j−2, x

∗
2,2j−2, x1,2j−1, x1,2j, x2,2j, x

∗
1,2j+1, x

∗
2,2j+1 ,

with proper adjustments for the initial and terminal variables. Similar to

the method described in Section 2, the posterior conditional distribution

of x∗
2,2j−1 can be obtained by three steps. First, obtain the joint distribu-

tion of x̃j ≡
(
x∗′
2j−2, x

∗′
2j−1, x

∗′
2j, x

∗′
2j+1

)′
. We have x̃j ∼ N (0,Γ), where Γ is

a symmetric matrix with 4 × 4 chunks and the (i, r) , i ≥ r chunk equals

Φi−rΩ. Second, construct a 8 × 8 transformation matrix A = I8 + 1(6,4),

where I8 is an identity matrix and 1(6,4) is an 8 × 8 zero matrix except for

its (6, 4) element being one. Ax̃j transform x̃j such that x∗
2,2j is replaced by

the low frequency data x2,2j. Let e be an 8× 1 logical vector in which all but

the 4th element equals to one. Third, Ax̃j ∼ N (0, AΓA′), and x(0,j)

∣∣x(1,j) ∼
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N
(
Γ01Γ

−1
11 x(1,j),Γ00 − Γ01Γ

−1
11 Γ10

)
, where x(0,j), x(1,j), Γ00,Γ01,Γ11,Γ10 are sub-

vectors (submatrices) of Ax̃j and AΓA′ selected by e and/or 1−e. In this case

x(0,j) = x∗
2,2j−1 and x(1,j) =

(
x∗
1,2j−2, x

∗
2,2j−2, x1,2j−1, x1,2j, x2,2j, x

∗
1,2j+1, x

∗
2,2j+1

)′
.

Note that the conditional variance Γ00 − Γ01Γ
−1
11 Γ10 is equal for all but the

initial and terminal blocks. This feature saves substantial amount of compu-

tation.

More importantly, the proposed sampler satisfies the blocking property.

Consider a genetic setting where θ0, θ1, . . . θq are latent variable chunks. The

Gibbs sampler takes turns to sample from p (θi |θ−i ), where θ−i denotes all

but the ith chunk. If p (θ1, . . . θq |θ0 ) =

q∏

i=1

p (θi |θ0 ), then we say θ1, . . . θq

satisfy the blocking property. Since θ1, . . . θq are independent conditional on

θ0, the blocking property implies that p (θi |θ−i ) = p (θi |θ0 ), i = 1, . . . , q.

Suppose we have q parallel processors and let the ith processor take a draw

from p (θi |θ−i ). Then we effectively obtain draws from p (θ1, . . . θq |θ0 ). In

this sense, θ1, . . . θq are sampled as a block.

Figure 1 illustrate the chunks and blocks for the bivariate VAR(1) ex-

ample. The T
2
chunks are represented by c1, . . . , cT

2

and the two blocks are

b1 ≡
(
c1, c3, . . . , cT

2
−1

)
, b2 ≡

(
c2, c4, . . . , cT

2

)
. The Markov property of AR(1)

implies the blocking property p
(
c1, c3, . . . , cT

2
−1 |b2

)
=

∏

j=1,3,...,T
2
−1

p (cj |b2 )

as well as p
(
c2, c4, . . . , cT

2

|b1

)
=

∏

j=2,4,...,T
2

p (cj |b1 ). Therefore, the Gibbs

sampler cycles through two blocks, namely p (b1 |b2 ) and p (b2 |b1 ). Within

each block, multiple processors collaborate to sample chunks simultaneously.

Compared with FFBS by which all latent variables are sampled as one block,

parallel sampler increases the length of the MCMC chain by one, but not T
2
.
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So we can expect the correlation of MCMC draws only slightly rises.

Implementation of parallel computation for this problem is not demand-

ing. Consider sampling from p (b1 |b2 ). We need to compute the conditional

mean for each chunk in that block. However, the formula Γ01Γ
−1
11 x(1,j) im-

plies that we may concatenate the vectors x(1,j) as a matrix, say x(b1) ≡[
x(1,1), x(1,3), . . . , x(1,T

2
−1)

]
. Then all these conditional means can be com-

puted in bulk through Γ01Γ
−1
11 x(b1). In modern matrix-based computational

platforms such as MATLAB, parallel computation is inherent in matrix mul-

tiplication and will be automatically invoked when the matrix size is large

enough.

Also note that the method of designating chunks and blocks is not unique.

It is not wrong to put variables in two aggregation cycles as a chunk, but a

larger trunk intensifies the O (n3) complexity of the LDL decomposition. It

is not wrong to group chunks in other manners to form a block, but more

blocks translate to higher correlation of the MCMC draws.

In a general VAR(p)-based model, the blocking strategy still applies. Sup-

pose the least common multiple of the aggregation cycles of the mixed fre-

quency data is m. Then variables of m periods can be treated as a chunk.

That is, cj ≡
(
x∗′
mj−m+1, . . . , x

∗′
mj

)′
,j = 1, . . . , T

m
.According to the high or-

der Markov property, x∗
mj−m−p+1, . . . , x

∗
mj−m+1,. . . , x

∗
mj, . . . , x

∗
mj+p are rele-

vant for sampling latent variables in cj. The procedures are same as the

bivariate VAR(1) example. The chunks can also be grouped into blocks. Let

s = ceil
(

p

m

)
+ 1, then the blocks are bi ≡

(
ci, ci+s, . . . , ci+ T

m
−s

)
, i = 1, . . . s.

In summary, triple factors contribute to the acceleration of the parallel

Gibbs sampler. First, it works with small trunks of observations and the
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Figure 1: A Graphic Illustration of the Parallel Gibbs Sampler

Consider a bivariate VAR(1) model with the second series aggregated every other period. Mixed

frequency observations of the first 12 periods are depicted in the rows “High-freq data”and “Low-freq

data”. Each aggregation cycle (i.e., two periods) constitutes a chunk, as illustrated by c1, . . . , c6. To

sample latent variables in a chunk, we need not only mixed frequency observations in that chunk, but

also two neighboring latent variables outside the chunk. The parallel Gibbs sampler cycles through

blocks rather than chunks. In this case, Block 1 consists of chunks c1, c3, c5 and Block 2 contains chunks

c2, c4, c6. Within a block, multiple computational threads can collaborate to sample chunks regardless of

the sampling order.
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O (n3) complexity of LDL decomposition does not loom large. Second, for

balanced aggregation, the same conditional variance applies to many chunks.

Third, multiple processors can simultaneously sample chunks within a block.

The potential of the third factor is unlimited, for it is the reality that a

personal computer is equipped with increasingly larger multi-threads in the

CPU and GPU. Even in the absence of multiple computational threads, the

second factor alone makes the sampler faster than FFBS, which computes

the entire sequence of the predicted and filtered state variances for the whole

sample periods.3

6. Simulation Study

The mixed frequency VAR model under discussion is fully parametric

and various approaches would generate the same results if we could take

infinite amount of MCMC draws. However, their numerical performance

may vary with the size of the model. We conduct a Bayesian simulation

exercise to compare the sampling speed and the quality of the correlated

MCMC draws. The four candidate methods are the explicit form of posterior

states (EXPLICIT), the traditional state space form (SSM1), the stick-and-

skip state space form (SSM2), and the parallel Gibbs sampler (PARGIBBS).

The new VAR proposed by Ghysels (2012) and MIDAS family models are

not experimented, for they assume a different data generating process. See

3For a stationary model, the Riccati equation will converge and state variances eventu-

ally level off under suitable regularity conditions. One may stop computing the variances

halfway when the sequence stabilizes. However, it is just an approximation. To obtain the

precise likelihood or smoother, one should compute the entire variance sequence.
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Kuzin et al. (2011) for comparisons between the mixed frequency VAR and

MIDAS.

The hardware platform is a personal computer with a 3.0G Hz four-

core Xeon W3550 CPU and 12 GB RAM. The software platform is Win64

MATLAB 2013a without Parallel Computing Toolbox. Codes of the four

candidate methods reflect the developer’s best efforts and offer the same level

of generality: a Bayesian multivariate VAR(p) model under Normal-Wishart

priors (independent, dependent or diffuse) with Minnesota-style shrinkage;

high and low mixed frequency data subject to balanced temporal aggregation.

An unfair part is that the Kalman filter and the simulation smoother are

implemented by a mex file based on compiled C codes, while others are

completely MATLAB codes. The mex file accelerates the two state space

methods by thirty to fifty times, which qualifies them to compete with the

parallel Gibbs sampler on smaller models. Note that the only channel that

the parallel Gibbs sampler gets access to multiple computational threads is

matrix multiplication, in which parallel computation is automatic when the

matrix size is large.

We consider three scenarios that differ in model sizes. In all scenarios the

VAR coefficients have independent Normal-Wishart priors with shrinkage on

regression coefficients. The Gibbs sampler are employed to cycle through

posterior conditionals of regression coefficients, disturbance covariance ma-

trix as well as the latent high frequency data. The four candidate methods

only differ in sampling the latent variables. We compare their sampling speed

measured in total computation time and the quality of the MCMC draws by
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the relative numerical efficiency (RNE), which is defined as

RNE =
1

1 + 2
∑r

j=1

(
1− j

r

)
ρj
,

where ρj is jth autocorrelation of the draws sequence of length r.4 It is

expected that the first three methods should yield similar RNE, since all

latent variables are drawn as a whole. However, the last method may exhibit

lower RNE because latent variables are sampled for each block conditional

on other blocks, which increases the length of the MCMC chain and the

correlation of draws.

The first scenario is a small model in which one component variable in

a bivariate VAR(1) is temporally aggregated every other period. The true

VAR parameters are artificial and 500 observations are simulated. Then each

of the four candidate samplers takes 5000 draws with the first half burned in.

For credibility and robustness of results, the experiment of this scenario is

repeated for 100 times; each time with new pseudo observations. The average

sampling speed and RNE are reported with standard deviations in parenthe-

sis. As seen in Table 1, The EXPLICIT method is significantly slower than

others, due to manipulation of a 1000-by-1000 covariance matrix. In such a

small model, there is no speed advantage of PARGIBBS over SSM1/SSM2,

or vice versa. They all take 3 to 4 seconds for 5000 draws. On average, the

RNE of PARGIBBS is reduced by less than 4% compared with the RNE of

about 0.2 for other methods. Note the standard deviation of RNE is roughly

4It is not feasible to estimate autocorrelations of order close to the sample size. In

practice, a cut-off lag is designated. We put 100 lags for the sample size of 5000. Lags

increase with square root of the sample size.

22



0.04 for all methods, so the reduction of RNE of PARGIBBS is not significant

in our experiment.

The second scenario is a median-sized model with six variables and three

lags in the regression. The 1200 simulated data ensemble the monthly-

quarterly aggregation. Other settings are same as the first scenario. The

EXPLICIT method is not experimented, for it is already too slow even on a

small model. As seen in Table 1, the stick-and-skip SSM shortens the sam-

pling time by 37% compared to the traditional SSM that costs 185 seconds.

However, both SSM1 and SSM2 are overshadowed by PARGIBBS, for it only

takes 11 seconds with invisible RNE decrease. Also recall that it is an unfair

competition between MATLAB and C codes in favor of SSM. The RNE is

smaller for all methods compared with previous scenario. We are not aware

of the exact reason, which might due to more VAR parameters and longer

aggregation cycle. In view of that, we suggest practitioners ran mixed fre-

quency VAR with thinned MCMC draws, which nevertheless is affordable

since PARGIBBS is fast.

The third scenario is a larger model that contains 12 variables, 3 lags,

3000 observations and 10000 draws. SSM2 is still preferable to SSM1 in terms

of 34% reduced sampling time, though the speed advantage of PARGIBBS

renders state space solution little attraction. Its computation time is 122

seconds, while that of SSM1 and SSM2 are 6215, 4085 respectively. We want

to clarify that a truly large Bayesian VAR model that contains a hundred

variables, as discussed in Banbura et al. (2010), can hardly work with mixed

frequency data. In their paper, dependent Normal-Wishart priors are em-

ployed so that the model has analytic posterior marginal distribution for
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Table 1: Comparison of Sampling Speed and Efficiency of Mixed

Frequency VAR Algorithms

Small Model

EXPLICIT SSM 1 SSM 2 PARGIBBS

Speed 294.215 4.055 3.720 3.632

(4.334) (0.109) (0.073) (0.137)

RNE 0.201 0.196 0.196 0.193

(0.041) (0.048) (0.045) (0.039)

Median Model

Speed 184.678 116.440 11.475

(2.711) (2.254) (0.395)

RNE 0.024 0.024 0.024

(0.003) (0.003) (0.003)

Larger Model

Speed 6215.359 4085.393 122.067

(15.730) (20.281) (1.781)

RNE 0.017 0.016 0.016

(0.002) (0.002) (0.001)

In a Bayesian simulation study, the explicit solution, traditional

SSM, stick-and-skip SSM and parallel Gibbs sampler are com-

pared on small, median and larger models. Sampling speed is

measured by total computational time in seconds. Sampling effi-

ciency is measured by relative numerical efficiency. Each experi-

ment is repeated multiple times, average speed and efficiency are

reported with standard deviations in parenthesis.
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disturbance covariance matrix (inverse Wishart distribution) and regression

coefficients (matric-variate t distribution). However, once mixed frequency

data are added to the model, we rely on the computationally intensive Gibbs

sampler. For very large models, if one has access to computer clusters, one

may coordinate many computers to fulfill the parallel Gibbs sampler in a

more efficient manner.

7. Yield Curve Forecast Application

In this section, we apply our mixed frequency approach to a dynamic

factor model for the yield curve forecast. U.S. Treasury yields with maturities

of 3, 6, 12, 24, 36, 60, 84, 120, 240, 360 are studied for the sample period

1990:01 - 2013:03. The model setup is the same as Diebold et al. (2006), in

which the yields are determined by the Nelson and Siegel (1987) curve:

yt (τ) = β1t + β2t

(
1− e−λτ

λτ

)
+ β3t

(
1− e−λτ

λτ
− e−λτ

)
,

where yt (τ) is the period-t Treasury yield with the maturity τ . The param-

eter λ determines the exponential decay rate. The three dynamic factors

β1t, β2t, β3t are interpreted by Diebold and Li (2006) as level, slope and cur-

vature factors, which interact with macroeconomic variables in a VAR model.

To capture the basic macroeconomic dynamics, we include the four-

quarter growth rate of real GDP, 12-month growth rate of price index for

personal consumption expenditures as well as the effective federal funds rate.

GDP is the single best measure of economic activity, but only available at

quarterly frequency. Researchers often use monthly proxies such as capacity

utilization, industrial production index or interpolated GDP from quarter
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data. In this application, however, we assume that the latent 12-month

growth rate of “monthly GDP” interacts with inflation rate, federal funds

rates as well as three yield curve factors in a six-variate VAR(1) system:

x∗
t = Φx∗

t−1 + Pεt,

where x∗
t = (g∗t , πt, it, β1t, β2t, β3t) and gt, πt, it are output growth, inflation

and fed funds rate respectively. Put Σ ≡ PP ′.

The observed four-quarter growth rate of GDP can be approximately

viewed as the average of monthly GDP growth rate: 5

gt =
1

3

(
g∗t + g∗t−1 + g∗t−2

)
.

for t = 3, 6, . . . T .

We propose the following Bayesian method, based on the parallel Gibbs

sampler in Section 5, to estimate the model. In each step, we sample one

parameter/variable block from their full posterior conditional distributions.

Step 1: sample regressive coefficients in the VAR. This is a standard

Bayesian VAR procedure. We assume a multivariate normal prior indepen-

5The simple average holds precisely if the monthly GDP in that quarter of last year

is a constant. Otherwise, larger weights should be assigned to months with higher GDP

level. For practical purposes, assuming aggregation by simple average is less harmful, since

monthly variation of (seasonally adjusted) series should be relatively small compared with

the level of the series. A related issue is the aggregation under logarithmic data. Mariano

and Murasawa (2003, 2010) document this nonlinear aggregation problem and suggest

redefining the disaggregated data as the geometric mean (instead of the arithmetic mean)

of the disaggregated data. Camacho and Perez-Quiros (2010) argue that the approximation

error is almost negligible if monthly changes are small and the geometric averaging works

well in practice.
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dent to the prior of Σ, which allows us to treat own and foreign lags asym-

metrically. Shrinkage to random walks in the spirit of Minnesota prior is

applied (see Litterman, 1986; Kadiyala and Karlsson, 1997, for details). For

each equation of the VAR system, the prior mean for the coefficient on the

first own lag is set to one, while other coefficients have prior mean of zero.

The prior variance is set to 0.05 for the own lag, 0.01 for foreign lags and 1e6

for the constant term. The posterior conditional distribution is multivariate

normal.

Step 2: sample disturbance covariance matrix, which has inverse Wishart

posterior distribution under the reference prior p (Σ) ∝ Σ− 7

2 as in a standard

Bayesian VAR model.

Step 3: sample latent monthly GDP growth rate. This follows the parallel

Gibbs sampling procedure for mixed frequency VAR described in Section 5.

Step 4: sample three yield curve factors. Note that conditional on the la-

tent monthly GDP series, the dynamic factor model is readily in the standard

state space form in which the state vector consists of three factors and three

macro variables. Then we apply forward filtering and backward sampling to

obtain posterior state draws.

Step 5: sample the disturbance variances in the Nelson-Siegel curve.

Though Nelson-Siegel curve has excellent fit of the yield data, adding a

disturbance term is necessary. Otherwise, the three factors can be solved

precisely from any of the three yields. We assume that the yield curve for

each maturity has an uncorrelated disturbance variance σ2
τ , with a reference

prior p(σ2
τ ) ∝ σ−2

τ . The posterior conditional distribution is inverse gamma.

Step 6: sample the scalar parameter λ in the Nelson-Siegel model. Our
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prior comes from Diebold and Li (2006)’s description that λ “determines

the maturity at which the loading on the medium-term, or curvature, factor

achieves maximum. Two- or three-year maturities are commonly used in

that regard ”. So we put a uniform prior that ranges from 0.037 to 1.793,

which correspond to the maximizer of one- and four- year maturities. The

posterior conditional distribution of λ is not of known form, and we may

either insert a metropolis step or discretize the value of λ into grids as the

maximizer of the maturity of each month. The two methods yield similar

results, and the result of random walk metropolis (normal proposal density

with adaptive variance) is reported. In fact, after some vibrations in the

burn-in periods, λ draws are extremely stable. This provides support for

Diebold and Li (2006)’s decision of a predetermined λ = 0.0609.

Note that state space forms, traditional or stick-and-skip, can also be

applied to this model so that Step 3 and 4 can be merged, though the states

should keep track of factors and macro variables of three periods. In that

case, the length of the state vector would be 18. Since the parallel Gibbs

sampler runs much faster than the FFBS, it is worthwhile to first impute

latent GDP and then work on a smaller state space representation.

Cycling through these steps for 1,000,000 times with the first half of draws

burned-in and the rest thinned every 100 draws, we obtain posterior draws

of model parameters, latent monthly GDP growth series and three dynamic

factor series. Diagnostic tests suggest the chain has converged and mixed

well. The computation time is about an hour on the machine described in

Section 6.

Consider the yield curve forecast in two scenarios. First, suppose the
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current period is the end of a quarter (say, March). Conditional on all the

monthly and quarterly observations up to the current period, we make a one-

month ahead forecast. Second, suppose the current period is one month after

the end of a quarter (say, April). Conditional on all available observations

including the current month, we make a one-month ahead forecast. The

two scenarios differ by the real-time monthly information. Our approach

can handle both scenarios by treating the last-period GDP as missing data

without temporal aggregation. This treatment is essentially the sampler

proposed by Chiu et al. (2011). Once we obtain the posterior draws of the

three factors and monthly GDP of the current period, we plug them back

to the VAR and predict factors for the next month. Then we forecast the

Nelson-Siegel yield curve for the next month. The upper and lower panels of

Figure 2 depicts the one-month yield curve forecast using observations up to

2013:03 and 2013:04 respectively.

Lastly, consider a real-time forecast of another type. We use the yield

quotes of the first trading day of a month, which must be released earlier than

the macroeconomic data of that month. Suppose we observe Treasury yields

up to 2013:04, while macro data has one month in lag. Then we could use

this model to forecast GDP, inflation and fed funds rate for 2013:04. Heuris-

tically, the most recent yield curve carries information on current-month

factors, which interact with macro variables under the model assumption.

This information helps forecast on the macro variables, in additional to his-

torical observations. Our FFBS codes support missing observations, so the

easiest way to conduct this forecast is to put macro observations in 2013:04

as missing values, so that the simulation smoother will generate the forecast
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Figure 2: One-Month-Ahead Yield Curve Forecast

The upper panel uses data up to 2013:03 to estimate the model and obtain one-period ahead forecast.

The lower panel adds new information of 2013:04 to predict the yield curve of the next month. The

horizontal axis represents yield maturities in months, and the vertical axis is the yield level. The solid

line depicts the posterior mean of the forecast curve, and the dotted lines bracket the 90 % credible

interval with highest posterior density.
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of these macro variables. The projected GDP growth, inflation and fed funds

rate of 2013:04 are 0.0192, 0.0102, 0.0016 with standard deviations 0.0063,

0.0029, 0.0011 respectively. Note that the forecast on the fed funds rate has

larger uncertainty. This is not surprising, for the exploratory analysis on the

dataset shows that the fed funds rate plummets around 2008 and remains

historically low. The sample means before and after 2008:12 are 0.043 and

0.001 respectively. For future work, it might be interesting to add a structural

break at some unknown date or introduce Markov-switching regimes.

8. Conclusion

We considered the mixed frequency VAR model with latent variables.

Under the assumed data generating process, the three proposed methods offer

the optimal estimate by exploring the idea that lower frequency observations

impose linear constraints on latent variables. Our simulation study suggests

outstanding performance of the parallel Gibbs sampler. On the one hand,

it is fast even on a personal computer, let alone its suitability for future

computational environments. On the other hand, its sampling procedure can

easily be integrated with the Gibbs sampler for other models. Essentially, it

transforms mixed frequency observations to augmented data of homogeneous

frequency, so that methods handling the complete-data model apply.

Appendix A. Proof of Fact 1

First, by definition, v1, . . . , vn are invertible linear transformation of y1, . . . , yn,

so v1, . . . , vn are also multivariate normal.
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E
[
(v1, . . . , vn)

′ (v1, . . . , vn)
]
= L−1 (LDL′)L−1′ = D, which implies v1, . . . , vn

are independent to each other and V ar (vt) = dt.

Let Ltj be (t, j) element of L, which is an invertible lower triangular

matrix with unitary diagonals. (y1, . . . , yn)
′ = L · (v1, . . . , vn)

′ implies

yt = vt +
∑t−1

j=1 Ltjvj, or vt = yt −
∑t−1

j=1 Ltjvj.

Since vt is independent to v1, . . . , vt−1, by the property of linear projection,

we have vt = yt − E (yt |v1, . . . , vt−1 ).

Also, invertible lower triangular L also implies v1, . . . , vt−1 are invertible

linear transformation of y1, . . . , yt−1,

It follows that E (yt |v1, . . . , vt−1 ) = E (yt |yt−1, . . . , y1 ) and vt = yt −

E (yt |yt−1, . . . , y1 ).

Appendix B. Proof of Fact 2

For notational convenience, define Yt
s = {Y∗

s , ...,Y
∗
t }. Let

Y∗
t = c+

p∑

i=1

ΦiY
∗
t−i + εt.

This data generating process suggests

p
(
Y∗

t

∣∣Yt−1
t−p

)
= p

(
Y∗

t

∣∣Yt−1
t−p−1

)
= ... = p

(
Y∗

t

∣∣Yt−1
1

)
,

since their distributions are all equal to the distribution of εt with the mean

shifted by c+
∑p

i=1 ΦiY
∗
t−i. Then we have

p
(
Yt

s

∣∣Ys−1
1 ,YT

t+1

)
∝ p

(
YT

1

)

= p
(
Ys−1

1

)
·

t+p∏

j=s

p
(
Y∗

j

∣∣Yj−1
j−p

)
· p
(
YT

t+p+1

∣∣Yt+p
t+1

)

∝

t+p∏

j=s

p
(
Y∗

j

∣∣Yj−1
j−p

)
.

32



Similarly,

p
(
Yt

s

∣∣Ys−1
s−p,Y

t+p
t+1

)
∝ p

(
Y

t+p
s−p

)

= p
(
Ys−1

s−p

)
·

t+p∏

j=s

p
(
Y∗

j

∣∣Yj−1
j−p

)

∝

t+p∏

j=s

p
(
Y∗

j

∣∣Yj−1
j−p

)
.

Both p
(
Yt

s

∣∣Ys−1
1 ,YT

t+1

)
and p

(
Yt

s

∣∣Ys−1
s−p,Y

t+p
t+1

)
are proper. If they are pro-

portional to the same expression, they must be equal.

Appendix C. Kalman Filter and Smoother

We outline the Kalman filtering algorithm and highlight how vt, dt ob-

tained from LDL decomposition can also be derived in forward recursion and

how
n∑

t=1

E
[
x(0)vt

]
d−1
t vt is computed by backward recursion. Consider a state

space model

x∗
t = Atx

∗
t−1 +Btεt,

yt = Ctx
∗
t +Dtut.

where {εt}
T

t=1 , {ut}
T

t=1 are independent Gaussian white noise series. Note

that we assume time-varying coefficients so that we can treat {yt}
T

t=1 as

a scalar observation series, which is essentially the univariate treatment of

multivariate series.

Let Y t
1 = (y1, . . . , yt) , x̂s|t = E (x∗

s |Y
t
1 ), Ps|t = V ar (x∗

s |Y
t
1 ). Given

the initial state distribution N
(
x̂0|0 , P0|0

)
, the forward recursion in period

t = 1, . . . , T consists of the prediction and update steps. First, predict
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states: x∗
t

∣∣Y t−1
1 ∼ N

(
x̂t|t−1 , Pt|t−1

)
, where x̂t|t−1 = Atx̂t−1|t−1 , Pt|t−1 =

AtPt−1|t−1A
′
t +BtB

′
t. Second, predict observations: yt

∣∣Y t−1
1 ∼ N

(
ŷt|t−1 , dt

)
,

where ŷt|t−1 = E
(
yt
∣∣Y t−1

1

)
= Ctx̂t|t−1 , dt = V ar

(
yt
∣∣Y t−1

1

)
= CtPt|t−1C

′
t +

DtD
′
t. Equivalently, the prediction error form is vt ∼ N (0, dt), where vt =

yt − ŷt|t−1 . The definition of vt, dt here is conformable to that in the LDL

decomposition, as established by Fact 1. Third, update states: x∗
t |Y

t
1 ∼

N
(
x̂t|t , Pt|t

)
, where x̂t|t = x̂t|t−1+Pt|t−1Ct (dt)

−1 vt, Pt|t = Pt|t−1−Pt|t−1Ct (dt)
−1 C ′

tP
′
t|t−1 .

This completes a recursion cycle and the filter proceeds to the next period.

The smoother x̂t|T is the posterior mean of states conditional on all ob-

servations.

x̂t|T = E
(
x∗
t

∣∣Y t−1
1 , vt, . . . , vT

)

= x̂t|t−1 +
T∑

s=t

E (x∗
tvs) d

−1
s vs

= x̂t|t−1 + Pt|t−1

T∑

s=t

(
s−1∏

j=t

J ′
j

)
C ′

sd
−1
s vs

where Jt = At+1−At+1Pt|t−1C
′
t (dt)

−1 Ct. Put rt =
∑T

s=t

(
s−1∏

j=t

J ′
j

)
C ′

sd
−1
s vs,

which can be efficiently computed by a backward recursion such that rt =

J ′
trt+1 + C ′

td
−1
t vt, rT+1 = 0.

Recall that the explicit solution by the LDL decomposition works on
n∑

t=1

E
[
x(0)vt

]
d−1
t vt, where x(0) contains latent variables of all periods and are

estimated in bulk. However, the Kalman smoother works on a similar ex-

pression
∑T

s=t E (x∗
tvs) d

−1
s vs, where x∗

t contains latent variables of a single

period. It is computed efficiently by the backward recursion of rt. Further-

more, it utilizes the forward recursion result x̂t|t−1 so that the backward

34



recursion length is kept minimum.
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