
Coppola, Gianluigi and Marsilia, Natalia

Dipartimento di Scienze Economiche e Statistiche. Università di Salerno. Italy, CELPE Centro di Economia del Lavoro e di Politica Economica

5 September 2012

Online at https://mpra.ub.uni-muenchen.de/47911/
MPRA Paper No. 47911, posted 01 Jul 2013 04:15 UTC
MACRO MODELS

UN APP FOR MACROECONOMIC MODELS

User Manual

Version 1.0

Very Preliminary Version

Gianluigi Coppola1 \hspace{2cm} Natalia Marsilia2

\begin{footnotesize}
1 Researcher in Economics. Department of Economics and Statistics (DISES). University of Salerno. Email: glcoppola@unisa.it
2 Physicist, Software Development Expert. Email: nmarsilia@yahoo.it
\end{footnotesize}
The Income-Expenditure Model

1. Introduction

This paper is simply a user manual of an APP that simulates the widely used Macroeconomic Models.

2. Income Expenditure Model

1. Legenda

Input

<table>
<thead>
<tr>
<th>(\hat{C})</th>
<th>Autonomous (exogenous) Consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>(I_0)</td>
<td>Net Investment</td>
</tr>
<tr>
<td>NX</td>
<td>Net Export</td>
</tr>
<tr>
<td>C</td>
<td>Marginal propensity to consume</td>
</tr>
</tbody>
</table>

G	Government Spending
TR	Net Government Transfers
t	Income tax rate

Output

NMP	Net Marginal Propensity to consume
Multiplier	Keynesian Multiplier
Eq. Income	Equilibrium Income
Eq. Consumption	Equilibrium Consumption
Balance	Government Surplus
\(\Delta \)Income	Income Variation

Graph

EAD	Autonomous Aggregate Demand
Y	Income
tY	income tax
C	Consumption
I	Investment
D	Government Surplus
B	Government Debt
a. The Model

\(Y \) is the Income. The Aggregate Demand is given by

\[AD = G + NX + I + C \]

Where

\[G = \bar{G} \]
\[NX = \bar{NX} \]
\[I = I_0 \]

The direct Tax Revenue is equal to

\[TA = tY \]

where \(t \) is the income tax rate

\(TR \) is the Government Transfers

\[TR = \bar{TR} \]

The Disposable Income is defined as

\[YD = Y + TR - TA \]
\[YD = Y + TR - tY \]
\[YD = (1 - t)Y + TR \]

The consumption function depends on Disposable Income (YD)

\[C = \bar{C} + cYD \]
\[C = \bar{C} + c((1 - t)Y + TR) \]
\[AD = C + I + NX + G + TR \]
\[AD = \bar{C} + c((1 - t)Y + TR) + I_0 + G + NX \]
\[AD = \bar{C} + c((1 - t)Yt + TR) + I_0 + G + NX \]
\[AD = \bar{C} + cTR + I_0 + G + NX + c(1 - t)Y \]

In Equilibrium: Supply(Y) = Demand (AD)
[16.] \[Y = AD \]

a. Results

Equilibrium Income

[17.] \[Y_E = \frac{1}{1-c(1-t)}(\bar{C} + cTR + I_0 + G + NX) \]

[18.] \[\bar{AD} = \bar{C} + cTR + G + NX + I_0 \]

Multipliers

Expenditure’s multiplier

[19.] \[\frac{dY}{dC} = \frac{dY}{dI_0} = \frac{dY}{dNX} = \frac{dY}{dG} = \frac{1}{1-c(1-t)} \]

Transfer’s multiplier

[20.] \[\frac{dY}{dTR} = \frac{c}{1-c(1-t)} \]

Tax multiplier

[21.] \[\frac{dY}{dt} = \frac{-c}{(1-c(1-t))^2} \]

Balance Surplus (BS) is equal to

[22.] \[BS = TA - G - TR \]

[23.] \[BS = tY - G - TR \]

[24.] \[BS = t \frac{1}{1-c(1-t)}(G + cTR + I_0 + NX + C) - G - TR \]

3. References

Blanchard O. (2009), Macroeconomics 5th Edition Pearson Education Inc

4. **APPENDIX**

Results Table 1.1

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Net Marginal Propensity</td>
<td>$c(1 - t)$</td>
</tr>
<tr>
<td>Multiplier</td>
<td>$\frac{1}{1 - c(1 - t)}$</td>
</tr>
<tr>
<td>Equilibrium Income</td>
<td>$Y_E = \frac{1}{1 - c(1 - t)}(\bar{C} + cTR + I_0 + G + NX)$</td>
</tr>
<tr>
<td>Consumption</td>
<td>$\bar{C} + c((1 - t)Y_E + TR)$</td>
</tr>
<tr>
<td>Balance Surplus</td>
<td>$BS = tY_E - G - TR$</td>
</tr>
</tbody>
</table>