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Abstract 

In this paper, three copula GARCH models i.e. Gaussian, Student-t, and Clayton are used 

to estimate and test the tail dependence measured by Kendall’s tau between six stock indices. 

Since the contagion risk spreads from large markets to small markets, the tail dependence is 

studied for smaller Taiwanese and South Korean stock markets, i.e. Taiex and Kospi against 

four larger stock markets, i.e. S&P500, Nikkei, MSCI China, and MSCI Europe. The vector 

autoregression result indicates that S&P500 and MSCI China indeed impact mostly and 

significantly to the other four stock markets. However, the tail dependence of both Taiex and 

Kospi against S&P500 and MSCI Chia are lower due to unilateral impacts from US and China. 

Using Clayton copula GARCH, the threshold tests of Kendall’s tau between most stock markets 

except China are significant during both subprime and Greek debt crises. The tests of Student-

t copula GARCH estimated Kendall’s taus are only acceptable for subprime crisis but not for 

Greek debt crisis. Thus, Clayton copula GARCH is found appropriate to estimate Kendall’s 

taus as tested by threshold regression.    
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1. Introduction  

It is noted that the traditional measure of correlation is often used to measure the linear co-

movement between the factors of risk. It lacks to describe the multivariate distribution between 

underlying assets. Also, the multivariate normal distribution only limits to a linear approach to 

describe the multivariate distribution and it cannot specify the multivariate dependence i.e. the 

structural dependence of marginal distribution either. To overcome the drawback of the linear 

multi-normal method, a new structural dependence called copula is used recently to describe 

the multivariate distribution and structural dependence in many financial respects including 

credit risk of bond portfolios, default risk of mortgages, and contagion risk of financial markets. 

The multi-dimensional distribution is constructed by simply combing individual marginal 

distributions and one proper copula according to Sklar's theorem (1959). As a consequence, the 

structural tail dependence can be estimated accordingly. In fact, the conditional tail dependence 

between global stock markets are essential to analyze the contagion risk, this paper hence 

develops a copula GARCH model to study the conditional structural tail dependence and a 

threshold regression to test its significance. The conditional tail dependence would expose to 

what extent a large shock of one stock market affects another one in certain context particularly 

when stock markets crash together.  

The remainder of the paper proceeds as follows. In section two, the documents of risk 

related models are organized and discussed. In section three, the data sample, copula GARCH 

model, and tests of tail dependence are described in detail. In section four, the copula GARCH 

is estimated using moving windows technique to compute series of dynamic conditional 

correlations and Kendall’s taus. Then, the tests of Kendall’s taus are performed by threshold 

regression. The final section concludes the important remarks.  

2. Literature Review 

The contagion risk is studied by not only structural correlation but structural tail 

dependence among multivariate random processes. As shown by Embrechts et al. (2001), the 
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Pearson correlation is too restricted to describe the linear co-movements of two random 

processes. However, the copulas (e.g. Joe 1997, Nelson 1999) have the advantages to measure 

the conditional time-varying concordance and tail dependence and thus have been widely and 

successfully used to study the contagion risk.  

It is noticed that the skewness Student-t but not the linear Gaussian copula can measure 

tail dependence. However, the stock returns drop more than rise in the size of movements (Ang 

and Chen, 2002) while the correlation of stock returns is generally higher in a high volatility 

than in a low volatility state (Ang and Bekaert, 1999). This phenomenon is called asymmetric 

effect that cannot be caught by symmetric elliptical copulas such as Gaussian and Student-t 

copulas. Thus, the Archimedean copulas including Clayton (1978), Frank (1979) and Gumbel 

(1960) copulas are considered to be more plausible to model the asymmetric tail dependence. 

The empirical evidences reported that the properties of time-varying volatility of stock 

returns including volatility asymmetry, clustering, persistence, and leptokurtosis exist in stock 

returns. To catch the conditional heteroskedasticity volatility, the ARCH model was developed 

by Engle (1982) and extended by Bollerslev (1986) to create the GARCH model. To date, 

several GARCH type models were proposed to capture the volatility asymmetry such as  the 

exponential GARCH (EGARCH) model by Nelson (1991), the asymmetric GARCH 

(AGARCH) by Engle and Ng (1993), the GJR-GARCH by Glosten et al. (1993), the power 

ARCH by Ding et al. (1993) etc. 

For the conditional variances and covariances model of multivariate assets, multivariate 

GARCH (MGARCH) has been used in Bollerslev, Engle, and Wooldridge (1988), Ng (1991), 

and Hansson and Hordahl (1998). It was applied to explain the spillover effects of contagion in 

Tse and Tsui (2002) and Bae (2003) et al. An alternative of MGARCH is the use of copula 

GARCH proposed by Patton (2001) and Jondeau and Rockinger (2002). Later, Jondeau and 

Rockinger (2006), Patton (2006), and Hu (2006) applied different copulas in GARCH model to 

study the tail dependence between financial markets. 

3. Data and Methodology 

In this paper, a copula GARCH framework is proposed. It combines both advantages of 

the GJR GARCH and the fit copula to study the multivariate distribution, tail dependence, and 

concordance for the contagion risks of Taiex and Kospi vs. other major stock price indices. 

Expectedly, GJR GARCH incorporating suitable copula can reveal volatility, correlation, fat 

tail between stock indices when stock markets crash together. 
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3.1 Data 

Taiwan and South Korea both have export-oriented markets and get more open as well as 

competitive to global markets. They have the similar industrial structure focusing on consumer 

electronics production. To date, the stock markets of Taiwan and South Korea are strong 

correlated with those of US, Japan, China, and Europe. Thus, the six indices of Taiex, Kospi, 

S&P500, Nikkei, MSCI all China index2, and MSCI Europe Index3 are considered in analyzing 

the contagion risk regarding Taiwanese as well as South Korean stock markets.  

3.2 The vector autoregression model 

Since the correlation exists between the returns of the five stock price indices, the vector 

autoregression (VAR) is used to catch the first order effect of return process. The return of stock 

price index at time t is written as 1ln( / )t t tr P P  and the vector autoregression of the five stock 

returns denoted byrt at time t is written in standard form with p lags as 

 
1

0

1






  r r ε
p

t i t i t

i

A A , (1) 

where tε  is the vector of error terms at time t which has the properties of conditional time-

varying volatility. 

Using VAR, the Granger causality can be tested to discover if causality exists between 

stock price indices. In fact, Taiex is susceptible to S&P 500, MSCI China, MSCI Europe or 

Nikkei. Kospi is expected to have the same property.  

3.3 Asymmetric GARCH models  

3.3.2 GARCH 

For a specific stock price index, its daily price returns are assumed as the series of error 

                                                                          

2 The MSCI China Index consists of a range of country, composite and non-domestic indices for the Chinese 

market, intended for both international and domestic investors, including Qualified Domestic Institutional 

Investors (QDII) and Qualified Foreign Institutional Investors (QFII) licensees. (http://www.msci.com) 

3 The MSCI Europe Index is a free float-adjusted market capitalization weighted index that is designed to measure 

the equity market performance of the developed markets in Europe. The MSCI Europe Index consists of the 

following 16 developed market country indices: Austria, Belgium, Denmark, Finland, France, Germany, Greece, 

Ireland, Italy, the Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, and the United Kingdom. 

(http://www.msci.com) 
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term t that has a time-varying volatility process. According to Engle (1983), the multiplicative 

conditional heteroscedastic model of t is 

 t t th  , (2) 

where 1tF is filtration at time t-1 and 1| ~ (0,1)t tF N  . Thus, the general autoregression 

conditional heteroscedastic GARCH(p,q) model is written as  

 
2 2

1 1 1 1... ...t t q t q t p t ph c h h               . (3) 

However, the empirical th  might have leverage effect or volatility asymmetry (i.e. bad 

news has a higher impact on stock prices than good news). Therefore, two asymmetric effect 

adjusted methods are provided as follows: 

(1) GJR GARCH 

The GJR model (Glosten, Jagannathan, and Runkle, 1993) uses an indicator of negative 

returns to capture the leverage effect between negative stock price changes and volatility. Thus, 

the conditional heteroscedastic GARCH equation is rewritten as 

 2 2

1 1 1 1      t t t t th c h I   , (4) 

where 1tI = 1 if 1t  < 0 and 1tI  = 0 otherwise. The leverage effect exists if  >0 for GJR.  

(2) Student-t GARCH   

On the other hand, the asymmetric effect also exhibits fat-tail property. Thus, the residual 

t in Equation (2) is considered to follow a t distribution as 
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  
, (5) 

where is the degree of freedom. The t distribution is used to catch the skewness effect and 

build a likelihood function. 

3.4 Copula GARCH framework 

For a single stock price index, the previous section has described how to model the 

adjusted GARCH model considering nonlinear effects such as fat tail or skewness. For bivariate 

stock price indices such as Taiex against S&P500 or Taiex against MSCI China etc., the copulas 

are used to obtain the structural dependence between each marginal distribution of stock price 

index described previously. 

3.4.1 Bivariate distribution and copulas  
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The copulas introduced by Nelson (1999) and applied by Patton (2006) can decompose a 

multi-dimension distribution into a few marginal distributions and a structural dependence, i.e. 

copula. According to (Sklar, 1959), suppose that F is a multivariate distribution function in the 

unit hypercube [0,1] with marginal uniform function ( )i iF x  for i=1,…,m. Then there exists an 

m-dimensional copula 1 1( ( ),..., ( ))m mC F x F x  such that for x œ Rn, 1 1( ( ),..., ( )) m mC F x F x  

1( ,..., )mF x x . and the copula function
mC : [0,1] [0,1] .  

In this context, the residual ,i t in Equation (2) is equivalent to ix . For an example of the 

bivariate stock markets of Taiex against S&P500, the copula for ,i t with i=1,2 referring to Taiex 

and S&P500 respectively, can be written as 

 
1 1, 2 2, 1 1 1, 2 2 2,

1 1

1 1, 2 2, 1, 2,

( ( ), ( )) Pr( ( ), ( ))

Pr( ( ) , ( ) ) ( , ), 

  

   
t t t t

t t t t

C F F U F U F

F U F U F

   

   
 (6) 

where U is a standard uniform random variable. If 1 1,( )tF  and are all continuous, C is 

uniquely determined on 1 1, 2 2,( ) ( )t tF F  . Conversely, if C is copula with marginal 1 1,( )tF   

and.., then F is a bivariate distribution. To obtain the density of F distribution , i.e. 1, 2,( , )t tf   , 

just take the derivative of F as 
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    
 

    


 (7) 

where u means a number in random variable U, 1, 2,( , )t tc u u is the copula density function, and 

,i tu is the marginal density function of ix for i=1,2. To catch the leptokurtosis effect, ,( )i i tf   can 

be considered as a skewed t-distribution in Equation (5).  

Therefore, it is apprentice that the joint probability function of multivariable can be 

separated into the product of a structural dependence i.e. copula and a few of marginal 

probability functions. Since the marginal probability functions bare no information at all about 

dependence between variables, the structural dependence between variables definitely embeds 

in the copula. That's why copula is described as structural dependence. 

3.4.2 Elliptical and Archimedean copulas  

There are several candidate copulas common used in modeling. The elliptical copulas 

including Gaussian and Student-t copulas have linear correlation and symmetric shape in copula 
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function. Using the Sklar's theorem, the distribution function of Gaussian denoted by NC  can 

be constructed from the Gaussian bivariate distribution as 

 
1 1

1 2
2 2

( ) ( )

1 2 22

1 2
( , ; ) exp

2(1 )2 (1 )

  

 

  
    
 

u u

N

x xy y
C u u dxdy


 

  (8) 

where ρ is the Pearson correlation that expresses a linear correlation between random variable 

x and y, and expresses a cumulative univariate standard normal distribution. Similarly, the 

distribution function of Student-t copula denoted by StC is given by 

 
1 1

1 2

2
2 2 2t ( ) t ( )

1 2 22

1 2
( , ; , ) 1

(1 )2 (1 )

 




 

  
    
 

v

u u

St

x xy y
C u u dxdy

   
  

, (9) 

where 1tv

 is the inverse univariate t distribution and v is its degree of freedom.  

The Archimedean copulas are typically nonlinear including Clayton, Frank and Gumbel. 

The Gumbel copula features intensive density to the right tail (rising together), and the Frank 

copula features symmetry without skewness. Whereas, the Clayton copula features intensive 

density to the left tail (dropping together) and it is lower tail dependent and upper tail 

independent. Hence, the Clayton copula is much more applicable in analyzing tail behavior for 

contagion risk. In this paper it is applied and written as  

  
1

1 2 1 2( , ; ) 1 , (0, ).
     ClC u u u u      (10) 

3.4.4 Maximum likelihood estimation of copula GARCH 

The maximum likelihood estimation (MLE) is adopted to estimate the parameters 

contained in each marginal function ( )if  as in Equation (5) and the copula function ( )c  as in 

Equation (7) for multivariate GARCH model. Suppose that both i  for i=1,2 and   are a 

constant parameter vector in the ith marginal density function ( )if and the copula function ( )c

respectively. For a structural dependence between two stock indices, the conditional log-

likelihood function for ,i t with i=1,2 (i.e. bivariate series of residuals) can be written as 

 
2

1, 2, 1 , 1

1 1 1

L( , )= ln ( , , | ; )+ ln ( , | ) 
  
 

T T

t t t i i t i t

t t i

c u u f          (11) 

where  is equal to 1 2[ , ]'   and T denotes the sample size i.e. the number of observations. 

For the ith series GARCH GJR model, its parameter vector are [ , , , ]i i i i ic    . Note that ,i tu  

can be estimation by empirical CDF of ,i t . 
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The detailed log likelihood of Gaussian, Student-t, and Clayton are given in Appendix A. 

To estimate the dynamic covariance tQ and correlation tR  between series, the dynamic 

conditional correlation (DCC) approach of Engle (2002) is applied in the paper as    

 

'

1 2 1 1 1 2 1

1 1

(1 )   

 

     



ε ε
 

t t t t

t t t t

Q w w Q w w Q

R Q Q Q
  (12) 

where Q  is the sample variance covariance of ε t , tQ is the square root of tQ with zero off-

diagonal elements. Thus, for a two series Clayton GARCH model, the copula parameter vector 

is 1 2, ][ ,w w  .    

To maximize Equation (11), it is complicated to solve out an analytic solution. Thus, an 

appropriate numerical method such as a two-stage procedure is used as follows. First, i is 

solved by 

 
2

, 1

1 1

ˆ =arg max ln ( , | )
j

i

n

i i i t i t

t i

f


    
 
 . (13) 

Next, ˆ
i is used to solve for  . So Equation (11) is rewritten as  

 
2

1, 2, 1 , 1

1 1 1

ˆˆ arg max L( , )

ˆ ˆ= ln ( , , | ; )+ ln ( , | ).
j jn n

t t t i i t i t

t t i

c u u f


  

      
  



 
 (14) 

Then, the two-stage procedure is iteratedly to solve for optimal ˆ
i and ̂ . This method is 

proved to be useful in Patton (2001). Given the estimation of MLE, the tail dependence can be 

measured consequently. 

3.5 Measurement of the tail dependence using Kendall's tau 

Several measures of asymmetric dependence can be used for analyzing contagion risk such 

as tail dependence and exceedance correlation. The advanced studies can be found in Longin 

and Solnik (2001) and Ang and Chen (2002). 

Unlike the simple correlation estimating the linear co-moment of two random variables, 

the Kendall's tau denoted by   measures the dependence between two random variables as 

 
1 2 1 2[ {( )( )}]E sign X X Y Y    , (15) 

where 1 1( , )X Y  and 2 2( , )X Y are two pairs of independent and equally distributed random 

variables and sign is a sign function.  

In this context, the residual series ,i t  for i=1,2 as in Equation (2) is equivalent to X and Y 
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random variables. The Kendall's tau   for ,i t  is given by Schweizer and Wolff (1981) in 

terms of copula as   

 
2

1 2 1 2 1 2

[0,1]

4 ( , ) ( , ) 1C u u c u u du du      . (16) 

Note that  depends only on the copula function but not the multivariate distribution. The 

Spearman's correlation4
s i.e. the correlation coefficient of copula is given by 

 
2

1 2 1 2

[0,1]

=12 ( , ) 3  
s u u dC u u . (17) 

Note that s depends only on the marginal distributions.  

The Kendall's tau  and Spearman’s rank correlation s for elliptical and Clayton copulas 

are displayed in Table 1. Since there is no Spearman’s s for Clayton, the Kendall's  is used in 

this paper to measure tail dependence. 

  Table 1 Kendall's  and Spearman's s  

Copulas   s  

Gaussian 
2

arcsin( )


 
6

arcsin( )
2

 


  

Student-t 
2

arcsin( )


 - 

Clayton θ/(θ+2) - 
Note: θ is the parameter of Clayton copula.  

3.5 Test of the tail dependence using threshold regression 

The threshold regression is performed to find and test a threshold value to classify the 

dynamic tail dependence into different states. It is useful to inspect if the tail dependence should 

have different states and if the threshold value indeed exists, then what it is.  

Originally, the threshold autoregressive (TAR) developed by Tong and Lim (1980) is 

applied to find the threshold value to classify the nonlinear financial process into several 

regression states. It can explain the behavior of nonlinear process such as shift of returns trend, 

switch of volatility or heteroscedasticity of volatility. Specifically, it intends to uses several 

                                                                          

4 See Embrechts et al. (2002) for relation between , ,  and
s .  
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piecewise autoregression to approximate the nonlinear process of financial series.  

Suppose that it  denotes the ith series of six stock price indices at time t and its threshold 

variable is 
t d j    for 1,2,..., 1j l  (

j is the set of jth state and l  is the number of 

states). Then, the jth threshold autoregression equation is expressed as 

 ( )

, , , 1 ,

1

 as 
k

j

i t i i h i t h j i t d j

h

b L L     


    ,  (18) 

where k is the order of autoregression, d is the lag of threshold (d≦k). 1 1,..., lL L  are the 

threshold values that divide ,i t into l states of equations as the Equation (18). 

Because volatility is evidenced to have high and low states, the tail dependence between 

stock price indices should be assumed to have high and low states as well. Hence, the number 

of states for threshold regression is set to two, i.e. the number of L is one. Hence, if the threshold 

values are tested significant, it indicates that the tail dependence should have high and low 

states that cannot be explained by only one equation.  

The most influential contagion risk is when the volatility and tail dependence are both in 

a high state. At that time, it is really interesting to analyze the contagion risk from larger markets 

such as US and China to smaller markets such as Taiwan and South Korea. 

4. Empirical Result 

4.1 Data Description 

The data of six stock price indices are collected from the Taiwan Economic Journal (TEJ) 

database and sampled from 01/23/2003 to 05/08/2013 at a daily frequency to acquire more 

information of stock price changes. The in-sample period is set from 01/23/2003 to 07/23/2007 

totaling 917 observations to estimate the model parameters and forecast the structural tail 

dependence i.e. Kendall’s taus for next day. The out-of-sample period is set from 07/24/2007 

to 05/08/2013 covering the durations of two major risk events: subprime disaster in early 2008 

and Greek debt crisis in early 2010. Repeatedly moving the in-sample period window one day 

forward for the out-of-sample data, therefore total 1,126 moving windows are proceeded to 

estimate copula models and dynamic correlations. Consequently, 1,126 dynamic correlation are 

obtained for the test of threshold effect.   

With entire period, the data description of daily returns for six indices are reported in Table 

2. It is clear that most stock price indices exhibit left-skewness and high peakness and the linear 

tests of Jarqe-Beta are rejected according to Table 2 Panel A. This indicates that the data have 
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lepkurtosis and fat tail property which affect structural tail dependence. The static Pearson’s 

correlation and test are reported in Table 2 Panel B. It shows that Taiex and Kospi are the highest 

correlated to each other while they are lower correlated to S&P 500 and MSCI China. 

Nevertheless, they suffer contagion risk undoubtedly due to US financial crises.   

4.2 VAR and Granger Causality Tests between Six Indices 

To investigate the relationships among the six indices, we perform the vector 

autoregression (VAR) as in Equation (1) and Granger causality between indices. Before doing 

so, the lag length used for VAR is decided according to Doan (2005) who computes LR test 

between the shorter i.e. restricted lag length VAR model and longer i.e. unrestricted VAR 

models with penalty for the number of regressors.  

Table 2 Data Description 

Panel A. Moments of data   

 Taiex Kospi S&P500 Nikkei MSCI China MSCI Europe

Minimum -0.06912 -0.11172 -0.09470 -0.12111 -0.07858 -0.12836 

Maximum 0.06099 0.11284 0.10246 0.09494 0.09955 0.14044 

Mean 0.00016 0.00056 0.00005 0.00009 0.00025 0.00061 

Mean=0 Test (0.28834) (0.04405) (0.43227) (0.39448) (0.21946) (0.07208) 

Stdev 0.01306 0.01487 0.01299 0.01525 0.01475 0.01886 

Skewness -0.40023 -0.48922 -0.52323 -0.77047 -0.12284 0.09988 

Skewness=0 Test (0.00002) (0.00000) (0.00000) (0.44469) (0.00000) (0.00133) 

Kurtosis 5.90268 9.20682 11.71228 10.47918 8.24636 9.52032 

Krutosis=0 Test (0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000) 

Jarque-Bera Test (0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000) 

Note: The numbers in parenthesis are p values.  

Panel B. Correlation of data 

 Taiex Kospi S&P500 Nikkei MSCI China MSCI Europe 

Taiex 1 0.700795 0.143824 0.582406 0.334388 0.597319 

Kospi 0.700795 1 0.210984 0.665411 0.372328 0.642056 

S&P500 0.143824 0.210984 1 0.129285 0.565915 0.184 

Nikkei 0.582406 0.665411 0.129285 1 0.34801 0.59664 

MSCI China 0.334388 0.372328 0.565915 0.34801 1 0.401019 

MSCI Europe 0.597319 0.642056 0.184 0.59664 0.401019 1 

Note: The tests of correlation=0 are all rejected significantly. 

 

As presented in Table 3 panel A, the optimal lag length of VAR model would be 8 and 1 

according to AIC and SBC respectively. Considering the swift changes of stock price indices, 
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the optimal lag length is selected as 1 to keep model parsimonious. In Table 3 panel B, the 

coefficients of VAR model reveal that in comparison, Taiex and Kospi are affected mostly and 

significantly by one day lag S&P500(0.3087 and 0.3326 for Taiex and Kospi respectively) and 

one day lag MSCI China (0.0829 and 0.1246 for Taiex and Kospi respectively). Also, S&P500 

significantly influences the other five indices and MSCI China significantly influences most of 

stock price indices except S&P500. However, MSCI China is affected by S&P500 but not 

reversely while S&P500 is affected by MSCI Europe.         

The granger causality tests test if the information of lags of X variable cause a better 

prediction of Y variable. The test is a F test that uses Equation (1) as the unrestricted model and 

the restricted model is set up without the terms of the lags of X variables. According to Table 3 

panel C, Taiex Granger causes MSCI Europe and Kospi Granger causes Nikkei. Nikkei doesn’t 

Granger causes any index. Similarly to VAR model reveal, S&P500 and MSCI China could 

Granger cause most of indices. However, MSCI China doesn’t Granger cause S&P500.  

4.2 Measurement and test of the structural tail dependence 

Using three copula GARCH models i.e. Gaussian, Student-t, and Clayton incorporating 

moving windows technique through 1,126 out-of-sample data, it follows that 1,126 dynamic 

conditional correlations estimated by Gaussian and Student-t copula GARCH models and tail 

dependence i.e. Kendall taus estimated by Clayton copula GARCH are acquired.  

The estimation results are listed in Table 4. For the Gaussian copula, the GARCH GJR 

parameters β and γ are strong significantly. For the Student-t copula, the degree freedom v of t 

distribution is strong significant in addition to strong significant parameters β and γ and 

similarly for the Clayton copula GARCH. This indicates that the fail tail effect from v test and 

asymmetric effect from γ test are evidenced here. The copula parameter w0 is tested significantly 

for the Kendall’s tau.       

The dynamic conditional correlations estimated by Gaussian and Student-t copula denoted 

by G and St  can be transformed to Kendall’s taus
,G and

,St respectively according to Table 

1. As a result, there are two estimated series of dynamic conditional correlations: G and St , 

and three estimated series of Kendall’s taus:
,G ,

,St , and
,C .  

Table 5 presents the data description for Taiex and Kospi against the other four major stock 

indices. On average, both Taiex and Kospi against S&P and China have the lower Kendall taus. 

It appears that the impacts of financial risk evolve from large markets such as US and China to 

smaller markets such as Taiwan and South Korea but not vice versa. Also, Kospi has the higher 
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Kentall’s tau than Taiex against the other four indices. It implies that South Korean market is 

more global or larger than Taiwanese’s.    

Figure 1 plots the five estimated series of dynamic correlations. It is obvious that the 

dynamic conditional correlations G and St  and Kendall’s taus 
,G ,

,St , and ,C are closer 

when Taiex is against S&P500. On the other hand, the dynamic conditional correlations are 

apparently higher when Taiex is against the other four major indices. This is reasonable because 

the relationship of dynamic conditional correlation and Kendall’ tau according to Table 1 is 

2 / arcsin( )  that is a upward slope arcsin function between 0 and 1. Figure 2 shows the same 

phenomenon for Kospi. 

Table 3 VAR Analysis Results 

Panel A. Lag selection 

Lag 

Length 
1 2 3 4 5 6 7 8 9 10 11 12 

AIC -74217.7 -74298.9 -74287.8 -74298.6 -74294.0 -74286.9 -74306.4 -74307.5 -74296.9 -74281.7 -74278.6 -74268.0

SBC -73982.1 -73861.8 -73649.7 -73459.9 -73255.2 -73048.4 -72868.6 -72670.9 -72462.0 -72248.9 -72048.3 -71840.8

Panel B. Coefficients of VAR model    

 Taiex Kospi S&P500 Nikkei MSCI China MSCI Europe
Taiex(-1) -0.0182 -0.0156 0.0218 -0.0548* 0.007** -0.1044*** 

  (0.0305)  (0.0347)  (0.0322)  (0.0335)  (0.0353)  (0.0436) 

Kospi(-1) -0.0459* -0.0252 0.0274 -0.0677** -0.0256 0.047 

  (0.0297)  (0.0338)  (0.0314)  (0.0326)  (0.0343)  (0.0425) 

S&P500(-1) 0.3087*** 0.3326*** -0.1025*** 0.4469*** 0.4128*** 0.477*** 

  (0.0254)  (0.0290)  (0.0269)  (0.0279)  (0.0294)  (0.0364) 

Nikkei(-1) 0.0018 -0.0592** 0.0344* -0.0389* 0.0045 -0.0478* 

  (0.0253)  (0.0288)  (0.0268)  (0.0278)  (0.0293)  (0.0362) 

MSCI China(-1) 0.0829*** 0.1246*** 0.0089 0.1816*** -0.2315*** 0.1202*** 

  (0.0242)  (0.0276)  (0.0256)  (0.0266)  (0.0280)  (0.0347) 

MSCI Europe(-1) 0.0213 -0.0248 -0.062*** -0.0258 0.042** -0.026 

  (0.0204)  (0.0232)  (0.0216)  (0.0224)  (0.0236)  (0.0292) 

R-squared 0.1287 0.1258 0.0118 0.2276 0.0870 0.1428 

Akaike AIC -5.9709 -5.7108 -5.8590 -5.7840 -5.6799 -5.2541 

Schwarz SC -5.9544 -5.6943 -5.8425 -5.7675 -5.6634 -5.2376 

 0.0131 0.0149 0.0130 0.0152 0.0148 0.0189 

Log likelihood 37335.24     
Akaike criterion -36.53     
Schwarz criterion -36.43     
Notes: *, **, and *** denotes significance at 10%, 5% and 1% level respectively. The numbers in parenthesis are 

standard errors. The same representation is used for the rest tables.  

Panel C. Granger causality tests (p value) 

Y         X Taiex Kospi S&P500 Nikkei MSCI China MSCI Europe

Taiex 0.56854 0.12030 0.00000*** 0.95113 0.00071*** 0.30133 

Kospi 0.73786 0.39758 0.00000*** 0.04403 0.00001*** 0.27657 

S&P500 0.49853 0.40359 0.00013*** 0.19203 0.70029 0.00407*** 

Nikkei 0.10215 0.04044** 0.00000*** 0.16007 0.00000*** 0.24056 



14 

 

MSCI China 0.84570 0.42256 0.00000*** 0.85309 0.00000*** 0.07364* 

MSCI Europe 0.01844** 0.28228 0.00000*** 0.20170 0.00063*** 0.35127 

Note: The granger causality test tests if each of X variables in columns Granger causes one of Y variables in a 

specific row. The test statistic is 
( ) /

/

R U

U

SSE SSE s
F

SSE T k





 where RSSE  and USSE is the sum of square errors for 

restricted and unrestricted model respectively, s is the number of restricted parameters, T is the sample size, and k 

is the number of regressors. 

Table 4 Copula GARCH Estimations 

Panel A. Gaussian copula 

Stage 1 Estimation of Multivariate GARCH 

 Taiex Kospi S&P500 Nikkei MSCI China MSCI Europe

c -0.013 -0.096*** -0.0299 0.0086 -0.0022 -0.0232 

 (0.064) (0.039) (0.034) 0.0790 (0.023) 0.0390 

α 0.0000 0.0000 0.0000 0.000*** 0.0000 0.000* 

 (0.0000) (0.0000) (0.0000) 0.0000 (0.0000) 0.0000 

β 0.0477*** 0.0573*** 0.0571*** 0.1708*** 0.0712*** 0.0734*** 

 (0.015) (0.019) (0.023) 0.0510 (0.018) 0.0150 

 0.943*** 0.9233*** 0.9345*** 0.7900*** 0.8998*** 0.9213*** 

 (0.015) (0.022) (0.027) 0.0480 (0.022) 0.0120 

AIC -5735.95 -6417.97 -5628.43 -5106.33 -6155.66 -4941.18 

SBC -5707.03 -6389.05 -5599.51 -5077.40 -6126.73 -4912.25 

LogL 2873.98 3214.99 2820.22 2559.16 3083.83 2476.59 

Stage 2 Estimation of Multivariate Copula 

w1 0.015**      

 (0.009)      

w2 0.0000      

 (0.012)      

AIC -1550.46      

SBC -1540.81      

LogL 777.23      

Notes: The two-stage procedure of estimation is used to estimate elliptical copula GARCH model for 6 stock price 

indices together. The numbers in parenthesis are standard errors.    

Panel B. Student-t copula 

Stage 1 Estimation of Multivariate GARCH 

 Taiex Kospi S&P500 Nikkei MSCI China MSCI Europe

c 0.000 0.000** 0.000* 0.000** 0.000*** 0.000 

 (0.000) (0.000) (0.000) 0.000 (0.000) (0.000) 

α 0.0126 0.0001 0.0391 0.0257 0.0409* 0.0501* 

 (0.027) (0.035) (0.031) 0.028 (0.025) (0.033) 

β 0.8629*** 0.8728*** 0.9229*** 0.842*** 0.9082*** 0.886*** 

 (0.014) (0.041) (0.028) 0.033 (0.026) (0.052) 

 0.102*** 0.125** 0.0579** 0.1512*** 0.0699** 0.0741** 

 (0.044) (0.06) (0.028) (0.063) (0.038) (0.039) 

v 5.6757*** 9.2302*** 9.8539** 9.7874*** 10.3405*** 10.888*** 

 (1.096) (3.195) (5.729) (3.392) (2.011) (3.234) 

AIC -5781.92 -5473.17 6454.49 -5139.77 -6170.56 -4957.97 

SBC -5743.35 -5434.60 -6415.92 -5101.20 -6131.99 -4919.40 

LogL 2898.96 2744.59 3235.25 2577.89 3093.28 2486.98 

Stage 2 Estimation of Multivariate Copula 

vc 19.7661***      

 (4.35)      

w1 0.0143*      

 (0.01)      

w2 0.000      
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 (0.000)      

AIC -1541.69      

SBC -1527.23      

LogL 773.85      

Note: The degree of freedom v of t distribution is estimated in stage 1 and the degree of freedom vc of Student-t is 

estimated in stage 2. 

 

 

Table 4 Continued 

Panel C. Clayton copula 

Stage 1 Estimation of Univariate GARCH for Bivariate Copula  

 Taiex-S&P500  Taiex-MSCI China Kospi-S&P500 Kospi-MSCI China

c 0.000*** 0.000** 0.000 0.000** 0.000* 0.000** 0.000* 0.000** 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

α 0.023 0.0381** 0.023 0.041** 0.0235 0.0391* 0.0235 0.0409**

 (0.021) (0.023) (0.021) (0.025) (0.031) (0.027) (0.031) (0.023) 

β 0.860*** 0.912*** 0.860*** 0.904*** 0.849*** 0.912*** 0.849*** 0.886***

 (0.012) (0.027) (0.012) (0.026) (0.072) (0.028) (0.072) (0.042) 

 0.0948*** 0.0696** 0.0948*** 0.0723** 0.1259* 0.0792** 0.1259* 0.0805**

 (0.036) (0.031) (0.036) (0.039) (0.098) (0.038) (0.098) (0.048) 

v 5.293*** 9.491*** 5.293*** 10.818*** 8.296*** 9.416** 8.296*** 10.285***

 (0.802) (3.749) (0.802) (2.345) (3.036) (5.030) (3.036) (1.834) 

AIC -5773.51 -6451.95 -5773.51 -6163.28 -5457.38 -6452.53 -5457.38 -6165.81

BIC -5734.94 -6413.38 -5734.94 -6124.71 -5418.81 -6413.96 -5418.81 -6127.24

LogL 2894.75 3233.97 2894.75 3089.64 2736.69 3234.26 2736.69 3090.91 

Stage 2 Estimation of Bivariate Clayton Copula 

w0 -2.141***  -1.619***  -2.081***  -1.294***  

 (0.522)  (0.385)  (0.551)  (0.199)  

w1 0.8411  1.929***  -0.2697  -0.1558  

 (1.279)  (0.665)  (1.000)  (0.812)  

w2 0.2308  0.3546**  -0.1196  -0.1099  

 (0.245)  (0.159)  (0.372)  (0.273)  

 -6.542  -54.785  -22.590  -87.454  

 7.922  -40.321  -8.127  -72.990  

 6.271  30.392  14.295  46.727  

Notes: At present, the bivaratie but not three-variate above Clayton copula GARCH can be estimated. Thus, there 

are 15 combinations of bivariate copula GARCH for six indices. Four important combination only are excerpted 

here. Clayton Kendall  is estimated using Patton(2006) as
0 1 1 2 1, 2,( | |)      t i t iw w w u u   where is the 

logistic probability transformation function.   

 

Table 5 Dynamic Correlations Statistical Description   

  Ta-Ko Ta-S&P Ta-Ni Ta- Ch Ta- Eu Ko-S&P Ko-Ni Ko-Ch Ko- Eu

G
r   

Mean 0.677 0.160 0.596 0.326 0.594 0.220 0.686 0.352 0.617 

Stdev 0.056 0.057 0.055 0.053 0.063 0.051 0.059 0.043 0.054 

t  Mean 0.674 0.153 0.587 0.322 0.591 0.215 0.678 0.359 0.611 

Stdev 0.051 0.053 0.053 0.049 0.062 0.046 0.058 0.039 0.051 

,Gtr  Mean 0.475 0.103 0.408 0.211 0.407 0.142 0.483 0.229 0.425 

Stdev 0.048 0.037 0.044 0.036 0.050 0.033 0.049 0.029 0.044 

,ttr  Mean 0.472 0.098 0.400 0.209 0.404 0.138 0.476 0.234 0.419 

Stdev 0.044 0.034 0.042 0.033 0.049 0.030 0.048 0.026 0.041 

,Ctr  Mean 0.396 0.065 0.339 0.162 0.336 0.090 0.415 0.184 0.365 

Stdev 0.059 0.026 0.059 0.036 0.059 0.038 0.076 0.013 0.061 

Note: Ta, Ko, S&P, Ni, Ch, and Eu are short for Taiex, Kospi, S&P500, Nikkei, MSCI China, and MSCI Europe 

respectively and the representations are the same for following tables. 
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Figure 1 The Dynamic Correlation Changes of Taiex Versus the Major Indices 

 

Figure 2 The Dynamic Correlation Changes of Taiex Versus the Major Indices 

4.3 Threshold regression test of dynamic correlations 

Undoubtedly, the subprime risk has provoked tremendous global contagion risk. Not only 
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US stock markets crashes but Taiwanese, South Korean, European, Japanese, and Chinese stock 

markets have dropping sharply during late 2008. Nevertheless, the Greek debt crisis also cause 

panic selling globally. Thus, the threshold regression test is used to test if the crisis covered 

period exists different states of tail dependence to be classified by threshold values. For 

threshold test, the period of subprime crisis is set as 07/24/2007~01/23/2009 and the period of 

Greek debt crisis is set as 12/01/2009~03/01/2011. Since the copula GARCH evidences that 

fail tail and asymmetric effected are strong significant in six indices, the threshold test is used 

to test Kendall’s taus of Student-t and Clayton copula regardless of Gaussian copula to 

investigate if there exists significant two states of tail dependence and one threshold value.  

Table 6 reports the results of threshold regression test for subprime crisis. Both threshold 

tests of Student-t and Clayton Kendall’s taus: ,St and ,C are consistent in most ways. They 

reveal that the threshold values are significant for Taiex against Kospi, Nikkei, and MSCI 

Europe as well as Kospi against Nikkei, MSCI Europe. Taiex against S&P500 has the lowest 

threshold values that are 0.1032 and 0.0709 according to Student-t and Clayton copulas 

respectively and similarly for Kospi against S&P500. Also, both Taiex and Kospi against MSCI 

China have lower threshold values. On the other hand, tests of Student-t copula shows that 

Taiex against S&P500 is significant but Taiex against MSCI China is not. This result however 

is contrary to Clayton copula.      

Table7 reports the results of threshold regression test for Greek debt crisis. The threshold 

test of Student-t copula estimated Kendall’s taus shows that there are no threshold effects during 

Greek debt crisis. However, test of Clayton’s Kendall’s taus reveal that Taiex against S&P500 

as well as MSCI Europe are significant but Kospi against S&P500 as well as Nikkei are 

significant. Actually, the result of threshold test of Clayton’s Kendall’s taus appears more 

acceptable and reasonable. Most Taiwan’s financial sectors such as Bubon Bank, Mega 

Holdings, China Development Financial Holdings etc. own bonds directly in European 

countries. Hence, due to Greek debt crisis, Taiwanese stock market has suffered deeply and 

Taiex has tumbled 36% from 9,025 on 01/03/2011 to 6,633 on 12/19/2011. On the other hand,  

South Korean companies have developed very quickly to become larger enough such as 

Samsung, LG, Hyundai, etc. to be competitive and comparable with Japanese large companies 

such as Sony, Panasonic, Toyota, etc. As a consequence, Taiex is more related to MSCI Europe 

than Kospi while Kospi is more connected to Nikkei than Taiex. 

 



18 

 

Table 6 Threshold Tests of Kendall’s Taus during Subprime Crisis 

Panel A. Test of Student-t copula estimated ,St  

 Ta-KO Ta-S&P Ta-Ni Ta-Ch Ta-Eu Ko-S&P Ko-Ni Ko-Ch Ko-Eu 

 Threshold Values 

 0.4331 0.1032 0.3564 0.1941 0.3185 0.1286 0.4413 0.2627 0.3569 

 Threshold Value Tests 

SupLM 29.0230 36.0035 35.7369 21.0416 38.5570 22.6806 46.5083 19.5261 35.2873

p value 0.0136 0.0004 0.0004 0.1696 0.0000 0.1004 0.0000 0.2276 0.0004 

ExpLM 9.6481 13.1349 12.7296 6.6129 14.2421 8.0663 16.7372 5.3422 12.1634

p value 0.0144 0.0000 0.0008 0.1292 0.0000 0.0452 0.0000 0.3036 0.0012 

AveLM 10.1200 11.8865 12.1485 8.0884 13.7495 11.4488 13.7101 7.9416 12.4128

p value 0.0536 0.0152 0.0136 0.1876 0.0056 0.0196 0.0024 0.2428 0.0108 

Notes: SupLM, ExpLM, and AveLM provided by Hansen(1996) stand for supremum, exponential average, and 

average LM tests respectively. They are computed using 2,500 draws and similarly for rest tables  

Panel B. Tests of Clayton copula estimated
,C  

 Ta-KO Ta-S&P Ta-Ni Ta-Ch Ta-Eu Ko-S&P Ko-Ni Ko-Ch Ko-Eu 

 Threshold Values 

 0.3397 0.0709 0.2962 0.1382 0.3294 0.1044 0.4421 0.1690 0.2836 

 Threshold Value Tests 

SupLM 25.4602 20.7925 26.9083 24.3868 48.0635 26.1868 49.3766 26.4483 41.1254

p value 0.0440 0.2392 0.0228 0.0700 0.0000 0.0420 0.0000 0.0372 0.0000 

ExpLM 8.4130 6.3722 8.9997 8.9209 19.1632 8.6465 19.9729 7.3826 15.9502

p value 0.0328 0.2124 0.0200 0.0244 0.0000 0.0360 0.0000 0.0936 0.0000 

AveLM 12.1247 7.1254 12.3605 13.6479 20.1612 9.9495 12.8823 8.2551 20.3441

p value 0.0036 0.4064 0.0060 0.0004 0.0000 0.0668 0.0032 0.1408 0.0000 

Table 7 Threshold Tests of Kendall’s Taus during Greek Debt Crisis 

Panel A. Test of Student-t copula estimated ,St  

 Ta-KO Ta-S&P Ta-Ni Ta-Ch Ta-Eu Ko-S&P Ko-Ni Ko-Ch Ko-Eu 

 Threshold Values 

 0.4557 0.0759 0.3886 0.1786 0.4004 0.1252 0.4728 0.2184 0.3909 

 Threshold Value Tests 

SupLM 11.5784 16.2283 20.0838 14.0868 16.2053 13.9524 20.3050 12.2855 21.8931

p value 0.7488 0.4516 0.1484 0.5768 0.4324 0.6668 0.0944 0.7488 0.0724 

ExpLM 3.5353 4.4406 5.0761 2.6685 4.8220 2.8143 5.4566 2.7181 6.1270 

p value 0.5636 0.4716 0.2688 0.8732 0.3696 0.8924 0.1448 0.8412 0.1076 

AveLM 5.5650 4.8279 6.4592 3.5299 6.9620 4.1192 6.3397 4.0711 7.7871 

p value 0.5188 0.7928 0.3848 0.9532 0.3652 0.9140 0.2992 0.8484 0.1280 

Panel B. Test of Clayton copula estimated
,C  

 Ta-KO Ta-S&P Ta-Ni Ta-Ch Ta-Eu Ko-S&P Ko-Ni Ko-Ch Ko-Eu 

 Threshold Values 

 0.3722 0.0440 0.3586 0.1548 0.3066 0.0500 0.4690 0.1976 0.4158 

 Threshold Value Tests 

SupLM 18.1500 27.8680 17.0850 18.9560 27.9220 28.3400 34.9150 23.6290 24.6060

p value 0.2684 0.0184 0.4104 0.2636 0.0116 0.0132 0.0012 0.0492 0.0452 

ExpLM 5.1920 9.7380 4.3650 6.0070 9.0160 7.7320 12.1570 7.8520 7.8090 

p value 0.2576 0.0124 0.4912 0.1708 0.0156 0.0440 0.0020 0.0296 0.0432 

AveLM 7.9460 13.9080 5.9820 8.5410 11.9970 9.6980 12.8240 7.5230 9.0750 

p value 0.1452 0.0016 0.4644 0.0592 0.0132 0.0324 0.0064 0.1712 0.0780 
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5. Conclusions 

Using copula GJR GARCH with t distribution, the fat tail and asymmetric effects are 

evidenced in Taiex, Kospi, S&P500, Nikkei, MSCI China, and MSCI Europe totaling six 

indices. Therefore, in practice Gaussian copula indeed should be replaced by Student-t copula. 

The tail dependence of the six indices is measured by Kendall’ tau using either multivariate 

copula such as Gaussian and Student-t or bivariate copula such as Clayton.  

The results of estimation report that both Taiex and Kospi against US and MSCI China 

have the lower Kendall’s taus and this is reasonable due to the unilateral impacts from larger 

US and China markets. However, Taiex is affected mostly by S&P500 according to the 

coefficient of VAR that is 0.3087. It suggests us that the Kendall’s tau should be combined with 

volatility measure to interpret contagion risk.   

The result of threshold test of Kendall’s taus estimated by both Student-t and Clayton 

copulas reports that subprime crisis indeed causes different states of tail dependence except 

MSCI China whose market is not so open to global investors. Although Student-t copula 

estimated Kendall’s taus are tested acceptably, it fails to test the threshold effects due to Greek 

debt crisis. On the contrary, Clayton copula estimated Kendall’s taus can be tested well. In 

practice, it is advantageous to use Clayton copula to estimate and test Kendall’s taus. 

Appendix A. The Log Likelihoods of Gaussian, Student-t, and Clayton Copulas 

(1)The Log likelihood of Gaussian copula is 
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where 
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and R is the correlation matrix ofεt and p is the number of residual series.  

(2)The Log likelihood of Student-t copula 
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where v is the degree of freedom. 
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(3)The Log likelihood of Clayton copula 
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where 
2

1











,and  is Kendall’s tau.   
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