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Abstract: This article brings in two new discrete distributions: multivariate Binomial distri-
bution and multivariate Poisson distribution. Those distributions were created in eventology
as more correct generalizations of Binomial and Poisson distributions. Accordingly to even-
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characteristics of these new multivariate discrete distributions are described.
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1 Introduction

Distribution of probabilities is one of principal idea in theory of probabilities and math-
ematical statistics. Its determination is tantamount to definition of all related stochastic
events. But trials’ results extremely rarely are expressed by one number and more fre-
quently by system of numbers, vector or function. It is said about multivariate distribution
if some regularity is described by several stochastic quantities, which are specified on the
same probabilistic space. Thereby, it is involving for representation of behavior of the
random vector, which serves a description of stochastic events, more or less near to re-
ality. This work came in connection with appeared scientific necessity of assignment two
new multivariate discrete distributions, which are naturally following from eventological
principles and taking into account specific notion from probability theory namely arbitrary
dependence of events, random quantities, tests.

2 Binomial multivariate distribution

Let there are finite sequence of n independent stochastic experiments. In the result of
experiment i can ensue or not events from N -set X

(i) of events x(i) ∈ X
(i). Eventological

distributions of sets of events X
(i), i = 1, ..., n agree with the same eventological distribu-

tion {p(X), X ⊆ X} of certain N -set X of events x ∈ X, which aren’t changing between
experiments.

Such scheme of testing is called multivariate (eventological) scheme of Bernoulli testing
with producing set of events X, and each of random quantities

ξx(ω) =
n
∑

i=1

1x(i)(ω), x(i) ∈ X
(i), x ∈ X

obey the Binomial distribution with parameters n, px = P(x), while random vector3

ξ̂ = (ξx, x ∈ X) obey the Binomial multivariate (N-variate) distribution with parame-
ters (n, {p(X),
∅ 6= X ⊆ X}).

Probabilities of Binomial multivariate distribution, which is generated by N-set of events
X, are defined for every integer-valued collection n̂ = (nx, x ∈ X) ∈ [0, n]N by the formula

bn̂

(

n; p(X), ∅ 6= X ⊆ X
)

= P(ξ̂ = n̂) = P(ξx = nx, x ∈ X) =
∑

ň

mň

(

n; {p(X), X ⊆ X}
)

,

where

mň

(

n; {p(X), X ⊆ X}
)

= P(ξ̌ = ň) = P
(

(

ξ(X), X ⊆ X
)

=
(

n(X), X ⊆ X
)

)

=

=
n!

∏

X⊆X

n(X)!

∏

X⊆X

[p(X)]n(X)

3In eventology, in general, and at this context, in particular, the notion ¡¡vector¿¿ is using in extended
sense as disordered finite set or disordered finite collection of some elements.
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are probabilities of 2N -variate Polynomial distribution of a random vector ξ̂ =
(

ξ(X), X ⊆
X
)

with parameters (n; {p(X), X ⊆ X}), which is generated by 2N -set of terrace-events
{ter(X),
X ⊆ X}, which has biunique correspondence to the given Binomial multivariate distribu-
tion; summation is made by all 2N -variate sets n̂ =

(

n(X), X ⊆ X
)

∈ S2N

from 2N -vertex

simplex S2N

, i.e. such as

n =
∑

X⊆X

n(X),

but which are meet the N equations

nx =
∑

x∈X

n(X), x ∈ X.

2.1 Binomial one-variate distribution

When N = 1 (i.e. generating set X = {x} is a monoplet of events) Binomial one-variate
distribution of a random quantity ξx coincides with the classical Binomial distribution with
parameters (n; px). In other words, probabilities of the Binomial one-variate distribution
have classical format

bnx
(n; px) = P(ξx = nx) = Cnx

n pnx

x (1 − px)
n−nx , 0 6 nx 6 n.

2.2 Binomial two-variate distribution

When N = 2 (i.e. generating set X = {x, y} is duplet of events) Binomial two-variate
distribution of a random vector ξ̂ = (ξx, ξy) = (ξx, x ∈ X) is defined by four parameters
(

n; p(x),
p(y), p(xy)

)

, where4

p(x) = P(x ∩ yc), p(y) = P(xc ∩ y), p(xy) = P(x ∩ y).

Probabilities of Binomial two-variate distribution are calculating for any integer-valued
vector n̂ = (nx, ny) ∈ [0, n]2 by the formula

bn̂

(

n; p(x), p(y), p(xy)
)

= P(ξ̂ = n̂) = P(ξx = nx, ξy = ny) =

=

min{nx,ny}
∑

n(xy)=max{0,nx+ny−n}

mň

(

n; p(∅), p(x), p(y), p(xy)
)

,

where
mň

(

n; p(∅), p(x), p(y), p(xy)
)

= P(ξ̌ = ň) =

= P
(

(

ξ(∅), ξ(x), ξ(y), ξ(xy)
)

=
(

n(∅), n(x), n(y), n(xy)
)

)

=

=
n!

n(∅)!n(x)!n(y)!n(xy)!
[p(∅)]n(∅)[p(x)]n(x)[p(y)]n(y)[p(xy)]n(xy)

4Obviously, p(∅) = 1 − p(x) − p(y) − p(xy). Hereinafter are used next denominations: px = P(x) =
p(x) + p(xy), py = P(y) = p(y) + p(xy), Kovxy = p(xy) − pxpy, σ2

x = px(1 − px), σ2

y = py(1 − py).
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are probabilities of the Polynomial 4-variate distribution of random vector ξ̌ =
(

ξ(∅), ξ(x),
ξ(y), ξ(xy)

)

with parameters
(

n; p(∅), p(x), p(y), p(xy)
)

; summation is made by all sets
ň =

(

n(∅), n(x), n(y), n(xy)
)

such as n = n(∅) + n(x) + n(y) + n(xy), for which are true
2 equations as well nx = n(x) + n(x, y), ny = n(y) + n(x, y), and can be turned into
summation by the once parameter n(x, y) within Frechet bounds, since when nx and ny

are fixed, then all quantities n(∅), n(x), n(y), n(xy) can be expressed by one parameter, for
instance, n(xy):

n(x) = nx − n(xy), n(y) = ny − n(xy), n(∅) = n − nx − ny + n(xy),

which is varying within Frechet bounds:

max{0, nx + ny − n} 6 n(xy) 6 min{nx, ny}.

Also, formula can be written in the next manner:

bn̂

(

n; p(x), p(y), p(xy)
)

= P(ξ̂ = n̂) =

= [p(∅)]n [τ(x)]nx [τ(y)]ny

min{nx,ny}
∑

n(xy)=max{0,nx+ny−n}

C
n(x,y)
n (n̂) [τ(x, y)]n(xy)

,

where

C
n(x,y)
n (n̂) =

n!

(n − nx − ny + n(xy))!(nx − n(xy))!(ny − n(xy))!n(xy)!

is two-variate Binomial coefficient, and

τ(x) =
p(x)

p(∅)
, τ(y) =

p(y)

p(∅)
, τ(x, y) =

p(∅)p(xy)

p(x)p(y)

is first and second degree multicovariations of events x and y.
Vector of mathematical expectations for Binomial two-variate random vector (ξx, ξy)

is equal to (Eξx,Eξx) = (npx, npy), and its covariation matrix can be expressed through
covariation matrix of random vector (1x, 1y) of indicators of events from the generating set
X = {x, y} and is equal to

(

npx(1 − px) nKovxy

nKovxy npy(1 − py)

)

= n

(

px(1 − px) Kovxy

Kovxy py(1 − py)

)

Covariation matrix of the centered and normalized Binomial two-variate random vector
(

ξx − npx

σx

,
ξy − npy

σy

)

is expressed through covariation matrix of the random vector
(

1x − px

σx

,
1y − py

σy

)

centered and normalized indicators of events from X = {x, y} and is equal to
(

n nρxy

nρxy n

)

= n

(

1 ρxy

ρxy 1

)

,

where ρxy = Covxy

σxσy
is correlation coefficient for random quantities 1x and 1y (i.e. for

indicators of events from X = {x, y}).
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2.3 Characteristics of Binomial multivariate distribution

Vector of mathematical expectations for multivariate random vector (ξx, x ∈ X) is equal to
(Eξx, x ∈ X) = (npx, x ∈ X), its covariation matrix is expressed through covariation matrix
of random vector (1x, x ∈ X) of indicators of events from the generating set X and is equal
to





nσ2
x . . . nKovxy

. . . . . . . . .

nKovxy . . . nσ2
y



 = n





σ2
x . . . Kovxy

. . . . . . . . .

Kovxy . . . σ2
y



 ,

where σ2
x = px(1 − px), Kovxy = −pxpy when x 6= y.

Covariation matrix of generated by partition centered and normalized Binomial multi-
variate random vector

(

ξx − npx

σx

, x ∈ X

)

is expressed through covariation matrix of random vector

(

(1x − px)

σx

, x ∈ X

)

of centered and normalized indicators of events from X and is equal to





nσ2
x . . . nρxy

. . . . . . . . .

nρxy . . . nσ2
y



 = n





σ2
x . . . ρxy

. . . . . . . . .

ρxy . . . σ2
y



 ,

where ρxy = Covxy

σxσy
= − pxpy

σxσy
is correlation coefficient of random quantities 1x and 1y (i.e.

indicators of events from X).

2.4 Polynomial distribution is a particular case of Binomial mul-
tivariate distribution, when the latter is expressed by the

partition of elementary events space

When the generating N-set X consist of the events, which arising the partition Ω =
∑

x∈X
x,

then Binomial multivariate distribution of a random vector ξ̂ = (ξx, x ∈ X) is defined by
the N parameters5 (n; px, x ∈ X), where px = P(x),

∑

x∈X
px = 1, and it is Polynomial

distribution with the given parameters.
Hence, probabilities of the Binomial multivariate distribution, which is generated by the

partition Ω, is defined for every integer-valued vector n̂ = (nx, x ∈ X) from the simplex SN

(because
∑

x∈X
nx = n) by the same formula as probabilities of corresponding Polynomial

distribution

bn̂(n; px, x ∈ X) = P(ξ̂ = n̂) = P(ξx = nx, x ∈ X) =
n!

∏

x∈X

nx!

∏

x∈X

[px]
nx .

5Since
∑

x∈X
px = 1, there are only N − 1 independent probabilities among N .
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2.5 Binomial N-variate distribution, which is generated by the
set X, defines Polynomial 2N-variate distribution, which is
generated by the set of terrace-events {ter(X), X ⊆ X}, but

not visa versa

Multivariate (N-variate) Bernoulli testing scheme of n tests with the generating set of
events X, which obey eventological distribution {p(X), X ⊆ X}, defines N random quan-
tities

ξx(ω) =

n
∑

i=1

1x(i)(ω), x(i) ∈ X
(i), x ∈ X,

each of them has Binomial distribution with parameters
(

n; px = P(x)
)

and all together

forms N -variate random vector ξ̂ = (ξx, x ∈ X), which is distributed by the Binomial
multivariate (N-variate) law with 2N parameters

(

n; {p(X), ∅ 6= X ⊆ X}
)

, which contains
amount of tests n and 2N −1 probabilities from eventological distribution of the generating
set of events X (in other words, all 2N probabilities p(X) without p(∅)).

The same Bernoulli multivariate testing scheme of n tests defines 2N random quantities

ξ(X)(ω) =
n
∑

i=1

1ter(X(i))(ω), X(i) ⊆ X
(i), X ∈ X,

each of them has Binomial distribution with parameters
(

n; p(X) = P(ter(X))
)

, and all

together forms 2N -variate random vector ξ̌ =
(

ξ(X), X ⊆ X
)

, which is distributed by the
Polynomial multivariate (2N -variate) law, which is generated by the set of terrace-events
{ter(X),
X ⊆ X} and which is defined by 2N +1 parameters (n; {p(X), X ⊆ X}. Those parameters
contains amount of tests n and all 2N probabilities p(X) from eventological distribution of
the generating set X of events.

Probabilities of the given Binomial and Polynomial multivariate distributions are bound
for every N -variate collections of nonnegative numbers n̂ = {nx, x ∈ X} ∈ [0, n]N by the
formula P(ξ̂ = n̂) =

∑

ň P(ξ̌ = ň) where summation is made by the all 2N -variate sets

of nonnegative numbers ň =
(

n(X), X ⊆ X
)

∈ S2N

for which n =
∑

X⊆X
n(X) and also

nx =
∑

x∈X n(X), x ∈ X.
Remark. For any Binomial N -variate, which is generated by the set of events X, there

is unique Polynomial 2N -variate distribution, which is generated by the set of terrace-
events {ter(X), X ⊆ X}. The contrary is not true, i.e. for arbitrary Polynomial 2N -variate
distribution, which is generated by the 2N -set of events (those events form partition of Ω),
there are, generally speaking, (2N)! Binomial N -variate distributions, which is generated
by the N -sets of terrace-events X (appreciably depends on the way of partition events’
labelling as subsets X ⊆ X and total amount of such ways is equal to (2N)!).

3 Poisson multivariate distribution

Poisson multivariate distribution is a discrete distribution of probabilities of a random
vector ξ̂ = (ξx, x ∈ X), which have values n̂ = (nx, x ∈ X) with the probabilities

P(ξ̂ = n̂) = P(ξx = nx, x ∈ X) = πn̂

(

λ(X), ∅ 6= X ⊆ X
)

=

7



= e−λ
∑

ň

∏

X 6=∅

[λ(X)]n(X)

n(X)!
,

where summation is made by collections of such nonnegative integer-valued numbers ň =
(

n(X),
∅ 6= X ⊆ X

)

, for which there are N equations nx =
∑

x∈X n(X), x ∈ X, and {λ(X), ∅ 6=
X ⊆ X} with parameters: λ(X) is an average number of coming of the terrace-event

ter(X) =
⋂

x∈X

x
⋂

x∈Xc

xc,

in other words, average number of coming of the all events from X and there are not events
from Xc.

λ =
∑

X 6=∅

λ(X)

is an average number of coming at least one event from X, in other words, average number

of coming of event
⋃

x∈X

x (union of all events from X).

For example, when n̂ = (0, . . . , 0) then

P
(

ξ̂ = (0, . . . , 0)
)

= P(ξx = 0, x ∈ X) = e−λ,

when n̂ = (0, . . . , 0, nx, 0, . . . , 0), x ∈ X then

P
(

ξ̂ = (0, . . . , 0, nx, 0, . . . , 0)
)

= P(ξx = nx, ξy = 0, y 6= x) = e−λ [λ(x)]n(x)

n(x)!
.

If the vector n̂ has one fixed component nx and other items are arbitrary:

n̂ = (·, . . . , ·, nx, ·, . . . , ·), x ∈ X,

then

P
(

ξ̂ = (·, . . . , ·, nx, ·, . . . , ·)
)

= P(ξx = nx) = e−λx
[λx]

nx

nx!

is a formula of Poisson one-variate distribution with parameter λx of the random quantity
ξx, where λx =

∑

x∈X λ(X) is defined for each x ∈ X by the parameter of the Poisson
one-variate distribution.

3.1 Eventological interpretation

Let there are countable sequence of n independent stochastic experiments. In the result of
experiment n can ensue or not events from X. Possibilities px = P(x) of events x ∈ X are
small, i.e. possibilities p(X), ∅ 6= X ⊆ X of generated by them terrace-events ter(X), ∅ 6=
X ⊆ X are small too, and when n → ∞ then np(X) → λ(X), ∅ 6= X ⊆ X. Then random
vector

ξ̂ = (ξx, x ∈ X) =

∞
∑

n=1

1x(n) , x ∈ X

obeys multivariate (N -variate) Poisson distribution with parameters {λ(X), ∅ 6= X ⊆ X}.
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Remark. It’s incorrect to imagine that possibilities so tend to zero that only in n-th
test np(X) = λ(X), X ⊆ X. In truth, it’s rather to believe that tending of possibilities to
zero like that this equation is true for all first n tests. Thus, stochastic experiment consists
in the sequence of n-series of independent tests (series of n tests), and this equation is
true for all tests from n-series. Then n-series defines Binomial multivariate (N -variate)
distribution with parameters

(

n; p(X), ∅ 6= X ⊆ X
)

, which by n → ∞ tends to the
Poisson multivariate (N -variate) with parameters

(

λ(X), ∅ 6= X ⊆ X
)

.

3.2 Characteristics of the Poisson multivariate distribution

Vector of mathematical expectations of the Poisson multivariate distribution is (Eξx, x ∈
X) = (λx, x ∈ X), where λx =

∑

x∈X λ(X), x ∈ X. Since Cov(ξx, ξy) = λxy, where
λxy =

∑

{x,y}⊆X λ(X),

{x, y} ⊆ X, so covariance matrix is equal to





λx . . . λxy

. . . . . . . . .

λxy . . . λy



 .

In the case of two dimensions, when X = {x, y}, summation is making by the one
parameter n(xy) = n({x, y}), which is changing in a Frechet bounds:

P(ξ̂ = n̂) = P(ξx = nx, ξy = ny) = πn̂

(

λ(x), λ(y), λ(xy)
)

=

= e−λ

min{nx,ny}
∑

n(xy)=0

[λ(x)]n(x)

n(x)!

[λ(y)]n(y)

n(y)!

[λ(xy)]n(xy)

n(xy)!
,

where n(x) = nx − n(xy), n(y) = ny − n(xy), and λ = λ(x) + λ(y) + λ(xy).
Vector of mathematical expectations Poisson two-variate distribution (Eξx, Eξy) =

(λx, λy), where λx = λ(x) + λ(xy) and λy = λ(y) + λ(xy), covariance matrix is equal to

(

λx λ(xy)
λ(xy) λy

)

,

because in the case of two dimensions λxy = λ(xy).

3.3 Poisson multivariate approximation

If amount of independent experiments n is large-scale and possibilities px = P(x) of events
x ∈ X is small (i.e. possibilities p(X), ∅ 6= X ⊆ X of generated by them terrace-events
ter(X), ∅ 6= X ⊆ X is small too) then for each collection of integer-valued numbers n̂ =
(nx, x ∈ X) ∈ [0, n]N Binomial possibilities is expressed in the rough by terms of the
Poisson multivariate distribution:

bn̂

(

n; p(X), ∅ 6= X ⊆ X
)

≈ e−n
P

X 6=∅
p(X)

∑ ∏

X 6=∅

[np(X)]n(X)

n(X)!
,

9



where summation is applied to such sets
(

n(X), ∅ 6= X ⊆ X
)

, for which n >
∑

X⊆X

n(X)

and N equations nx =
∑

x∈X

n(X), x ∈ X are true.

In the case of two dimensions, when X = {x, y}, summation is making by the one
parameter n(xy) = n({x, y}), which is changing in so-called Frechet bounds:

bn̂

(

n; p(x), p(y), p(xy)
)

≈

≈ e−n(p(x)+p(y)+p(xy))

min{nx,ny}
∑

n(xy)=0

[np(x)]n(x)

n(x)!

[np(y)]n(y)

n(y)!

[np(xy)]n(xy)

n(xy)!
,

where n(x) = nx − n(xy), n(y) = ny − n(xy).
Poisson theorem (multivariate case). Let px → 0, x ∈ X when n → ∞, and

np(X) → λ(X) for all nonempty subsets ∅ 6= X ⊆ X as that. Then for any collection of
integer-valued numbers n̂ = (nx, x ∈ X) ∈ [0, n]N (when n → ∞)

bn̂

(

n; p(X), ∅ 6= X ⊆ X
)

→ πn̂

(

λ(X), ∅ 6= X ⊆ X
)

,

where

πn̂

(

λ(X), ∅ 6= X ⊆ X
)

= e−
P

X 6=∅
λ(X)

∑

ň

∏

X 6=∅

[λ(X)]n(X)

n(X)!
,

is Poisson multivariate possibility, and summation is applied to such sets ň, for which
nx =

∑

x∈X n(X), x ∈ X.
Proof. Because when n is large while n >

∑

X⊆X
n(X) is true for any fixed n(X), X ⊆

X, then summation in formulas of Binomial

bn̂

(

n; p(X), ∅ 6= X ⊆ X
)

=
∑

ň

mň

(

n; {p(X), X ⊆ X}
)

and Poisson

πn̂

(

λ(X), ∅ 6= X ⊆ X
)

= e−
P

X 6=∅
λ(X)

∑

ň

∏

X 6=∅

[λ(X)]n(X)

n(X)!

possibilities is applied to the same sets ň, for which nx =
∑

x∈X n(X), x ∈ X.
Now we show Poisson approximation for Polynomial possibilities

mň

(

n; {p(X), X ⊆ X}
)

=
n!

∏

X⊆X

n(X)!

∏

X⊆X

[p(X)]n(X). (1)

It should be pointed out, that for any fixed n(X), X ⊆ X and sufficiently large n there are
follow equations:

m(n(∅),n(Z),{n(X),Z 6=X⊆X})

(

n; {p(X), X ⊆ X}
)

m(n(∅)+1,n(Z)−1,{n(X),Z 6=X⊆X})

(

n; {p(X), X ⊆ X}
) =

p(Z)
(

n(∅) + 1
)

n(Z)p(∅)
,

10



where Z ⊆ X. By multiplying and dividing numerator and denominator by n and in
consideration of n(∅)+1

n
≈ 1 and p(∅) ≈ 1, where ≈ signify approximate equality with

precision up to n−1, we obtain

p(Z)
(

n(∅) + 1
)

n(Z)p(∅)

n

n
=

np(Z)

n(Z)
·
n(∅) + 1

n
·

1

p(∅)
≈

np(Z)

n(Z)
.

By the data of the theorem np(Z) → λ(Z), therefore

m(n(∅),n(Z),{n(X),Z 6=X⊆X})

(

n; {p(X), X ⊆ X}
)

m(n(∅)+1,n(Z)−1,{n(X),Z 6=X⊆X})

(

n; {p(X), X ⊆ X}
) ≈

λ(Z)

n(Z)
(2)

When n(X) = 0, ∅ 6= X ⊆ X, then

m(n(∅),0,...,0)

(

n; {p(X), X ⊆ X}
)

= [p(∅)]n =

(

1 −
∑

X⊆X

λ(X)

n

)n

=

(

1 −
λ

n

)n

,

where λ =
∑

X⊆X
λ(X). After finding the logarithm of both parts of the equation and

factorizing into Maclaurin series6 we have

ln
[

m(n(∅),0,...,0)

(

n; {p(X), X ⊆ X}
)]

= n · ln

(

1 −
λ

n

)

= −λ −
λ2

2n
− . . .

When n is large we conclude that

m(n(∅),0,...,0)

(

n; {p(X), X ⊆ X}
)

≈ e−λ. (3)

By the sequentially applying equation (2) to approximation (3) we come to

m(n(∅),{n(X),X⊆X})

(

n; {p(X), X ⊆ X}
)

≈ e−λ
∏

∅6=X⊆X

[λ(X)]n(X)

n(X)!
,

i.e. Poisson approximation of the Polynomial possibility (1), from where the assertion of
the theorem follows directly.

4 Conclusion

The multivariate generalizations of Binomial and Poisson distribution offered in the paper
allow to consider any structure of dependences of the fixed set of events in sequence of
independent multivariate tests and include as very special variant for the Polynomial dis-
tribution long time known in probability theory. Offered multivariate discrete distributions
pay increase in set of parameters for this unique opportunity.

6 ln(1 + x) =

∞
∑

k=1

(−1)k−1
xk

k
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