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Abstract: This paper advances a new analysis technology path of estimation and test for long
memory time series. I propose the definitions of time scale series, strong variance scale exponent and
weak variance scale exponent, and prove the strict mathematical equations that strong and weak variance
scale exponent can accurately identify the time series of white noise, short memory and long memory,
especially derive the equation relationships between weak variance scale exponent and long memory
parameters. I also construct two statistics which SLmemory statistic tests for long memory properties.
The paper further displays Monte Carlo performance for MSE of weak variance scale exponent estimator
and the empirical size and power of SLmemory statistic, giving practical recommendations of finite-
sample, and also provides brief empirical examples of logarithmic return rate series data for Sino-US
stock markets.
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1 Introduction and Setup

The first research of estimation for long memory dated back to Hurst (1951) who proposed classical
rescaled range (R/S) method to analyze long-range dependence and subsequently refined by excellent
scholars (Mandelbrot and Wallis, 1969; Mandelbrot, 1972, 1975; Mandelbrot and Taqqu, 1979; Peters,
1999, 2002). Following, fractional Gaussian noises process (Mandelbrot and Van Ness, 1968) was the
first long memory model, with the long memory parameter H (Hurst exponent, also called self-similarity
parameter) satisfying 0 < H < 1. And Lo (1991), Kwiatkowski et al. (1992) and Giraitis et al. (2003)
further promote and develop the study of tests for long memory properties following the R/S-type method.

Fractional differencing noises process (Granger and Joyeux, 1980; Hosking, 1981) was the second
long memory model and formed the second technology path of estimation and test for long memory
properties, with the long memory parameter (fractional differencing parameter d) satisfying −0.5 < d <
0.5. Corresponding work include Geweke and Porter-Hudak (1983), Haslett and Raftery (1989), Beran
(1994), Robinson (1995, 2005), among many others.

Lo (1991), Baillie (1996), Giraitis et al. (2003), Robinson (2003), Palma (2007) and Boutahar et al.
(2007) provided relevant literature review in detail.

It is no doubt that the model parameter satisfying 0.5 < H < 1, or 0 < d < 0.5 is thought as long
memory, long-range dependence, or persistence, and as anti-persistence for the situation of 0 < H < 0.5
or −0.5 < d < 0. But there is argument that whether anti-persistence is long memory (Hosking, 1981;
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Lo, 1991; Palma, 2007). The present paper suggest that the situations of 0.5 < H < 1, 0 < d < 0.5 regard
as persistent long memory, and as anti-persistent long memory for 0 < H < 0.5 or −0.5 < d < 0. Thus,
persistent long memory means long-run positive correlation, and anti-persistent long memory implies
long-run negative correlation.

The main theoretical contribution of this paper is to build a new systematic technology path for theory
analysis of stationary time series, especially for the estimation and test of long memory properties. All of
those the definitions of time scale series, strong variance scale exponent and weak variance scale exponent,
the equation relationships between the short, long memory time series and variance scale exponents, and
the two new statistics for the hypothesis tests of white noise, short memory and long memory time series,
jointly form the basic components of the new technology path.

The second contribution of this paper is to show that the asymptotic properties for estimation and
test can distinguish anti-persistent long memory from persistent long memory. Further it is the main
reason that I advance the two types of (persistence and anti-persistence) long memory in the present
paper.

The final contribution is to analyze time series properties based on the both time and frequency
domain perspectives, and corresponding long memory models are confined to time and frequency domain
analysis perspectives in the paper, which differs the situations that the two traditional technology paths.

The plan of the paper is as follow. In sections 2 and 3, I propose the definitions of time scale series,
strong variance scale exponent and weak variance scale exponent, and prove the equations between
variance scale exponents and the situations that white noise, short memory and long memory time
series. I also construct Wnoise and SLmemory statistics to test for white noise, short memory and long
memory time series. Section 4 investigates by Monte Carlo simulations the finite-sample performance of
weak variance scale exponent estimator and SLmemory statistic, giving practical recommendations for
the choice of maximum time scale n. Section 5 concludes. The derivations are given in the Appendix.

I now detail the setting for the paper. Let {x(t), t = 1, 2, · · · , N,N → ∞} be a stationary time series
with unknown mean µ and lag-i autocovariance γi. Let the spectral density of x(t) be denoted by f(λ)
and defined over |λ| ≤ π. d denotes long memory parameter of fractional differencing noises process
(Granger and Joyeux, 1980; Hosking, 1981). H denotes long memory parameter of fractional Gaussian
noises process (Mandelbrot and Van Ness, 1968). N denotes sample sizes.

2 Definitions and Properties of Strong and Weak Variance Scale

Exponent

2.1 Definitions

Definition 2.1.1 Time Scale Series

For the time series {x(t)}, the new time series {x1
2 = x(2t− 1) + x(2t), t = 1, 2, · · · ,M,M = ⌊N/2⌋}

and {x2
2 = x(2t) + x(2t + 1), t = 1, 2, · · · ,M,M = [(N − 1)/2]} can be called time scale-2 series; And,

the new time series {xi+1
n , t = 1, 2, · · · ,M,M = ⌊(N − i)/n⌋} are called time scale-n series, where

xi+1
n = x(nt + i) + x(nt − 1 + i) + · · · + x(nt − (n − 1) + i), i = 0, 1, 2, · · · , (n − 1),n/N → ∞, and ⌊·⌋

means round toward zero, resulting integers.
I now list four propositions arising from definition 2.1.1:
Proposition 2.1.1 Denoted D[xi+1

n ](i = 0, 1, 2, · · · , n − 1) are the n variances of the time scale-n
series respectively, then

D[x1
n(t)] = D[x2

n(t)] = · · · = D[xn
n(t)]. (2.1.1)
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In the case, I denote the n variances of the time scale-n series as D[xn(t)].
Proposition 2.1.2 Variance D[xn(t)] of time scale-n series can be expressed in terms of

D[xn(t)] = nD[x(t)] + 2
∑n

i=1
(n− i)γi, n = 1, 2, · · · . (2.1.2)

Proposition 2.1.3 Lag-n autocovariance γn of the time series {x(t)} can be expressed in terms of

γn =
1

2
{D[xn+1(t)]− 2D[xn(t)] +D[xn−1(t)]}, (2.1.3)

where D[x0(t)] = 0, D[x1(t)] = D[x(t)], and n = 1, 2, · · · .
Proposition 2.1.4 The sum of lag-i autocovariance γi can be expressed in terms of

∑n

i=−n
γi = n{D[xn+1(t)]−D[xn(t)]}, n = 1, 2, · · · . (2.1.4)

Definition 2.1.2 Strong Variance Scale Exponent

For the time series {x(t)}, if the variance of time scale-n series satisfies

D[xn(t)] = n2FnD[x(t)], n = 1, 2, · · · , (2.1.5)

and if Fn equal to a constant Ḟ . Thus Ḟ can be called Strong Variance Scale Exponent.
Definition 2.1.3 Weak Variance Scale Exponent

For the time series {x(t)}, if the variance of time scale-n series satisfies

D[xn(t)] = fn2FnD[x(t)], (2.1.6)

and Fn get the convergence to a constant F , as n → ∞. Thus F and f are called Weak Variance Scale
Exponent and adjusted proportion coefficient respectively.

2.2 Time Domain Analysis

Base on four propositions arising from definition 2.1.1, I obtain following results.
Theorem 2.2.1 If the time series {x(t)} is white noise series, then

D[xn(t)]/D[x(t)] = n, n = 1, 2, · · · . (2.2.1)

I now list a implication arising from Theorem 2.1.1:
Proposition 2.2.1 If the time series {x(t)} is white noise series, then strong variance scale exponent

Ḟ , weak variance scale exponent F and adjusted proportion coefficient f satisfy:

Ḟ = 0.5, F = 0.5, f = 1 (2.2.2)

respectively.
Theorem 2.2.2 If the time series {x(t)} is short memory ARMA(p,q) time series, then

D[xn(t)]/D[x(t)] ∼ cn, (2.2.3)

where n → ∞, and c is a constant.
Throughout this paper, I take xn ∼ yn to mean that xn/yn = 1, as n → ∞.
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Proposition 2.2.2 If the time series {x(t)} is short memory ARMA(p,q) series, then weak variance
scale exponent F and adjusted proportion coefficient f satisfy:

F = 0.5, f = 1 (2.2.4)

respectively.
Theorem 2.2.3 If the time series {x(t)} is fractional Gaussian noises process (Mandelbrot and Van

Ness, 1968), then
D[xn(t)]/D[x(t)] ∼ n2H , as n → ∞, (2.2.5)

where H is the long memory parameter of fractional Gaussian noises process.
Proposition 2.2.3 If the time series {x(t)} is fractional Gaussian noises process, then weak variance

scale exponent F and adjusted proportion coefficient f satisfy:

F = H, f = 1 (2.2.6)

respectively.
Theorem 2.2.4 If the time series {x(t)} is fractional differencing noises process (Granger and Joyeux,

1980; Hosking, 1981, ARFIMA(0,d,0) time series), then

D[xn(t)]/D[x(t)] ∼ Γ(1− d)

(1 + 2d)Γ(1 + d)
n1+2d, as n → ∞, (2.2.7)

where d is the long memory parameter of fractional differencing noises process and Γ(·) denotes Gamma
function.

Proposition 2.2.4 If the time series {x(t)} is fractional differencing noises process, then weak variance
scale exponent F and adjusted proportion coefficient f satisfy:

F = d+ 0.5, f =
Γ(1− d)

(1 + 2d)Γ(1 + d)
(2.2.8)

respectively.

2.3 Frequency Domain Analysis

For the stationary time series {x(t)}, if the autocovariance γi is absolutely summable, then the spectral
density f(λ) satisfy:

f(λ) =
1

2π

∑∞

k=−∞
γke

−ikλ =
1

2π

∑∞

k=−∞
γk cos(kλ). (2.3.1)

set λ = 0, then

f(λ = 0) =
1

2π

∑∞

k=−∞
γk. (2.3.2)

Based on Proposition 2.1.2, I obtain following results.
Theorem 2.3.1 If the time series {x(t)} is white noise series, then

D[xn(t)] = 2nπf(0), n = 1, 2, · · · . (2.3.3)

Theorem 2.3.2 If the time series {x(t)} is short memory ARMA(p,q) series, then

D[xn(t)] ∼ 2nπf(0), as n → ∞. (2.3.4)
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Proposition 2.2.1 and Proposition 2.2.2 can also arising from Theorem 2.3.1 and Theorem 2.3.2 respec-
tively.

It need to be pointed out that the autocovariance of stationary long memory time series is not abso-
lutely summable, but the generalized relationship theorem for a stationary time series between spectral
density f(λ) and variance D[xn(t)] of time scale-n series is display as following:

Theorem 2.3.3 For the stationary time series {x(t)}, then

D[xn(t)] = 2

∫ π

−π

f(λ)
1− cos(nλ)

[2sin(λ/2)]2
dλ, n = 1, 2, · · · . (2.3.5)

Obviously, Theorem 2.3.3 is the generalization of Theorem 2.3.1 and Theorem 2.3.2. Arising from Theo-
rem 2.3.3, I educe Theorem 2.3.4:

Theorem 2.3.4 If the time series {x(t)} is generalized ARFIMA(p,d,q) series, then

D[xn(t); p, d, q]/D[x(t)] ∼ c(φ, θ)
Γ(1− d)

(1 + 2d)Γ(1 + d)
n1+2d, as n → ∞. (2.3.6)

In which, c(φ, θ) is a constant. And if p = q ≡ 0, then c(φ, θ) = 1; otherwise, c(φ, θ) ∈ [c1, 1) ∪ (1, c2],

c1 =
min{|θ(1)|2,|θ(−1)|2}
max{|φ(1)|2,|φ(−1)|2} and c2 =

max{|θ(1)|2,|θ(−1)|2}
min{|φ(1)|2,|φ(−1)|2} .

I now list a implication arising from Theorem 2.3.4:
Proposition 2.3.1 If the time series {x(t)} is generalized ARFIMA(p,d,q) time series, then weak

variance scale exponent F and adjusted proportion coefficient f satisfy:

F = d+ 0.5, f = c(φ, θ)
Γ(1− d)

(1 + 2d)Γ(1 + d)
(2.3.7)

respectively.

3 Hypothesis Tests

3.1 Wnoise Statistic

I construct two hypothesis test statistics to analyze the memory properties considering white noise,
short memory and long memory time series.

If the stationary time series {x(t), t = 1, 2, . . . } is independent white noise series, as n → ∞, apply
Lindbergh Central Limit Theorem, then

√
n
(

∑n

t=1
x(t)/n − µ

)

d−→ N(0, D[x(t)]), (3.1.1)

and
xn(t)− nµ
√

nD[x(t)]

d−→ N(0, 1). (3.1.2)

where
d−→ denotes convergence in distribution. Denotes D̂[x(t)] as sample variance, based on Slutsky

Theorem, then

xn(t)− n
∑N

t=1 x(t)/N
√

nD̂[x(t)]

d−→ N(0, 1), (3.1.3)
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and

(N(n)− 1)
D̂[xn(t)]

nD̂[x(t)]

d−→ χ2 (N(n)− 1) , (3.1.4)

where N(n) denotes the time series {xn(t)} sample sizes.
Denote

Wnoise(n) = (N(n)− 1)
D̂[xn(t)]

nD̂[x(t)]
. (3.1.5)

Wnoise statistic tests under independent white noise hypotheses and non-independent stochastic process
alternatives.

3.2 SLmemory Statistic

As a generalization situation, if the stationary time series {x(t), t = 1, 2, · · · } is short memory series
and apply central limit theorem(Anderson, 1971, Theorem 7.7.8; Brockwell and Davis, 1991, Theorem
7.1.2), then √

n
(

∑n

t=1
x(t)/n − µ

)

d−→ N(0,
∑∞

i=−∞
γi), as n → ∞. (3.2.1)

Based on Slutsky Theorem and Proposition 2.1.4, I educe the following conclusion:

xn(t)−n
∑N

t=1 x(t)/N
√

n(D̂[xn+1(t)]− D̂[xn(t)])

d−→ N(0, 1). (3.2.2)

Then
(N(n)− 1) D̂[xn(t)]

n
(

D̂[xn+1(t)]− D̂[xn(t)]
)

d−→ χ2 (N(n)− 1) . (3.2.3)

Denote

SLmemory(n) =
(N(n)− 1) D̂[xn(t)]

n
(

D̂[xn+1(t)]− D̂[xn(t)]
) . (3.2.4)

SLmemory statistic tests under white noise, short memory null hypotheses and long memory alternatives.
Obviously, SLmemory statistic is a monotonic decreasing function of long memory parameter d.

Further, if the alternatives are limited in the situation of anti-persistent long memory, the two classical
long memory parameters satisfies −0.5 < d < 0, 0 < H < 0.5 respectively, the reject region of hypothesis
test of SLmemory statistic is:

{

SLmemory(n) ≥ χ2
1−α (N(n)− 1)

}

, (3.2.5)

where α is significance size.
And if the alternatives are limited in the situation of persistent long memory, two classical long

memory parameters satisfies 0 < d < 0.5, 0.5 < H < 1 respectively, the reject region of hypothesis test
of SLmemory statistic is:

{

SLmemory(n) ≤ χ2
α (N(n)− 1)

}

. (3.2.6)
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4 Monte Carlo Performance

The objective of this section is to illustrate the asymptotic properties for weak variance scale exponent
estimator and SLmemory statistic, to examine their finite-sample performance, and to give advice on
how to choose the time scale n in practical applications. I focus on the MSE for weak variance scale
exponent estimator and the empirical size and power for SLmemory statistic. Throughout the simulation
exercise, the number of replications is 1000.

4.1 Monte Carlo Study for Weak Variance Scale Exponent Estimator

Based on the definition of weak variance scale exponent, it can be transferred to:

y(i) = f [z(i)]
F
, (4.1.1)

where y(i) = D[xi(t)]/D[x(t)],z(i) = i2,i = 1, 2, · · · , n. n is the maximum time scale of finite-sample
series. Estimate the parameter F in non-linear regression by sample series {y(i)} and {z(i)}, then gain
the weak variance scale exponent estimator F̂ .

Let stationary time series {x(t)} be a linear generalized Gaussian ARFIMA (1,d,1) process (1−φB)(1−
B)dXt = (1 − θB)εt, with unit standard deviation, for different values of φ, θ and d. I consider four
sample sizes N=250, 500, 1000, 2000, and estimate the parameter d using weak variance scale exponent
with maximum time scale n = ⌊Nm⌋, where m are the 13 numbers which range from 0.2 to 0.8 and step
length by 0.05.

Table 1 contains the MSE of the weak variance scale exponent estimator calculated for different values
of maximum time scale n = ⌊Nm⌋. When φ 6= 0, or θ 6= 0, the MSE show approximate U-type curve
shape, and when d = φ = θ=0, the MSE increase slowly. Generally, m=0.5 and n = ⌊N0.5⌋ could be
optimal choice of weak variance scale exponent estimator in practice.

4.2 Monte Carlo Study for SLmemory Statistic

The Monte Carlo study for SLmemory statistic investigate the percentage of replications in which
the rejection of a short memory (or white noise) null hypothesis was observed. Thus if a data generating
process belongs to the null hypothesis, the empirical test sizes will be calculated. And if it is a long
memory process, the empirical power of the tests will be provided.

Let stationary time series {x(t)} be a linear ARMA(1,1) model (1− φB)Xt = (1− θB)εt, with unit
standard deviation, for different values of φ and θ. I consider two sample sizes N=500, 1000, and choose
time scale n = ⌊Nm⌋, m are the 13 numbers which are from 0.2 to 0.8 and step length is 0.05. Table 2
display empirical size of ARMA(1,1) model for the situations of different time scale n = ⌊N0.4⌋. Table 2
shows that, as m increase, empirical size show approximate U-type curve shape.

Table 3 compares the power of the tests under long memory alternatives. I consider the long memory
ARFIMA (1,d,1) model (1 − φB)(1 − B)dXt = (1 − θB)εt, with unit standard deviation, for different
values of φ, θ and d, and for two sample sizes N=500, 1000. In table 3, while m increase, empirical power
show approximate inverse U-type curve shape, and obviously contrast to the situation of Table 2.

Considering the significant characteristics of the U-type and inverse U-type curve displayed in table
2 and 3 respectively, I advice that m=0.4 and n = ⌊N0.4⌋ can be optimal choice of SLmemory statistic
in practice. The Monte Carlo study results of empirical size and power for SLmemory statistic show
the significant advantages, comparing with the literature of long memory tests (Lo, 1991; Giraitis et al.,
2003, 2005) which investigate bigger values of long memory parameter, d=1/3, −1/3 and d=0.2, 0.3, 0.4
respectively.
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Table 1 

MSE (in %) of weak variance scale exponent estimator. Let stationary time series {x(t)} be a linear generalized Gaussian ARFIMA(1, d, 1) 

process (1－B)(1－B)
d
Xt=(1－B)t , with unit standard deviation, for different values of ,  and d, and N denotes sample sizes. 

 

d 

N=250 N=500 N=1000 N=2000 

=0.5 

=0 

=0 

=-0.5 

=0.5 

=-0.5 

=0 

=0 

=0.5 

=0 

=0 

=-0.5 

=0.5 

=-0.5 

=0 

=0 

=0.5 

=0 

=0 

=-0.5 

=0.5 

=-0.5 

=0 

=0 

=0.5 

=0 

=0 

=-0.5 

=0.5 

=-0.5 

=0 

=0 

 
n = N 0.2 =3 n = N 0.2 =3 n = N 0.2 =3 n = N 0.2 =4 

-0.1 9.645  4.319  15.201  0.287  9.511  4.296  15.222  0.167  9.524  4.232  15.162  0.117  7.740  2.564  11.493  0.082  

0 6.817  2.648  10.685  0.216  6.832  2.621  10.693  0.106  6.833  2.598  10.690  0.048  5.488  1.490  8.050  0.027  

0.1 4.484  1.431  6.847  0.274  4.496  1.460  6.936  0.164  4.555  1.447  6.957  0.096  3.612  0.784  5.200  0.056  

 
n = N 0.25 =3 n = N 0.25 =4 n = N 0.25 =5 n = N 0.25 =6 

-0.1 9.645  4.319  15.201  0.287  7.772  2.655  11.556  0.165  6.354  1.769  9.010  0.101  5.247  1.298  7.260  0.068  

0 6.817  2.648  10.685  0.216  5.475  1.532  8.038  0.123  4.410  0.990  6.230  0.063  3.604  0.691  4.962  0.036  

0.1 4.484  1.431  6.847  0.274  3.538  0.809  5.140  0.171  2.832  0.487  3.942  0.092  2.288  0.332  3.115  0.055  

 
n = N 0.3 =5 n = N 0.3 =6 n = N 0.3 =7 n = N 0.3 =9 

-0.1 6.536  1.936  9.112  0.317  5.337  1.414  7.357  0.184  4.415  1.036  5.972  0.100  3.215  0.688  4.241  0.065  

0 4.443  1.139  6.244  0.277  3.635  0.784  4.982  0.164  2.973  0.552  4.015  0.086  2.107  0.344  2.776  0.052  

0.1 2.792  0.576  3.836  0.357  2.245  0.401  3.071  0.212  1.828  0.265  2.455  0.110  1.265  0.161  1.657  0.065  

 
n = N 0.35 =6 n = N 0.35 =8 n = N 0.35 =11 n = N 0.35 =14 

-0.1 5.473  1.525  7.395  0.343  3.873  0.974  5.141  0.212  2.490  0.565  3.213  0.126  1.740  0.381  2.214  0.080  

0 3.656  0.911  4.984  0.323  2.553  0.544  3.366  0.207  1.583  0.306  2.036  0.128  1.066  0.193  1.353  0.077  

0.1 2.243  0.481  2.992  0.407  1.515  0.309  2.004  0.258  0.906  0.174  1.165  0.155  0.593  0.112  0.748  0.093  

 
n = N 0.4 =9 n = N 0.4 =12 n = N 0.4 =15 n = N 0.4 =20 

-0.1 3.520  1.010  4.461  0.431  2.390  0.679  3.015  0.280  1.643  0.419  2.064  0.153  1.048  0.269  1.295  0.101  

0 2.266  0.689  2.903  0.453  1.502  0.429  1.877  0.298  1.001  0.256  1.246  0.167  0.611  0.157  0.751  0.106  

0.1 1.329  0.462  1.631  0.557  0.857  0.320  1.060  0.356  0.555  0.180  0.686  0.194  0.333  0.121  0.397  0.125  

 
n = N 0.45 =11 n = N 0.45 =16 n = N 0.45 =22 n = N 0.45 =30 

-0.1 2.823  0.883  3.447  0.488  1.690  0.592  2.072  0.343  1.016  0.348  1.242  0.198  0.645  0.228  0.758  0.138  

0 1.823  0.679  2.251  0.536  1.074  0.451  1.282  0.391  0.625  0.270  0.736  0.234  0.382  0.180  0.442  0.160  

0.1 1.067  0.519  1.228  0.652  0.627  0.392  0.723  0.457  0.372  0.241  0.420  0.271  0.235  0.169  0.255  0.178  

 
n = N 0.5 =15 n = N 0.5 =22 n = N 0.5 =31 n = N 0.5 =44 

-0.1 2.098  0.826  2.406  0.619  1.223  0.570  1.439  0.426  0.756  0.367  0.882  0.268  0.478  0.243  0.528  0.192  

0 1.438  0.772  1.660  0.714  0.851  0.551  0.958  0.528  0.509  0.336  0.562  0.321  0.327  0.241  0.352  0.237  

0.1 0.924  0.716  0.948  0.875  0.582  0.530  0.606  0.614  0.385  0.348  0.388  0.389  0.254  0.249  0.260  0.258  

 
n = N 0.55 =20 n = N 0.55 =30 n = N 0.55 =44 n = N 0.55 =65 

-0.1 1.760  0.926  1.918  0.805  1.040  0.643  1.170  0.560  0.672  0.448  0.749  0.382  0.435  0.311  0.463  0.278  

0 1.367  0.978  1.485  0.959  0.839  0.724  0.894  0.714  0.538  0.472  0.562  0.468  0.377  0.350  0.387  0.353  

0.1 1.084  1.041  1.018  1.232  0.744  0.760  0.719  0.865  0.493  0.513  0.492  0.547  0.370  0.386  0.366  0.400  

 
n = N 0.6 =27 n = N 0.6 =41 n = N 0.6 =63 n = N 0.6 =95 

-0.1 1.739  1.179  1.787  1.130  1.115  0.836  1.155  0.800  0.703  0.599  0.778  0.535  0.520  0.429  0.517  0.423  

0 1.540  1.335  1.599  1.331  1.023  0.982  1.051  0.979  0.696  0.701  0.706  0.703  0.514  0.508  0.521  0.514  

0.1 1.503  1.541  1.379  1.758  1.091  1.140  1.043  1.239  0.723  0.777  0.731  0.795  0.594  0.592  0.568  0.624  
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Table 1 (continued) 

MSE (in %) of weak variance scale exponent estimator. 

d 

N=250 N=500 N=1000 N=2000 

=0.5 

=0 

=0 

=-0.5 

=0.5 

=-0.5 

=0 

=0 

=0.5 

=0 

=0 

=-0.5 

=0.5 

=-0.5 

=0 

=0 

=0.5 

=0 

=0 

=-0.5 

=0.5 

=-0.5 

=0 

=0 

=0.5 

=0 

=0 

=-0.5 

=0.5 

=-0.5 

=0 

=0 

 
n =N 0.65 =36 n =N 0.65 =56 n =N 0.65 =89 n =N 0.65 =139 

-0.1 1.969  1.566  1.959  1.544  1.343  1.162  1.361  1.121  0.899  0.829  0.941  0.794  0.695  0.603  0.654  0.629  

0 1.888  1.818  1.917  1.817  1.378  1.402  1.393  1.399  0.986  1.035  0.991  1.037  0.757  0.778  0.757  0.783  

0.1 2.145  2.207  1.996  2.415  1.580  1.697  1.583  1.724  1.164  1.198  1.146  1.236  0.922  0.909  0.893  0.952  

 
n = N 0.7 =47 n = N 0.7 =77 n = N 0.7 =125 n = N 0.7 =204 

-0.1 2.394  2.091  2.383  2.062  1.781  1.639  1.791  1.604  1.348  1.219  1.300  1.260  0.995  0.962  1.000  0.948  

0 2.480  2.425  2.498  2.426  1.967  2.021  1.974  2.019  1.476  1.586  1.477  1.589  1.130  1.166  1.129  1.171  

0.1 2.971  3.116  2.920  3.226  2.335  2.376  2.274  2.464  1.909  1.853  1.805  1.971  1.452  1.491  1.476  1.479  

 
n = N 0.75 =62 n = N 0.75 =105 n = N 0.75 =177 n = N 0.75 =299 

-0.1 3.158  2.923  3.193  2.852  2.489  2.321  2.449  2.324  1.952  1.885  1.959  1.870  1.545  1.551  1.571  1.501  

0 3.535  3.427  3.547  3.419  2.786  2.872  2.787  2.871  2.305  2.411  2.300  2.416  1.774  1.753  1.770  1.764  

0.1 4.257  4.406  4.251  4.457  3.471  3.327  3.237  3.583  2.806  2.866  2.835  2.862  2.375  2.389  2.358  2.365  

 
n = N 0.8 =82 n = N 0.8 =144 n = N 0.8 =251 n = N 0.8 =437 

-0.1 4.722  4.286  4.560  4.338  3.600  3.398  3.523  3.434  2.985  2.841  2.917  2.891  2.491  2.502  2.511  2.454  

0 5.501  4.992  5.539  4.971  4.227  4.438  4.225  4.428  3.453  3.592  3.449  3.599  2.723  2.716  2.755  2.775  

0.1 6.447  6.159  6.025  6.567  5.274  4.931  4.851  5.373  4.344  4.182  4.130  4.367  3.625  3.776  3.822  3.699  
 

Table 2 

Empirical test sizes (in %) of SLmemory statistic of time series under the null hypothesis of ARMA(1, 1) model, (1－B) Xt=(1－B)t , 

with standard normal innovations. 

N n 

=0 

=0 

=0.5 

=0 

=-0.5 

=0 

=0.8 

=0 

=0.1 =0.05 =0.01 =0.1 =0.05 =0.01 =0.1 =0.05 =0.01 =0.1 =0.05 =0.01 

500 n = N 0.2 =3 0.223  0.123  0.040  0.999  0.995  0.978  0.994  0.986  0.962  1.000  1.000  1.000  

n = N 0.25 =4 0.204  0.108  0.037  0.973  0.922  0.564  0.520  0.414  0.285  1.000  1.000  1.000  

n = N 0.3 =6 0.187  0.101  0.037  0.578  0.336  0.028  0.501  0.405  0.257  1.000  1.000  0.981  

n = N 0.35 =8 0.167  0.106  0.041  0.261  0.076  0.003  0.431  0.338  0.226  0.989  0.947  0.457  

n = N 0.4 =12 0.169  0.115  0.048  0.100  0.028  0.009  0.357  0.272  0.164  0.655  0.275  0.000  

n = N 0.45 =16 0.180  0.120  0.062  0.103  0.053  0.027  0.292  0.220  0.122  0.224  0.024  0.001  

n = N 0.5 =22 0.176  0.122  0.067  0.106  0.071  0.037  0.248  0.199  0.137  0.063  0.023  0.006  

n = N 0.55 =30 0.179  0.143  0.093  0.144  0.103  0.074  0.239  0.187  0.124  0.082  0.056  0.026  

n = N 0.6 =41 0.199  0.168  0.115  0.169  0.139  0.091  0.239  0.184  0.138  0.119  0.089  0.059  

n = N 0.65 =56 0.231  0.186  0.150  0.248  0.197  0.148  0.264  0.218  0.179  0.194  0.170  0.132  

n = N 0.7 =77 0.251  0.217  0.178  0.265  0.225  0.189  0.286  0.254  0.205  0.248  0.213  0.176  

n = N 0.75 =105 0.329  0.300  0.277  0.317  0.288  0.266  0.336  0.309  0.279  0.322  0.292  0.254  

n = N 0.8 =144 0.363  0.345  0.318  0.363  0.338  0.312  0.363  0.348  0.321  0.373  0.356  0.339  

1000 n = N 0.2 =3 0.210  0.102  0.022  1.000  1.000  1.000  1.000  1.000  0.997  1.000  1.000  1.000  

n = N 0.25 =5 0.179  0.094  0.028  0.982  0.941  0.667  0.862  0.816  0.700  1.000  1.000  1.000  

n = N 0.3 =7 0.150  0.082  0.024  0.679  0.476  0.094  0.613  0.516  0.358  1.000  1.000  1.000  

n = N 0.35 =11 0.144  0.075  0.028  0.221  0.068  0.003  0.395  0.298  0.172  0.989  0.944  0.505  

n = N 0.4 =15 0.140  0.076  0.026  0.104  0.026  0.004  0.324  0.253  0.147  0.750  0.440  0.013  

n = N 0.45 =22 0.124  0.069  0.031  0.087  0.038  0.014  0.256  0.183  0.101  0.228  0.042  0.000  
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Table 2 (continued) 

Empirical test sizes (in %) of SLmemory statistic of time series under the null hypothesis of ARMA(1, 1) model, (1－B) Xt=(1－B)t , 

with standard normal innovations. 

N n 

=0 

=0 

=0.5 

=0 

=-0.5 

=0 

=0.8 

=0 

=0.1 =0.05 =0.01 =0.1 =0.05 =0.01 =0.1 =0.05 =0.01 =0.1 =0.05 =0.01 

1000 n = N 0.5 =31 0.157  0.091  0.046  0.106  0.064  0.026  0.240  0.166  0.090  0.082  0.025  0.012  

n = N 0.55 =44 0.172  0.128  0.060  0.142  0.098  0.044  0.213  0.153  0.096  0.085  0.059  0.032  

n = N 0.6 =63 0.196  0.143  0.089  0.156  0.119  0.070  0.204  0.154  0.093  0.138  0.100  0.063  

n = N 0.65 =89 0.234  0.193  0.132  0.217  0.169  0.129  0.251  0.206  0.143  0.170  0.143  0.110  

n = N 0.7 =125 0.267  0.239  0.191  0.285  0.244  0.188  0.296  0.248  0.196  0.231  0.193  0.150  

n = N 0.75 =177 0.322  0.285  0.243  0.304  0.275  0.240  0.317  0.288  0.251  0.284  0.255  0.217  

n = N 0.8 =251 0.383  0.355  0.322  0.376  0.349  0.329  0.390  0.362  0.332  0.373  0.346  0.322  
 

Table 3 

Empirical power of the tests (in %) based on SLmemory statistic, the alternatives considered are ARFIMA(1, d, 1) model, (1－B)(1－

B)
d
Xt=(1－B)t, with standard normal innovations.  

N n 

d=0.1 d=-0.1 

=0.5 

=0 

=0 

=0 

=0.5 

=0 

=0 

=0 

=0.1 =0.05 =0.01 =0.1 =0.05 =0.01 =0.1 =0.05 =0.01 =0.1 =0.05 =0.01 

500 n = N 0.2 =3 0.000 0.000 0.000 0.362 0.530 0.827 0.038 0.092 0.381 0.337 0.417 0.607 

n = N 0.25 =4 0.001 0.003 0.044 0.465 0.652 0.932 0.349 0.536 0.908 0.37 0.487 0.675 

n = N 0.3 =6 0.072 0.206 0.702 0.645 0.836 0.991 0.825 0.943 0.994 0.437 0.542 0.708 

n = N 0.35 =8 0.331 0.598 0.977 0.732 0.894 0.996 0.860 0.939 0.981 0.523 0.637 0.769 

n = N 0.4 =12 0.730 0.936 0.997 0.874 0.965 0.991 0.804 0.870 0.942 0.580 0.679 0.789 

n = N 0.45 =16 0.880 0.986 0.999 0.895 0.968 0.992 0.760 0.819 0.891 0.616 0.698 0.805 

n = N 0.5 =22 0.927 0.976 0.987 0.921 0.963 0.983 0.719 0.790 0.870 0.617 0.686 0.799 

n = N 0.55 =30 0.925 0.949 0.972 0.906 0.942 0.961 0.685 0.749 0.837 0.642 0.704 0.800 

n = N 0.6 =41 0.884 0.907 0.933 0.879 0.901 0.931 0.700 0.758 0.813 0.675 0.709 0.784 

n = N 0.65 =56 0.844 0.869 0.903 0.837 0.870 0.900 0.670 0.74 0.804 0.658 0.714 0.783 

n = N 0.7 =77 0.780 0.808 0.840 0.773 0.803 0.841 0.648 0.685 0.728 0.628 0.672 0.730 

n = N 0.75 =105 0.689 0.711 0.746 0.690 0.715 0.748 0.620 0.655 0.677 0.593 0.633 0.676 

n = N 0.8 =144 0.633 0.658 0.669 0.627 0.647 0.671 0.572 0.59 0.613 0.558 0.584 0.608 

1000 n = N 0.2 =3 0.000 0.000 0.000 0.102 0.204 0.504 0.000 0.001 0.016 0.131 0.196 0.378 

n = N 0.25 =5 0.000 0.000 0.005 0.290 0.468 0.828 0.458 0.663 0.942 0.230 0.335 0.523 

n = N 0.3 =7 0.012 0.052 0.305 0.434 0.643 0.943 0.848 0.943 0.996 0.342 0.432 0.623 

n = N 0.35 =11 0.250 0.510 0.949 0.625 0.855 0.992 0.838 0.919 0.973 0.430 0.560 0.750 

n = N 0.4 =15 0.549 0.807 0.998 0.749 0.937 0.998 0.753 0.844 0.930 0.491 0.612 0.757 

n = N 0.45 =22 0.787 0.951 0.997 0.859 0.965 0.995 0.699 0.796 0.899 0.560 0.657 0.800 

n = N 0.5 =31 0.912 0.991 0.996 0.926 0.985 0.995 0.717 0.787 0.872 0.621 0.705 0.811 

n = N 0.55 =44 0.940 0.972 0.988 0.932 0.967 0.988 0.697 0.759 0.856 0.634 0.709 0.818 

n = N 0.6 =63 0.907 0.928 0.961 0.896 0.926 0.960 0.674 0.746 0.821 0.647 0.714 0.800 

n = N 0.65 =89 0.848 0.878 0.916 0.843 0.878 0.918 0.671 0.719 0.784 0.641 0.703 0.753 

n = N 0.7 =125 0.782 0.814 0.853 0.786 0.817 0.848 0.644 0.694 0.747 0.634 0.684 0.739 

n = N 0.75 =177 0.748 0.768 0.795 0.748 0.765 0.795 0.634 0.667 0.716 0.631 0.663 0.693 

n = N 0.8 =251 0.654 0.684 0.710 0.658 0.680 0.712 0.595 0.621 0.648 0.600 0.625 0.650 
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4.3 Application to Sino-US Stock Index Return Rate Data

I illustrate the theory and simulations by applying the weak variance scale exponent estimator and
SLmemory statistic to the logarithmic return rate data of Sino-US stock index. To make the results com-
parable with the simulations, I divide each logarithmic return rate series into three blocks of approximate
lengths (about 1000) as shown in table 4.

Table 4
Descriptive Statistics. CN. and US. Block denotes Shanghai Composite and Standard & Poor 500 index
data respectively. Block 1 is for a period of four years from January 1, 2000 to December 31, 2003. Block
2 is also for a period of four years from January 1, 2004 to December 31, 2007. Block 3 ranges a period
from January 1, 2008 to May 25, 2012.

Sample Sizes Mean Std.Dev Minimum Maximum Skewness Kurtosis

CN.Block 1 957 0.0095 1.3666 -6.5437 9.4014 0.7929 7.5504

CN.Block 2 968 0.1298 1.6209 -9.2562 7.8903 -0.4333 3.1152

CN.Block 3 1069 -0.0761 1.9062 -8.0437 9.0348 -0.1541 2.8143

US.Block 1 1004 -0.0278 1.3814 -6.0045 5.5744 0.1447 1.2812

US.Block 2 1006 0.0276 0.7612 -3.5343 2.8790 -0.3088 1.7889

US.Block 3 1110 -0.0097 1.7393 -9.4695 10.9572 -0.2300 6.3233

The weak variance exponent estimators, the SLmemory statistic values and corresponding P -values
are displayed in table 5. The evidence against the null hypothesis in favor of long memory alternative is
strong for the second blocks of Sino-US stock index series which the weak variance exponent estimators
are 0.6379, 0.4239 respectively. The first and third blocks of Sino-US stock index series show that their
weak variance exponent estimators are all close to 0.5 and the corresponding P-values are all beyond 0.3,
that it is inclined to believe that the data exhibit some forms of accepting the null hypothesis discussed
in the present paper. In a word, the weak variance exponent estimators are consist with statistical tests
for Sino-US stock index series and the results show that there is long memory in Sino-US stock index
series for the period that from January 1, 2004 to December 31, 2007, and no long memory in Sino-US
stock index series for the other two periods.

Table 5
Estimation and Test Results for Sino-US Stock Index Data.

CN.Block 1 CN.Block 2 CN.Block 3 US.Block 1 US.Block 2 US.Block 3

F̂ 0.5093 0.6379 0.5306 0.4596 0.4239 0.5045

f̂ 0.9752 0.5831 0.9059 1.0177 1.0046 0.6811

SLmemory 57.5542 41.5572 59.4155 66.4455 86.64281 63.36272

Freedom 62 63 65 65 66 68

P -value 0.3636 0.0169 0.3279 0.4269 0.0451 0.3633

It is seen again that applying n = ⌊N0.5⌋ for weak variance scale exponent estimator and n = ⌊N0.4⌋
for SLmemory statistic test can be recommended in practice. For the application to Sino-US stock data,
I find that there is different long memory properties between Sino-US stock data series in the period of
Block 2, the long memory properties of Shanghai Composite index data series is persistent, and anti-
persistent for Standard & Poor 500. Persistence means positive correlated long-range effect and negative
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for anti-persistence. The economics meanings for the periods of Block 2 can be interpret that Shanghai
stock market was more vulnerable to the impact of external events and it lasted for a long time, while
Standard & Poor stock market can quickly return to stability under the influence of external shocks.

5 Conclusions

The goal of this paper is to introduce a new system standpoint for theory analysis of stationary time
series, especially for long memory properties, referring to estimation and test for long memory properties
in the present paper. Combining with both time and frequency domain analysis, the properties of
strong and weak variance scale exponent of white noise, short memory ARMA(p,q) and long memory
ARFIMA(p,d,q) time series have been derived. And particularly conclude the equations between weak
variance scale exponent and long memory parameter d(−0.5 < d < 0.5), H(0 < H < 1). Further,
under independent white noise null hypotheses and non-independent stochastic process alternatives, and
under white noise, short memory null hypothesis and long memory alternatives, I construct Wnoise
and SLmemory statistic tests respectively. The estimation and test allow for the possibility of memory
properties of persistence or anti-persistence in theory which differ V/S statistic tests (Giraitis et al., 2003,
2005) only for persistence situations.

A Monte Carlo study for weak variance scale exponent and SLmemory statistic both refer to the
selection of maximum time scale n of finite-sample. By minimizing the MSE for estimation and optimizing
empirical size and power for tests, finally find that n = ⌊N0.5⌋ for weak variance scale exponent estimator
and n = ⌊N0.4⌋ for SLmemory statistic test can be recommended in practice. In fact, time scale n can
also be regarded as an analogy of bandwidth (Abadir et al., 2009).

Further study of the present paper, maybe consider that, to analyze the properties of strong and
weak variance scale exponent for non-stationary or non-invertibility time series, more complicated long
memory model and corresponding statistical tests. Surely, on estimation of autocovariance, proposition
2.1.3 can be considered as a replacement of Durbin-Levinson algorithm.
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Appendix. Proofs of The Theorems and An Auxiliary Lemma

Proof of Theorem 2.2.2 Proposition 2.1.2 can rewrite

D [xn(t)] =
∑n

i=−n
(n− i)γi = nγ0

∑n

i=−n
ρi −

∑n

i=−n
iγi. (A.1)

For the short memory time series, the cumulant of autocorrelation ρi convergence

lim
n→∞

∑n

−n
ρi → c, (A.2)
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where c is a constant. And under the condition of short memory time series, applying Kronecker lemma:

1

n

∑n

i=1
iγi → 0, as n → ∞. (A.3)

to complete the proof of Theorem 2.2.2.
Proof of Theorem 2.2.3 The Lag-n autocovariance γn of fractional Gaussian noises process {x(t)}

satisfies:
γn =

γ0
2

[

(n+ 1)
2H − 2n2H + (n− 1)

2H
]

, as n → ∞. (A.4)

Using proposition 2.1.3,

γn =
1

2
{D[xn+1(t)]− 2D[xn(t)] +D[xn−1(t)]}, n = 1, 2, · · · . (A.5)

I obtain
D[xn(t)]/D[x(t)] ∼ n2H , as n → ∞. (A.6)

Proof of Theorem 2.2.4 Proposition 2.1.2 can rewrite

D[xn(t)] = nγ0 + 2γ0

[

(n+ d)
∑n

k=1
ρk −

∑n

k=1
(k + d)ρk

]

. (A.7)

Denote S1(n) =
∑n

k=1 ρk, S2(n) =
∑n

k=1 (k + d)ρk respectively, that

S1(n) =
∑n

k=1
ρk

=
d

1− d
+

d(1 + d)

(1− d)(2− d)
+ · · ·+ d(1 + d) · · · (n− 1 + d)

(1− d)(2− d) · · · (n− d)

=
1

2

(

1 + d

1− d
− 1

)

+
1

2

1 + d

1− d

(

2 + d

2− d
− 1

)

+ · · ·+

1

2

(1 + d)(2 + d) · · · (n− 1 + d)

(1− d)(2− d) · · · (n− 1− d)

[

(n+ d)

(n− d)
− 1

]

= −1

2
+

1

2

Γ(1− d)Γ(n+ 1 + d)

Γ(1 + d)Γ(n+ 1− d)
,

(A.8)

and

S2(n) =
∑n

k=1
(k + d)ρk

= d

[

1 + d

1− d
+

(1 + d)(2 + d)

(1− d)(2− d)
+ · · ·+ (1 + d)(2 + d) · · · (n− 1 + d)(n+ d)

(1− d)(2− d) · · · (n− 1− d)(n− d)

]

= d
1 + d

1 + 2d

(

2 + d

1− d
− 1

)

+ d
1 + d

1 + 2d

[

(2 + d)(3 + d)

(1− d)(2− d)
− (2 + d)

(1− d)

]

+ · · ·+

d
1 + d

1 + 2d

[

(2 + d)(3 + d) · · · (n+ d)(n+ 1 + d)

(1− d)(2− d) · · · (n− 1− d)(n− d)
− (2 + d)(3 + d) · · · (n+ d)(n− d)

(1− d)(2− d) · · · (n− 1− d)(n− d)

]

= d

[

− 1 + d

1 + 2d
+

1

1 + 2d

Γ(1− d)Γ(n+ 2 + d)

Γ(1 + d)Γ(n+ 1− d)

]

.

(A.9)
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Then

D[xn(t)] = γ0

[

d

1 + 2d
+

1

1 + 2d

Γ(1− d)Γ(n+ 1 + d)

Γ(1 + d)Γ(n− d)

]

. (A.10)

By Stirling formula: Γ(x) ∼
√
2πe1−x(x− 1)

x−1/2
, as x → ∞. Therefore

D[xn(t)]/D[x(t)] ∼ 1

1 + 2d

Γ(1− d)

Γ(1 + d)
n1+2d,−1/2 < d < 1/2, n → ∞. (A.11)

Proof of Theorem 2.3.3 Proposition 2.1.2 can rewrite

D[xn(t)] = nγ0 + 2
∑n

i=1
(n− i)γi

= n

∫ π

−π

f(λ)dλ+ 2

∫ π

−π

f(λ)
∑n−1

i=1
(n− i) cos(iλ)dλ.

(A.12)

Applying the summation formula of
∑n−1

i=1 cos(iλ) and
∑n−1

i=1 i cos(iλ) (Gradshteyn and Ryzhik, 2007,
37-38), to prove Theorem 2.3.3.

Proof of Theorem 2.3.4 For the generalized ARFIMA(p, d, q) time series {x(t)}, spectral density
f(λ):

f(λ; p, d, q)=
σ2

2π

[

2 sin
λ

2

]−2d∣
∣

∣

∣

θ(e−iλ)

φ(e−iλ)

∣

∣

∣

∣

2

,−1/2 < d < 1/2 and d 6= 0. (A.13)

(1) if p = q = 0, spectral density f(λ):

f(λ; 0, d, 0)=
σ2

2π

[

2 sin
λ

2

]−2d

. (A.14)

By Theorem 2.3.3,

D[xn(t); 0, d, 0] = 2

∫ π

−π

f(λ; 0, d, 0)
1− cos(nλ)

[2 sin(λ/2 )]
2 dλ

= 2

∫ π

−π

σ2

2π

[

2 sin
λ

2

]−2d−2

[1− cos(nλ)]dλ.

(A.15)

Applying the integral formula for
∫ π

2

0
cosν−1x cos axdx = π

2νν /B ( ν+a+1
2 , ν−a+1

2 ) and
∫ π

2

0
sinµ−1xdx =

2µ−2B(µ2 ,
µ
2 ) (Gradshteyn and Ryzhik, 2007, 37-38), to prove Theorem 2.3.4.

(2) if p 6= 0, or q 6= 0, by Theorem 2.3.3,

D[xn(t); p, d, q] = 2

∫ π

−π

σ2

2π

[

2 sin
λ

2

]−2d−2∣
∣

∣

∣

θ(e−iλ)

φ(e−iλ)

∣

∣

∣

∣

2

(1− cosnλ) dλ. (A.16)

Applying Lemma A, then

c1D[xn(t); 0, d, 0] ≤ D[xn(t); p, d, q] ≤ c2D[xn(t); 0, d, 0], (A.17)

where c1 =
min{|θ(1)|2,|θ(−1)|2}
max{|φ(1)|2,|φ(−1)|2} and c2 =

max{|θ(1)|2,|θ(−1)|2}
min{|φ(1)|2,|φ(−1)|2} .

Therefore,
D[xn(t); p, d, q] = c(φ, θ)D[xn(t); 0, d, 0], (A.18)
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where c(φ, θ) is a constant, and satisfies c(φ, θ) ∈ [c1, c2].
These complete the proof of Theorem 2.3.4.

Auxiliary Lemma

Lemma A. Let φ(e−iλ) = 1 − ∑p
k=1 ake

−iλ and θ(e−iλ) = 1 − ∑q
k=1 bke

−iλ are autoregressive and
moving-average multinomial of a stationary and invertible ARMA(p, q) time series respectively, and have
no common zeros. then

min
{

|θ(1)|2, |θ(−1)|2
}

max
{

|φ(1)|2, |φ(−1)|2
} ≤

∣

∣

∣

∣

θ(e−iλ)

φ(e−iλ)

∣

∣

∣

∣

2

≤
max

{

|θ(1)|2, |θ(−1)|2
}

min
{

|φ(1)|2, |φ(−1)|2
} and

∣

∣

∣

∣

θ(e−iλ)

φ(e−iλ)

∣

∣

∣

∣

2

6= 1. (A.19)

Proof of Lemma A

For φ(e−iλ) and θ(e−iλ), have no common zeros ,then

∣

∣

∣

∣

θ(e−iλ)

φ(e−iλ)

∣

∣

∣

∣

2

6= 1. (A.20)

By autoregressive and moving-average multinomial, I obtain

∣

∣φ(e−iλ)
∣

∣

2
=

∣

∣

∣
1−

∑p

k=1
ake

−iλ
∣

∣

∣
=

∣

∣

∣

∣

1 +
(

∑p

k=1
ak

)2

− 2 cosλ
∑p

k=1
ak

∣

∣

∣

∣

∣

∣θ(e−iλ)
∣

∣

2
=

∣

∣

∣
1−

∑q

k=1
bke

−iλ
∣

∣

∣
=

∣

∣

∣

∣

1 +
(

∑q

k=1
bk

)2

− 2 cosλ
∑q

k=1
bk

∣

∣

∣

∣

.

(A.21)

Under the conditions of stationarity and invertibility, I conclude that
∣

∣φ(e−iλ)
∣

∣

2
and

∣

∣θ(e−iλ)
∣

∣

2
are both

monotone functions of λ, and satisfy:

min
{

|φ(1)|2, |φ(−1)|2
}

≤
∣

∣φ(e−iλ)
∣

∣

2 ≤ max
{

|φ(1)|2, |φ(−1)|2
}

and
∣

∣φ(e−iλ)
∣

∣

2 6= 1

min
{

|θ(1)|2, |θ(−1)|2
}

≤
∣

∣θ(e−iλ)
∣

∣

2 ≤ max
{

|θ(1)|2, |θ(−1)|2
}

and
∣

∣θ(e−iλ)
∣

∣

2 6= 1.
(A.22)

This completes the proof.
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