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Interspecies Management and Land Use Strategies to Protect Endangered Species 

 

 

Abstract 

We consider an ecosystem management problem where managers can use habitat creation and 

predator removal to conserve an endangered species. Predator removal may become particularly 

important in the face of habitat loss, and ecosystem management strategies that ignore the 

influence of habitat are likely to be inefficient. Using a bioeconomic model, we show that the 

marginal impact of prey habitat on predators is a key factor in determining the substitutability or 

complementarity of habitat and removal controls. Applying the model to the case of the 

endangered Atlantic-Gaspésie Woodland Caribou (rangifer tarandus caribou), we find that the 

first-best strategy involves extensive caribou habitat protection and a large predator cull initially, 

and then substituting habitat investments for predator removal as both populations begin to 

recover, suggesting that habitat protection and predator removal are effectively substitute 

controls. 
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Interspecies Management and Land Use Strategies to Protect Endangered Species 

 

Introduction 

Habitat loss is widely seen as the primary driver of biodiversity decline (Wilcove et al. 1998; 

MEA 2005), with the lack of suitable habitat having left many species “conservation reliant” 

(Scott et al. 2005). Species that are conservation reliant require continuous, species-specific 

intervention that usually involves the control of predators, parasites and competitors. Scott et al. 

(2010) find that 66% of the recovery plans for species listed under the U.S. Endangered Species 

Act call for such controls.  

 Managing species interactions is particularly important in the face of habitat loss (Scott 

2010). The growing literature on ecosystem management focuses on population controls 

(harvests) to manage species interactions (Tschirhart 2009). This work has shown the need to 

adjust harvest levels to account for the effects of stock-dependent species interactions (Brock and 

Xepapadeas 2002), including predator-prey relations (Ragozin and Brown 1985; Ströbele and 

Wacker 1995) and species competition (Chaudhuri 1986). However, prior work does not 

simultaneously address the issue of habitat loss, which can also affect species interactions (Moon 

et al. 2010).  

 Wildlife management strategies that ignore the influence of, and indeed the management 

of, habitat are likely to be inefficient. Some prior bioeconomic work has examined habitat 

management to reduce exploitative competition (e.g. when humans develop land that is 

otherwise used by species as habitat), but not in the context of species interactions such as an 

endangered species subject to predation (e.g. Swallow 1990; Sanchirico and Springborn 2011; 
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Bednar-Friedl et al. 2012).1 

We examine optimal investments in predator controls and habitat provision, given that 

habitat affects the interacting species in different ways. Specifically, we analyze a problem 

where protecting the habitat of an endangered prey species may either benefit or adversely affect 

the predator population. The marginal impact of prey habitat on predators is shown to be a key 

factor in determining the biotechnical substitutability or complementarity of the controls. 

However, similarly-defined bioeconomic relationships are shown to depend additionally on 

economic considerations. Our numerical results suggest both controls, applied as bioeconomic 

substitutes, are generally optimal in the long run, although a single control may be optimal in the 

short run.  

 Our analysis is motivated by the conservation of Atlantic-Gaspésie Woodland Caribou 

(rangifer tarandus caribou), the only remaining herd of woodland caribou living south of the St. 

Lawrence River. This population has been largely extirpated from the southern portion of its 

range due to human encroachment and habitat loss, and it now resides almost entirely within the 

Parc National de la Gaspésie, Quebec, established in 1937 to protect caribou habitat. Because 

caribou are sensitive to human activity (Recover Plan 2006), recreational activities in the park 

are highly regulated to minimize human interference with the caribou (PNG 2011). Still, the 

caribou population has fallen from about 750 in the 1950s to 270 in 1983, and then to 140 in 

2001. It is now clear that predation is a major limiting factor (Boisjoly et al. 2010). The Gaspésie 

                                                           

1 Swallow (1990) and Sanchirico and Springborn (2011) study human-animal land use conflict as a development 
problem. Development generates economic rents but reduces habitat and the returns from a harvestable resource, 
and may ultimately drive the harvested resource to extinction. Bednar-Friedl et al. (2012) study land use conflicts in 
the context of a park management problem. The park’s value increases with visits, but visitors damage the habitat of 
an existence-valued endangered species. To aid the endangered species, Bednar-Friedl et al. consider visitor controls, 
habitat restoration and population enhancements, and they find optimal ecosystem management involves at least 
some reduction in visits. 
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Woodland Caribou Recovery Plan has made predator control a priority, which has been shown to 

improve caribou survival (Mosnier et al. 2003). In 1999, measures were also taken to create 

caribou habitat outside the park boundaries. Applying the bioeconomic model to the case of the 

caribou, we find that the first-best strategy involves culling a large number of predators and 

establishing a large reserve initially, and then substituting reserve investments for predator 

removal as both populations begin to recover, suggesting that habitat protection and predator 

removal are effectively substitute controls. 

 

Ecological Model 

Our analytical model is based on the problem of conserving an endangered prey species at risk 

from predation and habitat loss. Assume total land area, denoted L, is divided into two uses: a 

share of land, s, is managed as a conservation reserve for endangered prey (with the total reserve 

area being sL), while the remaining share, (1 – s), is managed for human use. We treat s as a 

control, so that managers can instantaneously change the size of the reserve. This may be a 

reasonable approximation for some species, including the Gaspé caribou, when the land remains 

in a fairly natural state under both alternative land uses (e.g., non-reserve land is managed for 

activities like recreation, not development).2   

Denote the prey population by C and the predator population by P. Prey dynamics take 

the form of a Lotka-Volterra equation, modified to account for the land allocation3 

                                                           

2 Instantaneous adjustment in habitat will be inaccurate for forms of habitat loss that are destructive to the land and 
require many years to rehabilitate (i.e. “grow back”). In such cases, it would be more appropriate to model land in a 
conservation reserve as a state variable that can only change gradually over time. 
3 A carrying capacity that is specified independently of the particular predator-prey interactions being modeled 
represents a constraint on population growth that is implied by a limiting resource, which is generally food, space, or 
some other resource (e.g., other prey, in the case of predators; Larkin 1966) (Tanner 1975). The mathematical 
specification of carrying capacity does not depend on which resource is limiting (Tanner 1975).  We model carrying 
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(1)   PCsrCC CCC   

The first term in brackets is per capita growth prior to predation, where rC is a growth parameter, 

αC is the carrying capacity absent predation and any reserve, and C is a parameter measuring 

how the carrying capacity increases when more land is allocated to the reserve (Hannesson 1983). 

The final term in brackets captures the effect of predation, which follows a Holling Type I 

functional response in which γ is a catchability parameter.  

Predator population dynamics take an analogous form:  

(2)   hCPsrPP PPP  . 

The first term in brackets is density-dependent predator growth before consumption of the 

endangered prey (Ives and Murray 1997). This term implies predators do not rely solely on the 

endangered prey (Larkin 1966).4 The predator carrying capacity, before endangered prey 

consumption, is implicitly determined by the availability of other prey as determined by land use 

(Boisjoly et al. 2010). If other prey are more abundant on the conservation reserve set aside for 

the endangered prey, then P > 0. This need not be the case, however, as some predator species 

thrive on land in human use so that P < 0.5 Henceforth, to avoid confusion between the 

endangered prey and other prey, we simply refer to the endangered prey as “prey” while other 

                                                                                                                                                                                           

capacity to be a linear function of space (habitat area), both for predators and prey, which represents a first-order 
approximation of the true relation. Defining carrying capacity as a function of space is reasonable, as more space in 
a “good” habitat generally represents both more cover and a greater food supply (e.g. more plant material for 
herbivores; more “other” [i.e. non-caribou] prey for predators). Bulte and Horan (2003) adopt a similar growth 
equation incorporating a habitat effect for a single species model.  
4 See Hannesson (1983), Ragozin and Brown (1985), and Brown et al. (2005) for bioeconomic applications making 
this assumption. 
5 It is well documented that foxes, raccoons and other small mammalian predators have higher densities in human 
land-use areas (Riley et al. 1998), reducing bird and amphibian populations (Engeman et al. 2010). Other examples 
include black bears benefiting from roadside forage (Rogers and Allen 1987), birds of prey exploiting schools of 
salmon near hydroelectric dams (Engeman et al. 2009), parasitic cowbirds thriving in residential areas (Borgmann 
and Morrison 2010) and coyotes adapting to human-disturbed environments (Markovchick-Nicholls et al. 2008).  
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prey are only referenced indirectly via the carrying capacity variables. The second term in 

brackets, γC, is the rate of predation on the endangered prey. Finally, h is the rate predators are 

removed by managers.  

 Although both species may be valued, consider how management promotes prey 

conservation. From (1) and (2), a larger h enhances prey conservation by reducing the number of 

predators and hence predation. The impact of the reserve on prey conservation is less clear. A 

larger s increases C , but the effect on P  – and hence on future predation – depends on the sign 

of P.  The reserve reduces future predation when P < 0, but may increase it when P > 0. In the 

latter case, the net effect of s on prey conservation depends on ecological relations. This result 

can be seen by examining long-run outcomes. 

 Consider the steady state values of C and P, denoted C* and P*. These are derived as the 

solution to 0 PC  :      )/( 2*  PCPPCCCP rrssrhrC  and  

     )/( 2*  PCCCPPPC rrssrhrP . The marginal impact of s on C* is  

(3)   )/(/ 2*  PCPCCP rrrrsC .  

Relation (3) is positive, so that s and h are biotechnical substitutes for prey conservation, when (i) 

P < 0, or (ii) P > 0 and (rCC)/(P) > 1. In case (i), the reserve reduces predator productivity, 

benefitting prey. In case (ii), the term (rCC)/(P) measures how well the prey can withstand 

predation pressure on reserve land, which is related to the prey population’s biotechnical 

productivity (Clark 2005).6 When condition (ii) holds, the larger reserve increases the ability of 

                                                           

6 Specifically, rCC is the increase in the prey’s growth for a marginal increase in s, while P is the increase in 

predation for a marginal increase in s. Hence, our measure of biotechnical productivity of prey is defined as a ratio 
of the growth rate to the predation mortality rate. Somewhat analogously, Clark (2005) measures biotechnical 
productivity as the ratio of a species’ intrinsic growth to the catchability rate associated with predation by humans. 
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the prey to withstand predation pressure. These results arise even though P
*/s = rC(C + 

rPP)/(rCrP + 2) may be positive. Specifically, P
*/s > 0 when P > 0, and also in the case of P 

< 0 when the negative habitat effect on predators is outweighed by the positive effect of more 

prey, i.e. when (C)/(– rPP) > 1.  

The sign of (3) is negative when P > 0 and the reserve reduces the ability of the prey 

population to withstand predation, i.e. when (rCC)/(P) < 1. The two controls are biotechnical 

complements in this case, in the sense that investments in the reserve must be accompanied by 

increased predator controls to offset conservation risks.  

 Similar tradeoffs arise away from the steady state. Consider the concern that the 

endangered species is at risk of extinction. Extinction occurs when 0/ CC  as C → 0 and P  

  PPP
C

rhsP /
0

* 


. This extinction condition is written 

(4)     0/  PPCCPCC rhrsr  

We assume rCC < P, so that the prey go extinct absent the reserve or predator harvests 

(s=h=0). This makes the prey conservation reliant, a common wildlife management problem 

(Scott et al. 2005). As above, condition (4) indicates that s and h are biotechnical substitutes in 

preventing prey extinction when (i) P < 0, or (ii) P > 0 and (rCC)/(P) > 1, and they are 

biotechnical complements when P > 0 and (rCC)/(P) < 1.  

 

Bioeconomic Model 

Economic objectives 

Suppose each species generates stock-dependent non-market benefits, or existence values. 
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Denote existence values by u
i
ln(i) (for i=C,P), where u

i
 > 0 is a parameter. This specification 

implies infinite marginal benefits from preventing extinction of species i. Thus, some investment 

in prey conservation is optimal, given that prey are conservation reliant. For simplicity, assume 

neither species has harvest value, which is consistent with our numerical example and has little 

bearing on the general insights obtained below. 

 Conservation measures are costly. Predator removal costs take the Schaefer form (Clark 

2005), chh, where ch > 0 is a parameter.7 To maintain habitat in a conservation reserve society 

foregoes the returns from using land for human activities. Conservation reserve costs take the 

quadratic form (a second-order approximation to any convex cost function) cR1Ls + cR2(Ls)
2
 = 

cs1s + cs2s
2
, where cs1 = cR1L > 0 and cs2 = cR2L

2
 > 0 are parameters. Convex costs arise because 

the reserve initially displaces only economically marginal activities, but eventually encroaches 

on increasingly beneficial land.  

A manager wishing to maximize the present value of net benefits would solve  

(5) 
 

00

0

21
,

)0(  ,)0(  ,10,0),2(),1(     subject to

)()ln()ln(max

PPCCsh

esscchcPuCu
t

sshPC
sh



 



 

where ρ is the discount rate. The Hamiltonian associated with problem (5) is8 

(6)       PCsscchcPuCuΗ PCsshPC
  21lnln , 

where λi is the co-state variable for species i (i = C, P). Note that λC > 0 because the prey are 

only valued (they do not inflict social costs), whereas λP may be positive or negative since 

                                                           

7 Recall, h is the removal rate.  Schaefer costs are typically written as chQ/P, where Q is total removal (Clark 2005).  
Given Q = hP, removal costs equal chh, as in the text.   
8 The constraints on h and s are addressed implicitly below. 
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predators have existence values but also generate ecological damages via predation.  

 

Necessary Conditions 

As the Hamiltonian is linear in h, the optimal choice of h, denoted h*, must satisfy  

(7) 

00

0

0

*

*

*










hiff

hhiff

hiff

Pc
h

H
SVPh  ,

  

where hSV is the singular solution for h. Condition (7) indicates h
* = hSV, is optimal when –λP = 

ch/P. An impulse control for h is optimal when –λP > ch/P, and h* = 0 is optimal when –λP < ch/P. 

These results indicate it is only optimal to remove the predator when it has negative value, i.e. it 

is a nuisance.9  

 The optimal choice of s, denoted s*, is positive when: 

(8) PrCrsccsH PPPCCCss  21 20/ . 

First order condition (8) equates the marginal cost of increasing the share of reserve land with the 

marginal net ecological benefits of this larger share. There is optimally no reserve (s* = 0) if the 

marginal net ecological benefits are less than cs1.  

The marginal benefit of predator removal, –PP, is critical to deriving both h* and s*. 

From condition (7), h* > 0 requires –PP > 0, with the incentives for h being larger the larger is –

PP.  If –PP > 0 and p < 0, then the final term in condition (8) is positive and the incentives to 

use both controls are larger. Alternatively, there may be incentives to use only removal when –

PP > 0 and p > 0, or to use only reserve investments when –PP < 0 and p > 0 (although this 

                                                           

9 Predator removal with P > 0 could be optimal if the predator had harvest value. 
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latter case is ruled out as a long-run outcome when (rC/)(C/P) < 1 because equation (4) implies 

extinction of the prey). Finally, the likelihood that neither control is optimal is increased when –

PP < 0 and p < 0 (although this case is ruled out as a long run outcome since prey are 

conservation reliant). 

Whether both controls are used and how they vary with each other cannot be determined 

solely from conditions (7) and (8). The reason is that the tradeoffs in system (7)-(8) depend on 

the values of the co-states, which are determined jointly with the controls. The co-states evolve 

according to two adjoint conditions that can be expressed in “golden rule” form for species i (i = 

C,P) as iii iH  /)/(/ .  

The golden rule condition for the prey is 

(9)     CPCCCCCCCC PCsrCu  /2)/(/ , 

which equates the discount rate, ρ, to the net rate of return from conserving prey (the right hand 

side, or RHS). The first three RHS terms, respectively, are the capital gain or loss from changes 

in the prey stock, the marginal existence value of prey (normalized by λ
C
), and the marginal 

growth in prey before predation. The final RHS term is the normalized net cost of one more prey 

to predation, assuming λ
C
 – λ

P
 > 0, or the net benefit of one more prey to predation if λ

C
 – λ

P
 < 0.    

The golden rule condition for the predators is 

(10)      )/(2)/(/ PPCPPPPPPP ChPsrPu   , 

which has an interpretation analogous to condition (9) when λP > 0. The interpretation of (10) 

changes when λP < 0. In that case, the golden rule condition equates the opportunity cost of 

capital, , with the rate of return to controlling the nuisance predator – which equals the rate of 
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loss due to the predator. The first RHS term is the capital gain or loss from changes in the 

predator stock, the second term is the marginal existence value of the predator, the third term, in 

brackets, is the growth in predators (prior to predation of the endangered prey) and the final term, 

which is positive when λP < 0, is the normalized net cost of predation, as predation reduces the 

prey and increases predators.  

Determining whether and to what extent s and h are used requires jointly solving the 

conditions (7)-(10) to derive feedback relations for s and h. We now turn to this issue.  

 

Optimal Management Strategies 

The optimal management strategy may be an interior solution, a corner solution or a combination 

of the two. We can rule out several strategies as possible long-run solutions, although they may 

be short-run solutions implemented en route to a long-run strategy. These include a strategy of 

maximum predator removal, h → ∞, as doing so implies predator extinction and infinite removal 

costs, and a strategy of no conservation reserve and no predator removal (s = h = 0), as this leads 

to extinction and infinite marginal existence values for the prey. The remaining, long-run 

candidate strategies are: a dual control strategy with both a conservation reserve and predator 

removal (s* > 0, h* = hSV), a predator removal-only strategy in which there is no reserve (s = 0, h* 

= hSV) and a reserve-only strategy in which there is no predator removal (s* > 0, h* = 0).10  

Insight into the candidate strategies is obtained by examining the dual control strategy, as 

determined by (7)-(10) with ∂H/∂h = ∂H/∂s = 0. From (7), ∂H/∂h = 0 yields 

(11)   PcP hP   

                                                           

10 A long-run solution could involve a cyclical series of switches among the candidate strategies, with the switches 
governed by (7)-(8). We do not find such a strategy is optimal in our numerical example.  
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which indicates predators are managed as a nuisance species. Take the time derivative of (11), 

PPchP
 )/( 2 , and substitute this expression and (11) into (10) to obtain 

(12)         )/()/(/)/()(/, CPrPcPuCPrPPuPC PhPPPPC  . 

Condition (12) stems from equating the marginal ecological cost of predation (the LHS, 

multiplied by predation per predator, C), or equivalently the marginal ecological benefits of 

reduced predation, with the marginal costs of investing in nuisance control (the RHS numerator, 

which is equivalently the marginal benefit of allowing more predators by forgoing predator 

removal). Relation (12) indicates that prey must be more highly valued when society is willing to 

give up more benefits to control predators as a nuisance.   

It is now possible to derive feedback rules for the two controls. First, substitute λC(C,P) = 

λC and dλC(C,P)/dt = C  into (9) and solve for 

(13)  PCrrsrsPCh CPPPPSV  )(),,( ** . 

where ]/[)]()([ 2
hPCPPPCh cuuurCrrc  . Relation (13) indicates the choice of h 

conditional on s*. Next, we derive the feedback rule for s, denoted s
*
(P), by substituting λC(C,P) 

and λP(P) into (8) and solving for  

(14)  
2

1*

2

),(
)(

s

sPPhCCC

c

crcCrPC
Ps


 , 

where the term CPCC ),(  is independent of C, from relation (12). Now, the feedback rule s*(P) 

can be substituted into hSV(C,P,s*) to derive 

(15) ))(,,(),( *
PsPChPCh SVSV  .  

Feedback rules (14) and (15) are only valid when they are applied jointly and both yield 

positive values, and they may only be valid along a particular locus of values for C and P (i.e. a 
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particular singular arc). Consider when the reserve is utilized, s*(P) > 0, given that hSV > 0. Let 

1]1)/([ sPCCPPh crrc   be the marginal net value of enhanced biotechnical 

productivity from habitat provision. s*(P) is always positive when  > 0, which requires s and h 

are biotechnical substitutes and cs1 is sufficiently small. If  < 0 (so cs1 is large or s and h are 

biotechnical complements), then s*(P) > 0 requires 

(16) ]/[][ˆ  CChP rcuPP  

If condition (16) is not satisfied, then predation (rather than habitat) is the limiting factor for 

endangered prey from an economic perspective: society is better off focusing its resources on 

predator removal so as to quickly reduce the predator population. This could imply following a 

predator removal-only strategy indefinitely or until (16) is satisfied.   

Predator removal is used, hSV(C,P) > 0, given that the reserve is also used, when: 

(17) 


 



/])][2()(][[

)(][2ˆ

21
2

22
2

Prcrcrrccu

currPuurcCC

PPsPPsPCCPPhhP

hPPCPCCPPs
 

where ])())([(2 2
2 PrrccurPc PChhPCs  > 0. The case of CC ˆ  implies that 

habitat availability (rather than predation) becomes the limiting factor from an economic 

perspective: society is better off investing in a reserve to support the prey. 

Conditions (16) and (17) essentially bound the lengths of potential singular arcs. 

Consider whether certain trajectories can be ruled out as optimal solutions. That is, over the state 

space for which hSV(C,P) and s*(P) are positive, are there combinations of states for which the 

feedback rules (14) and (15) produce a sub-optimal trajectory, implying that a single control is 

optimal at these states? It is useful to rule out as many sub-optimal trajectories as possible, since 

substituting hSV(C,P) and s*(P) into (1) and (2) yields an infinite number of possible trajectories, 
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depending on the initial state. Such identification is really a numerical issue, and in our 

numerical example we find only two trajectories, or separatrices to a saddle point steady state, 

are optimal. Together, these separatrices define a unique singular arc, or saddle path, denoted 

C(P). All other dual control trajectories lead to outcomes that fail to satisfy the necessary 

conditions in the long run. For initial states not on C(P), either the predator removal-only 

strategy or the reserve-only strategy must be followed. These strategies, which can be used to 

move the system to C(P), are discussed in Appendix A. We proceed by assuming C(P) is unique.  

 

Changes in Controls Along the Saddle Path 

We now examine how the controls jointly respond to changes in the state variables along the 

saddle path. If both controls move in the same direction ( */ dsdhSV > 0) in response to state 

changes, then we say the controls are bioeconomic complements. If the controls move in 

opposite directions ( */ dsdhSV < 0), we say they are bioeconomic substitutes.11   

We derive */ dsdhSV  by totally differentiating each feedback rule and dividing: 

(18) PPCP
SVSVSV r

dPds
PC

dPds

PhPCCh

ds

dh








)/(
)(

)/(

)/()()/(
***

,  

                                                           

11 Traditionally, choices are characterized as economic substitutes or complements based on cross-price effects. 

Noting that C(P) will depend on the cost parameters, we can derive dhSV/dcsi = rPP(ds
*
/dcsi) + ([rC + ] +[chP(rCrP+ 

2)/[uP +ch])(dC/dcsi)  (i = 1,2). With ds
*
/dcsi < 0, the first RHS term is the opposite of the sign of P. As it is likely 

that dC/dcsi < 0 (i.e., for a given P, there is less prey conservation when habitat is more costly), the second RHS term 

is negative. Hence, predator removal is an economic complement for habitat when P > 0, and it will only be an 

economic substitute when P < 0 and sufficiently small. We can also derive ds
*
/dch = ( + rPP)rcC/(2cs2P) - 

rPP/(2cs2). The first RHS term is positive, while the second is opposite the sign of P. Hence, habitat is an economic 

substitute for predator removal when P < 0, and it will only be an economic complement when P >0 and 
sufficiently large. As the control cost parameters are fixed, we examine cross-price effects in our numerical 
sensitivity analysis.   
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where 
)/( * dPds

rC
CP


  < 0, 0

2

1
2

2

*





















 CC
hP

s

r
P

cu

cdP

ds
, and  is as defined in (13). 

Relation (18) indicates how the optimal mix of controls changes along C(P) in response to a 

marginal increase in P. As ds
*/dP < 0, the sign of (18) is determined by the sign of dhSV/dP: the 

controls will be bioeconomic substitutes when dhSV/dP > 0, and they will be bioeconomic 

complements when dhSV/dP < 0. The sign of dhSV/dP depends on three factors, as represented by 

the three RHS terms in (18). The first RHS term reflects movement along the C dimension: 

holding P fixed, a larger prey population implies more predator controls, and so CP < 0. The 

sign of the first RHS term is therefore of the opposite sign as C(P), which is the slope of the 

saddle path. If both states are moving in the same (opposite) direction along an optimal path, 

then this first RHS term promotes using the controls as bioeconomic substitutes (complements).   

The second RHS term in (18) reflects movement along the P dimension. The sign of this 

term is opposite the sign of . It is possible to show that  < 0 when 0P  along the saddle 

path: holding C fixed, fewer predator controls are used if it is optimal to allow P to increase. 

Hence, the second RHS term is positive when 0P  along the saddle path, in which case a 

larger (smaller) value of this term promotes using the controls as bioeconomic complements 

(substitutes).  

Finally, the third RHS term represents the conditional response of predator removal to 

changes in habitat investments, from (13). This term is of the same sign as P. This suggests the 

controls are more likely to be bioeconomic substitutes when P < 0 or bioeconomic complements 
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when P > 0, which is roughly in accordance with the biotechnical productivity results.12 

The sign of (18), which clearly depends on different factors than those determining the 

biotechnical relation between controls, is ambiguous. In our numerical example below, C(P) > 0 

and P < 0. Our analytical results above suggest the controls are more likely to be substitutes in 

this setting, and that is what we find numerically. 

 

Numerical Example: Gaspésie Woodland Caribou 

We further explore the analytical results with a numerical model of Gaspésie Woodland Caribou 

conservation. This population is currently at risk due to a small extant population, habitat loss, 

and predation. It is well documented that managed land is poor habitat for the Gaspésie caribou, 

who prefer the Parc National de la Gaspésie’s conservation reserve (Ouellet et al. 1996; Mosnier 

et al. 2003). This suggests α
C
 ≈ 0 and 

C
 > 0.13 However, the carrying capacity for predators may 

be greater on managed land than on the reserve, suggesting α
P
 > 0 and 

P
 < 0 (Boisjoly et al. 

2010).14 There are two major species of caribou predators: coyote and black bear (Recovery Plan 

2006). We model these two predators as a single population, which is a common and reasonable 

approach to maintaining model tractability (Sokol-Hessner and Schmitz 2002). As the hunting 

level necessary to reduce predator populations may be intense (Mosnier et al. 2003) and private 

incentives for hunting are small, a publicly-driven predator control regime is considered 

                                                           

12 It should be noted that dC/dP also depends on P, with the marginal impact being ambiguous.   
13 Adjacent to the park are wildlife management zones and privately-owned lands where recreational and forestry 
activities are allowed. These activities are regulated to promote sustainable ecosystem practices, although 
sustainable timber harvesting may still adversely affect caribou (Stone et al. 2008). Hunting and fishing are 
permitted in these zones, which restrain caribou habitat outside Parc National de la Gaspésie.  
14 St-Laurent et al. (2009) also discuss how caribou predators benefit from managed land. Specifically, regenerating 
forests are rich in berries and small prey, benefiting bears and coyotes. Dumps of hunting by-products also provide 
additional sustenance for coyote predators of caribou (Mosnier et al. 2008).   
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necessary to caribou conservation, which may require different harvesting techniques specific to 

the predator species (Recovery Plan 2006).  

 

Benchmark Scenario 

Benchmark parameter values are listed in Table 1, with the derivations provided in Appendix B. 

Numerical solutions were derived using Mathematica 7.0 (Wolfram 2008). 

The optimal solution is determined by studying the three long-run strategies. The 

predator removal-only strategy can be discarded as a long-run optimum since Gaspé caribou are 

believed to have difficulty surviving on managed land, so s > 0 is required to sustain caribou 

(Ouellet et al. 1996). This leaves the conservation reserve-only strategy and dual control strategy 

as the feasible candidate long-run strategies. 

 We find the conservation reserve-only strategy (s > 0, h = 0) does have a unique, interior 

steady state of C* = 206, P* = 253 and s* = 0.59. However, a contradiction arises when the 

optimality condition for h is evaluated at this equilibrium: ∂H/∂h > 0, which means setting h > 0 

would increase social net benefits. The conservation reserve-only strategy also has a unique, 

stable steady state of C* = 389, P* = 258 at the corner solution of h = 0 and s = 1, but here a 

contradiction arises as ∂H/∂s < 0. These results indicate the reserve-only strategy is suboptimal 

as a long-run solution, which means only the dual control strategy has the potential to yield a 

long-run optimum.  

 The phase plane for the dual control strategy is illustrated in Figure 1. Stability analysis 

indicates the equilibrium point A (where C = P = 0), with C* = 213, P* = 114, and control levels 

h
* = 0.33 and s* = 0.53, is a saddle point. The saddle path, C(P), terminates at the dashed curve 



19 

 

hSV(C,P) = 0, which defines the predator removal threshold (17).15 The dual control strategy is 

infeasible below the hSV(C,P) = 0 curve, as hSV(C,P) < 0 in this region. Moreover, as we have 

already indicated that only the dual control strategy may yield a long-run optimum, any dual 

control trajectory that crosses the hSV(C,P) = 0 threshold is suboptimal. The only dual control 

trajectory that does not cross the hSV(C,P) = 0 threshold is C(P), and so this is the optimal long-

run path.   

 As C(P) represents the unique singular solution for h, it also represents the switching 

curve for h, conditional on s* > 0. For initial states right of C(P), the optimal solution is to use an 

impulse control of h to implement a jump to C(P) (i.e. a most rapid approach path). For 

initial states left of C(P), the optimal solution is to set h = 0 and implement the reserve-only 

strategy (s > 0, h = 0) that moves the system to C(P) while satisfying smooth pasting conditions 

for the reserve size at the point of intersection.   

 Figure 2 illustrates the overall solution. The portion of the curve S to the right of point T 

represents C(P), with point T being the hSV(C,P) = 0 threshold. The portion of S below point T 

represents the unique reserve-only trajectory that intersects C(P) at the hSV(C,P) = 0 threshold. 

Combining these two segments, curve S effectively serves as the complete switching curve: an 

impulse removal control is used right of S and the reserve-only strategy is used left of S, with the 

associated trajectories following the phase arrows.  

The initial state is point B at (P(0)=270, C(0)=140). An impulse control moves the 

system horizontally to S, followed by movement to steady state point A. The same is true for 

other initial points below S (with only one such trajectory moving directly to A). For initial states 

                                                           

15 Note that s*(P) > 0 throughout the relevant region of the state space where hSV(C,P) > 0. 
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left of S, such as point Z, a reserve-only strategy that moves the system more gradually to S is 

initially optimal (with only one trajectory left of S leading directly to A). As described earlier, the 

reserve-only strategy involves slower adjustment because habitat costs are nonlinear in s and 

because s directly affects both states: efforts to alter one state impact the other state, creating 

ecological adjustment costs. The short-run reserve-only path eventually intersects S. Numerical 

analysis indicates economic welfare is increased by abandoning the reserve-only strategy at S, 

and then proceeding along S to point A.  

Figure 3 illustrates the optimal time paths of the controls along S after the jump from 

point B. The initial large reduction in predator numbers, coupled with large initial habitat 

investments, jump-start caribou recovery. After these initial investments, however, the increases 

in caribou begin to slow. As habitat is expensive to maintain, the optimal strategy begins to 

substitute from habitat controls to harvest controls. Increasing the rate of predator removal is 

necessary because predator numbers are allowed to increase as the size of the reserve declines. A 

similar, initial overinvestment in habitat, followed by substitution of predator controls for habitat, 

would also arise starting at a point left of S (e.g. such as point Z in Figure 2). The substitution of 

predator removal for habitat is as predicted by equation (18), given that that S is upward sloping 

and P < 0.  

The optimal long-run caribou population of 213 is about 22 percent larger than the 

Gaspésie Woodland Caribou managers’ goal of 175 caribou. This outcome is attained under a 

regime similar to that proposed by managers: reduce the predator population and preserve 

caribou habitat. However, the optimal long-run conservation reserve, s*L = 1192.5 km2, 

exceeds the 1092 km2 in the current reserve and adjacent conservation zones. Moreover, we find 

the optimal strategy involves a large reserve initially (1540.1 km2) and then a gradual decline to 
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1192.5 km2. This suggests managers should invest in more habitat protection via temporary 

conservation zones as an efficient way to quickly build up the caribou population. The results 

also indicate continuous, indefinite predator removal is optimal, in contrast to historical 

strategies of periodic predator culls.16 Once a large reserve is established and a large portion of 

predators is culled, the dual control strategy suggests predator removal should gradually 

substitute for a smaller reserve. 

Our path of conservation reserve creation is qualitatively similar to Sanchirico and 

Springborn’s (2011) findings that it is optimal to initially restore more habitat than is optimal in 

the long run, in order to achieve a faster rate of recovery of the endangered species. Our analysis 

suggests this result is robust in situations involving predation. 

 

Sensitivity Analysis 

We now investigate the sensitivity of the benchmark results to changes in parameters used to 

calibrate the numerical model. Steady state results are presented in Table 2. Each scenario is 

defined by the indicated parameter change relative to the benchmark value.17 A general 

observation is that the benchmark result of using the dual control strategy is robust to parameter 

                                                           

16 Periodic culls can be optimal when there are substantial fixed costs in using a control (Clark 2005). The model 
here assumes no fixed costs in running a predator removal strategy. It is not clear if Gaspésie Woodland Caribou 
managers face substantial fixed costs in organizing predator control. 
17 As indicated in Appendix B, some parameters in the benchmark scenario are specified while others are calibrated 

based on the specified parameters. In particular, the choice of P affects calibration of rP and αP, while the choice of 
αC affects calibration of rC. Our sensitivity analysis results in Table 2 hold rP, αP, and rC fixed at their benchmark 

values – that is, these parameters are not re-calibrated as we examine changes in P and αC in Table 2. If we did re-
calibrate all relevant parameters, then the only change in scenario 1’s results in Table 2 would be a smaller 
equilibrium h*

 = 0.38. Recalibration under scenarios 2 and 3 would yield a smaller value of rC. Scenario 2 would 
exhibit more caribou and fewer predators, C*

 = 262 and P* = 62, greater reliance on predator removal and less 
reliance on habitat controls, h* = 0.56 and s* = 0.17, and less surplus (PVSNB = $3,949 mln). Qualitatively similar 
changes would arise under scenario 3: C*

 = 397 and P* = 81, h* = 0.61 and s* = 0, and PVSNB = $4,572 mln, 
although this now represents a case where dual control is no longer optimal (note that a smaller rC means condition 
(16) is less likely to hold).   
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changes. Although not illustrated for each case (to conserve space), the qualitative results of 

Figure 2 hold for each scenario as well. 

 Scenarios 1 – 6 examine changes in biological parameters. Scenario 1 assumes P = 0, 

representing an improvement in the suitability of the reserve as habitat for predators, putting 

caribou at more risk from predation. The equilibrium stock and habitat levels change only 

slightly from the benchmark, as the ecological effects of the increase in P are optimally offset 

by increasing the predator harvest rate by forty-five percent.18 The controls remain biotechnical 

and bioeconomic substitutes in this case.  If we were to further increase P, say to P = –1.5P0 

(not reported in Table 2), then the controls would become bioeconomic complements – with 

values of both s and h increasing over time until they attain their steady state levels – even 

though they remain biotechnical substitutes (the controls become biotechnical complements for 

P  –10.8P0).   

Scenarios 2 and 3 assume managed land provides some caribou habitat. When managed 

land can support caribou densities at 50% of reserve land densities, the need for predator controls 

and habitat is diminished, but the dual control strategy remains optimal. This suggests the 

optimality of the dual control strategy does not hinge on our benchmark value of α
C
 = 0. 

Scenario 3 indicates that doubling α
C
 relative to the scenario 2 value, so that caribou are equally 

supported by either habitat, begins to produce the opposite effect: harvest controls increase 

slightly whereas habitat investment is reduced to a low level to provide a bit of predator control, 

since P < 0. That s* remains positive is consistent with condition (16), which is independent of 

                                                           

18 The changes in stock and habitat levels are only detectable at the first decimal level. Both stocks are smaller 
relative to the benchmark case, and investment in the reserve also declines, as is predicted by (14). 
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α
C
. Scenario 4 reduces the predator growth parameter, diminishing the incentives for caribou 

conservation, although only the rate of predator removal is significantly affected. The final two 

biological scenarios alter the predation rate: a greater (lesser) predation rate yields more (less) 

predator removal. 

 Scenarios 7 – 11 examine changes in economic parameters. When the cost of 

conservation reserve land increases, it is optimal to shift resources out of reserve creation, 

although the larger non-reserve area enhances predator growth so that more resources are 

optimally allocated to predator removal. Analogously, habitat substitutes for predator removal 

when predator removal costs are increased.19  

The remaining scenarios examine the role of existence values. When the existence value 

of the predator declines, it is optimal to increase predator removal and decrease the reserve 

relative to the benchmark. These results reflect the substitution of predator removal for habitat as 

a means for controlling predation: the use of predator controls is increased when there is less 

value to conserving predators, and the resulting decline in the predator stock means there are 

fewer incentives to invest in the reserve. Qualitatively opposite changes occur when the 

existence value of the predator increases. Finally, scenarios 10 – 11 explore the effects of a 

change in the existence value of caribou. A decline in this value reduces the return from caribou 

conservation, optimally reducing all caribou conservation investments. The opposite occurs for a 

larger existence value. 

 

                                                           

19 We do not report a scenario for an increased cost of predator removal because the difference from the benchmark 
results is small; nevertheless, the effect is reduced investment in predator removal and greater investment in the 

reserve. Therefore, given P0 < 0, the controls are economic substitutes for each other in the traditional sense. These 
results are consistent with the results in footnote 11. 
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Conclusion 

The importance of predation is often heightened when the prey species has experienced habitat 

loss. In such situations, it seems intuitive that attempts to conserve an endangered prey species 

should include investments in both predator controls and habitat provision.  But an important 

consideration is how the expanded habitat will affect predators.  

We have examined optimal investments in predator controls and the provision of prey 

habitat when this habitat provision may either benefit or adversely affect the productivity of the 

predator population. The impact of habitat on the predator species is shown to be important 

ecologically in determining whether the controls are biotechnical substitutes or complements for 

prey conservation. However, this ecological impact plays less of a role in determining whether 

investments in the two controls move together (bioeconomic complements) or in opposition 

(bioeconomic substitutes) along an optimal path, as economic factors matter and may play a 

stronger role.   

 In the Gaspésie Woodland Caribou example, habitat investments that benefit caribou may 

simultaneously hurt predator productivity. This dual impact increases the value of habitat 

controls, so that it becomes optimal to invest more in habitat provision the larger are the adverse 

impacts to predators. In all cases analyzed, predator removal is also used as part of an optimal 

long-run conservation strategy, although the optimal mix of investments is state-dependent and 

therefore changes over time. For instance, given the current large predator population and 

depleted caribou levels, we find large initial investments in both predator removal and habitat 

creation are optimal to kick-start the recovery of the caribou population. Then, once the caribou 

population has recovered somewhat, some predator removal is substituted for habitat protection. 

That is, some initial habitat protection is only temporary to facilitate the recovery efforts.   
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Alternatively, if both predator and caribou levels were initially small, so that habitat were 

more of a limiting factor for caribou, then it may be optimal to initially invest only in habitat 

provision. Then, once caribou – and predators – have rebounded, both controls are optimally 

applied. Again, the result here is that some initial habitat protection is only temporary to 

facilitate the recovery effort. The results for any initial predator population level indicate that the 

controls are bioeconomic substitutes, i.e. over time predator removal substitutes for habitat 

provision as the population levels rebound.  

Our benchmark results suggest the current Gaspésie Woodland Caribou management plan 

could be improved. Caribou managers are now largely focused on predator research and removal 

(Recovery Plan 2006). Our results indicate a major predator cull is indeed optimal now. We also 

find that a much larger conservation reserve should initially be available, although some habitat 

may be returned to human use after the caribou population has sufficiently recovered.  

Sensitivity analysis indicates our result that both controls are optimally utilized in the 

long run is fairly robust, at least for conservation-reliant prey. Additionally, our result that 

habitat provision and predator removal are bioeconomic substitutes is robust to changes in the 

parameter measuring the marginal impact of habitat on predator productivity. We do find, 

however, that the two controls are bioeconomic complements for a large range of parameter 

values for which the controls remain biotechnical substitutes. This result indicates that ecological 

relations alone cannot adequately inform how the mix of controls optimally changes over time.  
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Appendix A: Partial Control Strategies 

Predator removal-only strategy (s = 0, h* = hSV) 

This candidate strategy is found by solving (9), (10) and ∂H/∂h = 0 in (7). This system yields 

λP(P) as defined in (11), and λC(C,P) as defined in (12). Take the time derivative of (12), 

dλC(C,P)/dt, and substitute this and λC(C,P) into (9) to solve for hSV(C,P,0). This is equivalent to 

the relation in (13), except that s is now set equal to zero. For this strategy, the optimal trajectory 

is determined by (1) and (2) substituting h = hSV(C,P,0) and s = 0.   

 

Conservation reserve-only strategy (s > 0, h* = 0) 

This candidate strategy is determined by solving (8)-(10). In principle, condition (8) could be 

used to solve for s(C,P,λC,λP). However, it is not possible to then use (9) and (10) to obtain a 

state-dependent feedback rule for s of the form s(C,P). The reason is that the problem is 

nonlinear in s, and the standard solution to nonlinear control problems is a differential equation, 

rather than a feedback rule, for the control. Further complicating matters here is that s 

simultaneously affects both state variables, effectively implying additional adjustment costs as s 

cannot control either state very efficiently.   

We therefore pursue an alternative approach. First, solve (8) for one of the co-states, say 

λP, to yield λP(C,P,s,λC). Next, take the time derivative of this expression to obtain a differential 

equation of the form ),,,( CsPCFs  , which may be solved jointly with (9) and the ecological 

system (1)-(2) to yield the optimal trajectory. 
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Appendix B: Parameter Values 

Total land: L. The Parc National de la Gaspésie conservation reserve is currently 802 km2 

(Mosnier et al. 2003). There are calls to add a 214 km2 park enlargement and a 1234 km2 buffer 

zone; expansion beyond this 2250 km2 area would encroach on land that has been more 

intensively logged and could not feasibly support caribou for some time (Cadieux and Guay 

2010). This suggests a maximum reserve of 2250 km2. While predators can survive on managed 

land outside of the 2250 km2 area, such animals are likely to be part of a separate population than 

those residing inside within the area.   Indeed, predators outside the 2250 km2 area are unlikely 

to interact with caribou inside the reserve, as a minority of coyotes are transitory (with a range of 

~2600 km2; Mosnier et al. 2008).  Hence, we only model predators and caribou that interact 

within a total area of L = 2250 km2.  

Caribou carrying capacity from managed land: α
C
. Land managed for human use is 

generally unsuitable habitat for caribou. The small fraction of caribou (~17%) that travel outside 

the park remain near the park and in land with reserve-like (“conservation zones”) protection 

(Mosnier et al. 2008; Recovery Plan 2006). This implies α
C
 = 0. 

Caribou carrying capacity from conservation reserve land: β
C
. Courtois and Ouellet 

(2007) use a carrying capacity of 20 caribou per 100 km2. This implies β
C
 = 0.2L. 

Caribou growth parameter: r
C
. Courtois and Ouellet (2007) construct a predator-prey 

model of wolves and Gaspésie Woodland Caribou. They use logistic growth with an intrinsic 

growth rate of 0.245 for caribou. We adopt a sigmoid growth function similar to that of Courtois 

and Ouellet (although their model is nonlinear in caribou carrying capacity, while it is linear 

here). Intrinsic growth in our model, given the initial land use s
0
 = 802/L, is r

C
(α

C
 + β

C
s

0
) = r

C
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160.4. Equating this to 0.245 yields r
C
 = 0.0015. 

Caribou predation rate: γ. We calibrate  so that the model yields a reasonable steady 

state when s = s
0
 and h = 0. The steady state C and P under these conditions are unknown. We 

assume a steady state of C = 96, which is the smallest recorded caribou population (St. Laurent et 

al. 2009) and, due to a lack of other estimates, a steady state P = 270, which is the extant number 

of predators (Mosnier et al. 2003).  Equation (1) then implies γ = 0.00036. 

Predator growth parameters: r
P
, α

P
, and β

P
. These parameters are calibrated by 

simultaneously solving three relations. First, Tanner (1975) suggests an intrinsic growth rate of 

0.5 for wolves, which we use because there is a lack of published data for coyote and wolves are 

physiologically similar to coyotes (black bears likely have a smaller growth rate but coyotes 

compose most of the predators around the park. In any case, the robustness of the growth rate 

examined via sensitivity analysis). Intrinsic growth in our model, given the initial land use s
0
, is 

r
P
[α

P 
+ β

P
s

0
]. Setting this equal to 0.5 yields r

P 
= 0.5/[ α

P 
+ β

P
s

0
,]. As predators prefer managed 

lands, we assume β
P
 = -α

P
/2. Finally, we calibrate α

P
 to ensure the steady state described above 

(C = 96 and P = 270 when h = 0 and s
0
 = 0.356) exists. In a steady state, equation (2) implies 

[0.5/(α
P 

– α
P
(0.356)/2)][α

P 
– α

P
(0.356)/2 – 270] – 0.0003696 = 0  α

P
= 353. In turn, we can 

solve for β
P
 = -176.5 and r

C 
= 0.0017. These values imply approximate densities of 14 

predators/100 km2 on managed land and 7 predators/100 km2 in a reserve, which are within 

observed bounds for coyotes (Patterson and Messier 2001) and black bears (Rogers and Allen 

1987). 

Value of caribou and predators: u
C
, u

P
. Published estimates of household annual 

willingness to pay, in 2005 dollars (all dollars are in U.S currency), for a population of woodland 
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caribou ($44.71) and a population of coyotes ($5.49) come from Martín-Lopez et al. (2008); we 

are not aware of a published nonmarket, nonuse value for black bears, which may differ 

substantially from coyote and would therefore affect the computation of predator existence 

values. We take the number of households to be those in the provinces of Quebec (3.16 million, 

given a population of 7.9 million and an average Canadian household size of 2.5) and New 

Brunswick (0.3 million, given a population of 0.75 million). Given the total of 3.46 million 

households and converting monetary values to 2012 dollars using an inflation factor of 1.17, then, 

uCln(140) = 3,460,00044.711.17  uC  = 36,766,035, and uPln(270) = 3,460,0005.491.17 

 uP  = 3,986,302. 

Cost of predator removal: c
h
. An average coyote hunt costs $17,200 (1983 dollars) and 

yields a 26.33% population reduction (Smith et al. 1986). Adjusting to 2012 dollars using an 

inflation factor of 2.303, this implies ch0.2633 = 17,2002.303  ch = 150,433. 

Cost of conservation reserve: c
R1

, c
R2

. The opportunity cost of placing land into the 

reserve is the foregone benefits of activities such as timber and hunting. To our knowledge, there 

are no reports on the value land in the area. Instead, at the current reserve size, we assume the 

annual benefit of one more hectare of managed land is $250 (or $25000/km2), which from an 

internet search of real estate on the Gaspé peninsula is within the range of market values for 

forested land. This implies c
R1

+2c
R2

s0L = c
R1

+2c
R2
802 = 25000. We also assume a cost 

elasticity of 1.25, yielding 25000/[c
R1

+c
R2

s0L]  = 1.25. These conditions imply c
R1

= 15000 and 

c
R2

 = 6.23.
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Tables and Figures 

 

Table 1. Parameter values 

Parameter Interpretation (units) Value 

L Available land area (km2) 2250 

r
C
 Caribou growth parameter (rate/animal) 0.0015 

r
P
 Predator growth parameter (rate/animal) 0.0017 

α
C
 

Caribou carrying capacity on managed land 

(animals) 
0 

α
P
 

Predator carrying capacity on managed land 

(animals) 
353 

β
C
 

Increase in caribou carrying capacity for a marginal 

increase in the proportion of land in the conservation 

reserve (animals) 

450 

β
P
 

Increase in predator carrying capacity for a marginal 

increase in the proportion of land in the conservation 

reserve (animals) 

-176.5 

γ Predation rate 0.00036 

u
C
 Benefits of caribou parameter (US$)  36,766,035 

u
P
 Benefits of predator parameter (US$) 3,986,302 

c
h
 Predator removal cost parameter(US$) 150,433 

c
R1

 Reserve cost parameter(US$) 15000 

c
R2

 Reserve cost parameter(US$) 6.23 

ρ Discount rate 0.05 
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Table 2. Sensitivity Analysis 

Scenario 
Optimal 

Strategy 

Equilibrium 

Stocks (C*,P*) 

Equilibrium 

Controls (h*,s*) 

PVSNB           

(in millions $) 

Benchmark Dual Control (213, 114) (0.33, 0.53) 3,735 

1. β
P
 = β

P0
∙0 Dual Control (213, 114) (0.48, 0.53) 3,735 

2. α
C
 = β

C0
∙0.5 Dual Control (301, 155) (0.37, 0.25) 4,325 

3. α
C
 = β

C0
 Dual Control (420, 211) (0.38, 0.04) 4,764 

4. r
P
 = r

P0
∙0.75 Dual Control (213, 114) (0.26, 0.53) 3,735 

5. γ = γ
0
∙0.5  Dual Control (213, 230) (0.09, 0.53) 3,791 

6. γ = γ
0
∙1.5 Dual Control (213, 76) (0.43, 0.53) 3,701  

7. c
R1

 = c
R10

∙1.5, 

c
R2

 = c
R20

∙1.5 

Dual Control (156, 87) (0.39, 0.39) 3,509 

8. u
P
 = u

P0
∙0.5 Dual Control (217, 68) (0.43, 0.51) 3,556 

9. u
P
 = u

P0
∙1.5 Dual Control (209, 168) (0.23, 0.55) 3,931 

10. u
C
 = u

C0
∙0.75 Dual Control (118, 141) (0.31, 0.34) 1,864 

11. u
C
 = u

C0
∙1.25 Dual Control (288, 99) (0.33, 0.69) 5,749 
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Figure 1. Phase plane for the dual control strategy (s* > 0, h* = hSV). 
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Figure 2.  Feedback control diagram for the benchmark case. The optimal solution involves 

moving to curve S as quickly as possible and then proceeding to A. S is a switching curve that 

divides the state space between regions where it is optimal to follow the strategy h→∞ or h = 0, 

s
* > 0, en route to S. Once on S, the system will follow the strategy h = 0 and s* > 0 along the 

portion to the left of T and the strategy h = hSV  and s* > 0 along the portion to the right of T.   
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Figure 3. Time path of the proportion of predators removed and the proportion of land in the 

conservation reserve size, under the optimal management strategy. 
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