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Abstract

The purpose of this note is three folds. First, we review Lévy processes and analyse jumps.
Second, we correct mistakes relating to terminology and analysis of results in Teneng [7]. Third,
we extend results by showing returns of companies trading on Tallinn Stock Exchange between 01
January 2008 and 01 January 2012 cannot be modeled by NIG distribution; both in cases where
closing prices can and cannot be modelled by NIG distribution. Thus, the NIG-Lévy process cannot
be used to forecast the future prices of these assets.
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1 Introduction

As an asset is traded at fair value, its varying price trace an interesting trajectory reflecting in a general
way the asset’s value and underlying stochastic properties or economic activities. Accurate asset price
models are therefore important in describing and capturing these stochastic properties, constructing
optimal portfolios, underwriting financial derivatives, maximizing investor profits and possibly predicting
future prices. Of late, many processes have been suggested to replicate these price trajectories. Famous
among is Brownian Motion, known to have serious modelling limitations like light tails, inability to
effectively capture jumps, model stochastic volatility and a host of others.

Lévy process based models, of which Brownian Motion is a special case seek to eliminate shortcomings
of Brownian Motion based models. They clearly can distingusih between large and small jumps, and do
not necessarily have continuous paths. As well, two major classes of Lévy processes are of interest here:
Jump diffusion and infinite activity Lévy processes. For jump diffusion cases, jumps are considered rare
events and in any finite interval, there are only finitely many jumps. Opposite case applies to infinite
activity models i.e. in any finite interval, there are infinitely many jumps. Infinite activity models are our
focus, and particularly the NIG case which was implemented with daily closing data of some companies
trading on Tallinn Stock Exchange in Teneng [7] and extended for their returns in this note.

The Black-Scholes model makes use of the exponential of Brownian Motion with drift. This ensures
its probability distribution is lognormal. This case is especially interesting when considering log returns
which is not our case in this note. We work simply with one period returns. One period returns have
little difference with log returns but for long time scales. It must be pointed out that lognormal model
has continuous paths but cannot model jumps, one of the reasons why Lévy processes are attractive here.

Section two deals with jumps analysis and a brief overview of notions related to Lévy Processes.
Section three outlines model selection strategy, implements this for returns and handles corrections to
Teneng [7].

2 Jumps

From Figure 1, it can be observed that there are jumps in prices. These jumps are random, and of
different heights i.e. beyond any set equilibrium say X0 = 0.1. Suppose we choose a random time T and
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Figure 1: Price trajectory of Olympic Entertainment Grupp

the corresponding price XT . Will the value at t, i .e. Xt be below or above XT ? This same question can
be represented with an indicator function as follows (T a stopping time)
Xt = 1{t≥T}, t > 0 i.e. Xt has a value 0 until the event t ≥ T when it takes the value 1 or this tells us
when Xt becomes equal or bigger than XT . Another major problem here is determining the height of the
jump or how far above XT is Xt? To answer this, we can characterize the value Xt −XT to be bigger
than or smaller than one for bigger or smaller jumps respectively. Further, if we seize from considering a
point t to considering an interval {0, t}, Xt will then characterize the number of jumps in this interval.
This Xt can now be represented easily by a Poisson distribution of parameter λt. On the other hand, if
we require that the jump sizes are no longer 1, then these jumps can be characterized by a probability
distribution. We return to such cases later.

Denote ∆Xt = Xt−Xt− to be the jump at time t. Counting both large and small jumps respectively,
we have

∆Xt = Xt −
∑
t≥s

∆Xs1{|Xs|>1} −
∑
t≥s

∆Xs1{|Xs|≤1}. (1)

We can now introduce a random measure of jumps

µx(ω : dt, dx) =
∑
s>0

1{∆Xs(ω) 6=0}ǫ(s,∆Xs(ω))(dt, dx)

i.e. for fixed ω, µx places a point mass of size 1 on each pair (s,∆Xs(ω)) ∈ ℜ+ × ℜ if the process has a
jump of size ∆Xs(ω) at time s. This transforms equation 1 in to

∆Xt = Xt −

∫ t

0

∫
ℜ

Xs1{|Xs|>1}µ
x(ds, dx)−

∫ t

0

∫
ℜ

Xs1{|Xs|≤1}µ
x(ds, dx). (2)

We have finitely many large jumps and can have infinitely many small jumps within the interval {0, t}.
To make the whole count process meaningful, we reduce and average of these small jumps (predictable
compensator) υx in such a way that (µx − υx) is in general non-separable.

∆Xt = Xt −

∫ t

0

∫
ℜ

Xs1{|Xs|>1}µ
x(ds, dx)−

∫ t

0

∫
ℜ

Xs1{|Xs|≤1}(µ
x − υx)(ds, dx). (3)

Let us return to the case where the jump size is not one. We can assume jump size Yk has law L(Yk) = µ.

Let us also assume (Nt){t≥0} counts the number of jumps. Then Xt can be represented by Xt =
∑Nt

k=1 Yk,

a compound poisson process with characteristic function E[eiuXt ] = e{tλ
∫
ℜ
(eiux−1)µ(dx)}.

From a practical point of view, it is desirable to answer some questions before modelling asset prices.
Questions like are there jumps? Are these frequent? Are Jumps large or small? Do upward movements
differ from downward? And a host of others. Addressing these independetly and combining them to
build the asset evolution process gives an extra edge. These questions can be answered effectively by
Lévy process models, the subject of the next subsection.



2.1 General Lévy Process

Lévy processes are named after famous French mathematician Paul Lévy who helped bring together an
understanding and characterization of processes with independent and stationary increments.

A Lévy process is a continuous time stochastic process X = {Xt : t ≥ 0} defined on the probability
space (Ω,F,P) with the following basic properties:

1. P{X0 = 0} = 1 i.e. starts at zero

2. ∀s, t ≥ 0, Xs+t −Xt
d
= Xs, stationary increments

3. ∀s, t ≥ 0, Xs+t −Xs is independent of Xu : u ≤ t

4. t → Xt is a.s. right continuous with left limits (Cadlag).

The law of a Lévy Process is completely determined by its characteristic triplet. We will return to the
characteristic triplet after discussing Lévy-Khintchine formula. Before delving into this formula, lets
consider the issue of infinite divisibility introduced by Italian Mathematician Bruno De Fineti in 1929.

2.2 Infinite divisibility

The concept of infinite divisibility was introduced by De Fineti and he related it to Lévy processes,
making the class of Lévy functions much wider.

Generally speaking, an ℜd−valued random variable Y has infinite distribution if for each n = 1, 2, · · · ,
there exist a sequence of independently identically distributed random variables Y n

1 , Y n
2 , · · · , Y n

n such that

Y
d
= Y n

1 + Y n
2 + · · · + Y n

n . Alternatively, this relation can be expressed in terms of the characteristic
exponent.
Suppose Y has a characteristic exponent Ψ(u) = −log(E[eiuY ]). Then Y is infinitely divisible if and only
if for n ≥ 1, there exist a characteristic exponent say Ψn such that Ψ(u) = nΨn(u) for all u ∈ ℜd. An
extension of this property is achieved with the Lévy-Khintchine formula for Lévy processes.

2.3 Lévy-Khintchine formula

Y is infinitely divisible if and only if there exist a triplet (b, c, µ) such that

Ψ(u) = iub−
uc2

2
+

∫
ℜ

(eiux − 1− iux1{|x|≤1}))µ(dx) (4)

where b ∈ ℜ and is a drift term, c ∈ ℜ+ a diffusion term and µ is a positive measure on ℜ/{0} such that∫
ℜ/{0}

(1 ∧ |x|
2
)µ(dx) < ∞. In other words,

µx(ω : dt, dx) =
∑
s>0

1{∆Xs(ω) 6=0}ǫ(s,∆Xs(ω))(dt, dx)

.
The truncation function 1{|x|≤1} equals 1 when |x| ≤ 1 and 0 otherwise. The purpose of this truncation

function is to analyze jump properties around the singular point of zero. When
∫
ℜ/{0}

µ(dx) = λ < ∞,

λ the mean arrival rate of jumps, then the Lévy process is said to have finite activity. A finite activity
jump process generates a finite number of jumps within any finite time interval. When λ is infinite, the
process is infinite or exhibit infinite activity i.e. it generates infinite number of jumps within any finite
time interval. The truncation function 1{|x|<1} is needed only for infinite variation jumps.

Also, when c 6= 0, the sum of small jumps does not converge1 i.e.
∫
|x|≤1

|x|µ(dx) = ∞. This means

almost all paths of the Lévy process will have infinite variation. On the other hand, when c = 0 and∫
|x|≤1

|x|µ(dx) < ∞, then almost all paths of the Lévy process have finite variation.

To see how the Lévy-Khintchine formula disintegrates in to Brownian motion and Poisson distribution
terms, the Itô-Lévy decomposition theorem is presented below.

1But the sum of jumps compensated by their means does converge(compensated Poisson process). This special behavior
generates the necessity of the truncation function 1{|x|≤1}



Company alpha(α) beta(β) delta(δ) mu(µ) Skew Kurtosis KS p KS D χ2stat χ2 − p
Arco Vara 0.96 0.756 0.015 -0.0017 31.47 994.45 <10−5 0.1433 <10−5 36365.44
Baltika 20.923 0.858 0.032 -0.003 -0.06 2.07 0.002 0.082 <10−5 14338.35
Ekpress Grupp 15.59 0.7032 0.024 -0.002 0.253 2.308 0.0002 0.095 <10−5 23977.53
Harju Elekter 14.32 0.774 0.015 -0.0008 0.247 3.098 <10−5 0.128 <10−5 38758.52

Table 1: Estimated NIG Parameters, Skews, Kurtoses, Kolmogorov-Smirnov(KS) and Chi-square (CS)
test results for NIG-Lévy models; (returns)

2.4 Itô-Lévy-decomposition

For every X-ℜd value Lévy process with a Lévy measure µ, the following properties hold:

1. The jump measure µ(dx) is a Poisson random measure on ℜ+ ×ℜ with intensity λ = dt× µ

2. The Lévy measure µ stisfies
∫
ℜd(1 ∧ |x|

2
)µ(dx) < ∞

3. There exist b ∈ ℜd and a d-dimensional Brownian motion Bt such that Xt = ut + Bt + Nt + Mt

where Nt =
∫
|x|>1,s∈[0,t]

xµx(ds, dx) and

Mt =

∫
0≤|x|≤1,s∈[0,t]

x[µx(ds, dx)− νx(ds, dx)] =

∫
0≤|x|≤1,s∈[0,t]

x(µx − νx)(ds, dx) (5)

.

It is easy to see that Mt counts the small jumps and Nt the big jumps within the finite interval [0, t].
Considering characteristic exponents and the Itô-Lévy-decomposition , it clear that Ψ(u) = Ψ(1)(u)+

Ψ(2)(u) + Ψ(3)(u) where

• Ψ(1)(u) = iub , linear or constant drift with parameter b

• Ψ(2)(u) = uc2

2 , Brownian motion with coeficient c

• Ψ(3)(u) =
∫
ℜ
(eiux − 1− iux1{|x|≤1}))µ(dx), compensated Poisson process.

Hence, Brownian motion and Poisson based models are just limiting cases of a general Lévy process
model1.For NIG, there is no Brownian Motion component or say c = 0.

3 Model selection and corrections to Teneng [7]

Käärik and Umbleja proposed strategy for model selection

1. choose a suitable class of distributions (using general or prior information about the specific data) ;

2. estimate the parameters (by finding maximum likelihoods);

3. estimate goodness of fit by 1) visual estimation, 2)classical goodness-of-fit tests (Kolmogorov-
Smirnov, Chi-squared with equiprobable classes) and 3)probability or quantile-quantile plots.

In Teneng [7], the closing prices of assets trading on the Tallinn stock exchange between 01 January 2008
to 01 January 2012 were fitted with the normal inverse Gaussian (NIG) distribution2. Interpretation
of results concluded Baltika and Ekpress Grupp were suitable candidates for NIG-Lévy asset model.
Unfortunately, there were mistakes in terminology and analysis. For the closing prices to be described
by NIG-Lévy process, the returns should be NIG distributed. This is not the case in this article (see
Table 1 and Figure 3, applying Käärik and Umbleja proposed strategy for model selection) and further
research also concludes this is not the case; meaning future prices of these assets cannot be forecasted with
NIG-Lévy process. Second correction deals with the definition of general Lévy process; the independence
criteria (pg.2). It is suppose to read ∀s, t ≥ 0, Xs+t−Xt is independent of Xu, u ≤ t, i.e. independent

increments. Third correction is related to analysis of data (Pg.4). From Table 2, we can clearly see
that Ekpress Grupp has a very small Kolmogorov-Smirnov (KS) test p-value (0.012). This means we
need to reject this model as it says data does not come from theoretical probability distribution; in our
case NIG distribution. We have included an updated version of graphs to display correctly the goodness
of fits (Figure 2).

1Lévy processes with a.s. increasing paths are called subordinators.
2See Teneng [7] for exposition on NIG distribution.



Company alpha(α) beta(β) delta(δ) mu(µ) Skew Kurtosis χ2stat χ2 − p KS d KS p
Arco Vara 468.9 468.86 0.03 0.02 0.38 -1.53 2251.60 <10−5 0.23 <10−5

Baltika 7.06 6.62 0.22 0.52 1.67 -1.53 1771.12 <10−5 0.06 0.06
Ekpress 2.68 2.15 0.49 0.85 1.70 2.53 1194.24 <10−5 0.07 0.012
Harju 3.20 -2.07 0.72 2.95 -0.82 -0.05 1345.87 <10−5 0.09 0.0003

Table 2: Estimated NIG Parameters, Skews, Kurtoses, Kolmogorov-Smirnov(KS) and Chi-square (CS)
test results for NIG distribution models (Daily closing prices)

Figure 2: Fitted NIG density, log densities and Q-Q plots for Baltika, Arco Vara, Harju Elekter and
Ekpress Grupp (Daily closing prices)

4 Conclusion

It has been demonstrated in this paper that jumps in asset prices can be captured more effectively with
Lévy processes. It has also been made clear that Brownian motion and Poisson type models are limiting
cases of a general Lévy process model. Specific kinds of Lévy processes, properties like time change
dynamics, martingale measures, discussion of pricing with Lévy models have been left out of this work.
Further, results of Teneng [7] have been extended to conclude that the closing prices of Baltika (company
trading on the Tallinn Stock Exchange between 01 January 2008 and 01 January 2012) can be modeled
with normal inverse Gaussian distribution, but its future prices cannot be forecasted with NIG-Lévy
process. This is generalised for all the assets considered that none of their future prices can be forecasted
with NIG-Lévy process.
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Figure 3: Fitted NIG density, log densities and Q-Q plots for Baltika, Arco Vara, Harju Elekter and
Ekpress Grupp (returns)
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