
Munich Personal RePEc Archive

Testing for Uncorrelated Residuals in

Dynamic Count Models with an

Application to Corporate Bankruptcy

Sant’Anna, Pedro H. C.

Universidad Carlos III de Madrid

May 2013

Online at https://mpra.ub.uni-muenchen.de/48376/

MPRA Paper No. 48376, posted 16 Jul 2013 22:08 UTC



Testing for Uncorrelated Residuals in Dynamic Count

Models with an Application to Corporate Bankruptcy

Pedro H. C. Sant’Anna

Universidad Carlos III de Madrid, Getafe, 28903, Spain

pde@eco.uc3m.es

May 2013

Abstract

This article proposes a new diagnostic test for dynamic count models, which is well

suited for risk management. Our test proposal is of the Portmanteau-type test for

lack of residual autocorrelation. Unlike previous proposals, the resulting test statistic

is asymptotically pivotal when innovations are uncorrelated, but not necessarily iid

nor a martingale difference. Moreover, the proposed test is able to detect local alter-

natives converging to the null at the parametric rate T−1/2, with T the sample size.

The finite sample performance of the test statistic is examined by means of a Monte

Carlo experiment. Finally, using a dataset on U.S. corporate bankruptcies, we apply

our test proposal to check if common risk models are correctly specified.

Keywords: Time Series of counts; Residual autocorrelation function; Model checking;

Credit risk management.
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1. Introduction

Credit risk affects virtually every financial contract. Therefore the measurement, pricing and

management of credit risk have received much attention from economists, bank supervisors

and regulators, and financial market practitioners.

A widely used measure of credit risk is the probability of corporate default (PD). Many

default risk models that are employed day-to-day on risk management, such as CreditMet-

rics, Moody’s KMV, and CreditRisk+, rely on the assumption of conditionally independent

defaults, that is, conditional on observable macroeconomic and financial variables, together

with firm specific characteristics, defaults are time independent. Nonetheless, recent studies

have found evidence of violation of this assumption, see e.g. Das et al. (2007), Koopman

et al. (2011, 2012).

In order to accommodate deviations from conditional independence, richer classes of

models have been proposed. Koopman et al. (2011, 2012) consider that a common frailty

effect, modeled as a Gaussian AR(1), drives the excess default counts clustering. However,

an important question remain unanswered: Is the AR(1) latent process structure enough to

capture all the excess default? If this is not the case, there would be evidence of residual

serial correlation. Answering this question is appealing for risk management because as

shown by of Duffie et al. (2009) and Koopman et al. (2011, 2012), model misspecification

may lead to a downward bias when assessing the probability of extreme default losses.

In this paper, we consider a general model check which is well suited to evaluate the

correct specification of aggregate default and bankruptcy count models. We propose a new

test for serial correlation of multiplicative residuals in a dynamic count data model under

weak assumptions, namely when no parametric distribution restrictions are made and the

innovations are neither restricted to be iid nor a martingale difference. Our test statistic

is of the Portmanteau class, and takes a quadratic form in linear combinations of residuals

sample autocorrelations. A major advantage of our test statistic is that it is asymptotically

distribution-free in the presence of estimated parameters, even when the innovations are

not iid, which is in contrast with classical lack of autocorrelation tests, e.g. Box and Pierce
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(1970) and Ljung and Box (1978). Moreover, the proposed test is able to detect local

alternatives converging to the null at the parametric rate T−1/2, with T the sample size.

Although the study of conditions for stationarity and ergodicity, and the related asymp-

totic properties of parameter estimates of a count data models have been an active area of

research, see e.g. Tjøstheim (2012) and Fokianos (2012) and references therein, less attention

has been placed into model checks. Neumann (2011) and Fokianos and Neumann (2013) pro-

pose goodness-of-fit test for the intensity parameter of an observation-driven Poisson time

series regression. However, the conditions imposed to justify the corresponding inference

are rather restrictive and rule out exponential intensity functions, which is the canonical

functional form in count models. Jung and Tremayne (2003) and Sun and McCabe (2013)

consider score-type tests for lack of serial dependence in the integer autoregressive (INAR)

class of models, that is, if there is need to estimate dynamic count models. Nonetheless, the

test is not suitable to test if specifications like the INAR(1) captures all the serial depen-

dence. Moreover, the type of INAR process considered by these authors does not allow to

include covariates, which limit its applicability in economics contexts. Davis et al. (2000)

consider an overdispersed autocorrelated Poisson model, where the overdispersion and au-

tocorrelation in the count variable are driven by a multiplicative log-normal latent process.

Their proposed test statistic is a variant of the Box and Pierce (1970) test (hereafter BP)

for lack of autocorrelation. Nonetheless, Davis et al. (2000) asymptotic results are derived

under the assumption that the latent process is independent of the covariates. In fact, Davis

et al. (2000) consider only strict exogenous (deterministic) covariates, a case with not much

applied interest. With all these maintained hypothesis, the distribution of the test statis-

tic under the null is derived under the serial independence assumption, a much stronger

condition than lack of correlation.

When the innovations are uncorrelated, but not independent, the use of residuals sample

autocorrelations,without proper scaling, might not be appropriate to test for lack of auto-

correlation of the innovations. The scaling might depend on higher-order serial dependence

of the innovations, the model and the estimator used - see Francq et al. (2005). In this arti-

cle we follow Delgado and Velasco (2011) approach which supply an asymptotically pivotal
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transform of the residuals sample autocorrelation, which serves a basis for model checking.

Given that the residual transform is asymptotically distribution-free, and hence does not

rely on estimation methods nor on high-order dependence assumptions, this procedure is

well suited for dynamic count data models.

Our approach does not impose that the innovations are serially independent nor inde-

pendent from the covariates. In fact, one of the contributions of the paper is to show that

if innovations are not independent of the covariates, the distribution of residuals sample au-

tocorrelations is not necessarily pivotal. In other words, the BP test or its variants are not

asymptotically distribution-free. In order to illustrate the issues of ignoring the estimation

effect and/or possible higher order serial dependence, a simulation exercise compares the

finite sample properties of our test with the classical Box and Pierce (1970).

Eventually, we apply our goodness-of-fit test procedure to the risk management con-

text. Considering a set of observed macroeconomic and financial variables as covariates,

we evaluate the specification of different models for US bankruptcy counts for big public

firms, using monthly data from 1985 to 2012. First, we apply our procedure to test the

null hypothesis of lack of residual autocorrelation when only macroeconomic and financial

variables are used as covariates. Using our proposed test statistic, we reject the null, which

may indicate evidence of a frailty effect in the default count data, confirming the finds of

Duffie et al. (2009) and Koopman et al. (2011, 2012).

Once one finds evidence of a frailty effect, it is common to introduce a first order autocor-

related latent process into the model - see for instance Koopman et al. (2011, 2012). Follow-

ing this proposal, we consider the Davis et al. (2003) observation-driven Poisson GARMA

model, with an AR(1) or MA(1) term. In order to access if the inclusion of the additional

parameters would suffice to capture all the excess default clustering, we apply again our test

statistic on the residuals of these augmented models. In both GARMA models, we fail to

reject the null of lack of residual autocorrelation, providing some evidence that considering

only first order autocorrelation might suffices to capture the linear dynamics of monthly US

bankruptcy counts. To the best of our knowledge, we are the first to formally test if count

models with AR(1) of MA(1) are able to capture the linear dynamics in a risk management
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framework.

The rest of the paper is organized as follows: the framework of our test is presented

in the next section. In the third section, we introduce the autocorrelation transformation

and discuss its asymptotic properties. In Section 4, we apply the transformation to lack of

residual autocorrelation testing. In section 5, we discuss the finite sample properties of the

proposed test via Monte Carlo Simulations. Then, we illustrate our test with an empirical

application for big public corporate bankruptcies and the last section concludes.

2. Testing lack of autocorrelation on dynamic count data models

To introduce the family of count models considered here, let {Yt}t∈Z be a stationary time

series of counts defined on N0 = {0, 1, 2, . . . }, and suppose that for each t, Xt is a k × 1

vector of predetermined observed covariates, which first component is assumed to be one.

A multiplicative error model is assumed to take the form

Yt = exp
(

X
′

tβ0

)

εt, (1)

where β0 is a k×1 vector of unknown parameters, {εt}t∈Z is a stationary unobserved process,

such that E(εt) = 1 and Cov(εt, εt−τ ) = γβ0
(τ), τ ∈ Z, γβ0

(τ) denoting the autocovariance

of order τ of εt. We denote λt = exp
(

X
′

tβ
)

as the (conditional) mean function of the count

process.

The focus of our attention is the autocorrelation function of the multiplicative error,

{εt}t∈Z,
Corr(εt, εt−τ ) = ρβ0

(τ) =
γβ0

(τ)

γβ0
(0)

, τ ∈ Z.

Given any model that can be written as (1), the purpose is to test the null hypothesis

H0 : ρβ0
(τ) = 0, τ = 1, . . . ,m and some β0 ∈ Θ

against the fixed alternative hypothesis

Hs
1 : ρβ0

(τ) 6= 0 for any τ = 1, . . . ,m and some β0 ∈ Θ
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for some m ≥ 1.

Given observations {Yt,X t}Tt=1, ρβ(τ) is estimated by the sample autocorrelation function

ρ̂Tβ(τ) =
γ̂Tβ(τ)

γ̂Tβ(0)
, τ ∈ Z (2)

where

γ̂Tβ(τ) =
1

T

T
∑

t=1+τ

(Yt − λt) (Yt−τ − λt−τ )

λtλt−τ

. (3)

It is worth mentioning that the vector of covariates does not include lags of Yt, since,

as shown by Zeger and Qaqish (1988), this leads to non-stationary count process unless

positive dependence between the count variables is rule out. Nonetheless, one can include

particular functions of lags of Yt as long as the process is stationary. Examples are the

log-linear Poisson Autoregression of Fokianos and Tjøstheim (2011), where ln(1 + Yt−1)

is included as covariate, and the Generalized ARMA model of Davis et al. (2003), where

(Yt−l − λt−l)/λt−l, l ≥ 1 is included in the covariate vector.

When {εt}t∈Z are iid for some β0 ∈ Θ0, and independent of the covariates, it is well

know that
{√

T ρ̂Tβ0
(τ)
}m

τ=1
are asymptotically independent distributed as standard normal.

However, there are other serial dependence cases such that H0 holds though the sample

autocorrelations are not asymptotically iid. In fact, independence of the true error {εt}t∈Z
with respect to {Xt}t∈Z is a stronger condition than needed to have the multiplicative

error model representation as (1) and we do not carry this assumption through the rest of

this paper. Also, higher order serial dependence may be expected, and we do not make

assumptions about its possible forms.

Define the vector containing the first m residuals sample autocorrelation

ρ̂
(m)
Tβ = (ρ̂Tβ(1), . . . , ρ̂Tβ(m))′.

Under H0, but allowing high-order dependence on εt,

√
T ρ̂

(m)
Tβ0

d→ N
(

0,A
(m)
β0

)
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where A
(m)
β0

is a m ×m positive definite variance-covariance matrix, see e.g. Romano and

Thombs (1996). It is important to emphasize here that we are not imposing any ad hoc

restrictions on the structure of A
(m)
β0

, hence allowing for unknown forms of heteroskedasticity

and non-zero cross terms.

Consider the vector of re-scaled sample autocorrelations,

ρ̃
(m)
Tβ = (ρ̃

(m)
Tβ (1), . . . , ρ̃

(m)
Tβ (m))′ = Â

(m)−1/2

Tβ0
ρ̂
(m)
Tβ ,

where Â
(m)

Tβ0
is a m×m positive definite matrix of statistics such that Â

(m)

Tβ0
= A

(m)
β0

+ op(1).

Thus, under H0 and some regularity conditions,
√
T ρ̃

(m)
Tβ

d→ N (0, Im) .

In practice, we need a preliminary estimator of β0. Assume that an estimator β̂T is

available such that, under H0 of no serial autocorrelation,

β̂T = β0 +Op(T
−1/2) (4)

and

Â
(m)−1/2

Tβ0
= A

(m)−1/2
β0

+ op(1). (5)

Preliminary
√
T -consistent estimators of β0 are available in abundant supply, see e.g.

Davis et al. (2000), Davis et al. (2003), Fokianos and Tjøstheim (2011), among others.

With respect to condition (5) one can consider the Newey-West type estimator of Lobato

et al. (2002), using the multiplicative residuals ε̂t.

Also assume the following regularity conditions:

Assumption 1 (Yt,X
′
t, εt)

′ is strictly stationary, εt has mean 1, E |εt|4+2δ < ∞, for some

δ > 0, and (Yt,X
′
t, εt)

′ is strong mixing with coefficients αj satisfying
∑∞

j=1 α
δ/(2+δ)
j < ∞,

where,

αj = sup
A,B

|Pr(AB)− P (A)P (B)|

and A and B vary over events in the σ-fields generated by {(Yt, X
′
t, εt)

′, t ≤ 0} and {(Yt, X
′
t, εt)

′,

t ≥ j}.
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Assumption 2 For all β ∈ Θ ⊂ R
k,Θ compact, E||λ−1

t X ′
t||4+δ < ∞, E||λ−1

t X tX
′
t||4+δ < ∞,

for some δ > 0.

Next proposition provides an asymptotic expansion for
√
T ρ̃

(m)
TβT

, which implies that

under H0, conditions (4)-(5), and Assumptions 1-2,
√
T ρ̃

(m)
TβT

converges to a vector of inde-

pendent normal variables plus a stochastic drift, which depends on the estimation effect,

β̂T − β0. Define

ξ
(m)
β = A

(m)−1/2
β ζ

(m)
β

with ξ
(m)
β =

(

ξβ(1)
′, . . . , ξβ(m)′

)′
and ζ

(m)
β =

(

ζβ(1)
′, . . . , ζβ(m)′

)′
, such that ζβ is defined

by

∂

∂β
ρ̂Tβ(j)

p−→ ζβ(j) each j ∈ Z \{0}

under H0.

Proposition 1 Under H0 of no autocorrelation, conditions (4) and (5), and Assumptions

(1) and (2),

ρ̃
(m)

T β̂T
= ρ̃

(m)
Tβ0

+ ξ
(m)
β0

(β̂T − β0) + op(T
−1/2)

Proof See Appendix.

From the proof of Proposition 1, one can see that if {Xt}t∈Z independent of {εt − 1}t∈Z,

ξ
(m)
β0

would be zero. This is still the case if {Xt}t∈Z is strictly exogenous. Hence, with this

strong assumption, asymptotically there is no effect of using estimated parameters in the

residuals sample autocorrelation. This is precisely the case considered by Davis et al. (2000).

However, once we relax the strictly exogeneity assumption to the case where {εt − 1}t∈Z
is a martingale difference with respect to the σ-field generated by {Xs, t ≤ s}, ξ(m)

β would

not be zero since εt−τ , might be correlated with λt and Xt. This also would be the case

when {εt − 1}t∈Z is contemporaneously uncorrelated with {Xt}t∈Z. Hence, departures from

independence of the errors with respect to the covariates lead to an additional stochastic

drift on the estimated residual autocorrelation due to the estimation effect.

The asymptotic distribution of
√
T ρ̃

(m)
TβT

, under H0, could be derived from the asymptotic

joint distribution of
{√

T ρ̃
(m)
Tβ0

,
√
T
(

β̂T − β0

)}

, under suitable conditions. Nonetheless, dif-

ferent models and estimators would require different derivations, which can be cumbersome.
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Instead of adopting this approach, we suggest an asymptotically distribution-free trans-

form of the estimated residuals sample autocorrelation by means of recursive least squares

projections, as proposed by Delgado and Velasco (2011).

3. A martingale transform of the residuals sample autocorrelation function

with estimated parameters

In order to deal with the distribution of residual autocorrelation with estimated parameters,

Delgado and Velasco (2011) propose a transformation based on the recursive least squares

residuals introduced by Brown et al. (1975) for CUSUM tests of parameter instability. In

order to motivate the transformation, consider the asymptotic decomposition in Proposition

1,

ρ̃
(m)

T β̂T
(τ) = Ṽ

(m)

T β̂T
(τ) + op(T

−1/2), τ = 1, . . . ,m,

with

Ṽ
(m)

T β̂T
(τ) = ρ̃

(m)
Tβ0

(τ) + ξβ0
(τ)(β̂T − β0).

The source of asymptotic autocorrelation, under H0, in
{

Ṽ
(m)

T β̂T
(τ)
}m

τ=1
is (β̂T − β0).

Then, the transformation consists in using a linear operator L(m) such that
{

L(m)Ṽ
(m)

T β̂T

}

τ≥1

are asymptotically uncorrelated. Delgado and Velasco (2011) considered the operator that

transform any sequence {η(τ)}mτ=1 in the forward recursive residuals of its least square pro-

jection on
{

ξβ0
(τ)
}m

τ=1
,

L(m)η(τ) = η(τ)− ξβ0
(τ)

(

m
∑

l=τ+1

ξβ0
(l)′ξβ0

(l)

)−1 m
∑

l=τ+1

ξβ0
(l)′η(l).

Backward recursive residuals could also be alternatively used.

Notice than, when it is applied to
{

Ṽ
(m)

T β̂T
(τ)
}m

τ=1
, we have L(m)Ṽ

(m)

T β̂T
(τ) = L(m)ρ̃

(m)
Tβ0

(τ),

τ = 1, . . .m− k , which does not depend on (β̂T − β0). Since
{√

T ρ̃
(m)
Tβ0

(τ)
}

τ≥1
are asymp-

totically distributed as iid standard normal,
{√

TL(m)ρ̃
(m)
Tβ0

(τ)
}

τ≥1
are asymptotically dis-
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tributed as independent normal random variables with mean zero and variance

σ2
ρ(τ) = 1 + ξβ0

(τ)

(

m
∑

l=τ+1

ξβ0
(l)′ξβ0

(l)

)−1

ξβ0
(τ)′. (6)

In practice, we need a consistent estimator of ξβ0
to perform the transformation. As it

is shown in the proof of Proposition 1, under H0 we have

∥

∥

∥

∥

∂

∂β
ρ̂Tβ0

(τ)− 1

γβ0ε(0)

∂

∂β
γ̂Tβ0

(τ)

∥

∥

∥

∥

= op(1), τ 6= 0.

Thus, standardizing by γ̂Tβ0ε(0) in ρ̂Tβ0
has no asymptotic effect on ζβ. Then, we can

estimate ξ
(m)
β0

by

ξ̂
(m)

T β̂T
= Â

(m)−1/2

T β̂T
ζ̂
(m)

T β̂T
, (7)

where ξ̂
(m)

T β̂T
=
(

ξ̂T β̂T
(1)′, . . . , ξ̂T β̂T

(m)′
)′

and ζ̂
(m)

T β̂T
=
(

ζ̂T β̂T
(1)′, . . . , ζ̂T β̂T

(m)′
)′

, with

ζ̂T β̂T
(τ) =

1

T γ̂T β̂T
(0)

(

T
∑

t=τ+1

Yt−τ (Yt − λτ )X
′
t−τ − Yt (Yt−τ − λτ−τ )X

′
t

λtλt−τ

)

γ̂T β̂T
(τ) =

1

T

T
∑

t=τ+1

(

Yt − λ̂t

)(

Yt−τ − λ̂t−τ

)

λ̂tλ̂t−j

.

The feasible transformation consists of the operator L̂(m)
T , which transforms any sequence

{η(τ)}mτ=1 in the forward recursive residuals of its least square projection on
{

ξ̂
(m)

T β̂T

}m

τ=1
,

L̂(m)
T η(τ) = η(τ)− ξ̂T β̂T

(τ)

(

m
∑

l=τ+1

ξ̂T β̂T
(l)′ξ̂T β̂T

(l)

)−1 m
∑

l=τ+1

ξ̂T β̂T
(l)′η(l).

The transformed residuals sample autocorrelations, in the presence of estimated param-

eters is

ρ̄
(m)
Tβ (τ) =

L̂(m)
T ρ̃

(m)
Tβ (τ)

σ̂Tρ(τ)
, τ = 1 . . . ,m− k, (8)

where σ̂2
Tρ(τ) = 1 + ξ̂T β̂T

(τ)
(

∑m
l=τ+1 ξ̂T β̂T

(l)′ξ̂T β̂T
(l)
)−1

ξ̂T β̂T
(τ)′ is the estimator of σ2

ρ(τ).

Notice than we can only transform the first m− k sample autocorrelations, because, giving
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a scaling matrix Â
(m)

T β̂T
, there are no more degrees of freedom available when k parameters

are estimated.

As discussed by Delgado and Velasco (2011), we could also use backward residuals, but

with this approach, we would lose the first k residuals sample autocorrelations, which usually

are the most informative.

In order to prove that, under H0, ρ̄
(m)

T β̂T
=
(

ρ̄
(m)

T β̂T
(1), . . . , ρ̄

(m)

T β̂T
(m− k)

)′

and ρ̄
(m)
Tβ0

are

asymptotically equivalent, and
√
T ρ̄

(m)
Tβ0

is asymptotically distributed as a vector of inde-

pendent standard normals, we need an extra technical assumption in order to compute the

transform.

Assumption 3 For m > k,
m
∑

l=1+m−k

ξT β̂T
(l)′ξT β̂T

(l)

is positive definite.

Theorem 1 Under H0, m > k, Assumptions 1-3, and with β̂T satisfying (4) and (5),

ρ̄
(m)

T β̂T
= ρ̄

(m)
Tβ0

+ op(T
−1/2)

and
√
T ρ̄

(m)
Tβ0

d→ Nm−k(0, Im−k).

Proof See Appendix.

Theorem 1 forms the basis for implementing asymptotic test of lack of autocorrelation

based on the asymptotically iid sequence ρ̄
(m)

T β̂T
, as described in the next section.

4. Testing lack of autocorrelation on the multiplicative residuals with

estimated parameters

Our goal is to test if there is evidence that the multiplicative error is not autocorrelated,

which provides a model check. That is, we seek to test

H0 : ρβ0
(τ) = 0, τ = 1, . . . ,m and some β0 ∈ Θ (9)
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against the fixed alternative hypothesis

Hs
1 = ρβ0

(τ) 6= 0 for some τ = 1, . . . ,m for any β0 ∈ Θ (10)

for some m > k.

One of the most popular test statistic for lack of autocorrelation as expressed by H0 is

the Portmanteau Box and Pierce (1970) statistic, B̂BP
T β̂T

(s), with

B̂BP
Tβ (s) = T

s
∑

τ=1

ρ̂Tβ(τ)
2,

for some k < s ≤ m, where k is the number of estimated parameters in the model.

Ljung and Box (1978) propose a small modification to B̂BP
T β̂T

(s) in order to have better

finite sample properties. The test statistic proposed by Ljung and Box (1978) is

B̂LB
Tβ̂T

(s) = T (T + 2)
s
∑

τ=1

ρ̂Tβ(τ)
2

T − τ
.

The Portmanteau type tests of Box and Pierce (1970) assumes that s is a fixed number.

This restriction leads to tests which are not able to detect serial correlation appearing at

lags larger than s. In order to overcome this issue, Hong (1996) allows s growing with the

sample size. Nonetheless, although consistent, omnibus autocorrelation tests present low

empirical power when the autocorrelation appears at higher lags, though large s, typically

of O
(

T−1/2
)

, is needed in order to get reasonable size accuracy - see Escanciano (2009) and

references therein for the theoretical explanations.

On the other hand, the Portmanteau tests of Box and Pierce (1970) fall into the class of

Neyman’s smooth test, which are optimal to detect fixed local alternatives of the type

H1T : ρβ0
(τ) =

r(j)√
T

+
jT (τ)

T
∀j = 1, 2, . . . ,m (11)

where r and jT are square summable such that ρβ0
is positive definite sequence for all T - see

Delgado and Velasco (2010). If one has a particular local alternative in mind, Delgado and
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Velasco (2010) propose a class of specification tests which maximize the power function when

testing in the direction of the chosen local alternative. Nonetheless, Escanciano and Lobato

(2009) show that, when one does not have an alternative r in mind, the Neyman’s smooth

tests, and hence the BP type test, are optimally adaptive to the unknown local alternative.

We consider a test of H0 based on the sums of squared transformed autocorrelations,

which is a version of the BP test statistic replacing the sample residual autocorrelation by

its asymptotically distribution-free transformation in (8)

B̄
(m)
Tβ (s) = T

s
∑

τ=1

ρ̄
(m)
Tβ (τ)

2,

for some 1 ≤ s ≤ m− k.

It follows from Theorem 1 that, under H0,

B̄
(m)

T β̂T
(s)

d→
s
∑

τ=1

Z2
τ ≡ χ2

(s)

where {Zτ}τ∈N are iid standard normals, and χ2
(s) is a chi-square distribution with s degrees

of freedom. This result is summarized in the Corollary 1

Corollary 1 Under H0 and the conditions stated on Theorem 1,

B̄
(m)

T β̂T
(s)

d→ χ2
(s),

1 ≤ s ≤ m− k.

Box and Pierce (1970) show that, when {εt}t∈Z are iid, s > k, and s is increasing with T,

B̂BP
Tβ (s)

asy∼ χ2
(s−k). However, when s remains fixed, B̂BP

Tβ (s) has a limiting distribution that

depends on unknown features of the data generating process such as the parameter vector

β0, preventing its use when s is small. In fact, the residual sample autocorrelation at any

lag is an inconsistent estimator of the true innovation autocorrelation function.

When {εt}t∈Z exhibits high-order dependence, the asymptotic variance of the residuals

sample autocorrelations is cumbersome to calculate, as it is shown by Romano and Thombs
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(1996) in a weak ARMA model context. In this case, Box and Pierce (1970) test statistic is

no long well approximated by a χ2
(s−k) distribution since ρ

(m)
Tβ (τ) is no longer asymptotically

distributed as a standard normal random variable.

On the other hand, our proposed test statistic B̄
(m)
Tβ (s) prevents for {εt}t∈Z exhibiting

high-order dependence. Also, contrary to Box and Pierce (1970), the test statistic B̄
(m)
Tβ (s)

is pivotal for fixed s, since the estimated parameters effect is already projected out. Hence,

even when s is fixed, and {εt}t∈Z exhibits high-order dependence, our proposed test statistic

follows a χ2
(s) asymptotically, m ≥ s+ k.

In order to discuss the power of the proposed test, consider the local alternatives of the

form (11), where r and jT are square summable such that ρβ0
is positive definite sequence

for all T .

Concerning the asymptotic distribution of ρ̄
(m)
Tβ under H1T , define the vector of projected

and standardized autocorrelation drifts as ȟ
(m)

β =
(

ȟ
(m)
β (1), . . . , ȟ

(m)
β (m− k)

)′

, where

ȟ
(m)
β (τ) = h

(m)
β (τ)− ξβ(τ)

(

m
∑

l=τ+1

ξβ(l)
′ξβ(l)

)−1 m
∑

l=τ+1

ξβ(l)
′h

(m)
β (τ) (12)

τ = 1, . . . ,m− k,

h
(m)
β (τ) =

m
∑

i=1

[

A
(m)−1/2
β

]

(τ,i)
r(i). (13)

and let h̄
(m)
β =

(

h̄
(m)
β (1), . . . , h̄

(m)
β (m− k)

)′

,where h̄
(m)
β (τ) = ȟ

(m)
β (τ)/σρ(τ), with σρ(τ) as

defined in (6).

Theorem 2 Under H1T , m > k, Assumptions 1-3, and with β̂T satisfying (4) and (5),

ρ̄
(m)

T β̂T
= ρ̄

(m)
Tβ0

+ op(T
−1/2)

and
√
T ρ̄

(m)
Tβ0

d→ Nm−k(h̄
(m)
β0

, Im−k).

Proof See Appendix.

From Theorem 2, we can see that the sample transforms of the residuals sample auto-
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correlations are asymptotically distributed as Normal with non-zero mean. Then, it follows

that, under nonparametric local alternatives of the form (11), our proposed test statis-

tic B̄
(m)

T β̂T
(s) is asymptotically distributed as non-central chi-squared, χ2

(s) (ϕ), with non-

centrality parameter ϕ equal to
∑s

j=i

(

h̄
(m)
β0

(j)
)2

. Hence, our test is able to detect nonpara-

metric local alternatives like H1T , which converges to the null hypothesis at the parametric

rate. The classical BP test, as shown by Hong (1996), does not meet this property. More-

over, our test is consistent against fixed alternatives of the form (10). We summarize these

results in Corollary 2.

Corollary 2 Under H1 and the conditions stated on Theorem 2,

B̄
(m)

T β̂T
(s)

d→ χ2
(s) (ϕ) ,

1 ≤ s ≤ m− k, ϕ =
∑s

j=i

(

h̄
(m)
β0

(j)
)2

. Moreover, under fixed alternatives of the form (10),

for all c < ∞,

lim
T→∞

P
[

B̄
(m)

T β̂T
(s) > c

]

= 1

5. Monte Carlo Simulations

This section illustrates the finite sample performance of our proposal comparing the sim-

ulated empirical percentage of rejections under H0 and H1 of alternative residual sample

autocorrelations based tests. We consider sample sizes T = 100 and 300, and 10, 000 repli-

cations in each experiment. All models are estimated using a Poisson Quasi-Likelihood.

For t = 1, . . . , T , we consider the following null models:

Yt ∼ Poisson(λt)

and

λt = exp (1 +Xt + rvt) ,

Xt = 0.5Xt−1 + ut,
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and {ut}t∈Z follows an iid standard normal distribution, and {vt}t∈Z follows and iid normal

distribution with mean −0.347 and variance 0.693. Hence, exp(vt) follows a log-normal

distribution with mean 1 and variance 1. We consider two specifications: (a) r = 0, and (b)

r = 1. This way, on specification (a) we have a standard Poisson model, and on the (b) we

introduce a multiplicative latent process which leads to overdispersion, as first considered

by Zeger (1988).

In both specifications, the conditional mean of the count process is given by λt, and

hence under H0 there is a centered multiplicative error εt − 1 with mean 0. Notice that (a)

and (b) leads to different conditional heteroskedasticity forms: residual conditional variance

on specifications (a) is equal to λ−1
t , and on (b) is equal to 1 + λ−1

t .

Our test statistic B̄
(m)

T β̂T
(s) uses critical values from a chi squared distribution with s

degrees of freedom. The nominal level of all tests is 5%. For the sake of comparison, we use

values of s from 1 up to 15 and 20 for T = 100 and 300 respectively. We set m = s + k in

order to avoid studentization on unnecessary residual autocorrelation. Moreover, A
(m)
β0

need

to be estimated and hence it is not reasonable to set larger m than needed. We use three

estimates of A
(m)
β0

: (i) Â
(m)

T β̂T
= Im, (ii) Â

(m)

T β̂T
= diag

{

â
(1,1)

T β̂T
, . . . , â

(m,m)

T β̂T

}

/γ̂T β̂T ε(0)
2, with

â
(j,j)
Tβ = T−1

∑T
t=1+j ε

2
tβε

2
t−jβ, and (iii) the Newey-West-type unrestricted estimator of A

(m)
β0

used by Lobato et al. (2002) with preliminary bandwidth n = 2 (T/100)1/3 , no prewhitening

and Barlett’s kernel, as in Delgado and Velasco (2011).

We compare our new test statistic with the classical BP test, B̂BP
T β̂T

(s), under iid multi-

plicative innovations (with χ2
(s−k) approximation), and with a BP test variation, B̂BP D

Tβ̂T
(s),

where we standardize the residuals sample autocorrelations by Â
(m)

T β̂T
, where Â

(m)

T β̂T
is consid-

ered to be diagonal as in (ii).

Figure 1 report the simulated empirical size of the tests. We can observe that, for both

versions of the classical Box-Pierce test, the type I error is out of control for any sample

size. In general, in both specifications and sample sizes, tests based on recursive projections

control the type I error, with the exception on specification (b), when T = 100, high values of

s are used with unrestricted estimator ofA
(m)

T β̂T
, perhaps due to the need of inverting a matrix

of larger dimension. Nonetheless, when T = 300, this over-sizing distortions disappears.
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INSERT FIGURE 1 HERE

We consider also two specifications under the alternative, using the GARMA(0,1) of

Davis et al. (2003) and Benjamin et al. (2003), and introducing an autocorrelated latent

process on the Poisson parameter, as in Zeger (1988). More precisely, we consider the

following specifications under H1:

(c) Yt ∼ Poisson(ωt), ωt = exp

(

1 +Xt + 0.5
Yt−1 − ωt−1

ωt−1

)

(d) Yt ∼ Poisson(πt), πt = exp (1 +Xt + zt))

where

zt = 0.62zt−1 + vt.

Since {exp(zt)} is log-normal, specification (d) leads to first order residual autocorrelation

of 0.5.

INSERT FIGURE 2 HERE

The two considered versions of the classical Box-Pierce test do not control size, and

hence we only report the rejections under the alternative using our test statistic B̄
(m)

T β̂T
(s).

We can see in Figure 2 that our test B̄
(m)

T β̂T
(s) based on recursive residuals exhibit good

power performance for all s considered, for both the Â
(m)

T β̂T
being diagonal or the identity

matrix. When using the the robust estimator of A
(m)

T β̂T
, we can see. as expected, that our

test statistic loses power when considering high values of s.

6. Risk Management and U.S. Corporate Bankruptcies

In order to illustrate the appealing of our proposed test statistic in applied econometrics,

we analyze different specifications of common credit risk models.

In a seminal paper, Das et al. (2007) analyze if the observable variables are sufficient to

explain the default time correlation of U.S. non-financial corporations. Using a test statistic
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based on the count of defaults in a given period, Das et al. (2007) reject the hypothesis of de-

faults being conditional independent, suggesting some evidence of excess default clustering.

This finding has important implications for practitioners because many popular default risk

models rely on the assumption of conditionally independent defaults. Moreover, as shown

by Duffie et al. (2009), ignoring such default clustering leads to substantial downward bias

on extreme default losses probabilities.

In order to overcome such consequences, Duffie et al. (2009) propose to add a common

dynamic “frailty” effect on the firms default hazard, that is, an unobserved correlated latent

process common to all firms. As an alternative to the duration model of Duffie et al.

(2009), Koopman et al. (2011, 2012), using time series count data panel models, propose

new estimators for the measurement and forecasting of default probabilities when excess

default clustering is present, allowing for a large number of macroeconomic and financial

variables, an industry fixed effects and a common frailty effect. Differently than Duffie

et al. (2009), which model the frailty effect as continuous-time process, Koopman et al.

(2011, 2012) rely on a state space specification, such that the frailty effect is modeled as

a Gaussian AR(1). Their results confirms the findings of Das et al. (2007) in the sense

that there is some evidence of a correlated frailty effect. However, an important question

remain unanswered: Is the AR(1) latent process structure enough to capture all the excess

default? In other words, is there any evidence of residuals serial correlation, after including

this additional parameter?

Our test for lack of autocorrelation is a valuable tool in order to access if the proposed

model for bankruptcy counts is correctly specified. Within our approach, we are able to

test both if there is evidence of excess correlation, and, in case there is, if the usual as-

sumption that considering only first order dynamics is enough to capture the excess of

default/bankruptcy correlation. This second hypothesis, to the best of our knowledge, has

not been verified so far. This is an important model check since, as pointed out by Koopman

et al. (2011), model misspecification can lead to underestimation of corporate risk.

When the interest is on determining adequate economic capital buffers, the focus of the

analysis is on aggregate default or bankruptcies rather than on firm specific default. A

18



modeling strategy that deals directly with aggregate default counts is a natural alternative

from the procedure of Duffie et al. (2009) and Koopman et al. (2011, 2012), in which they

first estimate the firms default probability and then aggregate.

With this in mind, using monthly data on bankruptcy filed in the United States Bankruptcy

Courts from January 1985 until October 2012, available from UCLA-LoPucki Bankruptcy

Research Database 1, we analyze if there is any evidence of excess correlation in bankruptcy

counts. Moreover, we test for lack of autocorrelation in the residuals of different Poisson-

GARMA models, particularly if including an AR(1) or MA(1) term is enough to capture the

linear dynamics of the monthly bankruptcy counts. Although bankruptcy data is available

since October 1979, we only use data from 1985 onwards, that is, only the period after the

“Great Moderation”. We do it in order to avoid the presence of well documented structural

breaks.

UCLA-LoPucki Bankruptcy Research Database contains data on all large, public com-

pany bankruptcy cases filed in the United States Bankruptcy Courts. By large firms, they

consider firms which have declared assets of more than $100 million, measured in 1980 dol-

lars, the year before the firm filled the bankruptcy case. A firm is considered public if they

report to the Securities Exchange Commission in the last three years prior to bankruptcy.

Following Compustat, although only 22% of the public firms has higher market value than

$100 Million in 2011, these firms represent 70% of total assets and sales of all firms listed, and

hence represent an important category of firms. Monthly bankruptcy counts are considered

in terms of the month the bankruptcy file was filed.

Macroeconomic and financial monthly data are obtained from the St. Louis Fed online

database FRED, see Table 1 for a listing of macroeconomic and financial data. These involve

business cycle measurements, labor market conditions, interest rate and credit spread and

are typically used in macro stress test - see Tarullo (2010) for instance. Variables are

expressed as yearly growth rates (INDPRO, PERMIT, PPIFGS and PPIENG) or as yearly

differences (UNRATE, BAA, FEDFUNDS, GS10, SP500RET and SP500VOL). We also

consider a time dummy which takes value one after September 2005, in order to capture the

1. Available at http://lopucki.law.ucla.edu/
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effect of a major bankruptcy law reform, the Bankruptcy Abuse Prevention and Consumer

Protection Act (BAPCPA), signed in October 2005.

INSERT TABLE 1 HERE

We estimate the count data model using the Poisson quasi-likelihood only with the

covariates, and also consider the observation-driven Poisson GARMA Model of Davis et al.

(2003) with and additional AR(1) or MA(1) parameter - GARMA(1,0) and GARMA(0,1),

respectively. We finally provide AIC and BIC values for the models considered. For checking

the fit of the models, we use the Box-Pierce test based on the transformed multiplicative

residuals autocorrelation, B̄
(m)

T β̂T
(s), with s varying from 1 to 6. These choices include all the

usual lag choices in similar applications supported by our simulations, given that T = 324.

We report the analysis with Â
(m)

β̂T
being the identity matrix and diagonal. Since it is clear

from the simulations that the classical Box-Pierce test, B̄BP
T β̂T

(s), does not control size, we

omit it. The results of the test statistic are presented on Table 2. Estimated parameters for

the different models are reported on Table 3.

From the specification tests presented on Table 2 one can conclude that the simple static

Poisson model, which contains only the macroeconomic covariates, is strongly rejected by the

recursive Portmanteau test B̄
(m)

T β̂T
(s). This result points to the same direction of the results

of Duffie et al. (2009) and Koopman et al. (2011, 2012): there is evidence of a bankruptcy

cluster beyond the one implied by the macroeconomic variables. As pointed out by these

authors, ignoring such excess autocorrelation can lead to mismeasures on risk management,

specially underestimation of extreme loss given default.

INSERT TABLE 2 HERE

In order to understand better the source of the rejection of the null for the Poisson model

with only covariates, we consider the analysis of individual projected residuals autocorrela-

tions for lags up to 20, with Â
(m)

T β̂T
being diagonal, and m = 32. Recall that transformed

autocorrelations can be correctly compared with the usual ±2/
√
T confidence band, as

when working with raw data. In Figure 3, we have plotted the autocorrelograms of the

transformed residuals of the Poisson model only with covariates. In this plot we can easily
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identify the source of the rejection, since transformed autocorrelations provide evidence on

serial correlation of the underlying innovation from the very first lag onwards.

INSERT TABLE 3 HERE

Once we consider both Poisson GARMA models, we fail to reject H0, that is, the data

supports that these specifications seems to capture the linear dynamics of the bankruptcy

counts. These results provides some evidence that, within the exponential functional form,

considering just first order autocorrelation is enough to capture the bankruptcy dynamics,

as suggested by Duffie et al. (2009), Koopman et al. (2011, 2012) in different contexts. To

the best of our knowledge, we are the first to formally test these suggestions.

These results have important implications for risk management. Almost all industry

credit risk models, such as CreditMetrics, Moody’s KMV and CreditRisk+ rely on the

assumption that default and bankruptcies are time independent. However, from the results

of our specification testing, we conclude that there is evidence of an excess bankruptcy

clustering. The presence of residual autocorrelation may increase bankruptcy rate volatility,

and as result it may shift probability mass of an portfolio credit loss distribution toward

more extreme values. This would increase capital buffers prescribed by the risk models.

Hence, if one ignores the presence of a frailty effect, portfolio credit risk models will tend to

be wrong. On the other hand, if one consider first order autocorrelations, as in the GARMA

models we have presented, it seems that there is no evidence of model misspecification. This

way, we argue that these type of models are more appropriate to model bankruptcies and

adjusting the credit risk models for it would not only be relevant for internal risk assessment,

but also for external supervision of financial institutions.

7. Conclusion

In this paper, we have proposed a new distribution-free test for lack of autocorrelation in

count data models in the presence of estimated parameters, under weak assumptions on the

relationship between the covariates and the multiplicative innovations. The test statistic

proposed is of the Box and Pierce (1970) type, but contrary to the classical tests, it is able
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to detect local alternatives converging to the null at the parametric rate. Our test present

satisfactory finite sample properties as demonstrated via Monte Carlo simulations. Once

our proposal is applied to bankruptcy count models, we rejected the specification of a model

with only macroeconomic covariates, but do not reject the null of lack of autocorrelation

once we consider dynamic count models as the GARMA(0,1) and the GARMA(1,0). Hence,

we advocate that considering this broader class of models seem more appropriate when

dealing with bankruptcy risk.

Our basic results can be extended to other situations of practical interest without any

additional difficulty. For instance, under suitable conditions, one could consider the mul-

tiplicative error model Yt = g(Ft−1;θ)εt where gt(·) a known twice differentiable function,

Ft−1 is the available information at time t (can include lags of Yt, εt, and also a set of

covariates X t), θ is a vector of parameters to be estimated and εt has a non-negative dis-

tribution with E (εt|Ft−1) = 1. Once θ is estimated, we can obtain the centered residuals
[

Yt − g(Ft−1; θ̂)
]

/g(Ft−1; θ̂) = ε̂t − 1, and then apply the asymptotically distribution-free

transform to the residual sample autocorrelation, and all our results would follow once we

properly compute the score of the residual sample autocorrelation.

Regarding the choice of the number of lags included in the test statistic, one can adopt a

data-driven procedure based on an AIC/BIC criterion in the lines of Escanciano and Lobato

(2009) and Escanciano et al. (2013), at the cost of not being able to detect the kind of local

alternatives considered here. The proofs of Escanciano and Lobato (2009) and Escanciano

et al. (2013) could be extended to the present case without additional effort.
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Appendix: Proofs

PROOF OF PROPOSITION 1

It follows from Taylor expansion around the true β, element by element. For each

j = 1, . . . ,m, we write

ρ̂T β̂T
(j)− ρ̂Tβ0

(j) =
∂ρ̂Tβ(j)

∂β
(β̂T − β0) +DT (j)

where DT (j) is

DT (j) =
(

β̂T − β0

)′

ρ̈Tβ∗

T,j
(j)
(

β̂T − β0

)

,

ρ̈Tβ∗

T,j
(j) = ∂2ρ̂Tβ(j)/∂β∂β

′

and β∗
T,j are such that ||β∗

T,j−β0|| ≤ ||β̂T −β0||, ∀j = 1, . . . ,m.

Then, for each j = 1, . . . ,m,

∂

∂β
ρ̂Tβ(j) =

∂
∂β
γ̂Tβ(j)

γ̂Tβ(0)
− γ̂Tβ(j)

γ̂Tβ(0)

∂
∂β
γ̂Tβ(0)

γ̂Tβ(0)
.

Using that γ̂Tβ0
(j) = γβ0

(j)+ op(1), in particular γβ0
(j) = 0 for j 6= 0 under H0 and that

∂

∂β
γTβ0

(0) = − 2

T

T
∑

t=1

(

Yt − λt

λ2
t

)

X
′

t

p→ −2E

[

εt − 1

λt

X
′

t

]

under Assumptions (1) and (2) and Law of Large Numbers, we conclude that the normal-
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ization of ρ̂
(m)

T β̂T
has no asymptotic effect under H0, so that

∂

∂β
ρ̂Tβ0

(j) =

∂
∂β
γTβ0

(j)

γTβ0
(0)

+ op(1).

Without loss of generality, assume that γβ0
(0) = 1. Writing now

∂γTβ0
(j)

∂β
= −

(

1

T

T
∑

t=1+j

(

Yt−τ − λt−j

λtλt−j

)

X
′

t +
1

T

T
∑

t=1+j

(

Yt − λt

λtλt−j

)

X
′

t−j

)

= −AT,1 −AT,2

where

AT,1 =
1

T

T
∑

t=1+j

(

Yt−j − λt−j

λtλt−j

)

X
′

t; AT,2 =
1

T

T
∑

t=1+τ

(

Yt − λt

λtλt−j

)

X
′

t−j.

Setting ζ
(i)
β0
(j) := limT→∞ E[AT.i(j)], i = 1, 2, we wish to show that AT,i(j) = ζ

(i)
β0
(j) +

op(1), i = 1, 2; j = 1, 2, 3, . . . .

It suffices to show that E ‖AT,i(j)− E [AT,i(j)]‖2 is o(1), i = 1, 2. First consider i = 1,

E ‖AT,i(j)− E [AT,i(j)]‖2 =
1

T 2

T
∑

t=j+1

T
∑

r=j+1

E [e(t, t− j)′e(r, r − j)] = o(1) (14)

where e(t, t− j) = (Yt−j − λt−j) (λtλt−j)
−1

X
′

t − E
[

(Yt−j − λt−j) (λtλt−j)
−1

X
′

t

]

and, hence-

forth we omit dependence on β0 in the notation.

For some n > 0 fixed with T,E ‖AT,1(j)− E [AT,1(j)]‖2 is

1

T 2

T
∑

t=j+1

E [e(t, t− j)′e(t, t− j)] +
2

T 2

T
∑

t=j+1

T
∑

t−n−j≤r<t

E [e(t, t− j)′e(r, r − j)] (15)

+
2

T 2

T
∑

t=j+1

T
∑

j+1≤r<t−n−j

E [e(t, t− j)′e(r, r − j)] .

The first two terms of (15) are O(T−1) = o(1) since it involves a maximum of T + n

terms with bounded absolute expectation, since by Assumptions 1-2 and Minkowski and
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Cauchy-Schwarz inequalities,

E

∥

∥

∥

∥

(

Yt−j − λt−j

λtλt−j

)

X
′

t − E

[(

Yt−j − λt−j

λtλt−j

)

X
′

t

]∥

∥

∥

∥

2

≤ 2E

∥

∥

∥

∥

(

Yt−j − λt−j

λtλt−j

)

X
′

t

∥

∥

∥

∥

2

= 2E

∥

∥

∥

∥

εt−j − 1

λt

X
′

t

∥

∥

∥

∥

2

≤ 2

(

E

∥

∥

∥

∥

1

λt

X
′

t

∥

∥

∥

∥

4
)1/2

(

E|εt − 1|4
)1/2

< ∞

In order to show that the third term of (15) is bounded, notice that e(r, r−j) is F r
1 mea-

surable and that e(t, t− j) is F∞
t measurable. Given Assumption 2, E ‖e(t, t− j)‖2+δ < ∞,

E ‖e(r, r − j)‖2+δ < ∞, we can use Roussas and Ioannides (1987) moment inequality to

show that the third term of (15) is bounded in absolute value by

C

T 2

(

E ‖e(t, t− j)‖2+δ E ‖e(r, r − j)‖2+δ
)2+δ

T
∑

t=j+1

T
∑

j+1≤r<t−n−j

α
δ

2+δ

t−j−r = O(T−1) = o(1).

Using exactly the same procedure, we can show that E ‖AT,2(j)− E [AT,2(j)]‖2 is o(1).

Then, we have that under H0

∂γTβ0
(j)

∂β
= −E

(

εt−j − 1

λt

X
′

t

)

− E

(

εt − 1

λt−j

X
′

t−j

)

+ op(1).

Now, we just need to show that the second order term on the expansion is op(T
−1/2).

In order to do that, we just need to show that ρ̈Tβ∗

T,j
(j) = ∂2ρ̂Tβ(j)/∂β∂β

′

is Op(1). For

j = 1, . . . ,m we have

ρ̈Tβ∗

T,j
(j) =

∂2

∂β∂β′
γ̂Tβ∗(j)

γ̂Tβ∗(0)
−

∂
∂β
γ̂Tβ∗(j)

γ̂Tβ∗(0)

(

∂
∂β
γ̂Tβ∗(j)

)′

γ̂Tβ∗(0)
− ∂

∂β′
ρ̂Tβ∗(j)

∂
∂β
γ̂Tβ∗(0)

γ̂Tβ∗(0)

− ρ̂Tβ∗(j)







∂2

∂β∂β′
γ̂Tβ∗(0)

γ̂Tβ∗(0)
−

∂
∂β
γ̂Tβ∗(0)

γ̂Tβ∗(0)

(

∂
∂β
γ̂Tβ∗(0)

)′

γ̂Tβ∗(0)






,
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where

∂2

∂β∂β′ γ̂Tβ∗(j) = − ∂

∂β′AT,1

∣

∣

∣

∣

β=β∗

− ∂

∂β′AT,2

∣

∣

∣

∣

β=β∗

∂2

∂β∂β′ γ̂Tβ∗(0) = −2
∂

∂β′BT

∣

∣

∣

∣

β=β∗

and

BT =
1

T

T
∑

t=1

(

Yt − λt

λ2
t

)

X
′

t

∂

∂β′AT,1

∣

∣

∣

∣

β=β∗

= − 1

T

T
∑

t=j+1

(

Xt

Yt−j − λ∗
t−j

λ∗
tλ

∗
t−j

X
′

t +Xt−j
Yt−j

λ∗
tλ

∗
t−j

X
′

t

)

∂

∂β′AT,2

∣

∣

∣

∣

β=β∗

= − 1

T

T
∑

t=j+1

(

Xt−j
Yt − λ∗

t

λ∗
tλ

∗
t−j

X
′

t−j +Xt
Yt

λ∗
tλ

∗
t−j

X
′

t−j

)

∂

∂β′BT

∣

∣

∣

∣

β=β∗

=
−2

T

T
∑

t=1

Xt
Yt − λ∗

t

λ2∗
t

X
′

t

and λ∗
s = exp(X ′

sβ
∗).

Using Assumptions (1) and (2) and techniques similar to the ones we already used, we

can show that ρ̈Tβ∗

T,j
(j) = Op(1). �

PROOF OF THEOREM 1

Using algebra and Proposition 1, we find that L̂(m)
T ρ̃

(m)

T β̂T
= L̂(m)

T ρ̄
(m)
Tβ0

+op(T
−1/2), because

from Assumption 3,

θ̃
(τ)

T β̂T
[ρ̄

(m)
TβT

] = θ̃
(τ)

T β̂T
[ρ̄

(m)
Tβ0

] +
(

β̂T−β
)

+ op(T
−1/2),

τ = 1, . . . ,m − k , such that θ̃
(τ)

Tβ[ρTβ] =
(

∑m
l=τ+1 ξ̂Tβ(l)

′ξ̂Tβ(l)
)−1

∑m
l=τ+1 ξ̂Tβ(l)

′ρTβ(l)

and ξ̂TβT
(τ) →p ξβ0

(τ), which can be proved using the same methods used in the proof of

Proposition 1.

Similar, we can show thatL̂(m)
T ρ̃

(m)
Tβ0

(τ) = ρ̃
(m)
Tβ0

(τ)− ξβ0
(τ)θ

(τ)
β0
[ρ̃

(m)
Tβ0

(τ)] + op(T
−1/2),where

θ
(τ)
β [ρ] =

(
∑m

l=τ+1 ξβ(l)
′ξβ(l)

)−1∑m
l=τ+1 ξβ(l)

′ρ(l), τ = 1, . . . ,m− k.

The CLT for ρ̄
(m)
Tβ0

follows from the CLT for ρ̃
(m)
Tβ0

under Assumptions 1, condition (3), H0

and from the fact that ρ̄
(m)
Tβ0

are standardized by construction if ρ̃
(m)
Tβ0

is already standardized.
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Under H0, ρ̃
(m)
Tβ0

(τ) = 0 for all τ = 1, . . . ,m and hence ρ̄
(m)
Tβ0

has asymptotic mean

equal to 0. In order to show the asymptotic variance of ρ̄
(m)
Tβ0

is equal to Im−k, notice

that AV ar
(

T 1/2L̂(m)
T ρ̃

(m)
Tβ0

(τ)
)

is equal to

AV AR
(

T 1/2
(

ρ̃
(m)
Tβ0

(τ)− ξ̂TβT
(τ)θ̃

(τ)

T β̂T

))

= AV AR
(

T 1/2
(

ρ̃
(m)
Tβ0

(τ)− ξβ0
(τ)θ

(τ)
β0

[

ρ̃
(m)
Tβ0

]))

= 1 + ξβ0
(τ)

(

m
∑

l=τ+1

ξβ0
(l)′ξβ0

(l)

)−1

ξβ0
(τ)′,

while for 1 ≤ τ < q ≤ m− k, ACov
(

T 1/2L̂(m)
T ρ̃

(m)
Tβ0

(τ), T 1/2L̂(m)
T ρ̃

(m)
Tβ0

(q)
)

is given by

ACov
(

T 1/2
(

ρ̃
(m)
Tβ0

(τ)− ξ̂TβT
(τ)θ̃

(τ)

T β̂T

)

, T 1/2
(

ρ̃
(m)
Tβ0

(q)− ξ̂TβT
(q)θ̃

(q)

T β̂T

))

= ACov
(

T 1/2
(

ρ̃
(m)
Tβ0

(τ)− ξβ0
(τ)θ

(τ)
β0

[

ρ̃
(m)
Tβ0

])

, T 1/2
(

ρ̃
(m)
Tβ0

(q)− ξβ0
(q)θ

(q)
β0

[

ρ̃
(m)
Tβ0

]))

= ACov
(

T 1/2ρ̃
(m)
Tβ0

(τ), T 1/2ρ̃
(m)
Tβ0

(q)
)

− ACov
(

T 1/2ρ̃
(m)
Tβ0

(τ), T 1/2ξβ0
(q)θ

(q)
β0

[

ρ̃
(m)
Tβ0

])

− ACov
(

T 1/2ξβ0
(τ)θ

(τ)
β0

[

ρ̃
(m)
Tβ0

]

, T 1/2ρ̃
(m)
Tβ0

(q)
)

+ ACov
(

T 1/2ξβ0
(τ)θ

(τ)
β0

[

ρ̃
(m)
Tβ0

]

, T 1/2ξβ0
(q)θ

(q)
β0

[

ρ̃
(m)
Tβ0

])

where the terms are respectively equal to 0, 0, −ξβ0
(τ)
(
∑m

l=τ+1 ξβ0
(l)′ξβ0

(l)
)−1

ξβ0
(q)′ and

ξβ0
(τ)
(
∑m

l=τ+1 ξβ0
(l)′ξβ0

(l)
)−1

ξβ0
(q)′, and the asymptotic covariance of the projection is 0.

�

PROOF OF THEOREM 2

The result follows from noticing that under H1T Proposition 1 is still valid, because for

each j = 1, . . . ,m, we have

∂

∂β
ρ̂Tβ(j) =

∂
∂β
γ̂Tβ(j)

γ̂Tβ(0)
− γ̂Tβ(j)

γ̂Tβ(0)

∂
∂β
γ̂Tβ(0)

γ̂Tβ(0)

=

∂
∂β
γ̂Tβ(j)

γ̂Tβ(0)
− r(j)√

T
Op(1) +Op(T

−1)

=

∂
∂β
γ̂Tβ(j)

γ̂Tβ(0)
+Op(T

−1/2),
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and then, for each j = 1, . . . ,m, we have

ρ̂
(m)

T β̂T
(j)− ρ̂

(m)
Tβ0

(j) =

∂
∂β
γ̂Tβ(j)

γ̂Tβ(0)
(β̂T − β0) +Op(T

−1/2)(β̂T − β0) + op(T
−1/2)

=

∂
∂β
γ̂Tβ(j)

γ̂Tβ(0)
(β̂T − β0) + op(T

−1/2).

Hence, from Theorem 1, we have that

L̂(m)
T ρ̃

(m)

T β̂T
(τ) = L̂(m)

T ρ̃
(m)
Tβ0

(τ) + op(T
−1/2)

= ρ̃
(m)
Tβ0

(τ)− ξβ0
(τ)θ

(τ)
β0
[ρ̃

(m)
Tβ0

(τ)] + op(T
−1/2),

τ = 1, . . . ,m− k, also under H1T .

We have seem in Theorem 1 that, under Assumptions 1 - 3, the CLT for ρ̄
(m)
Tβ0

fol-

lows from the CLT for ρ̃
(m)
Tβ0

. Since under H1T ρ̃
(m)
Tβ0

has asymptotic mean equal to h̃
(m)

β0
=

(

h
(m)
β0

(1), . . . , h
(m)
β0

(m)
)′

, with h
(m)
β (τ) as in (13), it is clear that, for τ = 1, . . . ,m − k,

L̂(m)
T ρ̃

(m)
Tβ0

(τ) is asymptotically normal, with an asymptotic drift equal to ȟ
(m)
β0

(τ), defined in

(12), and asymptotic variance equal to 1 + ξβ0
(τ)
(
∑m

l=τ+1 ξβ0
(l)′ξβ0

(l)
)−1

ξβ0
(τ)′.

Since L̂(m)
T ρ̃

(m)
Tβ0

(τ) is asymptotic independent of L̂(m)
T ρ̃

(m)
Tβ0

(q),for 1 ≤ τ < q ≤ m − k, as

shown in Theorem 1, the result follows. �
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Figure 1: Empirical size of Portmanteau tests at 5 % significance. RBP(W) is B̄
(m)

T β̂T
(s)

based on recursive projected residuals autocorrelations, using Âm
t = W , compared with a

χ2
(s) critical value. W = I means Âm

t = Im, W = D means Âm
t is diagonal, and W = U

means an unrestricted estimate of Âm
t is used. BP and BP(D) are the classical Box-Pierce

test and the standardized Box-Pierce test, respectively, compared with a χ2
(s−2) critica value.
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Figure 2: Empirical Power of Portmanteau tests at 5 % significance. RBP(W) is B̄
(m)

T β̂T
(s)

based on recursive projected residuals autocorrelations, using Âm
t = W , compared with a

χ2
(s) critical value. W = I means Âm

t = Im, W = D means Âm
t is diagonal, and W = U

means an unrestricted estimate of Âm
t is used.
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Figure 3: Projected Sample Autocorrelations from Poisson Regression Residuals
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Table 1: Macroeconomic Time Series data

Variable Shortname

Industrial production index INDPRO
New housing permits PERMIT
Civilian unemployment rate UNRTAE
Moody’s Seasoned Baa Corporate Bond Yield BAA
10-Year Treasury Constant Maturity Rate GS10
Federal Funds Rate FEDFUNDS
Producer Price Index: Finished Goods PPIFGS
Producer Price Index: Fuels and related energy PPIENG
S&P 500 yearly returns SP500RET
S&P 500 return volatility SP500VOL
2005 Bankruptcy Act DUMMY2005

Table 2: Goodness-of-Fit Analysis for U.S.A. Bankruptcy Counts based on Poisson model

Models Âm
t / s 1 2 3 4 5 6

Poisson Im 15.641*** 19.65*** 25.193*** 24.228*** 25.904*** 26.379***

Static diag 11.123*** 14.109*** 17.328*** 16.989*** 18.948*** 19.261***

Poisson Im 0.069 1.657 2.085 2.261 2.616 4.525

GARMA(0,1) diag 0.065 1.863 2.462 2.444 2.778 4.945

Poisson Im 0.001 0.192 0.242 0.223 0.237 1.587

GARMA(1,0) diag 0.001 0.202 0.254 0.225 0.234 1.605

Note: ∗∗∗denotes significant at 1% level. The test statistic is B̄
(m)

T β̂T

(s) , with Âm
t equal to either the

Identity or Diagonal matrix. m = 12 + s for the Static model and m = 13 + s for the GARMA models
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Table 3: Estimated parameters of Poisson models for U.S.A. Bankruptcy Counts

COVARIATES STATIC GARMA(1,0) GARMA(0,1)

INTERCEPT 1.263*** 1.281*** 1.29***
Dummy2005 -0.303* -0.242 -0.27**
BAA 0.270*** 0.173* 0.189*
FEDFUNDS -0.015 -0.034 -0.034
GS10 -0.11 -0.047 -0.054
INDPRO -0.063*** -0.084*** -0.083***
PERMIT 0.017*** 0.012*** 0.014***
PPIENG 0.028*** 0.026*** 0.028***
PPIFGS -0.112*** -0.113*** -0.118***
SP500RET -0.003 -0.004 -0.004
SP500VOL -0.001 0.000 -0.001
UNRATE 0.341*** 0.171 0.199***
AR.1 0.334***
MA.1 0.307***
BIC 1361.759 1306.185 1312.192
AIC 1316.025 1256.679 1262.686

Note: *,**,*** denote significant at 10%, 5% and 1% level.
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