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Abstract 

System’s properties are not always determined by properties of its elements. In this 

paper was made an attempt to analyze securities not isolated, but with respect to 

environment, i.e. participants’ operations on a market, which results depend on 

securities. It was shown that risk-neutral probability density, implied in prices, 

depends on these operations. No arbitrage conditions were developed for this case. 

Using them it was shown that there are operations that make function that must be 

a probability density function not a probability density function. These operations 

are possible if there are assets with positive price and non-zero interest rate. 

Arbitrage is possible in this case and such market is inefficient. 
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1. Introduction 

The theory of No Arbitrage plays a central role in Mathematical Finance. 

Development of pricing mechanisms (Black and  Scholes 1973 and Merton 1973), 

understanding of market efficiency, no arbitrage conditions (Harrison and Kreps 

1979, Harrison and Pliska 1981) and many other important themes, which highly 

influence nowadays markets, are close related to it. However, there are open 

questions, e.g. Fama (1997) concluded that existing anomalies require new 

behaviorally based theories of the stock market and we need to continue the search 

for better models of asset pricing. 

In a modern world we use strategies and securities (e.g. CDOs) that become more 

and more complex. There are often cascade chains of operations between 

participant’s account and elementary securities. However, most theories analyze 
elementary (basic) securities and extrapolate results to complex systems (markets). 

In this paper securities are analyzed using the traditional approach of no arbitrage, 

but with respect to systems complexity. 

There is a class of securities, which price is determined by the next equation 

(variation of equation presented by Cox and Ross 1976): 

( ) ( )r T

Po
P e d S Po S dS


 



    

where ( )Po S is a payoff function at the moment of expiration T ; S is a parameter 

(often price), which becomes certain at exercising and determine value of ( )Po S ; 

( )d S is a probability density function; r T
e
  is present value (price) of one unit of 

( )Po S .  

If participants agree that premium is paid at the moment of expiration or use 

corresponding futures then 1r T
e
   . 

If participants want to change basic asset of their accounts, but use securities with 

standard numeraire (e.g. dollars) then equation (1) can be transformed in the next 

way: 

0
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where ( )E X is exchange function for payoff; X  is some set of parameters, it may 

contain S ; 0X  is expected value of X at the moment when premium is being paid. 

(2) 

(1) 



After exercising participant transform payoff into some other preferable asset. To 

pay premium participant use inverse transformation
0

1

( )E X
.  

This is not a numeraire change in classical sense (Jamshidian 1989). Securities are 

the same for different ( )E X . 

EUR/USD call options are examples of such securities. At least two cases are 

possible: 

( ) 1E X   

0( ) 1E X   

( )Po S S K  if S K  

where K is a strike price. 

Or 

1
( )E X

S
  

0

0

1
( )E X

S
  

( )Po S S K  if S K  

where 0S is initial price of underlying asset. 

In second case payoff is paid in dollars and after that transformed in euro. 

 

2. Main section 

Proposition 1: Probability density function depends on ( )E X . 

Let ( )Po S be Dirac delta function (x S)  . Then 

0
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Every other ( )Po S could be represented as a combination of (x S)  . Consequently, 

( )d S does not depend on ( )Po S . 

(5) 

(3) 

(4) 
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PoP  is independent from ( )E X , because basic securities are the same for different 

( )E X . Consequently, 

0 0
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Except some particular cases like constant prices, ( )d S  and/or r T
e
  depend on ( )E X  

 

Proposition 2: There are such ( )iE X  that ( )id S is not a probability density function. 

For every i : 

( ) 1
i

d S dS




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Form equation (2) follows that equation (7) reflects possibility to obtain one unit of 

preferable asset as a payoff and pay for this the same one unit of preferable asset at 

the moment of expiration as premium. It is apparent that arbitrage is possible 

otherwise. It should be noted that equation (7) may represent not a single security, 

but a complex combination of securities. By these reasons equation (7) is a strong 

no arbitrage condition. 

Using equation (6) no arbitrage condition can be transformed in the next two: 
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There have to be no such ( )iE X and ( )
j

E X that make equations (8) and (9) false. 

Otherwise arbitrage opportunities exist. 

Assume that S  is not expected to be constant and 
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Premiums are paid at the moment of expiration. Consequently, 1ir T
e
   . 
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No arbitrage conditions: 
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Then 
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Consequently, 
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At the same time 
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All multipliers are above zero. Consequently, 
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At the same time 
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Consequently, 
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Equations (15) and (17) contradict each other. Consequently, at least one of 

equations (11) is not true. Arbitrage is possible. 

 

Proposition 3: If some asset has a non-zero interest rate then some of ( )id S  is not a 

probability density function. 

There are two securities: 1S  and 2S . 2S  at initial moment consists of some amount 

1a  of 1S . 

1S  has non-zero interest rate 1(0, ')r t . 2S  at some moment 't consists of 1 (0, ') '

1

r t t
e a a

    

of 1S  

where a is a managed parameter,  not negative, equal to zero before 't , constant 

after 't and is well known to participants at initial moment of time. 

 
1
( ')

S
a P t  are dividends paid by manager for one unit of 2S  . 

Price of 2S  at 't is 
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Risk-free investing in 1S  and 2S must have equal profitability. 
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where
1S

F and
2S

F are prices of futures on 1S  and 2S ; 1(0, ')r t and 2 (0, ')r t are interest 

(growth) rates of 1S  and 2S . 

According to eqaution (18): 

2
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Interest rate of 2S for period ( , )
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t t is also a managed parameter. 
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From equation (19) follows: 
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Interest rate of 2S can vary from 0 to  . 

Let 
3S , 

4S  and 
5S  be futures on 

2S  with expiration at 
3t , 4t  and 

5t ,

3 4 5 5 4 4 3,t t t t t t t t       . 

Let 2 3 4 2 4 5( , ) ( , )r t t r t t r  . 

Let there is a security, priced in the way of equation (2), with underlying asset 5S

and numeraire 4S . Payoff depends on price of 5S in 4S , which is after expiration 

transformed into 5S or 3S . 

Price of 5S in 4S is 
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Price of 3S in 4S is 
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Conditions of proposition 2 are satisfied. Consequently, 3(S)d , 4 (S)d
 
or 5(S)d is not 

a probability density function. It allows arbitrage and making risk-free profit. 

Consequently, efficient state of market is when there are no non-zero interest rates 

on it. Otherwise arbitrage opportunities exist. 

 

3. Conclusion 

Well known asset pricing formula was generalized to the case when participant 

instead of performing one operation with elementary security perform chain of 

operations. Prices in these operations are connected to each other. 

It was shown that risk-neutral probability density, implied in price of basic 

security, depends on other operations in chain. Different densities are connected to 

each other. This property was used to obtain no arbitrage conditions for this case. 

The main result is that existence of non-zero interest rate means existence of 

arbitrage opportunities, because function that has to be a probability density 

function becomes not a probability density function. This makes such market 

inefficient. 

(23) 

) 

(24) 
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This leads to: 

1. Martingale prices. 

2. Shares that do not pay dividends. 

3. No risks represented as interest rates. 

4. No discounting. 

5. Many others. 

It sounds rather paradoxical and even absurdly. However, if it true then most 

principles and theories of modern market economy must be revised. 

From the practical point of view it should be noted that differences between 

probability density functions should be tiny. By that reason lack of liquidity and 

transaction costs could be barriers in usage of found arbitrage opportunities. 

However, found inefficiency is fundamental. So could be a profit. 
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