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Abstract 

Gale and Shapley (1962) proposed the deferred-acceptance algorithm for 

matching (i) college applicants and colleges and (ii) men and women.  In the case of the 

latter, it produces either one or two stable matches whereby no man and woman would 

prefer to be matched with each other rather than with their present partners.  But stable 

matches can give one or both players in a pair their worst match, whereas the minimax 

algorithm that we propose, which finds all assignments that minimize the maximum rank 

of players in matches, avoids such assignments.  Although minimax matches may not be 

stable, at least one is always Pareto-optimal: No other matching is at least as good for all 

the players and better for one or more.  If there are multiple minimax matches, we 

propose criteria for choosing the most desirable among them and also discuss the settings 

in which minimax matches seem more compelling than deferred-acceptance matches 

when they differ.  Finally, we calculate the probability that minimax matches differ from 

deferred-acceptance matches in a simple case. 
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Two-Sided Matchings: An Algorithm for Ensuring  

They Are Minimax and Pareto-Optimal 

 

1.  Introduction 

Lloyd S. Shapley and Alvin E. Roth shared the 2012 Nobel Prize in Economic 

Sciences for developing (Shapley), and extending and applying (Roth), the Gale-Shapley 

(1962) deferred-acceptance algorithm for matching people or other items into stable 

pairings.  In their 1962 paper, Gale and Shapley applied their algorithm to the matching 

of (i) college applicants and colleges and (ii) men and women. We focus on the latter in 

this paper, but we mention other applications later.    

In section 2, we illustrate the deferred-acceptance algorithm with a simple 

example, and in section 3 we discuss desirable properties of matchings.  In section 4 we 

present the minimax algorithm, a new matching algorithm that minimizes the maximum 

rank of players in all pairings.   

We show that a deferred-acceptance is not always minimax.  In fact, the algorithm 

may produce matchings that are worst for one or both members of a pairing, even though 

there exist matchings in which no player suffers from such an outcome.  

By contrast, the minimax algorithm tends to produce more balanced matchings, but 

they may not be stable—a man and a woman who are matched with different partners 

may prefer to be matched with each other.   But we show in section 5 that at least one 

minimax matching is always Pareto-optimal: No other matching is at least as good for all 

the players and better for one or more.  However, some matchings produced by the 

minimax algorithm may not be Pareto-optimal.   
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Stable matchings, in which no pair of players would prefer to switch partners and 

join each other, are a subset of the Pareto-optimal matchings.  The latter also include 

matchings in which two unmatched players prefer each other, but if they partner, at least 

one of their former partners must end up worse off.   

Whether the stable matchings produced by the deferred-acceptance algorithm are 

the same or different—in which case they favor either men or women—they tend to be 

one-sided, whereas minimax matchings, if different from stable matchings, are generally 

less lopsided.  And different they may be: The matchings (either one or two) produced by 

the deferred-acceptance algorithm may have no overlap with the (one or more) matchings 

produced by the minimax algorithm, as we show in section 6. 

Because there can be multiple minimax matchings, it is useful to have criteria, 

which we suggest in section 7, to distinguish those that are most desirable.  In section 8, 

we provide some statistics—showing, for example, that about 17 percent of the possible 

deferred-acceptance matchings of three and three women are not Pareto-optimal minmax 

matchings—and discuss various extensions and applications of the matchings. 

We use examples not only to illustrate the algorithms but also to prove, or illustrate 

the proofs of, several propositions that generalize the examples.  These examples, which 

provide insight into why the different results arise, highlight circumstances under which 

Pareto-optimal minimax matchings may be preferred to deferred-acceptance matchings 

when they diverge. 

2.  The Deferred-Acceptance Algorithm 

Assume that n men have strict preferences over n women (no ties), and that the 

women likewise have strict preferences over the men.  Denote the men by M = {m1, m2, 
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…, mn} and the women by W = {w1, w2, …, wn}; our assumption is that each man mi, i = 

1, 2, . . ., n, has a strict preference order over W, and that each woman wi, i = 1, 2, . . ., n, 

has a strict preference order over M.  We wish to match each man to a woman and each 

woman to a man (we assume there are no unacceptable choices).  While these and other 

assumptions of the matching problem have been relaxed over the past 50 years, they have 

no substantial impact on our main results.1  

The deferred-acceptance algorithm allows for either the men or the women to be 

the suitors and make offers to members of the opposite gender.  We assume that the men 

are the suitors in stating the algorithm below, but the algorithm could be as well be 

presented with the women as suitors, making offers to the men. 

 1.  Each man mi, i = 1, 2, . . ., n, makes an offer to the woman who is his 1st 

choice.   

2.  If a woman receives more than one offer, she holds onto the one that she most 

prefers and rejects all the others.  

3.  Each man whose offer was rejected makes an offer to the next woman in his 

preference order. 

4.  Repeat steps 2-3 until there are no further offers to be made because each man 

has been accepted by a woman to whom he made an offer.  

5.  Match each man to the woman holding his offer.   

The men will cease making offers when, for each man, there is a woman who has 

not rejected him, so there is no need for him to make an offer to a lower-ranked woman.  

                                                 
1 Good reviews of the literature on stable matchings and related topics, including both the theory and its 
applications, are given in Roth (2008), Sönmez and Ünver (2010), and Economic Sciences Prize 
Committee of the Royal Swedish Academy of Sciences (2012).  
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At the end, therefore, each man is matched to a different woman, ensuring that the 

algorithm terminates with n pairs.  It is not difficult to show that the maximum number of 

offers that men can make is n2 – 2n + 2 (Gura and Maschler, 2008, p. 26).    

A matching is stable iff there is no unmatched man and woman who would each 

prefer the other to their current partners.  Gale and Shapley proved that all deferred-

acceptance matchings are stable.  This follows from the fact that if man, mi, prefers to be 

matched to woman, wj—rather than the woman he is matched with—he would already 

have made an offer to wj.  Thus, wj must have rejected mi’s offer, which she would have 

done only if she was also holding onto an offer from a man she preferred to mi.  

Consequently, wj must be matched with a man she prefers to mi.  Therefore, after every 

woman has accepted an offer, no two players who have different partners would prefer to 

be paired with each other.  

Example 1 (n = 3) 

Suppose three men, m1, m2, and m3, strictly rank three women, w1, w2, and w3, as 

follows (ignore for now the vertical bars separating the two highest-ranked players from 

the lowest-ranked player):  

m1:  w1 > w2 | > w3           w1:  m1 > m2 | > m3 

m2:  w1 > w2 | > w3          w2:  m1 > m3 | > m2 

m3:  w2 > w3 | > w1          w3:  m2 > m3 | > m1 

We apply the deferred-acceptance algorithm—both the men-offer and women-offer 

versions—in this example. 

If men-offer, there are three rounds: 
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1.  m1 and m2 both make offers to w1, and m3 makes an offer to w2, their highest-

ranked women.  w1 rejects the offer that she less prefers (from m2, whom she ranks 2nd) 

and holds onto the other offer (from m1, whom she ranks 1st).  w2 holds onto her only 

offer (from m3, whom she ranks 2nd).  

2.  m2, who was rejected initially, makes an offer to his next-highest-ranked 

woman, w2.  Now w2 holds onto offers from both m2 and m3; because she prefers m3, she 

rejects the offer from m2. 

3.  m2, who has been rejected again, now makes an offer to w3, his next-most-

preferred woman (but his 3rd choice).  Now each woman has exactly one offer (so they 

must be from different men).  There are no more rounds, and the women accept their 

offers, producing the matching with the rankings shown below: 

(1.1) (m1, w1), (m2, w3), (m3, w2):  (1
st , 1st), (3rd, 1st), (1st, 2nd) 

Note that m2 receives his worst (3rd) choice, whereas no woman receives a choice below 

2nd.  Nevertheless, there is no case of two unmatched players who prefer each other to 

their partners, which renders this matching stable. 

If women-offer, there are two rounds: 

1.  w1 and w2 both make offers to m1, and w3 makes an offer to m2, their highest-

ranked men.  m1 rejects the offer he less prefers (from w2, whom he ranks 2nd) and holds 

onto the other offer (from w1, whom he ranks 1st).  m3 holds onto his only offer (from w2, 

whom he ranks 1st).   

2.  w2, who was rejected initially, makes an offer to her next-highest-ranked man, 

m3.  Now each man has exactly one offer.  There are no more rounds, and the men accept 
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the offers they have, resulting in the same matching, (1.1), as obtained in the men-offer 

algorithm.  However, as we will illustrate later, the men-offer and women-offer stable 

matchings may be different.2  

When the men-offer algorithm is applied in our example, m2 is forced to back 

down first to his 2nd choice (w2) in step 2, and then to his 3rd choice (w3) in step 3.  This 

enables m1 and m3 to obtain their 1st choices, because both w1 and w3 prefer them to m2.   

In the women-offer application, the offers that w1 and w3 make in step 1 to m1 and 

m2, respectively, are realized in step 2, whereas w2’s offer to m1 switches to m3 in step 2.  

Unfortunately for m2, w2, the only woman to make him an offer, is his 3rd choice, and he 

must accept her offer when the procedure ends. 

Is there another matching in which no person is stuck with a 3rd choice?  The 

answer is “yes,” which we show later, but first we define two properties of matchings.  

3.  Two Properties of Matchings 

Consider any one-to-one matching of the set of men, M, and the set of women, W.  

Define the depth of the matching to be the lowest ranking of any player for his or her 

partner.  In Example 1, the depth of the deferred-acceptance is 3, because one player, m2, 

is matched with his 3rd choice, w3.  

 It is clear that the depth of any matching must be at least 1 and at most n.  We 

define a minimax matching to be any matching of minimum depth.  In section 4, we show 

that in Example 1 there is a minimax matching of depth 2. 

                                                 
2 Gura and Maschler (2008, pp. 53-54) give a simple proof that, if the matchings given by the men-offer 
and women-offer variants of the deferred-acceptance algorithm are identical, then it is the unique stable 
matching. 
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Another property of a matching is Pareto-optimality, which we define in terms of 

Pareto-improvements: One matching is a Pareto-improvement on another if the 

matchings are not identical, and one or more players prefer their partners in the first 

matching to their partners, if different, in the second, as we illustrate with the following 

example:  

Example 2 (n = 3) 

m1:  w1 > w2  > w3          w1:  m1 > m2  > m3 

m2:  w2 > w1  > w3          w2:  m2 > m1  > m3 

m3:  w2 > w3  > w1          w3:  m3 > m1  > m2 

The matching 

(2.1) (m1, w1), (m2, w2), (m3, w3):  (1
st, 1st), (1st, 1st), (2nd, 1st) 

is a Pareto-improvement on (or Pareto-dominates) the matching 

(2.2)  (m1, w2), (m2, w1), (m3, w3):  (2
nd, 2nd), (2nd, 2nd), (2nd, 1st). 

Note that both these matchings have depth 2. 

A matching is Pareto-optimal iff there are no matchings that are Pareto-

improvements on it.  In Example 2, there can be no Pareto-improvement on (2.1), 

because any different matching must give at least one woman a lower choice than 1st, 

which every woman receives in (2.1).  Hence (2.1) is a Pareto-optimal matching, whereas 

(2.2) is not.   

4.  The Minimax Algorithm 
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As before, assume that each member of the set of men, M,  strictly ranks each 

member of the set of women, W,  and vice versa.  Our goal is to pair each man, mi, with 

one member of W and each woman, wj, with one member of M, so as to create a minimax 

matching, which minimizes the maximum ranking of any player for his or her partner.   

As we will prove shortly (Proposition 1), the application of the minimax algorithm 

yields all minimax matches.  It works by finding an assignment of, say, women to men 

with the least possible depth, and then verifying that the inverse assignment (of men to 

women) has at most this same depth.  To illustrate our algorithm, we will apply it to 

Example 1, finding a minimax matching that has depth 2, which is the only minimax 

matching.  By contrast, as we showed earlier, the unique deferred-acceptance matching 

has depth 3, giving one man (m2) his 3rd choice (w3).      

To find minimax matches, players successively descend their ranks, going from 1st 

to lower and lower choices.  Put another way, they “fall back” on their preferences, which 

is why Brams and Kilgour (2001) called a bargaining procedure based on a similar idea—

in which all players rank alternatives rather than members of the opposite gender—

“fallback bargaining.”   

In the present application, the men (it could as well be the women) descend in their 

ranks until there is at least one matching of each man to a different woman.  If this 

matching also yields a matching of the women to different men at the same level or 

above, the descent stops; otherwise it continues, stopping when both men and women can 

be matched for the first time at the same level. 

Minimax Algorithm  

Step 1.  Set k = 1.   
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Step 2.  Determine all one-to-one assignments of men to women so that each man is 

assigned to a woman he ranks at level k or above.  Apply step 3 to every such assignment.  

If there are no such assignments, increase k by 1 and repeat step 2.   

Step 3.  In every one-to-one assignment of men to women in which each man is assigned 

to a woman he ranks at level k or above, determine whether every woman is assigned to a 

man she ranks at level k or above.  Any such assignment is a minimax matching.  If every 

assignment of men to women at level k fails this condition, increase k by 1 and repeat 

step 2.  

We illustrate the algorithm with Example 1: 

Example 1  (n = 3) 

m1:  w1 > w2 | > w3           w1:  m1 > m2 | > m3 

m2:  w1 > w2 | > w3          w2:  m1 > m3 | > m2 

m3:  w2 > w3 | > w1          w3:  m2 > m3 | > m1 

At level k = 1, each man is to be matched with his most preferred woman.  Clearly, 

this is impossible, because two men, m1 and m2,  rank w1 highest.  Therefore, a level 1 

assignment is impossible and we proceed to level 2. 

At level k = 2, indicated by the vertical bars in the men’s rankings, there are two 

ways to assign different women to (m1, m2, m3): (i) (w1, w2, w3) and (ii) (w2, w1, w3).  The 

next step is to check whether these assignments constitute a level 2 or better matching of 

the women.  In fact, these two assignments give the following matching:  

(1.2)             (m1, w1), (m2, w2), (m3, w3):  (1
st, 1st), (2nd, 3rd), (2nd, 2nd)  
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(1.3)   (m1, w2), (m2, w1), (m3, w3):  (2
nd, 1st), (1st, 2nd), (2nd, 2nd) — Minimax 

Notice that for (1.2), w2 gets only her 3rd choice, so the depth of the matching, 3, is worse 

than the level for the men.  Thus, matching (1.2) is not minimax.  However, for matching 

(1.3), the level of descent of men (level 2) equals the lowest ranking of any woman, so 

matching (1,3) is minimax.  (In fact, it is the unique minimax matching.)  

It is instructive to ascertain what the matchings would be if we had started with the 

women.  At level 2, indicated by the vertical bars in the women’s ranking of the men, 

there are two possible assignments of different men to (w1, w2, w3): (i) (m1, m3, m2) and 

(ii) (m1, m2, m3).  Assignment (ii) duplicates assignment (ii) for the men, but assignment 

(i) for the women gives the following matching:  

(1.1)           (m1, w1), (m2, w3), (m3, w2):  (1
st, 1st), (3rd, 1st), (1st, 2nd) — Deferred acceptance 

Lo and behold, matching (1.1) is the deferred-acceptance matching, which is not 

minimax because it gives m2 a 3rd choice.  In conclusion, only matching (1.2) is a 

minimax matching—it minimizes the maximum rankings of both players.  

The crucial step in the minimax algorithm is the determination of whether k is 

large enough that it is possible to assign each man to one of his top k choices. Any such 

assignment is a system of distinct representatives.  Hall’s Theorem (1935) demonstrates 

that a men-offer k-level assignment exists if and only if, for every j = 1, 2, …, n, every 

subset of j women intersects the top k choices of at least j men.  To illustrate, in Example 

1 it is easy to verify that, for j = 1, 2, or 3, every subset containing j women overlaps the 

top k = 2 choices of at least j men.   
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The minimax algorithm determines the minimum value of k such that that Hall’s 

condition (sometimes called the “marriage condition”) is satisfied for the men.3  In 

addition, it generates all minimax matchings, as we next show, including at least one that 

is Pareto-optimal (as we will prove in section 5). 

Proposition 1.  The minimax algorithm produces all matchings that minimize the 

maximum rankings of the players. 

Proof.  Because there are only finitely many matchings, and each matching has a 

depth between 1 and n inclusive, there must be at least one matching with minimum 

depth.  If the level of descent, k, is less than this minimax depth, then either it will be 

impossible to assign a woman to each man, or the matching will fail to have depth at 

most k because of the preferences of the women.  When the matching first reaches the 

minimax depth, every minimax matching will have occurred, because it must be an 

assignment of women to men, and men to women, such that no player’s partner is ranked 

below the minimax depth.      

In section 6, we will give an example (Example 4), with four men and four women, that 

illustrates how step 3 of the algorithm may require a lower level of descent than that 

given in Example 1 (i.e., level 2).      

Extending Example 1 proves the following: 

Proposition 2.  If n ≥ 3, a deferred-acceptance matching need not be minimax.  

Proof.  The rankings for matching (1.3) in Example 1 (deferred-acceptance) prove 

this proposition for three players.  This example can be extended to an example with n > 

                                                 
3 It is noteworthy that a system of distinct representatives can be determined in polynomial time; see 
Hopcroft and Karp (1973). 
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3 in which, for i  > 3, mi and wi  mutually rank each other 1st, and they rank all additional 

players of the opposite gender below the three men or three women in Example 1.  The 

original three men and women, who rank each other as before, rank the additional men 

and women lower.  Then the descent of the minimax algorithm will go to level 2, as in 

Example 1, and give matchings identical to those of Example 1, with all additional 

players paired according to their subscripts (which occur at level 1).   

Similarly, the deferred-acceptance algorithm will give the same result as in 

Example 1 (i.e., assignment (1.3)) plus the same pairing of the additional men and 

women.  Thus, the deferred-acceptance assignment will differ from the minimax 

assignment in essentially the same way that it does in Example 1 and, therefore, not be 

minimax.  

5.  Pareto-Optimality and Minimax 

Gale and Shapley (1962) showed that deferred-acceptance assignments are stable; 

hence, matching (1.1) in Example 1 is stable.  Direct verification of this result follows 

from noting that, with one exception, only one man and one woman does not have his or 

her 1st-choice partner in matching (1.1).  Obviously, a player who already has his or her 

most preferred partner cannot improve on this matching by finding a different partner.   

The only remaining pair is (m2, w2), who receive—with their present partners in 

matching (1.1)—their (3rd, 2nd) choices.  If, instead, they were paired with each other, they 

would receive their (2nd, 3rd) choices.  Whereas m2 would benefit by going from a 3rd to a 

2nd choice, w2 would be hurt by going from a 2nd to a 3rd choice.   Consequently, w2 would 

not make the switch to (m2, w2), rendering matching (1.1) stable.   
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Now consider minimax matching (1.3), in which there are two men and two 

women who receive 2nd choices in the three pairings.  Pairing up m1 and w1 results in 1st 

choices for each, which they would prefer, rendering matching (1.3) unstable.  

Finally, consider matching (1.2), in which there are two men and two women who 

receive either a 2nd or a 3rd choice in the three pairings.  Forming the pair (m3, w2) gives 

the players their (1st, 2nd) choices—a one-step improvement over their present (2nd, 3rd) 

choices—rendering matching (1.2) unstable.  

In summary, of the three matchings we found for Example 1, only the deferred-

acceptance matching, (1.1), is stable.  The unique minimax matching, (1.3), is not stable, 

but it is Pareto-optimal, as is the matching (1.2), which is neither stable nor minimax..   

To show directly that matching (1.3) is Pareto-optimal, note that it is the only 

matching of the three given by the minimax algorithm that does not give any player his or 

her 3rd choice.  A matching at least as preferable for all players cannot break up a pair 

who are each other’s 1st and 2nd choices—such as (m1, w2) and (m2, w1) in Example 1—

because any other matching would be worse for the player already getting his or her first 

choice.  This observation implies that any matching at least as preferable as (1.3) must 

preserve the pairings (m1, w2) and (m2, w1).  Therefore, it must also preserve (m3, w3).  

Thus, there are no Pareto-improvements on (1.3).  

Proposition 3.  A matching that Pareto-dominates a minimax matching must also 

be minimax.  In particular, at least one minimax matching must be Pareto-optimal.   

Proof.  By Proposition 1 and the nature of the descent process, all minimax 

matchings must have the same depth.  Assume that a minimax matching is Pareto-

dominated by another matching.  Because every player is at least as well off in the 
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dominating matching, and at least one player is better off, the dominating matching must 

also be minimax.  Moreover, Pareto-dominance is irreflexive and transitive, and there are 

only a finite number of minimax matchings, so at least one of them must be Pareto-

optimal.   

It is straightforward to show that the two matchings of depth 2 we compared in Example 

2 are minimax, one of which, (2.1), Pareto dominates the other, (2.2).  This example 

proves the following:  

Proposition 4.  A minimax matching can be Pareto-dominated.   

We note also that matching (2.1) is stable, because it is the unique deferred-

acceptance matching.   If men-offer, their initial offers are accepted, because each man 

makes an offer to a different woman.  If women-offer, w1 makes an offer to m1, and w2 

and w3 both make offers to m2; m2 holds onto his offer from w2, and w3 makes a 

subsequent offer to m3.  Now the three men hold onto offers from different women, which 

yields again matching (2.1).   

Unlike the deferred-acceptance assignment in Example 1, (1.1), the deferred-

acceptance matching in (2.1) is minimax, showing that the two algorithms may produce 

the same output.  To show that matching (2.2) is not stable, observe that m1 and w1 would 

both prefer to be paired with each other than to remain with their partners in (2.2). 

6.  Disagreement between Deferred-Acceptance and Minimax Matchings 

Example 1, which we showed extends to larger examples (Proposition 2), 

demonstrated that the deferred-acceptance algorithm, while always giving a stable 

outcome, can lead to the worst choice (3rd) for one player (m2) when the other player in a 
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matching (w3) receives its best choice (1st).  But the deferred-acceptance algorithm can 

produce something even worse in a pairing:  

Proposition 5.  A stable matching can pair a man and a woman so that both 

players receive their worst choices, which may not be the case in a minimax matching.  

Proof.  Consider the following example, to which we apply the men-offer 

deferred-acceptance algorithm:  

Example 3 (n = 3) 

m1:  w1 > w2 | > w3           w1:  m3 > m2 | > m1 

m2:  w1 > w2 | > w3           w2:  m3 > m1 | > m2 

m3:  w1 > w3 | > w2           w3:  m3 > m1 | > m2 

1.  m1, m2, and m3 all make offers to w1, their highest-ranked woman.  w1 rejects the 

offers she less prefers from both m2 and m1, holding onto the offer she most prefers from 

m3, on which she defers a decision.   

2.  m1 and m2, who were rejected initially, both make offers to w2, their next-

highest-ranked woman.  w2 rejects the offer she less prefers from m2 and holds onto the 

offer she more prefers from m1.   

3.  m2, who has been rejected again, now makes an offer to w3, whom he next most 

prefers (but ranks 3rd).  Now each of the women has exactly one offer from a different.  

There are no more rounds, and the women accept the offers they have: 

(3.1)            (m1, w2), (m2, w3), (m3, w1):  (2
nd, 2nd), (3rd, 3rd), (1st, 1st),  

Thus, m2 and w3 both receive their worst choices.   
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In the women-offer algorithm, there are also three rounds, and the matching (3.1) 

also results.  Thus, the deferred-acceptance matching, obtained when either the men-offer 

or women-offer, gives both members of the pair (m2, w3) their worst choices.  

The minimax algorithm, when applied to Example 3, yields the unique minimax 

assignment, 

(3.2)            (m1, w2), (m2, w1), (m3, w3):  (2
nd, 2nd), (1st, 2nd), (2nd, 1st),  

which is different from the unique deferred-acceptance matching, (3.1).  Moreover, no 

player receives his or her worst choice in (3.2). 

Example 3 can be embedded in an example with n > 3 in which the same 

phenomenon occurs: The unique stable matching contains a worst-worst pair, whereas no 

player receives his or her worst choice in a minimax matching.  To illustrate, the 

preferences for n = 6 are given by 

m1       4 > 5 > 6 > 1 > 2 > 3  w1        4 > 5 > 6 > 3 > 2 > 1 

m2 4 > 5 > 6 > 1 > 2 > 3  w2 4 > 5 > 6 > 3 > 1 > 2 

m3 4 > 5 > 6 > 1 > 3 > 2  w3 4 > 5 > 6 > 3 > 1 > 2 

m4 4 > 5 > 6 > 1 > 2 > 3  w4 4 > 5 > 6 > 3 > 2 > 1 

m5 5 > 6 > 4 > 1 > 2 > 3  w5 5 > 6 > 4 > 3 > 2 > 1 

m6 6 > 4 > 5  > 1 > 2 > 3  w6 6 > 4 > 5 > 3 > 2 > 1 

where for brevity the m’s and w’s have been dropped from the orderings.   

It is easy to verify that the unique stable matching is (3.1), augmented by the pairs 

(m4, w4), (m5, w5), (m6, w6), and that (3.2), with the same augmentation, is a minimax 

matching.  Again, the deferred-acceptance algorithm, and the unique stable matching, 
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give one pair, (m2, w3), their mutually worst choices, whereas there is a minimax 

matching in which no player receives his or her worst choice.   

In Example 3, m2 and w3 end up with their worst choices (3rd) because each of them 

prefers two other players to the person he or she is matched with, but these other players 

do not prefer him or her.  Consequently, these other players do not get matched with m2 

or w3, so m2 and w3 get stuck with each other.   

Examples 1 and 3 demonstrate our next proposition: 

Proposition 6.  A deferred-acceptance matching can be different from any 

minimax matching. 

But there is not always a disjunction between the deferred-acceptance and minimax 

matchings, as we saw in the case of (2.1) in Example 2.   

Indeed, in the next section we give an example in which there are two deferred-

acceptance matchings, both of which are not only stable but also minimax.  In addition, 

there are two unstable Pareto-optimal minimax matchings.  

7.  Criteria for Selecting Preferred Minimax Matchings 

Finding all the minimax matchings in our final example shows that step 3 of the 

minimax algorithm can have bite—the first assignments produced by step 2 do not satisfy 

the check in step 3, so step 2 must be repeated with a larger value of k.  

Example 4  (n = 4) 

m1:  w2 > w4 | > w1 > w3           w1:  m2 > m1 | > m4 > m3 

m2:  w3 > w1 | > w4 > w2           w2:  m4 > m3 | > m1 > m2 
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m3:  w2 > w3 | > w1 > w4           w3:  m1 > m4 | > m2 > m3 

m4:  w4 > w1 | > w3 > w2           w4:  m2 > m1 | > m4 > m3 

We begin with the deferred-acceptance algorithm.  If men-offer, there are three 

rounds:   

1.  m1 and m3 both make offers to w2, while m2 and m4 make offers to w3 and w4, 

respectively.  Next, w2 rejects the offer from m1 (whom she ranks 3rd) and holds onto the 

offer from m3, whom she ranks 2nd.  w3 and w4 hold onto their offers.   

2.  m1 makes an offer to his next-highest-ranked woman, w4, who then rejects her 

earlier offer from m4 because she prefers m1. 

3.  m4 makes an offer to his next-highest-ranked woman, w1, who had no previous 

offer. Now each woman has exactly one offer, so they accept their offers, producing the 

matching  

(4.1)          (m1, w4), (m2, w3), (m3, w2), (m4, w1):  (2
nd, 2nd), (1st, 3rd), (1st, 2nd), (2nd, 3rd) 

If women-first, there are four rounds: 

1.  w1 and w4 both make offers to m2, while w2 and w3 make offers to m4 and m1, 

respectively.  m2 rejects the offer from w4, whom he ranks 3rd in favor of the offer from 

w1, whom he ranks 2nd.  m4 and m1 hold onto their offers.   

2.  w4 makes an offer to her next-best man, m1, who rejects his earlier offer from w3 

because he prefers w4.   

3.  w3 now makes an offer to her next-best man, m4, who rejects his earlier offer 

from w2 because he prefers w3.   
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4.  w2 now makes an offer to her next-best man, m3, who had no previous offer.  

Now each of the men has exactly one offer, so they accept their offers, producing the 

matching  

(4.2)          (m1, w4), (m2, w1), (m3, w2), (m4, w3):  (2
nd, 2nd), (2nd , 1st), (1st, 2nd), (3rd, 2nd) 

Clearly, the men do at least as well, and sometimes better, under men-offer than 

under women-offer, and vice versa for the women.  This is an instance of a general 

phenomenon: When the men-offer and the women-offer matchings differ, as they do in 

Example 4, then the former, (4.1), is the best possible stable matching for men, and the 

latter, (4.2), is the best possible stable matching for women (Roth, 2008; Sönmez and 

Ünver, 2010; Economic Sciences Prize Committee of the Royal Swedish Academy of 

Sciences, 2012).  This is why men-offer matchings are referred to as men-optimal, and 

women-offer as women-optimal (there may be other stable matchings as well).4  

Now apply the minimax algorithm to Example 4.  There are no assignments of M 

at level k = 1, but there are two assignments of (m1, m2, m3, m4) to W at level k = 2: (i) (w2, 

w1, w3, w4) and (ii) (w4, w3, w2, w1).  Assignment (ii) produces matching (4.1), the men-

optimal deferred-acceptance assignment (M): 

(4.3)      (m1, w2), (m2, w1), (m3, w3), (m4, w4):  (1
st, 3rd), (2nd, 1st), (2nd, 4th), (1st, 3rd)   

(4.1)      (m1, w4), (m2, w3), (m3, w2), (m4, w1):  (2
nd, 2nd), (1st, 3rd), (1st, 2nd), (2nd, 3rd)* — M 

Both (4.1) and (4.3) must be rejected as minimax matchings, however, because in each 

case player is matched to a partner whose rank is below kth.   

                                                 
4 Gale and Shapley (1962, p. 11) give an example with n = 3 in which the unique minimax assignment is 
different from the two deferred-acceptance assignments but, nevertheless, is stable. 
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Therefore we set k = 3, and consider all possible assignments of M = {m1, m2, m3, 

m4} to W such that each man is assigned one of his top k = 3 women.  In addition to the 

two assignments at level k = 2: (i) (w2, w1, w3, w4) and (ii) (w4, w3, w2, w1), there are six 

others: (iii) (w2, w3, w1, w4), (iv) (w2, w4, w3, w1), (v) (w2, w4, w1, w3), (vi) (w4, w1, w2, w3), 

(vii) (w1, w3, w2, w4), and (viii) (w1, w4, w2 w3).  Thus, we have the following eight 

candidates for minimax matching, including both the women-optimal (W) and men-

optimal (M) matchings:  

(4.3)       (m1, w2), (m2, w1), (m3, w3), (m4, w4):  (1
st, 3rd), (2nd, 1st), (2nd, 4th), (1st, 3rd) 

(4.1)      (m1, w4), (m2, w3), (m3, w2), (m4, w1):  (2
nd, 2nd), (1st, 3rd), (1st, 2nd), (2nd, 3rd)* — M 

(4.4)      (m1, w2), (m2, w3), (m3, w1), (m4, w4):  (1
st, 3rd), (1st, 3rd), (3rd, 4th), (1st, 3rd)   

(4.5)      (m1, w2), (m2, w4), (m3, w3), (m4, w1):  (1
st, 3rd), (3rd, 1st), (2nd, 4th), (2nd, 3rd)  

(4.6)      (m1, w2), (m2, w4), (m3, w1), (m4, w3):  (1
st, 3rd), (3rd, 1st), (3rd, 4th), (3rd, 2nd)   

(4.2)      (m1, w4), (m2, w1), (m3, w2), (m4, w3):  (2
nd, 2nd), (2nd, 1st), (1st, 2nd), (3rd, 2nd)* — W 

(4.7)      (m1, w1), (m2, w3), (m3, w2), (m4, w4):  (3
rd, 2nd), (1st, 3rd), (1st, 2nd), (1st, 3rd)*   

(4.8)      (m1, w1), (m2, w4), (m3, w2), (m4, w3):  (3
rd, 2nd), (3rd, 1st), (1st, 2nd), (3rd, 2nd)*  

We conclude that the minimax matchings for Example 4 are (4.1), (4.2), (4.7), and (4.8). 

Note that matchings (4.3), (4.4), (4.5), and (4.6) are not minimax, because in each one 

some player’s partner is his or her 4th choice.  Moreover, by Proposition 3, all four 

minimax matchings are Pareto-optimal, because none of them Pareto-dominates any 

other.  
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We observed that (4.1) and (4.3) were obtained by searching for assignments of M 

to the sets of top-2 women; similarly, (4.2) and (4.8) could have been found by searching 

for assignments of W to the top-2 men.  But note that (4.7) gives at least one 3rd choice to 

both a man and a woman, so this minimax matching could not have been found using a 

short-cut procedure. 

Matchings (4.1) and (4.2), because they are deferred-acceptance matchings, are 

stable.  The other two minimax matchings are not stable: In the case of matching (4.7), if 

m1 and w4 formed a pair, they would get their (2nd, 2nd) choices compared with their 

present (3rd, 3rd) choices; in the case of matching (4.8), if m2 and w1 formed a pair, they 

would get their (2nd, 1st) choices compared with their present (3rd, 2nd) choices. 

 The four minimax assignments give varying numbers of 3rd choices to one or both 

players; they can be ranked from best to worst as follows:  

1.  One 3rd choice to one gender: (4.2) 

2.  Two 3rd choices to one gender: (4.1) 

3.  One 3rd choice to one gender, and two 3rd choices to the other gender: (4.7) 

4.  Three 3rd choices to one gender: (4.8) 

This ranking is based on a (i) primary criterion of minimizing the total number of low 

choices of players, and a (ii) secondary criterion that the low choices be split as equally 

as possible between the genders.  We have applied these criteria lexicographically, so the 

primary criterion gives a ranking based on the number of 3rd choices, and the secondary 

criterion distinguishes ranks (3) and (4), giving priority to (3) over (4).   

The rationale of the primary criterion is that a preferred minimax assignment 

should minimize the total number of low choices (3rd in Example 4) that players suffer 
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(from one to three in Example 4)—offering relief, insofar as possible, to the worst-off 

players—which is a criterion championed by Rawls (1971).5  But if two assignments give 

the same number of low choices, the one that splits them between the genders is better 

than one that does not.6  

Low choices are not only bad for a player who is paired with his of her 

unappealing partner, but the partner may also be unhappy that he or she is ranked low 

(should this information be revealed).  If one prizes symmetry, mutually low choices of 

(3rd, 3rd), given by the deferred-acceptance algorithm in Example 3, might actually be 

better than the (3rd, 1st) and (3rd, 1st) choices in Examples 1 and 4.   

On the other hand, the minimax matchings in Examples 1 and 3 give the players, at 

worst, a 2nd choice, which is presumably less ego-damaging than the 3rd choices given by 

the deferred-acceptance assignments in these examples.  In general, minimax matchings 

even out, at the highest level attainable, the rankings of players for each other. 

This is not always true of matchings that minimize the sum of player ranks, which 

is what Gusfield and Irving (1989, pp. 128-129) call “egalitarian matches.”  To be sure, 

the sums for the minimax matchings in Example 2 and 3, and the most preferred minimax 

matching in Example 4, (4.2), are the smallest sums for matchings in these examples.  

But in Example 1, the deferred-acceptance matching, (1.1), has the smallest sum 

(9), whereas the minimax matching, (1.3), has sum 10.  However, (1.1) gives a pairing of 

                                                 
5 Boudreau and Knoblauch (2013) also analyze Rawlsian-optimal matchings, focusing on their social-
welfare implications.  They show that players may obtain lower social welfare from stable allocations than 
from unstable ones, especially when their preferences are correlated, which is what they call the “price of 
stability.”  To minimize this price, our minimax algorithm ensures that as few players as possible—
individuals as well as pairs—suffer poor matchings. 
6 It is worth pointing out that, in Example 4, the women-optimal deferred-acceptance matching, (4.2), ranks 
higher than the men-optimal one, (4.1), because it inflicts the players with fewer 3rd choices (one versus 
two).  Thus, if one must choose between these two stable matchings according to our criteria, the women-
optimal one is more desirable. 
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(3rd, 1st) choices, whereas minimax matching (1.3) gives all pairs, at worst, 2nd choices.  

Because it precludes worst choices, the minimax matching in Example 1 seems to us 

more egalitarian than the deferred-acceptance matching, even though the minimax 

matching does not minimize the rank sum.7  

8.  Statistics and Related Results 

In the simple case of three men and three women, fix the preferences of, say, m1, 

and consider the (6!)5 = 7,776 possible preference rankings of the other two men and the 

three women.8  All have either one or two deferred-acceptance matchings; 6,488 of these 

rankings yield at least one deferred-acceptance matching which is also minimax (83.4 

percent).  

This leaves 7,776 – 6,488 = 1,288 (16.6 percent) of the preference rankings in 

which the minimax matchings differ from the deferred-acceptance matchings.  Of these, 

1,008 (78.2 percent) have no stable minimax matching, though by Proposition 2 there 

must be at least one Pareto-optimal minimax matching.  These constitute 12.9 percent of 

all rankings.  In our view, these Pareto-optimal minimax matchings, even though they are 

not stable, deserve consideration as desirable matchings, as do stable minimax matchings 

that are not deferred-acceptance matchings (3.6 percent).   

We conjecture that the proportion of minimax assignments that are not deferred-

acceptance assignments increases rapidly with the number of players, approaching 1 as 

                                                 
7 Knuth (1997, pp. 50-51) reports that Stan Selkow proposed an algorithm which starts from the men-
optimal and the women-optimal stable matches and progressively shifts them toward those that reduce the 
distance of the most unhappy player from his or her most preferred stable match.  Gusfield and Irving (pp. 
135-143) propose a similar approach with “parametric stable marriages.”  But these algorithms are not 
applicable when the men-optimal and women-optimal matches are the same, but not minimax, as in 
Examples 1 and 3.  
8 We thank Eli H. Ross for making the computer calculations on which these statistics are based. 
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the number of players approaches infinity.  If true, this would strengthen our case that 

minimax assignments are a compelling alternative to deferred-acceptance matchings.       

There have been many extensions and generalizations of matching algorithms, 

often motivated by applications.  They include the following:  

1.  Different numbers of men and women.  If there are, say, more men than women, 

then the algorithms run until all the women are matched, leaving the remaining men 

unmatched.  (Women are advantaged in this case by there being fewer of them.)  

2.  Incomplete or nonstrict preferences, and unacceptable pairings.  If one side of 

a match does not rank all members of the other side, or if one side considers certain 

members of the other side unacceptable, these pairings will not be made.  If preferences 

are not strict, more minimax matches become possible. 

3.  College admissions and hospital residencies.  Because different colleges 

(hospitals) admit different numbers of students (residents), the algorithm must be 

adjusted.  Each college (hospital) is duplicated once for each of its openings, with each 

copy having the same preference for the students (residents).  Similarly, each student 

(resident) has the same preference for each opening of a college (hospital).  

4.  Organ matches.  Because preference is defined by medical compatibility, he 

problem of matching organ donors and recipients is symmetric. 

5.  Roommates.  Roommates rank each other rather than members of another 

group.  In this problem, a stable matching may not exist (for a simple example, see Gale 
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and Shapley, 1962, p. 12), but the minimax algorithm can still be applied and a Pareto-

optimal match found.9  

Pareto-optimal minimax matchings offer more balanced pairings than stable 

deferred-acceptance matchings that are not minimax, whether the latter are unique or 

men-optimal and women-optimal.  If the matches are administered by a central 

clearinghouse, as are the National Medical Residency Program and school-choice 

matching programs in Boston and New York City (Roth 2008; Sönmex and Ünver, 

2011), minimax matchings that are Pareto-optimal will be difficult to manipulate.10   

But in a smaller setting—in which, for example, a man and a woman might 

discover that they were matched with inferior choices—it may be better to preserve 

stability by using the deferred-acceptance algorithm.  In larger and more anonymous 

settings, however, the minimax algorithm, by closing the distance in matched choices, is 

appealing. 

Even when the deferred-acceptance algorithm produces only one stable matching, 

it may give one or both players in a pair a worst choice when a minimax matching does 

not (as in Examples 1 and 3).  If there are multiple minimax matchings, the primary and 

secondary criteria we suggested provide a guide for selecting more balanced matches.      

That politics is the art of compromise is a cliché, but in the matching of people 

(men and women), people and institutions (colleges, hospitals), or people and the organs 

that they need (e.g., kidneys), compromises that avoid lopsided matches are desirable.  In 

                                                 
9 When, as in the roommates problem, each player ranks every other player, Brams, Jones, and Kilgour 
(2005) define “stable” and “semi-stable” coalitions, which are not restricted to pairs but may contain any 
number up to, and including, all players.   
10 Much research, using game theory, complexity theory, and optimization methods, has been applied to 
strategic questions, which are discussed in several of the aforementioned references. 
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our opinion, the minimax algorithm facilitates the search for such compromises, turning 

an art into more of a science.   
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