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We present a simple method of solving first-order linear differential and difference equations 

with a constant term and a constant coefficient. When solving such equations standard books in 

mathematical economics resort to a particular integral and a complementary function without 

further explaining those to beginning undergraduate students. We use the derivative and the 

difference, respectively, which give rise to a number of parental functions whose time path is 

studied by economic dynamics. A derived function is “shared” by multiple parental functions, 

but a number of parental functions give rise to one derived function. The method is smooth and 

easy to understand. Instead of spending time on complicated theoretical math techniques, the 

professor teaching quantitative methods could emphasize substantive economic models applying 

such simple equations. 

 

Keywords simple differential equations, simple difference equations, particular integral, 

complementary function, phase lines, Solow growth model 
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Introduction 

 

When covering advanced topics such as differential and difference equations introductory 

textbooks in mathematical economics start with the case of first-order, linear equations with a 

constant term and a constant coefficient and then continue with the case of a variable term and a 

variable coefficient. Starting with the simplest, textbooks usually discuss the first-order, linear 

equation with a constant term and a constant coefficient in the homogeneous case where the free 

term is equal to zero. Then the nonhomogeneous case follows where the constant term could be 

different from zero. Such an approach is quite logical and acceptable as it helps the course unfold 

smoothly and allows students to learn gradually and systematically. In all cases the solution in 

the literature is presented as the sum of the particular integral and the complementary function, 

the particular integral implying an all-time, that is, intertemporal equilibrium value for the 

function and the complementary function showing the deviation from or convergence to it with 

the passage of time. Obtaining the solution requires the knowledge of the more general case of a 

variable term and a variable coefficient, integration techniques, exact differential equations as 

well as integrating factors. 

 

Chiang (1984) and Pemberton and Rau (2001) offer the most extensive coverage of differential 

and difference equations. Chiang (1984) dedicates two chapters to first-order equations and two 
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to higher-order equations, respectively. Both books usher students into the solution with a 

complementary function and a particular integral without explaining what those are and how 

they obtain. Silbeberg (2000) and Intriligator (2002) cover only simple differential equations 

with no reference to difference ones. None of them solves the equation in the general form but 

moves directly to economic applications. Others are high level texts (Simon and Blume, 1994 

and de la Fuente, 2000) covering both differential and difference equations. De la Fuente (2000) 

discusses both types of equations in detail but the text is at the doctoral level and, therefore, not 

suitable for undergraduate students of economics. With no exception all textbooks assume the 

solution with a complementary function and a particular integral. Of the problems books 

Todorova (2010) solves simple as well as higher-order differential and difference equations 

providing economic problems with solutions. Dowling (1992) accompanying Chiang (1984) 

takes the solution formulas as given and provides problems and solutions to economic examples. 

Theoretical mathematics textbooks on differential equations such as Rainville et al (1996) do not 

emphasize economic or social science applications, neither discuss the simple case of constant 

coefficients and constant terms. Except as an additional tool to a course in mathematical 

economics or economic dynamics, they cannot be used in such courses where the emphasis is on 

economic and other applications rather than pure math theory. 

 

When taking an introductory course in mathematical economics or quantitative methods in the 

social sciences as part of program requirements students have never or rarely been exposed to 

differential or difference equations and the general solution to those of first-order, first-degree 

with a variable term and a variable coefficient. It is, therefore, particularly difficult for beginning 

students to understand the concept of the particular integral and the complementary function. 

When discussing the simplest types of equations with a constant term and a constant coefficient, 

textbooks assume that students know the method of solving the general case of equations and 

take that solution as ready-made. By use of a particular integral and a complementary function 

they try to provide students with a formula giving the time path of a function but to the student it 

is not clear how the formula obtains. More specifically, students do not understand how the 

particular integral and the complementary function come about and how the general solution is 

obtained. 

 

We hereby propose a method of solving the simple case of differential and difference equations 

with a constant coefficient and a constant term without having to go into the case of a variable 

term and a variable coefficient and take something for granted. This is particularly convenient 

for students taking the introductory, first-level course in mathematical economics who would 

never take the second level of higher-order differential or difference equations. Professors, who 

opt to go into brief coverage of simple differential and difference equations at the end of a 

semester of introductory mathematical economics, as required by any undergraduate economics 

program, and who wish to familiarize their students with the simplest type of differential and 

difference equations as they apply in economics, would be greatly facilitated by this method. It 

allows their students to have a glimpse of differential and difference equations without going into 

the jungle of sophisticated equations such as the more expansive case of a variable term and a 

variable coefficient, exact differential equations, separation of variables, integrating factors, etc. 

Since in the introductory course these topics appear at the end of the semester, there is rarely 

time to cover differential and difference equations extensively so the discussion usually stops on 

simple illustrations. Professors who do not wish to emphasize the topic of integration prior to 
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differential equations could simply introduce the latter with applications in economics but 

without the need to discuss integration in depth or at all. Finally, being pressed by time at the end 

of the semester professors could conveniently use our technique to solve the equation and then 

swiftly apply it to economic models such as the dynamics of market price, the Solow growth 

model or phase lines in the case of the first-order, linear differential equation with a constant 

term and a constant coefficient or the cobweb model of market pricing in the similar case of 

difference equations. Thus, instead of burying students of economics into mathematical 

techniques and theory, professors could use the limited time more productively by covering 

essential economic models and illustrations. 

 

Simple Differential Equations 

 

It is habitual to start the chapter on simple differential equations with first-order linear 

differential equations with a constant coefficient and a constant term. Then the class discussion 

moves onto the more general case of first-order linear differential equations with a variable term 

and coefficient, and some special types of simple differential equations such as exact differential 

equations, integrating factors, separation of variables, Bernoulli equations, etc. Given a function 

)(ty , a differential equation is one that contains a derivative such as dtdy . Not all, but most, 

differential equations resort to models in economics where the independent variable is time t . 

Hence, the time path of an economic function is obtained and analyzed. Solving the differential 

equation means finding the total function and dropping the derivative from the equation. If there 

is only a first-order derivative involved, the differential equation is said to be first-order. Higher-

order derivatives result in higher-order differential equations and the order of the highest 

derivative gives the order of the differential equation. Thus, a first-order differential equation is 

one in which the highest derivative is first-order and a first-order linear differential equation 

takes the general form 
 

 

 
where )(tu  and )(tv  may be linear or nonlinear functions of t   as well as constants. If they 

happen to be constants, the equation is said to be a first-order linear differential equation with a 

constant coefficient and a constant term. In the nonhomogeneous case we have 
 

)()( tvytu
dt

dy
   where 0)( tv  

 
The general solution to this first-order linear differential equation with a variable coefficient and 

a variable term is 
 







  


dtveAety

udtudt

)(  

 
where A  is a constant that can be specified at the initial condition. The solution to this equation 

requires deeper knowledge of differential equations which beginning students lack when the 

topic is introduced. More specifically, in order to come up with this solution students should 

know integration techniques, exact differential equations as well as integrating factors which 

)()( tvytu
dt

dy

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appear later in the chapter. In the Appendix we show how the solution is obtained. It can further 

be expressed as 
 

pc

udtudtudt

yydtveeAey  


 
 
The first term involves the arbitrary constant A  and is called the complementary function, while 

the second is the particular integral. The particular integral gives the intertemporal equilibrium 

value of the function )(ty , while the complementary function shows the deviation of the actual 

value of y  from this equilibrium at any moment in time. Therefore, when cy  disappears with 

time, the time path of the function )(ty  shows dynamic stability. If cy  tends to grow as t , 

we say that the time path of )(ty  from its initial value is dynamically unstable or divergent. 

Several observations follow. First, we can check that when u  and v  take the constant values a  

and b , respectively, i.e., we have the constant term and constant coefficient case, the general 

solution is exactly 
 

pc

at
yy

a

b
Aety  )(  

 

where the complementary function is at
Ae

  and the equilibrium value is given by the particular 

integral 
a

b
. Thus, as can be expected, the case of a constant coefficient and a constant term is a 

special case of the general one with a variable term and a variable coefficient. Second, in the 

homogeneous case where v  is zero, the intertemporal equilibrium is exactly zero and the 

solution consists only of the complementary function Aey
udt

c




 or at

c Aey
 . 

 

Mathematical economics textbooks ordinarily start with the simplest case of a first-order, first-

degree differential equation, the one with a constant coefficient and a constant term, or 
 

0 ay
dt

dy
 

 
which is known as the associated homogeneous equation where a  is a constant and the free term 

b  is zero. The usual method to solve this equation is rearranging it as 
 

a
dt

dy

y


1
 

 
and integrating both sides of it. 
 

  adtdt
dt

dy

y

1
 

21ln catcy    12 ccc   

caty ln  
 
Taking the antilog, we can write the general solution to the homogeneous equation 
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caty
ee

ln
 

 
at

Aety
)(   where c

eA    (general solution) 
 
Definitizing, i.e., finding the value of the A  constant, yields the definite solution to the equation 
 

)0()0( a
Aey

   at 0t  thus )0(yA  , or 
 

at
eyty
 )0()(  (definite solution) 

 
A short-cut way of solving this equation in class without the use of integration is the formula for 

rate of growth usually covered much earlier in the course. The rate of growth of the function 
rt

Aety )(   used in continuous compounding or finding the future value of an asset can be 

expressed as r
y

dtdy


/
 where r  is the interest rate. Thus, a differential equation of the form 

a
dt

dy

y


1
 

implies a function of the type at
Aety

)(  growing at the rate a  with time. Professors, who do 

not want to resort to integration techniques or have not covered integration, could easily solve 

the homogeneous case of a simple differential equation using the concept of the rate of growth of 

a function. However this technique cannot be applied to the more general, nonhomogeneous 

case, 
 

bay
dt

dy
  

 
Solving this equation through direct integration or rate of growth is not possible and this is where 

the standard literature on mathematical economics assumes the above solution for a simple 

differential equation with a variable term and a variable coefficient. Students have to take for 

granted the concept of the particular integral and the complementary function while a solid 

discussion of those in the introductory chapters is missing. Thus, the solution 

pc

at
yy

a

b
Aety  )(  

 
which we already introduced, comes out of the blue and students have to borrow and apply it 

without any understanding.  This is where our innovative method comes in handy. Instead of 

introducing students into the particular integral and the complementary function in the limited 

time available, we resort to a new technique. Both the general and definite solutions of a simple 

differential equation show the time path of a total function. From differentiation we know that a 

derived function is single but could have many parental functions. At the same time, by 

differentiation many parental, that is, total functions could give rise to only one derived, i.e., 

marginal function. Such is the example of labor force expressed as a function of time t  as in 

cttL  2

1

)(  
 
where c  is an arbitrary constant. The fact that c  is arbitrary implies that no unique time path can 

be determined unless we know something about the initial or boundary condition of the labor 
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force function. If we know that at the initial moment 0t  the size of the labor force is 

50)0( L , then 50c  gives the specific time path of the labor force function, that is, 

50)( 2

1

 ttL  
 
In the general case when the constant of integration is not definitized, there are plenty of parental 

functions but only one marginal function or the rate of change of labor force with time is just 

2

1

2

1 
 t

dt

dL
 

 
Analogously, we use the fact that in the simple homogeneous differential equation the form 

at
Aety

)(  shows the general time path of a function )(ty . This is one of a few parental 

functions that have the derivative at
aAedtdy

 . Hence, this derivative will be the marginal 

function for an infinite number of parental functions including those that satisfy the 

nonhomogeneous equation. We, thus, substitute the derivative dtdy  in the nonhomogeneous 

equation 
 

bay
dt

dy
  

 

bayaAe
at   ,  which results in 

 

a

b
Aety

at  )(   (general solution) 

 
Similar to the homogeneous case this is the general solution to the nonhomogeneous differential 

equation. Definitizing the constant A , 
 

a

b
A

a

b
Aey

o )0(  

a

b
yA  )0(  

 
Substituting in the general equation gives the definite solution 
 

a

b
e

a

b
yty

at 



  )0()(   (definite solution) 

 
It is easy to see from our method that the solutions to the homogeneous and nonhomogeneous 

equation, at
Aety

)(  and 
a

b
Aety

at  )( , respectively, have the same derivative, that is, 

at
aAedtdy

 , which proves our line of thinking. Both they are parental functions to this 

derivative and differ only in their constant term. The method allows to obtain both solutions and 

then smoothly proceed with interesting economic illustrations such as the dynamic model of 

market price, the concept of the phase line or the essential model of economic growth advanced 

by Solow without further emphasizing math. At this point, we can simply mention to students 

that the intertemporal equilibrium value 
a

b
 is called a particular integral, while the remaining 
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exponential term, known as the complementary function, shows the deviation from this 

equilibrium of the total function with time. More specifically, at the intertemporal equilibrium 

the function )(ty  does not change and its derivative dtdy  is zero. Substituting 0dtdy  in the 

nonhomogeneous differential equation produces exactly the particular integral 
a

b
y p  . The 

homogeneous equation, on the other hand, gives the complementary function,  ,at

c Aey
  and, 

thus, the complete solution is the sum of the two. Such an explanation somewhat prepares 

students for the subsequent discussion of the variable term and variable coefficient case as well 

as higher-order differential equations, if those would be discussed in the semester. 

 

Simple Difference Equations 

 

Difference equations are the discrete-time equivalent of differential equations applied in 

continuous time. With discrete time the value of a variable y  will change for each period, not at 

a point in time. The time factor here denotes a period so 1t  means period 1, rather than the 

first moment, while t  is allowed to take only integer values. The task is again to find a time path 

for the variable y  over time. But the change is now 
t

y




 which shows the difference in y  

between two consecutive periods so 1t  and y
t

y





. This change resembles the derivative 

dt

dy
 in continuous time but is a discrete-time change. It is just this difference in y  that gives the 

name of this group of equations. More specifically, the first difference of y  can be defined as 
 

ttt yyy  1  
 
where ty  is called a forward difference operator, ty  is the value of y  in period t  and 1ty  is its 

value in the following period. The pattern of change of y  may be such that the difference 

between the values of y  in two consecutive periods may be 
 

cyyy ttt  1  
 
This equation is equivalent to 
 

cyy tt 1   or  cyy tt   12  
 
First-order difference equations contain only a first difference ty , that is, there are no several y  

terms such as 12 ,  tt yy  or ty  and there is one-period time lag only. Linear difference equations 

involve only y  terms that come in the first power and are not multiplied by a y  term of another 

period. Similar to differential equations, homogeneous difference equations have a right-hand 

side that is zero. Solving a difference equation implies finding a time path ty  which should be 

solely a function of t , given some initial condition, and should be free from any difference 

expressions of the type ty  or tt yy 1 . Given the equation, 
 

01  tt ayy  
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where the initial condition is oy  we can find the time path of y . We rewrite it as 
 

tt ayy 1 ,  which implies 
 

oayy 1  

oo yaayaayy
2

12 )(   

oo yayaaayy
32

23 )(  , hence, 
 

o

t

t yay   
 
This last equation shows the time path of y  at any period t  and is free from any difference 

expressions. Thus, it represents the solution to the difference equation. This solution is obtained 

using a rough method known as the iterative method or iteration. A more general method of 

solving is needed, both in the homogeneous and nonhomogeneous case. The first-order 

difference equation 
 

cbyy tt 1  
 
is nonhomogeneous with a constant coefficient b  and a constant term c . Its reduced form is 
 

01  tt byy  
 
which represents the associated homogeneous equation. Note the resemblance with the 

differential equation 
 

bay
dt

dy
  and  

 

0 ay
dt

dy
 

 
in the nonhomogeneous and homogeneous case, respectively. Rewriting the homogeneous 

difference equation, 
 

01  tt byy  

tt byy 1  
 

Assuming a solution of the type t

t Aay   similar to t

ot ayy   we obtained previously for the 

form of a nonlinear function we also have 
 

1

1


  t

t Aay  
 
Substituting for ty  and 1ty  in the difference equation, 
 

tt
bAaAa 1  or 

 
ba   

 
gives the solution to the homogeneous equation 
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t

t bAy )(  
 
How to find the general solution to the nonhomogeneous equation? When providing a solution, 

standard textbooks such as Chiang (1984) do not even explain about the particular integral and 

the complementary function, as they do with differential equations. This time the student is 

directly thrown into a general formula for a particular integral of a discrete-time function. The 

student, therefore, has to guess how the formula is obtained and it is not before the last chapter 

on higher-order difference equations that the formula gets explained. Again, for students who 

never get to that chapter in the introductory course the solution of a first-order, first-degree 

difference equation is a mystery. 

 

To solve this type of equation elegantly and without reference to the particular integral and the 

complementary function which the beginning student is unaware of, we can use the fact that the 

difference ty   will take the same values in the homogeneous and nonhomogenous case. This is 

similar to our logic of differential equations and the fact there the derivative is the same, both in 

the homogeneous and nonhomogeneous case. Expressing the difference in the two cases and 

equating the two results yields 
 

tt bycy 1  

tttt ybycyy 1  

)1(  bycy tt  
 
Similarly from the solution to the homogeneous equation, 
 

1

1 )( 
  t

t bAy  and 
t

t bAy )(  
 
we obtain a second expression for the difference 
 

tt

tt bAbAyy )()( 1

1  
  

)1()(  bbAy
t

t  
 
Equating the two expressions gives the general solution to the nonhomogeneous equation 
 

)1()()1(  bbAbyc
t

t  
 

1
)(




b

c
bAy

t

t   where 1b  

 
Definitizing A  at moment 0t , 
 

1


b

c
Ayo  

 

1


b

c
yA o  

 
and substituting for A  we get the definite solution of the nonhomogeneous equation 
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pc

t

ot yy
b

c
b

b

c
yy 














1
)(

1
 where 1b  

 

Similar to differential equations, the free term 
1b

c
 gives the particular integral 

py  of y , while 

the first shows the complementary function cy . Thus, the particular integral 
1


b

c
y p

 

represents the intertemporal equilibrium of the function. In the special homogeneous case when 

0c  this equilibrium value is zero. Similar to the continuous-time case, the complementary 

function gives the deviation of y  from the equilibrium in any period. When the difference is 

zero, that is, 0 ty  or tt yy 1 , then the nonhomogeneous equation gives rise to the particular 

integral 
1


b

c
y p . The deviation comes from the solution to the homogeneous difference 

equation which is already found as t

c bAy )(  and the complete solution is the sum of the two 

results. For 1b  the term tends to disappear as t  and the time path of the function ty  is 

convergent. In the opposite case the time path is divergent. Depending on the sign of b  we have 

an oscillating or non-oscillating time path. Once the solution to this simple difference equation 

with a constant term and a constant coefficient is obtained, the professor can explain the concept 

of the particular integral and the complementary function to prepare students for advanced 

difference equations or another semester of quantitative methods focused on economic dynamics, 

economic growth, applied differential and difference equations, etc. Furthermore, he can 

conveniently apply the solution to the interesting cobweb model of market price. 

 

Conclusion 

 

Our purpose as teachers is to make math less intimidating and the subject of mathematical 

economics more enjoyable for students. We should, therefore, search for innovative and easy 

methods of familiarizing students with some mathematical tools. By introducing a quicker and 

easier way of solving simple differential and difference equations such as those with a constant 

term and a constant coefficient the professor is making this challenging material accessible for 

undergraduates of economics and other social sciences. After solving the equations easily the 

professor can move to very substantive and interesting illustrations such as the dynamics of 

market price model, the Solow growth model or the cobweb model. This can be done without the 

need to bury students into sophisticated math theory and intimidating methods of solving 

advanced differential and difference equations. Such innovative tools help foster student 

learning. Furthermore, they popularize the economic profession and make economics attractive 

and lovable even for students who are not so mathematically oriented. 

 

Appendix 

 

We now show the solution to the first-order linear differential equation with a variable 

coefficient and a variable term, or 
 

vuy
dt

dy
  
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which can alternatively be written as 
 

0)(  dtvuydy  
 

Using  udt

e  as an integrating factor, we obtain 
 

0)(  dtvuyedye
udtudt

 
 

which can be solved as an exact equation. To test it for exactness we need 
y

N

t

M








.  

 0)(  dtvuyedye

N

udt

M

udt


 

 



 udt

ue
t

M
  


 udt

ue
y

N
 

 
so the condition for exactness of the equation is met. We continue solving through the method of 

exact differential equations. 
 

   )()()(),( tnyetndyetnMdytyF
udtudt

 
 

)()( vuyeNtnyue
t

F udtudt





 

 udt

vetn )(  
 

  dtvedtvetn
udtudt

)(  
 
Substituting in ),,( tyF  
 

AdtveyetyF
udtudt

 ),(  .constA  
 

  dtveAye
udtudt

 







  


dtveAey

udtudt

 

which is the general solution we have already seen. It can further be expressed as 
 

pc

udtudtudt

yydtveeAey  


 
 
In the special case when u  and v  take the constant values a  and b , respectively, i.e., we have 

the constant coefficient and constant term case, the general solution becomes 
 

pc

at
yy

a

b
Aety  )(  
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where the complementary function is again at
Ae

  and the equilibrium value is given by the 

particular integral 
a

b
. In the homogeneous case where v  is zero, the intertemporal equilibrium is 

also zero and the solution consists only of the complementary function Aey
udt

c




 or 
at

c Aey
 . 

 
For the case of first-order difference equations we recall that they involve terms like 1ty   and ty  

where the difference in each period is given. Thus, knowing some initial value oy  we can 

determine the time path of the y  function as the time factor t  changes. A simple second-order 

difference equation is 
 

cybyby ttt   2112  
 
To find the particular integral in the simplest case we can take a solution of the form ty k  

where in every period y  is the constant k  
 

ckbkbk  21   and 

211 bb

c
ky p 
   where 121  bb  

 

In the special case of a first-order difference equation where 11 b  and 02 ty  the particular 

integral is 
b

c
ky p 


1
. With first-order difference equations we found that the expression 

t

t Aay   describes well the general solution of such an equation and we try it to find the 

complementary function. This implies that 1

1


  t

t Aay  and 2

2


  t

t Aay  which upon 

substitution in 
 

02112   ttt ybyby  yields 
 

02

1

1

2   ttt
AabAabAa , or 

 

021

2  baba  

This characteristic equation has roots 
2

4 2

2

11

2,1

bbb
a


 . Hence, for the complementary 

function we have three possibilities: 

 

1. Distinct real roots. If 2

2

1 4bb  , then both roots are real and different so the complementary 

function is 
 

tt

c aAaAyyy 221121   

 

2. Single real root. If 2

2

1 4bb  , there is only one real root 
2

1b
a   and the complementary 

function is 
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tt

c taAaAyyy 2121   

 

3. Complex roots. When 2

2

1 4bb  , again a pair of conjugate complex numbers nima 2,1  

obtains where 
2

1b
m   and 

2

4 2

12 bb
n


 . The complementary function is 

tttt

c nimAnimAaAaAy )()( 212211   
 

From the De Moivre’s theorem it follows that )sin(cos)( titRnim
tt    where 

2

2

12

2

122

4

4
b

bbb
nmR 


  

Here   is measured in radians and 

2

1

2
cos

b

b

R

m
  and 

2

2

1

4
1sin

b

b

R

n
 . Hence, the 

complementary function is 
 

)sincos()sin(cos)sin(cos 2121 tBtBRtitRAtitRAy
ttt

c    
 

where the multiplicative factor t
R  substitutes the natural exponential term mt

e  used in 

differential equations. Since in the special case of a first-order difference equation we have 

11 b , bb 2  and from 021

2  baba  we have only one root ba  , the complementary 

function is 
tt

c bAAay )( . Thus, the general solution of a first-order, first-degree difference 

equation with a constant term and a constant coefficient of the type cbyy tt 1  is 

pc

t

t yy
b

c
bAy 




1
)(  
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