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ESSENTIAL EQUILIBRIA OF LARGE GAMES

SOFIA CORREA AND JUAN PABLO TORRES-MARTÍNEZ

Abstract. We characterize essential stability of Cournot-Nash equilibria for generalized games

with a continuum of players. As application, we rationalize the active participation of politically

engaged individuals as the unique essential equilibrium in an electoral game with a continuum of

Cournot-Nash equilibria.
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1. Introduction

In this study we focus on essential stability of Cournot-Nash equilibria for large generalized

games, analyzing how equilibrium allocations change when some characteristics of the game are

perturbed. We allow for any kind of perturbation, provided that it can be defined through a

continuous parametrization over a complete metric space of parameters.

In large generalized games, strategy profiles may affect players’ objective functions and admissible

strategies. There is a continuum set of non-atomic players, and a finite number of atomic players.

Atomic players’ strategies may directly affect decisions of other individuals, while decisions of non-

atomic players impact others participants only through aggregate information. Indeed, strategy

profiles of non-atomic players are codified and aggregated, generating messages to other participants

to the game. Under mild conditions on the characteristics of the generalized game, pure strategy

Cournot-Nash equilibrium always exists (cf. Balder (1999, 2002), Riascos and Torres-Mart́ınez

(2012), Carmona and Podczeck (2013)).

In this context, it is natural to ask how equilibrium strategies of atomic players and equilibrium

messages induced by decisions of non-atomic players—the pieces of information that fully determine

the strategic behavior of players—change when the characteristics of the generalized game are per-

turbed. The approach is on essential stability: under which conditions Cournot-Nash equilibria of

a large game can be approximated by equilibria of perturbed games.
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We depart our analysis of essential stability assuming that games are continuous1 and any char-

acteristic can be perturbed, i.e., objective functions, action sets or correspondences of admissible

strategies. In this context, our first result ensures that for a dense residual subset of the space of

generalized games, messages and atomic players’ strategies associated to Cournot-Nash equilibria

are stable to perturbations (Theorem 1).2 Also, uniqueness of equilibrium messages and actions

for atomic players is a sufficient condition for stability. We analyze stability of subsets of equilib-

rium messages and actions, obtaining results analogous to those ensured in the literature for convex

games with finitely many players: every generalized game have essential subsets of Cournot-Nash

equilibria (Theorem 2).

Stability results above are extended to allow for specific perturbations, that we capture through

parametrizations of the set of generalized games. We prove that, if the set of parameters constitutes

a complete metric space and the mapping associating parameters with large generalized games is

continuous, then stability results previously described still holds (Theorem 3) and essential sets are

stable too (Theorem 4). As byproduct, we obtain stability results for convex continuous generalized

games with finitely many players, extending the literature to enable a great variety of admissible

perturbations and dependence of admissible strategies on other players actions (cf. Wu and Jian

(1962), Jiang (1963), Yu (1999), Yu, Yang and Xiang (2005), Zhou, Yu and Xiang (2007), Yu

(2009)).

After that, we extend our analysis to allow for discontinuities on objective functions and cor-

respondences of admissible strategies. To guarantee equilibrium existence, we follow the results

of Carmona and Podczeck (2013), who recently generalize the model of Balder (2002) to the dis-

continuous case. We concentrate in the case of large generalized games with upper semicontinuous

payoff functions and upper hemicontinuous correspondences of admissible strategies. In this context,

we prove that the collection of generalized payoff secure large games (cf. Carmona and Podczeck

(2013, Definition 4)) is a complete metric space. Thus, when perturbations on payoff functions

can be captured through continuous parametrization defined on complete metric space of param-

eters, Cournot-Nash equilibria are generically essential and any large game have essential subsets

of equilibria that are stable (Theorem 5). Since the model captures finite-player convex games as

a particular case, our findings about stability of discontinuous games complements the previous

results obtained by Yu(1999), Carbonell-Nicolau (2010), and Scalzo (2012).

To obtain our results about essential stability, regardless of whether the game is continuous or

discontinuous, we prove that the compact-valued correspondence that associates generalized games

with sets of equilibrium messages-actions, referred as Cournot-Nash correspondence, has closed

graph. To guarantee this property, we use the fact that the set of non-atomic players has finite

measure and their strategies are transformed into finite-dimensional codes (which are integrated to

obtain messages). Indeed, under these conditions, we can ensure the closed graph property of the

Cournot-Nash correspondence by applying the multidimensional Fatou’s Lemma (cf. Hildenbrand

(1974, Lemma 3, page 69)).

1That is, for every player, objective functions and correspondences of admissible strategies are continuous.
2A subset of a metric space is residual if it contains the intersection of a countable family of dense and open sets.
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Essential stability of equilibrium messages and atomic player actions have relevant implications in

applied game theory. Our results ensure that in models based in large generalized games, small errors

in the estimation or calibration of some parameters does not necessarily affect player’s decisions.

In addition, essential stability can also be used as a refinement criteria in the presence of multiple

equilibria. We illustrate this last possibility through an electoral games with the aim to give a

rationale for electoral participation of politically engaged individuals.

The rest of the paper is organized as follows: Section 2 is devoted to discuss the related literature.

In Section 3 we describe the space of large continuous generalized games. In Section 4 and 5 we

analyze essential stability properties of Cournot-Nash equilibria. In Section 6 we apply our results

to an electoral game. In Section 7 we extend our model to include discontinuous games. The proofs

of our results are given in the Appendix.

2. Related Literature

The concept of essential stability has its origins in the mathematical analysis literature, where it

was introduced as a natural property of fixed points of functions and correspondences. In a seminal

paper, Fort (1950) introduces the concept of essential fixed point of a continuous function: a fixed

point is essential if it can be approximated by fixed points of functions close to the original one. In

addition, a continuous function is essential if it has only essential fixed points. Considering the set

of continuous functions from a compact metric space to itself, Fort (1950) ensures that the set of

essential functions is dense. He also proves that continuous functions that have only one fixed point

are essential. These concepts and properties have natural extensions to multivalued mappings,

as shown by Jiang (1962). However, not all mappings are essential and, therefore, it is natural

to analyze the stability of subsets of fixed points. With this aim, Kinoshita (1952) introduces the

concept of essential component of the set of fixed points of a function: a maximal connected set that is

stable to perturbations on the characteristics of the function. He proves that any continuous mapping

has at least one essential component. Jiang (1963) and Yu and Yang (2004) extend these results

to multivalued mappings. They prove that compact-valued upper hemicontinuous correspondences

have at least one essential component, although fixed points of these correspondences may not be

essential. These results are complemented by Yu, Yang, and Xiang (2005) who also analyze how

essential components change when mappings are perturbed.

This literature motivates the study of equilibrium stability in games. Since in every non-

cooperative game the set of Nash equilibria coincides with the set of fixed points of the aggregate

best response correspondence, techniques described above allow to analyze how the equilibria of a

game change when payoffs and action sets are perturbed. In this direction, essential stability of

Nash equilibria of games with finitely many players is studied by Wu and Jiang (1962), Yu (1999),

Yu, Yang, and Xiang (2005), Zhou, Yu and Xiang (2007), Yu (2009), Carbonell-Nicolau (2010) and

Scalzo (2012).

More precisely, Wu and Jiang (1962) address stability of the set of Nash equilibria for finite

games. They ensure that any game can be approximated by a game whose equilibria are all essential.

Yu (1999) formalizes and extends these results for convex games with a finite number of players
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and infinite many strategies, analyzing perturbations in payoffs, action sets and correspondences of

admissible strategies. Jiang (1963), Yu, Yang, and Xiang (2005) and Yu (2009) analyze the existence

of essential components of the set of Nash equilibria for games and generalized games. Zhou, Yu

and Xiang (2007) study the notion of essential stability for mixed-strategy equilibria in games with

compact sets of pure strategies and finitely many players. They also compare the concept of essential

stability with strategic stability, a notion studied by Kohlberg and Mertens (1986), Hillas (1990),

and Al-Najjar (1995). Allowing for discontinuities on objective functions, Yu (1999), Carbonell-

Nicolau (2010) and Scalzo (2012) analyze the essential stability of Nash equilibria for games with

finitely many players.

As we describe in the introduction, our goal is to contribute to this growing literature by address-

ing essential stability properties of Cournot-Nash equilibria in large generalized games. However,

results of essential stability for games with finitely many players take advantage of the fact that

the equilibrium correspondence3 is closed, with non-empty and compact values. Actually, with

these properties, the equilibrium correspondence is generically lower hemicontinuous, which in turn

implies generic stability. In our case, under mild conditions on the characteristics of the general-

ized game, a pure strategy Cournot-Nash equilibrium always exists.4 However, even when a large

generalized game is continuous, the equilibrium correspondence may not have compact values (see

footnote 7). Therefore, the traditional analysis of essential stability can not be directly implemented

in our context.

Nevertheless, associated to any Cournot-Nash equilibrium of a large generalized game there is a

vector of messages (generated by strategy profiles of non-atomic players) and a vector of optimal

strategies of atomic players. These messages-actions vectors constitute all the relevant information

that a player takes into account to make optimal decisions. In addition, the correspondence that

associates games with the set of equilibrium messages and atomic players’ profiles has closed graph

and compact values (see Theorem 1 and Theorem 5). Hence, we focus our analysis on the stability

of equilibrium messages-actions to perturbations on the characteristics of the generalized game.

3. The Space G(T1, T2, (K̂, (K̂t)t∈T2
, H)) of Continuous Generalized Games

We introduce continuous large generalized games, as those studied by Riascos and Torres-Mart́ınez

(2013). Through our model some characteristics of the games are fixed and summarized by a vector

(T1, T2, (K̂, (K̂t)t∈T2
, H)). The set of non-atomic players T1 is a non-empty and compact subset

of a metric space and there is a σ-algebra A such that, for some finite measure µ, (T1,A, µ) is a

complete atomless measure space. The set of atomic players, denoted by T2, is non-empty and finite.

K̂ is a non-empty and compact metric space where non-atomic players’ strategies belongs. For any

atomic player t, let K̂t be the non-empty set of actions, that we assume to be a compact subset of

a metrizable and locally convex topological vector space. Finally, non-atomic players’ strategies are

3That is, the correspondence that associates games with the set of its pure strategy equilibria
4See Schmeidler (1973) for continuous large games, Balder (1999, 2002) and Riascos and Torres-Mart́ınez (2013)

for continuous generalized games, and Carmona and Podczeck (2013) for the discontinuous case.
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codified by a function H : T1 × K̂ → R
m, which is continuous with respect to the product topology

induced by the metrics of T1 and K̂.

In a game G((Kt,Γt, ut)t∈T1∪T2
), each t ∈ T1 has associated a closed and non-empty action space

Kt ⊆ K̂, while each t ∈ T2 has a closed, convex and non-empty action space Kt ⊆ K̂t. A strategy

profile of players in T1 is given by a function f : T1 → K̂ such that f(t) ∈ Kt, for any t ∈ T1.

Any vector a = (at; t ∈ T2) ∈
∏

t∈T2
Kt constitutes a strategy profile for players in T2. For each

i ∈ {1, 2}, let F i((Kt)t∈Ti
) be the space of strategy profiles for agents in Ti. In addition, for any

t ∈ T2, let F
2
−t((Kj)j∈T2\{t}) be the set of vectors a−t ∈ Πj∈T2\{t}Kj .

Each participant to the game considers aggregated information about strategies taken by players

in T1. Thus, if non-atomic players choose a strategy profile f ∈ F1((Kt)t∈T1
), then its relevant

characteristics are coded by the function H. Also, each player only take into account, for strategic

purposes, aggregated information about these available characteristics through a message m(f) :=∫
T1

H(t, f(t))dµ. For this reason, we concentrate our attention only on those profiles of strategies

for which messages are well defined, by considering profiles f ∈ F1((Kt)t∈T1
) such that H(·, f(·))

is a measurable function from T1 to R
m.5 Therefore, the set of messages associated with strategy

profiles of non-atomic players is given by

M((Kt)t∈T1
) =





∫

T1

H(t, f(t))dµ : f ∈ F1((Kt)t∈T1
) ∧ H(·, f(·)) is measurable



 .

Let M̂ = M((K̂)t∈T1
), F̂1 = F1((K̂)t∈T1

), F̂2 = F2((K̂t)t∈T2
), and F̂2

−t = F2((K̂s)s∈T2\{t}).

Assume that messages and strategy profiles may restrict players admissible strategies. Hence, the set

of strategies available for a player t ∈ T1 is determined by a correspondence Γt : M̂ ×F̂2
։ Kt with

non-empty and compact values, where for every (m, a) ∈ M̂ ×F̂2 the correspondence associating to

any t ∈ T1 the set Γt(m, a) is measurable. Analogously, the set of strategies that t ∈ T2 can choose

is determined by a correspondence Γt : M̂ ×F̂2
−t ։ Kt with non-empty, compact and convex values.

Given a set S, let U(S) be the collection of bounded functions u : S → R endowed with the

sup norm topology. We assume that the map U : T1 × K̂ × M̂ × F̂2 → R given by U(t, x,m, a) =

ut(x,m, a) belongs to U(T1 × K̂ × M̂ × F̂2) and the mapping associating to any t ∈ T1 the function

ut is measurable. Each atomic player t ∈ T2 has an objective function ut ∈ U(M̂ × F̂2) which is

quasi-concave in its own strategy at (we refer to this subset of U(M̂ × F̂2) as Ut(M̂ × F̂2)).

Definition 1. A Cournot-Nash equilibrium of G((Kt,Γt, ut)t∈T1∪T2
) is given by a strategy profile

(f∗, a∗) ∈ F̂1 × F̂2, with m(f∗) ∈ M̂ , such that,

(i) For almost all t ∈ T1, f
∗(t) ∈ Γt(m(f∗, a∗) and

ut(f
∗(t),m(f∗), a∗) ≥ ut(f(t),m

∗, a∗), ∀f(t) ∈ Γt(m(f∗), a∗).

(ii) For any t ∈ T2, a
∗
t ∈ Γt(m(f∗), a∗−t) and

ut(m)f∗), a∗) ≥ ut(m(f∗), at, a
∗
−t), ∀at ∈ Γt(m(f∗), a∗−t).

5That is, for any Borelian set E ⊆ Rm, {t ∈ T1 : H(t, f(t)) ∈ E} belongs to A.
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Riascos and Torres-Mart́ınez (2013, Theorem 1) ensure that, for any large generalized game

G((Kt,Γt, ut)t∈T1∪T2
) satisfying assumptions described above, the set of Cournot-Nash equilibria

CN(G) is non-empty provided that the following hypotheses hold:

(A1) For any t ∈ T1 ∪ T2, the objective function ut is continuous.

(A2) For any t ∈ T1 ∪ T2, the correspondence of admissible strategies Γt is continuous.6

Let G = G(T1, T2, (K̂, (K̂t)t∈T2
, H)) be the collection of large generalized games satisfying the

hypotheses previously described. We endow the set G with the following metric:

ρ(G1,G2) = sup
t∈T1

sup
(x,m,a)∈K̂×M̂×F̂2

|u1
t (x,m, a)− u2

t (x,m, a)|

+ sup
t∈T1

sup
(m,a)∈M̂×F̂2

dH(Γ1
t (m, a),Γ2

t (m, a)) + sup
t∈T1

dH(K1
t ,K

2
t )

+max
t∈T2

sup
(m,x,a−t)∈M̂×K̂t×F̂2

−t

|u1
t (m,x, a−t)− u2

t (m,x, a−t)|

+max
t∈T2

sup
(m,a−t)∈M̂×F̂2

−t

dH,t(Γ
1
t (m, a−t),Γ

2
t (m, a−t)) + max

t∈T2

dH,t(K
1
t ,K

2
t ),

where Gi = Gi((K
i
t ,Γ

i
t, u

i
t)t∈T1∪T2

), dH denotes the Hausdorff distance induced by the metric of K̂

over the collection of its non-empty and compact subsets, and for every t ∈ T2 the Hausdorff distance

induced by the metric of K̂t is denoted by dH,t. Since (T1, (K̂, (K̂t)t∈T2
)) are compact sets, T2 is

finite, and M̂ is a non-empty and compact set (see Riascos and Torres-Mart́ınez (2013, Theorem 1,

Step 1)), it follows that (G, ρ) is a complete metric space (see the Appendix for detailed arguments).

Our main objective is the study of stability properties of Cournot-Nash equilibria for a generalized

game G((Kt,Γt, ut)t∈T1∪T2
) when parameters (Kt,Γt, ut)t∈T1∪T2

change. Note that, the correspon-

dence that associates the parameters that define the generalized game with the set of Cournot-Nash

equilibria is not necessarily compact valued,7 a property that was required by the previous litera-

ture of essential stability in games with finitely many players. However, given any Cournot-Nash

equilibrium (f∗, a∗) ∈ CN(G), the pair (m(f∗), a∗) contains all the information that players require

6Continuity of correspondences (Γt)t∈T1
requires that, for every t ∈ T1, Γt : M̂ × F̂2

։ Kt be both upper

hemicontinuous and lower hemicontinuous. Upper hemicontinuity is satisfied at (m,a) ∈ M̂ × F̂2 when for any

open set A ⊆ Kt such that Γt(m,a) ⊆ A, there exists an open set U ⊆ M̂ × F̂2 such that Γt(m′, a′) ⊆ A for

every (m′, a′) ∈ U . Lower hemicontinuity is satisfied at (m,a) ∈ M̂ × F̂2 when for any open set A ⊆ Kt such that

Γt(m,a) ∩ A 6= ∅, there exists an open set U ⊆ M̂ × F̂2 such that Γt(m′, a′) ∩ A 6= ∅ for every (m′, a′) ∈ U . Same

definitions apply for the correspondences of admissible strategies associated to atomic players (Γt)t∈T2
.

7For instance, consider an electoral game with a continuum of non-atomic players, T1 = [0, 1], which vote for a

party in {a, b}. Let xt be the action of player t ∈ T1, and assume that his objective function, ut, only takes into

account the benefits that he receives for any party {vt(a), vt(b)} weighted by the support that each party has in the

population, i.e. ut ≡ vt(a)µ({s ∈ T1 : xs = a}) + vt(b)(1 − µ({s ∈ T1 : xs = a})), where µ denotes the Lebesgue

measure in [0, 1]. That is, the utility level of a player t ∈ T1 in unaffected by his own action and, therefore, any

measurable profile x : [0, 1] → {a, b} constitutes a Nash equilibrium of the game. Hence, the set of Nash equilibria

is not compact. However, if we consider that each player receives as a message the support that party a has in the

population, m = µ({s ∈ T1 : xs = a}), then the set of equilibrium messages is equal to [0, 1], which is a compact set.
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to take their decisions. Thus, we can focus our analysis of stability in the effects that perturbations

on the characteristics of a game have on messages and strategies of atomic players.8

Definition 2. The Cournot-Nash correspondence of G(T1, T2, (K̂, (K̂t)t∈T2
, H)) is given by the

multivalued function Λ : G ։ M̂ × F̂2 that associates to any G ∈ G the set of messages and actions

(m∗, a∗) ∈ M̂ × F̂2 such that, for some f∗ ∈ F̂1, we have m∗ = m(f∗) and (f∗, a∗) ∈ CN(G).

4. Essential Stability of Equilibria in G(T1, T2, (K̂, (K̂t)t∈T2
, H))

We analyze how the set of Cournot-Nash equilibria of a generalized game changes when the

parameters that define the game are modified. Our analysis is based on the concept of essential

stability , that was introduced in the literature by Fort (1950), for single valued mappings, and by

Jiang (1962), for the case of correspondences.

Definition 3. Let G
′ ⊆ G(T1, T2, (K̂, (K̂t)t∈T2

, H)). Given a large generalized game G0 ∈ G
′,

(f∗, a∗) ∈ CN(G0) is an essential equilibrium of G0 with respect to G
′ when, for any open set

O ⊂ M̂ × F̂2 such that (m(f∗), a∗) ∈ O, there exists ǫ > 0 such that Λ(G) ∩O 6= ∅, for any G ∈ G
′

that satisfies ρ(G0,G) < ǫ. A generalized game G0 is essential with respect to G
′ if its Cournot-Nash

equilibria are essential with respect to G
′.

Hence, a large generalized game G0 ∈ G
′ is essential with respect to G

′ ⊆ G if and only if messages

and atomic players strategies associated to a Cournot-Nash equilibrium of G0 can be approximated

by equilibrium messages and strategies of generalized games in G
′ close to it. Note that, if G0 is

essential with respect to G
′, then it is essential with respect to any non-empty set G

′′ ⊆ G
′ that

contains it. Unfortunately, as the following example shows, not all games in G are essential.

Example. Suppose that T1 = [0, 1], T2 = {α}, K̂ = {0, 1}, K̂α = [0, 1]. Consider a generalized

game G where for each t ∈ T1, (Kt,Γt) ≡ (K̂, K̂), (Kα,Γα) ≡ (K̂α, K̂α), and H(·, x) ≡ x. In

addition, uα(m,x) = −‖m− x‖2 and, for every t ∈ T1, (ut(0,m, aα), ut(1,m, aα)) = (0.5, 0.5).

Then, there is a continuum of Cournot-Nash equilibria and Λ(G) = {(λ, λ) ∈ R
2 : λ ∈ [0, 1]}.

On the other hand, given ǫ > 0, let Gǫ be the generalized game obtaining from G by changing the

objective functions of non-atomic players to (uǫ
t(0,m, aα), u

ǫ
t(1,m, aα)) = (0.5(1 + ǫ), 0.5), for any

t ∈ T1. It follows that Gǫ has only one Cournot-Nash equilibrium and Λ(Gǫ) = {(0, 0)}. Since ǫ is

arbitrary and ρ(G,Gǫ) < ǫ, we conclude that G is not essential with respect to G. ✷

Theorem 1. Let G
′ be a closed subset of G(T1, T2, (K̂, (K̂t)t∈T2

, H)). Then, the collection of

generalized games that are essential with respect to G
′ is a dense residual subset of G′.

Given G ∈ G
′, if Λ(G) is a singleton, then G is essential with respect to G

′.

8Since action profiles are coded using the function H, there may exist several Cournot-Nash equilibria that induce

a same message. Even that, this indetermination does not have real effects on players utility levels.
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The proof is given in the Appendix.

It follows that the set of generalized games that are essential with respect to a closed set G′ ⊆ G

is dense and contains the intersection of a sequence of dense and open subsets of G′. In particular,

given G0 ∈ G
′, for any ǫ > 0 there exists an essential generalized game G ∈ G

′ such that ρ(G0,G) < ǫ.

Furthermore, even unessential generalized games may have subsets of Cournot-Nash equilibria

that are stable. To formalize this property, we introduce concepts of stability for subsets of equilib-

rium points.

Definition 4. Let G
′ ⊆ G(T1, T2, (K̂, (K̂t)t∈T2

, H)). Given G0 ∈ G
′, a subset e(G0) ⊆ Λ(G0) is

essential with respect to G
′ if it is non-empty, compact, and for any open set O ⊂ M̂ × F̂2,

[e(G0) ⊂ O] =⇒ [∃ǫ > 0 : G ∈ G
′, ρ(G0,G) < ǫ =⇒ Λ(G) ∩O 6= ∅] .

An essential set e(G0) is minimal if it is a minimal element ordered by set inclusion.

A set e(G0) is a component of Λ(G0) if there is (m∗, a∗) ∈ Λ(G0) such that, e(G0) is the union of all

connected subsets of Λ(G0) containing (m∗, a∗).

This definition adapts to our framework the concepts of essential set and essential component

that were introduced by Jiang (1963) and Yu and Yang (2004) in the context of stability of fixed

point of multivalued mappings. These concepts were also addressed by Zhou, Yu, and Xiang (2007)

to study stability of mixed strategy equilibria in non-convex finite-player games.

Since the Cournot-Nash correspondence Λ is non-empty valued and upper hemicontinuous (see

the proof of Theorem 1), it follows from the topological characterization of upper hemicontinuity

that, given G
′ ⊆ G(T1, T2, (K̂, (K̂t)t∈T2

, H)), for any G ∈ G
′ the set Λ(G) is essential with respect

to G
′. Moreover, given A ⊂ B ⊆ Λ(G), if A is essential with respect to G

′ and B is compact, then

B is essential with respect to G
′ too.9 Thus, we focus the attention on the existence of minimal

essentials sets.

In this direction, given a closed set G
′ ⊆ G(T1, T2, (K̂, (K̂t)t∈T2

, H)), some results can be inferred

from Theorem 1:

(i) If for some G ∈ G
′ there is an essential Cournot-Nash equilibrium (f∗, a∗) ∈ CN(G), then

{(m(f∗), a∗)} is a minimal essential subset of Λ(G) with respect to G
′. Therefore, it follows from

Theorem 1 that there exists a dense residual collection of generalized games with at least one minimal

essential subset that is also connected.

(ii) Since for any G ∈ G
′ the set Λ(G) is compact, any component of Λ(G) is non-empty, connected and

compact.10 Hence, when (f∗, a∗) ∈ CN(G) is essential, the component associated to {(m(f∗), a∗)}

9Indeed, B is non-empty and compact. Also, for any open set O ⊂ M̂ ×F̂2 such that B ⊂ O we have that A ⊂ O.

Thus, the essentiality of A with respect to G′ ensures that B is essential too.
10By definition, components are non-empty. Since a component is the union of connected sets with at least one

common element, it is connected too. Since the closure of a connected set is connected, components of compact sets

are closed and, therefore, compact (for more details, see Berge (1997, page 98)).
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is an essential subset of Λ(G) with respect to G
′ (because it is compact and contains the essential

set {(m(f∗), a∗)}). Therefore, it follows from Theorem 1 that there exists a dense residual subset of

G
′ in which any generalized game has at least one essential component.

The following result ensures that the two properties above hold for every generalized game when

spaces of strategies are Banach.

Theorem 2. Let G′ be a closed subset of G(T1, T2, (K̂, (K̂t)t∈T2
, H)). For each G ∈ G

′ there is a

minimal essential set of Λ(G) with respect to G
′. In addition, if Λ(G) has a connected essential set

with respect to G
′, then it has an essential component.

If K̂ and K̂t, where t ∈ T2, are convex subsets of Banach spaces with metrics induced by norms,

then every minimal essential set of Λ(G) is connected.

The proof is given in the Appendix.

Suppose that K̂ and K̂t, with t ∈ T2, are convex subsets of Banach spaces with metrics induced

by norms. It follows from Theorem 2 that, given a closed set G′ ⊆ G(T1, T2, (K̂, (K̂t)t∈T2
, H)) and

G ∈ G
′, if Λ(G) is a finite set, then at least one Cournot-Nash equilibrum of G is essential with

respect to G
′.11 In particular, if G ∈ G

′ has a finite number of Cournot-Nash equilibria, then it has

at least one essential equilibrium with respect to G
′.

5. Essential Stability for Parameterizations of G(T1, T2, (K̂, (K̂t)t∈T2
, H))

In this section, we discuss stability of Cournot-Nash equilibria when only some characteristics of

the large generalized game are perturbed.

Definition 5. A parametrization T = ((X, τ), κ) of the space G(T1, T2, (K̂, (K̂t)t∈T2
, H)) is given

by a complete metric space (X, τ) of parameters and a continuous function κ : X → G that associates

parameters with generalized games.

Definition 6. Let T = ((X, τ), κ) be a parametrization of the space G.

(i) Given a parameter X0 ∈ X, a Cournot-Nash equilibrium (f∗, a∗) ∈ CN(κ(X0)) is essential with

respect to the set of parameters X under κ, if for any open set O ⊂ M̂×F̂2 such that (m(f∗), a∗) ∈ O,

there exists ǫ > 0 such that Λ(κ(X ))∩O 6= ∅, for any parameter X ∈ X that satisfies τ(X0,X ) < ǫ.

(ii) A generalized game G0 ∈ G is T -essential if there exists X0 ∈ X such that G0 = κ(X0), and all

of its Cournot-Nash equilibrium are essential with respect to X under κ.

(iii) Given a generalized game G0 ∈ G, a subset e(G0) ⊆ Λ(G0) is T -essential—or essential with

respect to X under κ—if there exists a parameter X0 ∈ X such that: (a) G0 = κ(X0); (b) e(G0) is

non-empty and compact; and (c) for any open set O ⊂ M̂ × F̂2 with e(G0) ⊂ O there exists ǫ > 0

such that, if X ∈ X and τ(X0,X ) < ǫ, then Λ(κ(X )) ∩O 6= ∅.

11Theorem 2 ensures that Λ(G) has a minimal essential set which is connected. Since Λ(G) is finite, the only

possibility is that minimal essential sets be equal to a singleton.
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Some remarks:

(i) A generalized game G is essential with respect to G
′ ⊆ G if and only if it is T -essential for any

parametrization T = ((X, τ), κ) such that, for some X ∈ X, G = κ(X ).12 As a consequence, generi-

cally for games G ∈ G and for any complete metric space (X, τ) there is at least one parametrization

T = ((X, τ), κ) such that G is T -essential. Indeed, it is sufficient to consider κ(·) = G.

(ii) Assume that T = ((X, τ), κ) satisfies X ⊆ G, τ = ρ, and κ is the immersion of X on G. Then,

for any X ∈ X, κ(X ) is T -essential if and only if X is essential with respect to X.

The following result states stability properties of Cournot-Nash equilibria when admissible per-

turbations are determined by a parametrization of G(T1, T2, (K̂, (K̂t)t∈T2
, H)). Hence, we obtain

stability results of Cournot-Nash equilibria when some but not necessarily all characteristics that

define a generalized game are allowed to change.13

Theorem 3. Given a parametrization T = ((X, τ), κ) of G(T1, T2, (K̂, (K̂t)t∈T2
, H)), the collection

of parameters X ∈ X for which κ(X ) is T -essential is a dense residual subset of X.

Furthermore, for any X ∈ X we have that:

(i) If Λ(κ(X )) is a singleton, then κ(X ) is T -essential.

(ii) There is a minimal T -essential subset of Λ(κ(X )).

(iii) Any T -essential and connected set m(X ) ⊆ Λ(κ(X )) is contained in a T -essential component.

(iv) Suppose that (X, τ) is a convex metric space contained in a Banach space, where τ is a metric

induced by a norm. Then, every minimal T -essential subset of Λ(κ(X )) is connected.

Proof. By assumptions κ : X → G is continuous and (X, τ) is a complete metric space. In addi-

tion, Theorem 1 ensures that Λ is a closed correspondence that has non-empty and compact values.

Thus, the set-valued mapping Λ ◦ κ : X ։ M̂ × F̂2 has closed graph with non-empty and compact

values. Therefore, the first two properties follow from identical arguments to those made in the

proof of Theorem 1. Furthermore, properties (ii)-(iv) can be obtained by analogous arguments of

those made in the proof of Theorem 2, changing (G, ρ,Λ) by (X, τ,Λ ◦ κ). Q.E.D.

If we fix a generalized game in which strategies chosen by non-atomic players have no effects on

other agents decisions, then equilibrium strategies associated to atomic players are Cournot-Nash

equilibria of a convex generalized game where they are the only participants. Therefore, stability

12A direct consequence of the (τ, ρ)-continuity of κ : X → G.
13For instance, when only objective functions or sets of admissible strategies can be perturbed. Or even, when there

are personalized perturbations on players characteristics. As an example, fix a game G = G((Kt,Γt, ut)t∈T1∪T2
) ∈ G.

Given i ∈ {1, 2}, let Ta
i , T

b
i , T

c
i ⊆ Ti be, respectively, the subsets of players in Ti for which we allow perturbations on

objective functions, on strategy sets, and on correspondences of admissible strategies. Let GG((T
a
i , T

b
i , T

c
i )i∈{1,2}) ⊆

G be the set of generalized games G̃ = G̃((K̃t, Γ̃t, ũt)t∈T1∪T2
) such that: (1) for any t ∈ (T1 \ Ta

1 ) ∪ (T2 \ Ta
2 ),

ũt = ut; (2) for any t ∈ (T1 \ T b
1 ) ∪ (T2 \ T b

2 ), K̃t = Kt; and (3) for any t ∈ (T1 \ T c
1 ) ∪ (T2 \ T b

2 ), Γ̃t = Γt. Since

GG((T
u
i , T s

i , T
a
i )i∈{1,2}) is ρ-closed, it follows that (GG((T

u
i , T s

i , T
a
i )i∈{1,2}), ρ) is a complete metric space. Therefore,

as the immersion ι : GG →֒ G is continuous, ((GG , ρ), ι) is a parametrization of G.
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properties of equilibria in continuous and convex generalized games with a finite number of players

can be obtained as a particular case of our results above.

We close this section with results about stability of essential sets and essential components. The

following result ensures that essential sets varies continuously when parameters are perturbed.

Given ǫ > 0 and A ⊆ M̂ × F̂2, the ǫ-neighborhood of A is defined by

B[ǫ, A] =
{
(m, a) ∈ M̂ × F̂2 : ∃ (m′, a′) ∈ A, σ̂((m, a), (m′, a′)) ≤ ǫ

}
,

where σ̂ is the metric associated to the product topology of Rm ×
∏

t∈T2
K̂t.

Definition 7. Fix a parametrization T = ((X, τ), κ) and X ∈ X.

(i) The set E ∈ Λ(κ(X )) is stable if for every ǫ > 0 there is δ > 0 such that, given X ′ ∈ X with

τ(X ,X ′) < δ, there exists a minimal T -essential set E′ ∈ Λ(κ(X ′)) for which E′ ⊆ B[ǫ, E].

(ii) The set E ∈ Λ(κ(X )) is strongly stable if for every ǫ > 0 there is δ > 0 such that, given X ′ ∈ X

with τ(X ,X ′) < δ, there exists a T -essential component E′ ∈ Λ(κ(X ′)) for which E′ ⊆ B[ǫ, E].

Note that, any set E′ ∈ Λ(κ(X )) which contains a (strongly) stable set, is (strongly) stable too.

Theorem 4. Fix a parametrization T = ((X, τ), κ) and let X ∈ X.

(i) Every T -essential subset of Λ(κ(X )) is stable.

(ii) Suppose that (X, τ) is a convex metric space contained in a Banach space, where τ is a metric

induced by a norm. Then, every T -essential component of Λ(κ(X )) is strongly stable.

The proof is given in the Appendix.

6. Essential Stability as a Rationale for Electoral Participation

In a recent paper Barlo and Carmona (2011) introduce the refinement concept of strategic equi-

libria in large games. Intuitively, a Nash equilibrium of a large game is strategic if it is the limit

of equilibria in abstract perturbed games, where players believe that have a positive impact on the

social choice.14 As an application of their results, they give a rationale to explain why electors vote

for their favorite candidate. Introducing a large game with proportional voting, they show that

there is a continuum of Cournot-Nash equilibria, but only one strategic equilibrium: that in which

electors vote by their favorite party (see Barlo and Carmona (2011, Example 2.1)).

Inspired by this result, we analyze a large generalized electoral game where electors have different

degrees of political interest. The Cournot-Nash equilibrium where only politically engaged players

14More precisely, departing from a large game G with only non-atomic players, for any ǫ > 0 define an ǫ-perturbed

game Gǫ as a game in which every player perceives that he, but no other, has a positive small impact on the

social choice. Then, following our notation, (f, a) ∈ F̂1 × F̂2 is a strategic equilibrium for a game G if there exists

{ǫk}k∈N ⊂ (0, 1) decreasing to zero, and a sequence {(fk, ak)}k∈N ⊂ F̂1 × F̂2 converging to (f, a), such that (fk, ak)

is a Cournot-Nash equilibrium for Gǫk for any k ∈ N.
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vote and support their favorite party appears as the unique T -essential equilibrium of our electoral

game, for some parametrization T .

Given a set of parties P = {1, ..., p} and a parameter µ ≥ 0, consider an electoral game

Eµ(T1, T2, (K̂, (K̂t)t∈T2
, H), (Kt,Γt, ut)t∈T1∪T2

), where for any non-atomic player t ∈ T1 := [0, 1]

the action space is given by Kt = K̂ :=
{
(x1, . . . , xp) ∈ Z

p
+ :

∑p
p=1 xp ≤ 1

}
, and strategies of other

players do not affect her admissible allocations, i.e., Γt ≡ K̂. Thus, any t ∈ T1 can either vote for a

party p ∈ P by choosing x ∈ Kt such that xp = 1, or she can not vote by choosing (x1, . . . , xp) = 0.

Each t ∈ T1 gives an importance vt(p) ≥ 0 to party p ∈ P and has a favorite party p∗t ∈ P , i.e.

vt(p
∗
t ) > vt(p) for all p ∈ P \ {p∗t }. Her objective function is given by the weighted average of the

utilities getting from individual parties, and a component that reflect the private level of satisfaction

associated to her action, that is, for any x = (x1, . . . , xp) ∈ Kt,

uµ
t (x, a) =

p∑

p=1

vt(p)ap + µ

p∑

p=1

(vt(p)− ηt)xp,

where ap is the probability that party p has to win the election, and the coefficient ηt ≥ 0 measures

the electoral engagement of player t. Indeed, when µ > 0, as greater ηt less interested in the election

would be player t. We assume that for any t ∈ T1 either ηt > vt(p
∗
t ) or ηt < vt(p

∗
t ). The set of

politically engaged players is defined as T ∗
1 = {t ∈ T1 : ηt < vt(p

∗
t )}, and we assume that it is a

subset of T1 with positive measure.

On the other hand, there is an atomic player T2 = {e} whose objective is to determine the

probabilities (a1, . . . , ap) that parties have to win. These probabilities are taken as given by non-

atomic players. Hence, K̂e = Ke = Γe = {(z1, . . . , zp) ∈ R
p
+ :

∑p
p=1 zp = 1}, and

ue(m, a) = −

p∑

p=1


ap

p∑

p′=1

mp′ −mp




2

,

where m = (m1, . . . ,mp) is the message obtained from non-atomic players votes, assuming that

H(t, x) = x. In other words, when a positive measure of players vote, probabilities are given by the

proportion of issued votes that each party receives.

In any generalized game Eµ, with µ ≥ 0, the strategy chosen by a non-atomic player does not

affect the social choice. However, the vote of a non-atomic player t ∈ T1 affects her own utility level

when she gives a private value to her actions, i.e., when µ > 0.

Consider the case where non-atomic players do not give importance to their strategies, i.e., µ = 0.

Then, given a measurable action profile x : T1 → K̂ and a strategy a ∈ K̂e, the vector





x,




∫

T1

xp(t)dt

p∑
s=1

∫

T1

xs(t)dt




p∈P


 , if

∫
T1

x(t)dt 6= 0;

(x, a) , if
∫
T1

x(t)dt = 0;

constitutes a Cournot-Nash equilibrium for E0. Thus, when electors do not give any private value

to electoral participation, there is a continuum of equilibria.
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On the other hand, for any µ > 0 the generalized game Eµ has only one Cournot-Nash equilibrium.

Indeed, any player t ∈ T ∗
1 votes for his favorite party, while any player in T1 \ T

∗
1 does not vote. As

T ∗
1 has positive measure, the equilibrium vector of probabilities is well defined. Hence, it follows

from Theorem 1 that Eµ is an essential generalized game for any µ > 0.

Since the space ([0, 1], | · |) is complete and κ : [0, 1] → G given by κ(µ) = Eµ is continuous,

T = (([0, 1], | · |), κ) is a parametrization of G, in the sense of Definition 5. Therefore, we conclude

that E0—the electoral game where players do not give any value to their private strategies—has a

unique T -essential Cournot-Nash equilibrium, the one in which only politically engaged players vote

supporting their favorite party. That is, we obtain a rationale for electoral participation of politically

engaged agents using essential stability as a refinement concept of Cournot-Nash equilibria.

Note that, under alternative perturbations we can still ensure that the only essential equilibrium

is that where only politically engaged players vote. It is sufficient that only non-atomic player’s

payoff functions suffer perturbations, and the importance level that players give to the result of the

election be small enough to maintain the same preferences over alternatives.15

7. On Essential Equilibria of Discontinuous Large Games

In this section we extend previous result of essential stability to a complete metric space that

includes discontinuous generalized games.

Definition 9. Given a large generalized game G((Kt,Γt, ut)t∈T1∪T2
) and an open set U ⊂ M̂ ×F̂2,

(ϕt)t∈T1∪T2
are selectors of strategies supported on U when, for every t ∈ T1 ∪ T2, ϕt : U ։ Kt is a

closed correspondence with non-empty values, and the following properties hold for each (m, a) ∈ U :

(i) For each (t, k) ∈ T1 × T2, ϕt(m, a)× ϕk(m, a) ⊆ Γt(m, a)× Γk(m, a−k).

(ii) The correspondence associating to each t ∈ T1 the set ϕt(m, a) is measurable.

(iii) For any t ∈ T2, ϕt(m, a) is convex.

The following definition, that generalizes the notion of continuous security of Barelli and Meneghel

(2012), was introduced by Carmona and Podczeck (2013) as a key element to ensure equilibrium

existence in discontinuous large generalized games.

Definition 10 (Continuous Security). A large generalized game G((Kt,Γt, ut)t∈T1∪T2
) satisfies

continuous security if for every (m, a) /∈ Λ(G) there is an open set U ⊂ M̂ × F̂2 containing (m, a)

such that, for some selectors of strategies supported on U , (ϕt)t∈T1∪T2
, and for some measurable

function α : T1 ∪ T2 → [−∞,+∞], the following properties hold:

(i) For every (m′, a′) ∈ U there exists a full measure set T ′
1 ⊆ T1 satisfying

15Perturbations on actions sets for non-atomic players, or on any characteristic of the atomic player, may change

the underline institutional structure, destroying the electoral dimension of the game. However, a natural perturbation

in action set is to forbid voluntary vote, by changing Kt to
{
(x1, . . . , xp) ∈ Z

p
+ :

∑p
p=1 xp = 1

}
. In this case, in any

Cournot-Nash equilibrium for E0, all voters participate on the election. In addition, the T -essential Cournot-Nash

equilibria of E0 are those in which politically engaged players vote supporting their favorite party.
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ut(x,m
′, a′) ≥ α(t), ∀t ∈ T ′

1, ∀x ∈ ϕt(m
′, a′),

ut(m
′, x, a′−t) ≥ α(t), ∀t ∈ T2, ∀x ∈ ϕt(m

′, a′).

(ii) Fix (f ′, a′) ∈ F̂1 ×F̂2 such that (m(f ′), a′) ∈ U , f ′(t) ∈ Γt(m(f ′), a′) for almost all t ∈ T1, and

a′t ∈ Γt(m(f ′), a′−t) for all t ∈ T2. Then, either there exists a positive measure set T ′
1 ⊆ T1 such that

ut(f
′(t),m(f ′), a′) < α(t), ∀t ∈ T ′

1, or there exists t ∈ T2 such that ut(m(f ′), a′t, a
′
−t) < α(t).

As was shown by Carmona and Podczeck (2013, Theorem 3 and Example 2), under the hypothesis

described on Section 3, continuous security is weaker than (A1)-(A2) and, therefore, it is satisfied

by any large generalized game in G(T1, T2, (K̂, (K̂t)t∈T2
, H)). Furthermore, Carmona and Podczeck

(2013, Theorem 1) guarantee that any large generalized game satisfying continuous security has a

pure strategy Nash equilibrium.

To characterize essential stability of equilibria, we strength continuous security to ensure that

the set of large generalized games is a complete metric space. The following concept was introduced

by Carmona and Podczeck (2013) as a natural extension to large generalized games of generalized

payoff security , a property introduced for finite-player games by Barelli and Soza (2009).

Definition 11 (Generalized Payoff Security). A large generalized game G((Kt,Γt, ut)t∈T1∪T2
)

satisfies generalized payoff security if for every (m, a) ∈ M̂ × F̂2 and ǫ > 0 there exists an open

set U ⊂ M̂ × F̂2 containing (m, a) such that, for some selectors of strategies supported on U ,

(ϕt)t∈T1∪T2
, and for some measurable function α : T1 ∪ T2 → [−∞,+∞], we have:

(i) For every (m′, a′) ∈ U there exists a full measure set T ′
1 ⊆ T1 satisfying

ut(x,m
′, a′) ≥ α(t), ∀t ∈ T ′

1, ∀x ∈ ϕt(m
′, a′),

ut(m
′, x, a′−t) ≥ α(t), ∀t ∈ T2, ∀x ∈ ϕt(m

′, a′).

(ii) For any atomic player t ∈ T2 we have that α(t) + ǫ ≥ supx∈Γt(m,a−t) ut(m,x, a−t). In addition,

the set {t ∈ T1 : α(t)+ǫ ≥ supx∈Γt(m,a) ut(x,m, a)} has a measure greater than or equal to µ(T1)−ǫ.

Definition 12. A large generalized game G((Kt,Γt, ut)t∈T1∪T2
) is upper semicontinuous when for

any t ∈ T1 ∪ T2 both ut is upper semicontinuous and Γt is upper hemicontinuous.16

Any large generalized game G((Kt,Γt, ut)t∈T1∪T2
) that is generalized payoff secure and upper

semicontinuous satisfies continuous security—see the proof in the Appendix—and, therefore, has a

non-empty set of Cournot-Nash equilibria.

Note that, allowing for perturbations on actions sets or on correspondences of admissible strate-

gies, the collection of generalized payoff secure and upper semicontinuous games is not necessarily

a ρ-closed set, as the following example illustrates.

Example. Suppose that T1 = [0, 1], K̂ = [0, 1], and H(t, x) = x. Thus, M̂ = [0, 1]. For any n ∈ N,

let Gn a large generalized game with only non-atomic players, characterized by Kn
t =

[
0, 1− 1

n

]
,

16Given a topological space X, u : X → R is upper semicontinuous if {x ∈ X : u(x) ≥ a} is open for any a ∈ R.
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Γn
t (m) =

[
0,min{m, 1− 1

n
}
]
, and un

t (f(t),m) = v(f(t)), where v : [0, 1] → {0, 1} is such that

v(x) = 1 if and only if x = 1. Hence, Gn is generalized payoff secure and upper semicontinuous.17

Let G be the large generalized game characterized by Kt = [0, 1], Γt(m) = [0,min{m, 1}], and

ut(f(t),m) = v(f(t)). It follows that ρ(Gn,G) converges to zero as n goes to infinity. However,

although G is upper semicontinuous, it is no generalized payoff secure.18

Therefore, if we consider perturbations on action sets or on admissible strategies, we can not

ensure that the collection of large generalized games that are generalized payoff secure and upper

semicontinuous is a complete metric space under the distance ρ. ✷

Taking as given actions spaces and correspondences of admissible strategies (Kt,Γt)t∈T1∪T2
,

let Gd = Gd(T1, T2, (K̂, (K̂t)t∈T2
, H), (Kt,Γt)t∈T1∪T2

) be the collection of large generalized games

G((ut)t∈T1∪T2
) that satisfies the hypothesis described in Section 3 but instead of Assumption (A1)-

(A2) are both generalized payoff secure and upper semicontinuous .

Since (Gd, ρ) is a complete metric space—see the proof in the Appendix—we can adapt our pre-

vious arguments to ensure the following properties of essential stability.

Theorem 5. Given a parametrization T = ((X, τ), κ) of Gd, the collection of parameters X ∈ X

for which κ(X ) is T -essential is a dense residual subset of X.

Furthermore, for any X ∈ X we have that:

(i) If Λ(κ(X )) is a singleton, then κ(X ) is T -essential.

(ii) There is a minimal T -essential subset of Λ(κ(X )).

(iii) Any T -essential and connected set m(X ) ⊆ Λ(κ(X )) is contained in a T -essential component.

(iv) Every T -essential subset of Λ(κ(X )) is stable.

The proof is given in the Appendix.

Our findings complement the previous results of stability for finite-player discontinuous games

(see Yu (1999), Carbonell-Nicolau (2010), and Scalzo (2012)). Indeed, our model includes finite-

player convex games as a particular case.19 Therefore, although we focus on a particular set of

hypotheses—generalized payoff security and upper semicontinuity of games—we contribute to this

growing literature analyzing essential stability for generalized games, under general types of pertur-

bations on objective functions, and including results of existence and stability for essential sets.

8. Concluding Remarks

In this paper, we use the stability theory of fixed points developed by Fort (1950) and Jiang

(1962) to address the essential stability of Cournot-Nash equilibria in large generalized games.

17For every m ∈ M̂ and ǫ > 0, generalized payoff security holds by choosing α ≡ 0.
18Taking m = 1 and ǫ ∈ (0, 1), if generalized payoff security holds for G, then Definition 11(i) implies that

α(t) ≤ 0, ∀t ∈ T1. On the other hand, Definition 11(ii) ensures that there exists a positive measure set T ′ ⊆ T1 such

that α(t) + ǫ ≥ supx∈Γt(1)
ut(x, 1), which in turn implies that ǫ ≥ 1. A contradiction.

19If non-atomic players’ strategies have no effects on other agents decisions, equilibrium actions of atomic players

are a Cournot-Nash equilibrium for the game in which they are the only participants.
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We guarantee that essential stability is a generic property in the space of continuous large gener-

alized games. Essential equilibria are still generic in a space of discontinuous large games provided

that only payoff perturbations be allowed. Furthermore, all games have essential subsets of the set

of equilibria which varies continuously.

Our results are compatible with general types of perturbations on the characteristics of general-

ized games. Indeed, stability properties still hold when (i) admissible perturbations can be captured

by a continuous parametrization of the set of generalized games; and (ii) the set of parameters

constitutes a complete metric space.

Appendix

Completeness of (G, ρ).

Given a metric space (S, d), consider the sets A(S) = {K ⊆ S : K is non-empty and compact},

and Ac(S) = {C ∈ A(S) : C is convex}. Denote by dH the Hausdorff metric induced by the metric

of S. If S is compact, then (A(S), dH) is a complete metric space. Also, when S is compact and

convex, (Ac(S), dH) is complete.20

Let {Gn}n∈N a Cauchy sequence on (G, ρ), where Gn = Gn((Kn,t,Γn,t, un,t)t∈T1∪T2
). By the

definition of G and ρ it follows that, for any non-atomic player t ∈ T1, {Kn,t}n∈N is a Cauchy

sequence on (A(K̂), dH). Also, for any atomic player s ∈ T2, {Kn,s}n∈N is a Cauchy sequence on

(Ac(K̂s), dH,s). Hence, there are sets {Kt}t∈T1∪T2
such that: (i) (Kt,Ks) ∈ A(K̂)×Ac(K̂s), ∀(t, s) ∈

T1 × T2; and (ii) for any (t, s) ∈ T1 × T2, we have that

lim
n→+∞

dH(Kn,t,Kt) = lim
n→+∞

dH,s(Kn,s,Ks) = 0.

The definition of the metric ρ ensures that, for any t ∈ T1 and (m, a) ∈ M̂ × F̂2, the sequence

{Γn,t(m, a)}n∈N ⊆ A(K̂) is Cauchy and, therefore, there exists a set Kt(m, a) ∈ A(K̂) such that

dH(Γn,t(m, a),Kt(m, a)) converges to zero as n goes to infinity. Let Γt : M̂ × F̂2
։ K̂ be the

set-valued mapping defined by Γt(m, a) = Kt(m, a). Correspondences (Γt)t∈T are continuous.21

By analogous arguments, we can ensure that for any s ∈ T2 there is a continuous correspondence

Γs : M̂ × F̂2
−s ։ K̂s such that, for each (m, a−s) ∈ M̂ × F̂2

−s both Γs(m, a−s) ∈ Ac(K̂s) and

dH,s(Γn,s(m, a−s),Γs(m, a−s)) converges to zero as n increases.

Since {Gn}n∈N is Cauchy on (G, ρ), there is a function U ∈ U(T1 × K̂ × M̂ × F̂2) such that, for

every t ∈ T1, U(t) := ut is a continuous function and {un,t}n∈N ⊆ U(K̂ × M̂ × F̂2) converges to

20Since (S, d) is a compact metric space, it follows from Aliprantis and Border (2006, Theorem 3.85-(3) and

Theorem 3.88-(2), pages 116 and 119) that A(S) is a complete metric space under the Hausdorff distance induced by

d. When the space is restricted to Ac(S), (Ac(S), dH) remains a complete metric space, since the Hausdorff limit of

a sequence of convex sets is still a convex set.
21Since M̂ × F̂2 is compact and (A(K̂), dH) is complete, for every t ∈ T1 the continuity of the correspondence Γt

follows from the completeness of the space of continuous functions ν : M̂ × F̂2 → A(K̂) under the uniform metric

induced by the Haussdorf distance. Indeed, any correspondence Γ : M̂ × F̂2
։ K̂ with non-empty and compact

values can be identified with the function BΓ : M̂ × F̂2 → A(K̂) given by BΓ(m,a) = Γ(m,a), in such form that Γ is

continuous if and only if BΓ is continuous (see Aliprantis and Border (2006, Lemma 3.97 and Theorem 17.15, pages

124 and 563)).
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it. Analogously, for any s ∈ T2, the Cauchy sequence {un,s}n∈N ⊆ Us(M̂ × F̂2) converges to some

continuous function us ∈ Us(M̂ × F̂2).

Let G = G((Kt,Γt, ut)t∈T1∪T2
). It follows from arguments above that lim

n→+∞
ρ(Gn,G) = 0. Thus,

to prove that (G, ρ) is complete, it is sufficient to guarantee that:

(i) the function U : T1 → U(K̂ × M̂ × F̂2) defined by U(t) = ut is measurable;

(ii) for any (m, a) ∈ M̂ × F̂2, the correspondence t ∈ T1 ։ Γt(m, a) is measurable.

The definition of ρ ensures that measurable functions Un : T1 → U(K̂ × M̂ × F̂2) defined by

Un(t) = un,t converge to U . Since T1 is a measurable space and U(K̂ × M̂ × F̂2) is a metric space,

U is measurable (see Aliprantis and Border (2006, Lemma 4.29, page 142)). Hence, item (i) holds.

Fix (m, a) ∈ M̂ × F̂2. Given n ∈ N, the correspondence that associates to any t ∈ T1 the set

Γn,t(m, a) is measurable. Thus, it follows form Aliprantis and Border (2006, Theorem 18.10, page

598) that the function Θn,(m,a) : T1 → A(K̂) defined by Θn,(m,a)(t) = Γn,t(m, a) is Borel measurable.

Also, the sequence {Θn,(m,a)}n∈N converges to Θ(m,a) : T1 → A(K̂), where Θ(m,a)(t) = Γt(m, a).

By Aliprantis and Border (2006, Lemma 4.29), Θ(m,a) is a Borel measurable function. Thus,

t ∈ T1 ։ Γt(m, a) is measurable (cf. Aliprantis and Border (2006, Theorem 18.10)). Q.E.D

Proof of Theorem 1.

The proof of the theorem is a direct consequence of the following steps.

Step 1. The correspondence Λ : G ։ M̂ × F̂2 is upper hemicontinuous with compact values.

Since M̂ × F̂2 is compact and non-empty, we only need to prove that Graph(Λ) is closed, where

Graph(Λ) :=
{
(G, (m, a)) ∈ G× M̂ × F̂2 : (m, a) ∈ Λ(G)

}
.

Let {(Gn, (mn, an))}n∈N ⊂ Graph(Λ) such that (Gn, (mn, an)) → (G, (m, a)) ∈ G×M̂×F̂2, where

Gn = Gn((K
n
t ,Γ

n
t , u

n
t )t∈T1∪T2

) and G = G((Kt,Γt, ut)t∈T1∪T2
). To prove that Graph(Λ) is closed it

is sufficient to ensure that (m, a) ∈ Λ(G).

Since (mn, an) ∈ Λ(Gn), for almost all t ∈ T1 there exists fn(t) ∈ Γn
t (mn, an) such that,

mn =

∫

T1

H(t, fn(t))dµ, un
t (fn(t),mn, an) = max

x∈Γn
t (mn,an)

un
t (x,mn, an),

where the function gn(·) = H(·, fn(·)) is measurable.

Claim A. For any t ∈ T1 there exists f(t) ∈ K̂ such that m =
∫
T1

H(t, f(t))dµ.

Proof. Since H is continuous, T1 is compact and, for almost all t ∈ T1, fn(t) ∈ K̂, it follows

that the sequence {gn}n∈N is uniformly integrable (see Hildenbrand (1974, page 52)). In addition,

{
∫
T1

gn(t)dµ}n∈N ⊂ R
m converges to m as n goes to infinity and, therefore, the Fatou’s Lemma in

m-dimension (see Hildenbrand (1974, page 69)) guarantees that there is g : T1 → R
m integrable

such that, 22

(1) lim
n→∞

∫
T1

gn(t)dµ =
∫
T1

g(t)dµ

22Although functions {gn}n∈N can take negative values, they are uniformly bounded from below (since H is

continuous and {K̂, T1} are compact sets). Thus, as T1 has finite Lebesgue measure, we can apply the Fatou’s

Lemma.
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(2) There exists T̃1 ⊆ T1 such that, for any t ∈ T̃1, g(t) ∈ LS(gn(t)), where LS(gn(t)) is the set

of cluster points of {gn(t)}n∈N and T1 \ T̃1 has zero measure.23

Fix t ∈ T̃1. Then there is a subsequence (gnk
(t))k converging to g(t). Since {fnk

(t)}k∈N ⊆ K̂,

taking a subsequence again if it is necessary, we can ensure that there exists f(t) ∈ K̂ such that

both fnk
(t) → f(t) and g(t) = lim

k→∞
H(t, fnk

(t)) = H(t, f(t)).

Let f : T1 → K̂ such that

f(t) ∈





{f(t)}, if t ∈ T̃1,

argmax
x∈Γt(m,a)

ut(x,m, a), if t ∈ T \ T̃1.

By definition m = lim
n→∞

mn and for any n ∈ N we have that mn =
∫
T1

gn(t)dµ, where gn(t) =

H(t, fn(t)). Then, it follows that

m = lim
n→∞

∫

T1

gn(t)dµ =

∫

T1

g(t)dµ =

∫

T1

H(t, f(t))dµ =

∫

T1

H(t, f(t))dµ,

where the last equality follows from the fact that T1 \ T̃1 has zero measure. ✷

Claim B. For any t ∈ T1, f(t) ∈ Γt(m, a).

Proof. The results follows by definition for any t ∈ T1 \ T̃1. Thus, fix t ∈ T̃1 and let {fnk
(t)}k∈N the

sequence that was obtained in the previous claim and that converges to f(t). We known that, for

any k ∈ N, fnk
(t) ∈ Γnk

t (mnk
, ank

) and, therefore,

d(f(t),Γt(m, a)) ≤ d̂(f(t), fnk
(t))+d(fnk

(t),Γnk

t (mnk
, ank

))+dH(Γnk

t (mnk
, ank

),Γt(mnk
, ank

))

+dH(Γt(mnk
, ank

),Γt(m, a))

≤ d̂(f(t), fnk
(t)) + ρ(Gnk

,G) + dH(Γt(mnk
, ank

),Γt(m, a)),

where d̂ denotes the metric of the compact metric space K̂. Since Γt is continuous, by taking the

limit as k goes to infinity, we obtain the result. ✷

Claim C. For any t ∈ T1, f(t) ∈ argmax
x∈Γt(m,a)

ut(x,m, a).

Proof. As in the previous claim, the case t ∈ T1 \ T̃1 follows from definition. With the same notation

used in the previous claim, we have that

dH(Γnk

t (mnk
, ank

),Γt(m, a)) ≤ ρ(Gnk
,G) + dH(Γt(mnk

, ank
),Γt(m, a)), ∀t ∈ T̃1.

Then Γnk

t (mnk
, ank

) −→k Γt(m, a). Since unk

t converges uniformly to ut, it follows from Yu (1999,

Lemma 2.5) and Aubin (1982, Theorem 3, page 70) that,

unk

t (fnk
(t),mnk

, ank
) = max

x∈Γ
nk
t (mnk

,ank
)
unk

t (x,mnk
, ank

) −→k max
x∈Γt(m,a)

ut(x,m, a)

On the other hand,

|unk

t (fnk
(t),mnk

, ank
)− ut(f(t),m, a)| ≤ ρ(Gnk

,G) + |ut(fnk
(t),mnk

, ank
)− ut(f(t),m, a)|.

Taking the limit as k goes to infinity, we obtain that unk

t (fnk
(t),mnk

, ank
) → ut(f(t),m, a). Hence,

it follows from Claim B that f(t) ∈ argmax
x∈Γt(m,a)

ut(x,m, a). ✷

23In other words, for any t ∈ T̃1 there is at least one subsequence of {gn(t)}n∈N converging to g(t).
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Claim D. For any t ∈ T2, at ∈ Γt(m, a−t).

Proof. For any (t, n) ∈ T2 × N, an,t ∈ Γn
t (mn, an,−t) and, therefore,

d(at,Γt(m, a−t)) ≤ d̂t(at, an,t) + d(an,t,Γ
n
t (mn, an,−t)) + dH,t(Γ

n
t (mn, an,−t),Γt(mn, an,−t))

+dH,t(Γt(mn, an,−t),Γt(m, a−t))

≤ d̂t(at, an,t) + ρ(Gn,G) + dH,t(Γt(mn, an,−t),Γt(m, a−t)),

where d̂t denotes the metric of K̂t. Taking the limit as n goes to infinity, we obtain the result. ✷

Claim E. For any t ∈ T2, at ∈ argmax
x∈Γt(m,a−t)

ut(m,x, a−t).

Proof. Following the same arguments of Claim C, we have that

dH,t(Γ
n
t (mn, an,−t),Γt(m, a−t)) ≤ ρ(Gn,G) + dH,t(Γt(mn, an,−t),Γt(m, a−t)),

which implies that Γn
t (mn, an,−t) converges to Γt(m, a−t) as n goes to infinity. Hence, Yu (1999,

Lemma 2.5) ensures that,

un
t (mn, an) = max

x∈Γn
t (mn,an,−t)

un
t (mn, x, an,−t) −→ max

x∈Γt(m,a−t)
ut(m,x, a−t).

Since lim
n→+∞

un
t (mn, an) = ut(m, a),24 it follows that at ∈ argmax

x∈Γt(m,a−t)

ut(m,x, a−t). ✷

It follows from Claims A, C and E that (m, a) ∈ Λ(G). Thus, we ensure that Λ is an upper

hemicontinuous correspondence with compact values.

Step 2. There is a dense residual set Q ⊆ G
′ where Λ is lower hemicontinuous.

As G′ is a closed subset of G, it follows that (G′, ρ) is a complete metric space and, therefore, G′ is

a Baire space. Since the correspondence Λ is non-empty, compact-valued and upper hemicontinuous,

it follows from Lemmas 5 and 6 in Carbonell-Nicolau (2010) (see also Fort (1949) and Jiang (1962))

that there exists a dense residual subset Q of G′ in which Λ is lower hemicontinuous.

Step 3. If G ∈ G
′ is a point of lower hemicontinuity of Λ, then G is essential with respect to G

′.

Fix an equilibrium (f∗, a∗) ∈ CN(G). Then, for any open set O ⊆ M̂×F̂2 such that (m(f∗), a∗) ∈

O we have Λ(G) ∩ O 6= ∅ and, therefore, the lower inverse {G′ ∈ G
′ : Λ(G′) ∩O 6= ∅} contains a

neighborhood of G in G
′. That is, there is ǫ > 0 such that, for any G′ ∈ G

′ such that ρ(G′,G) < ǫ,

we have Λ(G′) ∩O 6= ∅. Hence, all Cournot-Nash equilibrium of G are essential with respect to G
′.

It follows from Steps 2 and 3 that any generalized game in the dense residual set Q is essential.

Finally, suppose that for a game G ∈ G
′ the set Λ(G) is a singleton. Then, Λ s continuous at this

point. Using Step 3, we conclude that G is an essential generalized game with respect to G
′. Q.E.D.

Proof of Theorem 2.

24It is a direct consequence of the fact that, for any n ∈ N, we have

|un
t (mn, an)− ut(m, a)| ≤ ρ(Gn,G) + |ut(mn, an)− ut(m, a)|.
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(i) Fix G ∈ G
′. Let S be the family of essential subsets of Λ(G) with respect to G

′ ordered by set

inclusion. Since Λ is upper hemicontinuous, we have that Λ(G) ∈ S and, hence, S 6= ∅. As any

element of S is compact, any totally ordered subset of S has a lower bounded element. By Zorn’s

Lemma, S has a minimal element, and by definition of S, its minimal element is an essential set of

Λ(G) with respect to G
′.

(ii) Suppose that there is a connected essential set of Λ(G) with respect to G
′, denoted by c(G).

Since by definition c(G) is non-empty, fix (m̂, â) ∈ c(G) and consider the set Λ(m̂,â)(G) defined

as the union of all connected subsets of Λ(G) that contains (m̂, â). By definition, Λ(m̂,â)(G) is a

component of Λ(G). As the closure of a connected set is connected and Λ(G) is compact, it follows

that Λ(m̂,â)(G) is compact. Hence, the essentiality of c(G) ⊂ Λ(m̂,â)(G) with respect to G
′ ensures

that the component Λ(m̂,â)(G) is also an essential subset of Λ(G) with respect to G
′.

(iii) Suppose that K̂ and K̂t, where t ∈ T2, are convex subsets of Banach spaces with metrics

induced by the norm of the associated spaces. Fix a minimal essential set of Λ(G) with respect to

G
′, denoted by m(G). We want to prove that m(G) is connected.

By contradiction, if m(G) is not connected, then there are closed and non-empty subsets of

ΛG′(G), A1 and A2 such that A1∩A2 = ∅ and m(G) = A1∪A2. Also, there are open sets V1, V2 such

that A1 ⊂ V1, A2 ⊂ V2 and V1 ∩ V2 = ∅. Since m(G) is minimal, neither A1 nor A2 are essentials

with respect to G
′.

Fix i ∈ {1, 2}. Since Ai is not essential with respect to G
′, there exists an open set Oi such that

Ai ⊂ Oi and for all ǫ > 0 there exists Gi ∈ G
′ such that ρ(G,Gi) < ǫ and Λ(Gi) ∩ Oi = ∅. Since Ai

is compact, there exists an open set Ui such that Ai ⊂ Ui ⊂ U i ⊂ Vi ∩Oi.

Therefore, m(G) ⊂ U1∪U2 and U1∩U2 = ∅. As m(G) is essential with respect to G
′, there exists

ν > 0 such that for every G′ ∈ G
′ with ρ(G,G′) < ν, we have Λ(G′) ∩ (U1 ∪ U2) 6= ∅.

On the other hand, given i ∈ {1, 2}, as Ui ⊂ Oi, there exists G′
i ∈ G

′ such that ρ(G,G′
i) <

ν
3 and

Λ(G′
i) ∩ Ui = ∅. Let G : M̂ × F̂2

։ G
′ be the correspondence

G(m, a) = λ(m, a)G′
1 + (1− λ(m, a))G′

2, ∀(m, a) ∈ M̂ × F̂2,

where λ : M̂ × F̂2 → [0, 1] is the continuous function given by,

λ(m, a) =
d((m, a), U2)

d((m, a), U1) + d((m, a), U2)
.

Notice that, (m, a) ∈ U i if and only if G(m, a) = G′
i.

In addition, for any (m, a) ∈ M̂ × F̂2, we have that,

ρ(G(m, a),G′
1) = ρ (λ(m, a)G′

1 + (1− λ(m, a))G′
2, λ(m, a)G′

1 + (1− λ(m, a))G′
1)

≤ ρ(G′
2,G

′
1) ≤ ρ(G′

2,G) + ρ(G,G′
1) <

2ν

3
,

which implies that,

ρ(G, G(m, a)) ≤ ρ(G,G′
1) + ρ(G′

1, G(m, a)) < ν,
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and, therefore, for each (m, a) ∈ M̂ × F̂2, Λ(G(m, a)) ∩ (U1 ∪ U2) 6= ∅.25

Claim. There exists (m, a) ∈ U1 such that, (m, a) ∈ Λ(G(m, a)).

Proof. Let Ã1 ⊂ U1 be a compact, convex and non-empty set. Define Θ : Ã1 × Ã1 ։ Ã1 ×

Ã1 by Θ((m1, a1), (m2, a2)) =
(
ΦG(m1,a1)(m2, a2) ∩ Ã1

)
× {(m1, a1)}, where for every G ∈ G the

correspondence ΦG : M̂ × F̂2
։ M̂ × F̂2 is given by ΦG(m, a) =

(
ΩG(m, a), (BG

t (m, a−t))t∈T2

)
with

ΩG(m, a) =

∫

T1

H(t, BG
t (m, a))dµ;

BG
t (m, a) = argmax

xt∈Γt(m,a)

ut(xt,m, a), ∀t ∈ T1;

BG
t (m, a−t) = argmax

xt∈Γt(m,a−t)

ut(xt,m, a−t), ∀t ∈ T2.

It follows from Riascos and Torres-Mart́ınez (2013, Theorem 1) that for every game G ∈ G the

correspondence ΦG is upper hemicontinuous with non-empty, compact and convex values. Thus,

by Kakutani’s Fixed Point Theorem, the set of fixed points of ΦG is non-empty and compact.

Furthermore, (f∗, a∗) is a Cournot-Nash equilibrium of G if and only if (m∗, a∗) ∈ M̂ ×F̂2 is a fixed

point of ΦG , where m∗ =
∫
T1

H(t, f∗(t))dµ.

Therefore, if Θ1 : Ã1 × Ã1 ։ Ã1 given by Θ1((m1, a1), (m2, a2)) = ΦG(m1,a1)(m2, a2) ∩ Ã1 has

closed graph, then the correspondence Θ is upper hemicontinuous and has non-empty, compact and

convex values. Thus, applying the Kakutani’s Fixed Point Theorem we can find (m, a) ∈ Ã1 ⊂ U1

such that, (m, a) ∈ Λ(G(m, a)).

Thus, let {(zn1 , z
n
2 , (m

n, an))}n∈N ⊂ Graph(Θ1) a sequence that converges to (z̃1, z̃2, (m̃, ã)) ∈

Ã1 × Ã1 × Ã1. We want to prove that (m̃, ã) ∈ Θ1(z̃1, z̃2).

Fix t ∈ T2 and let γt : (M̂ × F̂2
−t)× Ã1 ։ K̂t the correspondence characterized by

γt((m, a−t), z) = argmax
x∈Ψ((m,a−t),z)

vt(x, (m, a−t), z),

where

Ψ((m, a−t), z) = λ(z)Γ1
t (m, a−t) + (1− λ(z))Γ2

t (m, a−t),

vt(x, (m, a−t), z) = λ(z)u1
t (m,x, a−t) + (1− λ(z))u2

t (m,x, a−t),

and, for each i ∈ {1, 2}, G′
i = G′

i((K
i
t ,Γ

i
t, u

i
t)t∈T1∪T2

).26 Since G′
1,G

′
2 ∈ G

′ and λ is continuous,

it follows that γt is upper hemicountinuous with non-empty and compact values. Therefore, the

correspondence γ : (M̂×F̂2)×Ã1 ։ Πt∈T2
K̂t given by γ((m, a), z2) =

∏
t∈T2

γt((m, a−t), z) is upper

hemicontinuous with compact and non-empty values. In particular, γ has closed graph. Therefore,

as for any n ∈ N, (zn1 , z
n
2 , a

n) ∈ Graph(γ), it follows that ã ∈ γ(z̃1, z̃2).

On the other hand, for each n ∈ N there exists fn : T1 → K̂ such that, mn =
∫
T1

H(t, fn(t))dµ

and, for any t ∈ T1, fn(t) ∈ ξt(z
n
1 , z

n
2 ) := argmax

x∈Ψ(zn
1
,zn

2
)

vt(x, z
n
1 , z

n
2 ), where we use analogous notations

25The additional assumptions about metric spaces K̂ and {K̂t}t∈T2
ensure that for any (m,a) ∈ M̂ × F̂2 both

G(m,a) is a well defined generalized game and ρ(G(m,a),G′
1) ≤ ρ(G′

2,G
′
1).

26Remember that λ(z) =
d(z,U2)

d(z,U1)+d(z,U2)
.
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to those described above. Thus, as in the case of γt, the correspondences (ξt; t ∈ T1) have closed

graph.

Since mn → m̃, analogous arguments to those made in Claim A of Theorem 1 ensure that,

applying the multidimensional Fatou’s Lemma (see Hildenbrand (1974, page 69)), there exists a

zero-measure set Ṫ1 ⊂ T1 and a function f : T1 → K̂ such that,

(i) For any t ∈ Ṫ1, f(t) ∈ ξt(z̃1, z̃2);

(ii) For any t ∈ T1 \ Ṫ1, there is a subsequence of {fn(t)}n∈N that converges to f(t);

(iii) m̃ =
∫
T1

H(t, f(t))dµ.

As for any t ∈ T1 \ Ṫ1, the correspondence ξt is closed, it follows from item (ii) above that

f(t) ∈ ξt(z̃1, z̃2). By items (i) and (iii), jointly with the fact that ã ∈ γ(z̃1, z̃2), we have that

(m̃, ã) ∈ Θ1(z̃1, z̃2). This concludes the proof of the claim. ✷

Since (m, a) ∈ U1, G(m, a) = G′
1 and, therefore, by the definition of G′

1 we have that Λ(G(m, a))∩

U1 = Λ(G′
1) ∩ U1 = ∅. A contradiction, since both (m, a) ∈ U1 and (m, a) ∈ Λ(G(m, a)). Thus, the

set m(G) is connected. Q.E.D.

Proof of Theorem 4.

This result follows from Theorem 3 and Yu, Yang and Xiang (2005, Theorems 4.1 and 4.2).

(i) It follows from the definition of stability that it suffices to guarantee that minimal essential

sets are stable. Let Λm(T ,X ) be the set of minimal T -essential subsets of Λ(κ(X )). Suppose, by

contradiction, that there is A ∈ Λm(T ,X ) and ǫ0 > 0 such that, for any δ > 0 there is X ′ ∈ X with

τ(X ,X ′) < δ and A′ ∩B[ǫ0, A]
c 6= ∅, ∀A′ ∈ Λm(T ,X ′).

Since A is T -essential, there is δ0 > 0 such that, for any X ′ ∈ X with τ(X ,X ′) < δ0 we have that

Λ(κ(X ′)) ∩ B(ǫ0, A) 6= ∅, where B(ǫ0, A) =

{
(m, a) ∈ M̂ × F̂2 : inf

(m′,a′)∈A
σ̂((m, a), (m′, a′)) < ǫ

}
.

Fix X ′ ∈ X with τ(X ,X ′) < δ0. It follows that Λ(κ(X ′)) ∩ B[ǫ0, A] is a non-empty and closed set

contained in B[ǫ0, A] and, therefore, it is not and essential subset of Λ(κ(X ′))—a direct consequence

of the property stated in the previous paragraph.

Hence, there exists ǫ1 > 0 such that, for any n ∈ N there is Xn ∈ X with τ(X ′,Xn) < δ1
n

and

B(ǫ1,Λ(κ(X
′))∩B[ǫ0, A])∩Λ(κ(Xn)) = ∅, where δ1 > 0 satisfies τ(X ′′,X ′) < δ1 =⇒ τ(X ′′,X ) < δ0.

The last property ensures that τ(X ,Xn) < δ0 for any n ∈ N, which implies that Λ(κ(Xn))∩B(ǫ0, A)

is non-empty. Take a sequence {(mn, an)}n∈N such that (mn, an) ∈ Λ(κ(Xn)) ∩ B(ǫ0, A), ∀n ∈ N.

Without loss of generality, there is (m0, a0) ∈ B[ǫ0, A] such that (mn, an) →n (m0, a0). The upper

hemicontinuity of (Λ ◦κ) ensures that (m0, a0) ∈ Λ(κ(X ′)). That is, (m0, a0) ∈ Λ(κ(X ′))∩B[ǫ0, A].

However, as for any n ∈ N, (mn, an) ∈ Λ(κ(Xn)) and B(ǫ1,Λ(κ(X
′)) ∩B[ǫ0, A]) ∩ Λ(κ(Xn)) = ∅,

it follows that (mn, an) /∈ B(ǫ1,Λ(κ(X
′)) ∩ B[ǫ0, A]), ∀n ∈ N. A contradiction, because (m0, a0) ∈

Λ(κ(X ′)) ∩B[ǫ0, A].

(ii) Since Λ(κ(X )) is a compact and locally connected metric space, it has a finite number of

connected components (see Berge (1997, Theorem 2, page 100)). Thus, there always exists π > 0
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such that, B[π,A] ∩ B[π,Λ(κ(X )) \ A] = ∅ for any A ∈ Λc(T ,X ), where Λc(T ,X ) is the set of

T -essential components of Λ(κ(X )).

Let A ∈ Λc(T ,X ). It follows from the proof of Theorem 2 (item (i)) that there is Am ∈ Λm(T ,X )

such that Am ⊆ A. By the previous item, for each ǫ > 0 there is δ1 > 0 such that, given X ′ ∈ X

with τ(X ,X ′) < δ1, there exists A′
m ∈ Λm(T ,X ′) for which A′

m ⊆ B[ǫ, Am] ⊆ B[ǫ, A]. By Theorem

3(iv), minimal essential sets are connected and, therefore, following analogous arguments to those

made in the proof of Theorem 2 we can ensure that for any X ′ ∈ X with τ(X ,X ′) < δ1 there is an

essential component A′ ∈ Λc(T ,X ′) which contains A′
m.

Since the correspondence Λ◦κ is upper hemicontinuous, there is δ2 > 0 such that for any X ′ ∈ X

with τ(X ,X ′) < δ2 we have that Λ(κ(X ′)) ⊂ B(ǫ,Λ(κ(X ))) ⊂ B[ǫ, A]
⋃
B[ǫ,Λ(κ(X )) \A].

Notice that Λ(κ(X ))\A is a compact set.27 Let δ = min{δ0, δ1} and fix X ′ ∈ X with τ(X ,X ′) < δ.

If A′∩B[ǫ, A]c 6= ∅, then A′∩B[ǫ,Λ(κ(X ))\A] 6= ∅ and A′∩B[ǫ, A] 6= ∅. In addition, when ǫ < π it

follows that B[ǫ, A]
⋂

B[ǫ,Λ(κ(X )) \ A] = ∅. Since A and Λ(κ(X )) \ A are compact sets, it follows

that B[ǫ, A] and B[ǫ,Λ(κ(X )) \A] are closed sets. Thus, we obtain a partition of the connected set

A′ into two non-empty and disjoint closed sets, A′ ∩ B[ǫ,Λ(κ(X )) \ A] and A′ ∩ B[ǫ, A], which is a

contradiction. Therefore, for any X ′ ∈ X with τ(X ,X ′) < δ we have that A′ ⊂ B[ǫ, A]. Q.E.D.

Proposition 1. Let G = G((Kt,Γt, ut)t∈T1∪T2
) be a generalized payoff secure and upper semicon-

tinuous game. Then, G satisfies continuous security.

Proof. Given (m, a) /∈ Λ(G), generalized payoff security guarantees that, for any ǫ > 0 there exists

(U ǫ, (ϕǫ
t)t∈T1∪T2

, αǫ) satisfying the requirements imposed by item (i) on Definition 10. Thus, to

guarantee that G is continuous secure, it is sufficient to prove that (U ǫ, αǫ) satisfies Definition 10(ii)

for some ǫ > 0. Suppose, by contradiction, that for any n ∈ N there is (fn, an) ∈ F̂1×F̂2 satisfying,

(a) (m(fn), an) ∈ U
1

n ,

(b) fn(t) ∈ Γt(m(fn), an) for almost all t ∈ T1,

(c) an,t ∈ Γt(m(fn), an,−t) for all t ∈ T2,

(d) for almost all t ∈ T1, ut(fn(t),m(fn), an) ≥ α
1

n (t),

(e) for any t ∈ T2, ut(m(fn), an,t, an,−t) ≥ α
1

n (t).

Since we can assume that
⋂

n U
1

n = {(m, a)}, it follows from (a) that (m(fn), an) →n (m, a).

Conditions (b)-(c) guarantee that, using analogous arguments to those made in the proof of Claim

A on Theorem 1, we can find a strategy profile f ∈ F1((Kt)t∈T1
) such that m = m(f) and, for

almost all player t ∈ T1, f(t) ∈ LS(fn(t)). In addition, as correspondences of admissible strategies

have closed graph, it follows that: (i) for almost all t ∈ T1, f(t) ∈ Γt(m(f), a); (ii) for all k ∈ T2,

ak ∈ Γk(m(f), a−k).

27Indeed, since (Λ(κ(X )) \ A) ⊂ Λ(κ(X )), it is sufficient to ensure that it is closed. Let {(mn, an)}n∈N ⊂

(Λ(κ(X )) \ A) be a sequence that converges to (m0, a0) ∈ M̂ × F̂2. For any n ∈ N, (mn, an) ∈ Λ(κ(X )) and

(mn, an) /∈ A. Thus, (m0, a0) ∈ Λ(κ(X )). Furthermore, if (m0, a0) ∈ A, then for n large enough (mn, an) ∈ B[π,A],

a contradiction with B[π,Λ(κ(X )) \A] ∩B[π,A] = ∅. Therefore, (m0, a0) ∈ Λ(κ(X )) \A.
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Hence, as (m, a) /∈ Λ(G), there exists δ > 0 such that either for a positive measure set T ′ ⊆ T1,

ut(f(t),m, a) + δ < sup
x∈Γt(m,a)

ut(x,m, a), ∀t ∈ T ′,

or for some t ∈ T2,

ut(m, at, a−t) + δ < sup
x∈Γt(m,a−t)

ut(m,x, a−t).

Since G is upper semicontinuous and (m(fn), an) →n (m, a), it follows from the definition of f that

for any n ∈ N large enough we have that either for all t in a positive measure set T ′′ ⊆ T ′,

(1) ut(fn(t),m(fn), an) + 0.5 δ < sup
x∈Γt(m,a)

ut(x,m, a),

or for some t ∈ T2,

(2) ut(m(fn), an,t, an,−t) + 0.5 δ < sup
x∈Γt(m,a−t)

ut(m,x, a−t).

On the other hand, it follows from conditions (d)-(e) above and Definition 11(ii) that for any

n ∈ N there exists T ′
n ⊆ T1 with µ(T ′

n) ≥ µ(T1)−
1
n
such that, or any t ∈ T ′

n,

ut(fn(t),m(fn), an) ≥ sup
x∈Γt(m,a)

ut(x,m, a)−
1

n
,

and for every atomic player t ∈ T2,

ut(m(fn), an,t, an,−t) ≥ sup
x∈Γt(m,a−t)

ut(m,x, a−t)−
1

n
.

Thus, limnut(fn(t),m(fn), an) ≥ supx∈Γt(m,a) ut(x,m, a) for almost all non-atomic player t ∈ T1,

and limnut(m(fn), an,t, an,−t) ≥ supx∈Γt(m,a−t) ut(m,x, a−t) for each atomic player t ∈ T2. These

properties contradict conditions (1) and (2). Q.E.D.

Completeness of (Gd, ρ).

Since (Kt,Γt)t∈T1∪T2
does not change, (Gd, ρ) can be consider as a subset of the space of bounded

functions B := U(T1 × K̂ × M̂ × F̂2) ×
∏

t∈T2
Ut(M̂ × F̂2). Note that (B, ρ) is a complete metric

space and, therefore, it is sufficient to ensure that Gd is a closed subset of B.

Fix a sequence {Gn}n∈N ⊂ Gd, with Gn = Gn((u
n
t )t∈T1∪T2

) for any n ∈ N, which converges to

G = G((ut)t∈T1∪T2
) ∈ B. We want to prove that G ∈ Gd.

Claim. G is generalized payoff secure.

Given (m, a) ∈ M̂ × F̂2 and ǫ > 0, fix (δ1, δ2) ≫ 0 such that δ1 + δ2 < ǫ. Generalized payoff

security of Gn at ((m, a), δ1) implies that there exists (Un,δ1 , (ϕn,δ1
t )t∈T1∪T2

, αn,δ1) such that, for

almost all t ∈ T1, for all k ∈ T2, and for every (m′, a′) ∈ Un,δ1 the following properties hold,

un
t (x,m

′, a′) > αn,δ1(t)− δ2, ∀x ∈ ϕn,δ1
t (m′, a′),

un
k (m

′, x, a′−t) > αn,δ1(k)− δ2, ∀x ∈ ϕn,δ1
k (m′, a′).

Thus, for n large enough, for almost all t ∈ T1, and for all k ∈ T2,

ut(x,m
′, a′) > αn,δ1(t)− 0.5 δ2, ∀x ∈ ϕn,δ1

t (m′, a′),

uk(m
′, x, a′−t) > αn,δ1(k)− 0.5 δ2, ∀x ∈ ϕn,δ1

k (m′, a′).
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Furthermore, Definition 11(ii) ensures that, for n large enough, and for all k ∈ T2,

(
αn,δ1(k)− 0.5 δ2

)
+ ǫ > sup

x∈Γt(m,a−k)

un
t (m,x, a−k) + 0.5 δ2 > sup

x∈Γt(m,a−k)

ut(m,x, a−k).

Analogously, for n large enough,

µ

{
t ∈ T1 :

(
αn,δ1(t)− 0.5 δ2

)
+ ǫ ≥ sup

x∈Γt(m,a)

ut(x,m, a)

}
≥ µ(T1)− δ1.

Since δ1 < ǫ, taking n large enough and choosing (Un,δ1 , (ϕn,δ1
t )t∈T1∪T2

, αn,δ1 − 0.5 δ2), we ensure

that G is generalized payoff secure at ((m, a), ǫ). ✷

It is a direct consequence of Carbonell-Nicolau (2010, Lemma 1, page 425) that G is upper semi-

continuous and atomic players’ objective functions (ut)t∈T2
are quasi-concave. In addition, the same

arguments made in the proof of the completeness of (G, ρ) guarantee that the map associating to

each t ∈ T1 the function ut is measurable. This concludes the proof. Q.E.D.

Proof of Theorem 5.

Since (Gd, ρ) is complete, it follows from the proofs of Theorems 1-4 that all the properties on

Theorem 5 hold provided that Λ still has a closed graph when its domain is extended to Gd.

Thus, let {(Gn, (mn, an))}n∈N ⊂ Graph(Λ) such that (Gn, (mn, an)) → (G, (m, a)) ∈ Gd×M̂×F̂2,

where Gn = Gn((u
n
t )t∈T1∪T2

) and G = G((ut)t∈T1∪T2
). We want to prove that (m, a) ∈ Λ(G).

Since (mn, an) ∈ Λ(Gn), for almost all t ∈ T1 there exists fn(t) ∈ Γt(mn, an) such that,

mn =

∫

T1

H(t, fn(t))dµ, un
t (fn(t),mn, an) = sup

x∈Γt(mn,an)

un
t (x,mn, an),

where the function gn(·) = H(·, fn(·)) is measurable. Therefore, using analogous arguments to those

made in the proof of Claim A on Theorem 1, we can find a strategy profile f ∈ F1((Kt)t∈T1
) such

that m = m(f) and, for almost all player t ∈ T1, f(t) ∈ LS(fn(t)). The closed graph property of

correspondences of admissible strategies ensures that: (i) for almost all t ∈ T1, f(t) ∈ Γt(m, a); (ii)

for all k ∈ T2, ak ∈ Γk(m, a−k).

If we suppose that (m, a) /∈ Λ(G), then as G is upper semicontinuous we can obtain, by identical

arguments to those made in the proof of Proposition 1 to ensure conditions (1)-(2), that there exists

δ > 0 such that for n large enough either for all t in a positive measure set T ′ ⊆ T ,

ut(fn(t),mn, an) + δ < sup
x∈Γt(m,a)

ut(x,m, a),

or for some t ∈ T2,

ut(mn, an,t, an,−t) + δ < sup
x∈Γt(m,a−t)

ut(m,x, a−t).

Thus, as ρ(Gn,G) →n 0,for n large enough and either for all t in a positive measure set T ′′ ⊆ T ′,

(3) un
t (fn(t),mn, an) + 0.5 δ < sup

x∈Γt(m,a)

ut(x,m, a),

or for some t ∈ T2,

(4) un
t (mn, an,t, an,−t) + 0.5 δ < sup

x∈Γt(m,a−t)

ut(m,x, a−t).
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On the other hand, since G is a generalized payoff secure large game, for every ǫ > 0 there exists

(U ǫ, (ϕǫ
t)t∈T1∪T2

, αǫ) satisfying Definition 11. In particular, as (mn, an) →n (m, a), there exists a

set T ′
ǫ ⊆ T1 with µ(T ′

ǫ) ≥ µ(T )− ǫ such that, for any n large enough we have (mn, an) ∈ U ǫ and the

following properties hold for every (t, k) ∈ T ′
ǫ × T2:

sup
x∈Γt(mn,an)

ut(x,mn, an) ≥ sup
x∈ϕǫ

t(mn,an)

ut(x,mn, an) ≥ sup
x∈Γt(m,a)

ut(x,m, a)− ǫ,

sup
x∈Γk(mn,an,−k)

uk(mn, x, an,−k) ≥ sup
x∈ϕǫ

k
(mn,an,−k)

uk(mn, x, an,−k) ≥ sup
x∈Γk(m,a−k)

uk(m,x, a−k)− ǫ.

As objective functions are bounded, the uniform convergence of Gn to G ensures that, for n large

enough, for almost all t ∈ T1, and for all k ∈ T2,

un
t (fn(t),mn, an) + ǫ = sup

x∈Γt(mn,an)

un
t (x,mn, an) + ǫ ≥ sup

x∈Γt(mn,an)

ut(x,mn, an),

un
k (mn, an,k, an,−k) + ǫ = sup

x∈Γk(mn,an,−k)

un
k (mn, x, an,−k) + ǫ ≥ sup

x∈Γk(mn,an,−k)

uk(mn, x, an,−k).

Therefore, for every ǫ > 0, there exists T ′′
ǫ ⊆ T ′

ǫ with µ(T ′′
ǫ ) ≥ µ(T1)− ǫ such that, for every player

(t, k) ∈ T ′′
ǫ × T2 we have

limn u
n
t (fn(t),mn, an) + ǫ ≥ sup

x∈Γt(m,a)

ut(x,m, a)− ǫ,

limn u
n
k (mn, an,k, an,−k) + ǫ ≥ sup

x∈Γk(m,a−k)

uk(m,x, a−k)− ǫ.

Taking the limit as ǫ goes to zero, we contradict conditions (3)-(4), concluding the proof. Q.E.D.
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