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Abstract 

This paper analyses the performance of the graphs traditionally used to study size 

distributions: histograms, Zipf plots (double logarithmic graphs of rank compared to 

size) and plotted cumulative density functions. A lognormal distribution is fitted to 

urban data from three countries (the US, Spain and Italy) over all of the 20th century.  

We explain the advantages and disadvantages associated with these graphic methods 

and derive some statistical properties. 
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1. Introduction 

Size distributions are used in economics to study many economic entities (firms, 

mutual funds, stocks, cities, etc.). Most of the studies use graphical tools as an 

aproximation of the real behaviour of the distribution. In this paper, we examine the 

accuracy of the graphs traditionally used to describe size distributions: we study the 

performance of histograms, Zipf plots and plotted cumulative density functions.  

In our empirical application we consider city size data from three countries: 

Spain, Italy and the United States. From the point of view of urban economics, the study 

of city size distribution has a long tradition and deep economic implications related to 

labour markets, income distribution or public expenditure. To illustrate the performance 

of the traditional graphs, we must fit a statistical distribution to the data. We choose the 

lognormal distribution, widely applied in urban economics (Eeckhout, 2004; Giesen et 

al., 2010; González-Val et al., 2013a) and in other fields of economics. Nevertheless, 

the discussion carried out in Section 4 is valid for any other distribution apart from the 

lognormal, which has the additional advantage of being easy to handle with it. 

The paper is organised as follows. Section 2 introduces the databases we use, 

Section 3 describes the estimation method, Section 4 analyses the different graphical 

tools and their statistical properties and Section 5 concludes. 

2. Data 

We use the same dataset as González-Val et al. (2013b): this database includes 

the decennial census for each decade of the 20th century with un-truncated city 

population data from the three countries.
1
 

The US database is created from the original documents of the annual census 

published by the US Census Bureau (www.census.gov) and consists of the available 

data on all incorporated places without any size restriction. The US Census Bureau uses 

the generic term incorporated place to refer to the governmental unit incorporated under 

state Law as a city, town, borough or village. Alaska, Hawaii and Puerto Rico are 

excluded because of data limitations. The number of cities considered by period is: 

1900 (10,596 incorporated places), 1910 (14,135), 1920 (15,481), 1930 (16,475), 1940 

                                                 
1 More information about the databases and comparisons between these countries can be found in 

González-Val et al. (2013b). 
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(16,729), 1950 (17,113), 1960 (18,051), 1970 (18,488), 1980 (18,923), 1990 (19,120) 

and 2000 (19,296). 

For Spain and Italy, the geographical unit of reference is the municipality, and 

the data come from official statistical information services. In Italy, this is the Istituto 

Nazionale di Statistica (www.istat.it), while for Spain we have taken the census of the 

Instituto Nacional de Estadística (www.ine.es). For Italy, the number of cities by period 

is 7,711 municipalities in 1901 and 1911 and 8,100 municipalities from 1921 to 2001. 

For Spain, we consider the following years: 1900 (7,800 municipalities), 1910 (7,806), 

1920 (7,812), 1930 (7,875), 1940 (7,896), 1950 (7,901), 1960 (7,910), 1970 (7,956), 

1981 (8,034), 1991 (8,077) and 2001 (8,077). 

We consider administratively defined cities (legal cities) in the three countries; 

thus their boundaries may not make economic sense and, in many cases, they may not 

correspond to a meaningful economic definition of a city. Although metropolitan areas 

are considered to be more natural economic units, some factors, such as human capital 

spillovers, are thought to operate at a local level, and there are important statistical 

reasons to consider an un-truncated city population dataset (Eeckhout, 2004). 

3. Estimation 

We fit a lognormal distribution to our city size data. The probability density 

function ( pdf ) of the lognormal is: 
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where μ  and σ  are the mean and variance of xln , which in this case denotes the 

natural logarithm of the city population. The cumulative distribution function ( cdf ) is: 
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where erf  denotes the error function associated with the normal distribution. A 

relationship between rank (1 for the most populous centre, 2 for the second, and so on) 

and cdf  can be easily found (Eeckhout, 2004; Stanley et al., 1995). The expression of 

the rank of cities )(xr  according to population is 
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where 00 >r  is a new constant equivalent to the sample size. We use the Maximum 

Likelihood estimators, and later we estimate 0r  by OLS taking into account the 

estimated cdf  and Equation (3). The estimates of these parameters are very significant 

in the three countries and for all years. The estimations of 0̂r  are directly related to 

sample size; those of μ̂  are very stable over time for all three countries, while the 

values of 
2σ̂  increase slightly over time for the three areas. 

2
R , corresponding to the 

OLS estimation of 0r  applying Equation (3), shows that the degree of fit is very good.
2
  

4. The accuracy of traditional graphs 

The first graphical tool we consider is the histogram. Let us suppose that we 

order the urban centres from our data from smaller to greater populations. A histogram 

of these creates a decreasing graph as the population rises (Graph (a) in Figure 1, data 

from Spain in 1900). A histogram values the frequencies associated with intervals of a 

constant width on the x -axis. However, in a histogram of the population logarithm 

(Graph (b) in Figure 1, same data) these are also counted in frequencies according to 

intervals of constant width, but now in logarithms – but what does this mean in levels? 

Let δ  be this constant width, and the lower and upper ends of one of these intervals be 

jxln  and 1ln +jx  respectively. By definition, δ=−+ jj xx lnln 1  or, to put it another way, 

δ
exx jj =+1 . Generalising, 

δδδ j

jjj exexexx 1

2

11 === −+ , where 1x  is the lower end of the 

first interval, which cannot be zero. This indicates that the upper ends of the intervals, in 

levels, follow a geometric progression of common ratio 
δ

e . This reasoning is valid for 

any numerical variable which is measured alternatively in levels or in natural logarithms 

(populations, sales or employees).  

This fact explains why taking logarithms gives a bell-shaped curve: the first 

intervals are very narrow; then, as the intervals widen according to the geometric 

progression, the number of cases in each interval grows considerably, and the graph 

rises. There will come a moment when, although the intervals are very wide, the number 

                                                 
2   The results, not shown for size restrictions, are available from the authors on request. 
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of cases will be very small for obvious reasons (for example, very large cities of more 

than, let us say, 500,000 inhabitants), so that the graph decreases. The process has 

arrived at a maximum and a bell-shaped curve is obtained. Therefore, the same 

population data can be well fitted by different statistical distributions, depending on the 

scale of the variable (levels or logarithms).  

The second tool we examine the performance of is Zipf plots, i.e., double 

logarithmic graphs of rank compared to population, which are used extensively in the 

specialised literature (Stanley et al., 1995). Panel (a) in Figure 2 shows the most 

representative ones.
3
 These graphs represent the actual data (black dots) with the 

estimated lognormal distribution (blue line). In general, the lognormal distribution is a 

good description of the overall city size distribution, but, in most cases, the lognormal 

underestimates the empirical distribution at the upper tail of larger cities. The 

discrepancies between the data and the estimated theoretical distribution tend to 

increase clearly and systematically with city size. 

We can demonstrate that these discrepancies are augmented in the Zipf plot for a 

statistical reason. Below, the quantities with overbar correspond to the empirical or 

sample distribution and those without overbar to the estimated theoretical distribution 

(lognormal). From Equation (3): 

    ( ))(1)( 0 xfdcrxr −= ,     (4) 

( ))(1)( 0 xcdfrxr −= .     (5) 

At origin both cdf s are null, thus 0)0( rr =  and 0)0( rr = . In turn, for an arbitrarily 

large value (infinite) of city population, both cdf s have to be equal to one, so that 

0)()( =∞=∞ rr .   

 If, as the Zipf plot demands, we take logarithms and evaluate their difference, 

we obtain: 
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3 The results for the decades not shown are available from the authors on request. 
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We focus on the last term. The discrepancy )()( xfdcxcdf −  is small (and gets smaller 

as x becomes very large) but it is nonzero and it is quite bigger than the quantity 

)(1 xcdf− , which indeed unequivocally tends to zero as x  becomes very large. Figure 

3 shows these two elements for the example of the upper tail city size distribution of the 

US in 1950. Thus, the quotient  
( ) ( )

1 ( )

cdf x cdf x

cdf x

−
−

 is a quantity much bigger than the 

discrepancy )()( xfdcxcdf − . Adding the unity to the quotient and taking the natural 

logarithm has the effect of reducing the quotient considerably, but the resulting quantity 

is still much bigger than the original discrepancy )()( xfdcxcdf − . Figure 4 plots the 

elements  
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( ) ( )

ln 1
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 for the same case as in Figure 

3, namely, the upper tail city size distribution of the US in 1950. The graph of the last 

quantity is equivalent, up to the terms 0 0ln lnr r− , to the discrepancy at the upper tail in 

the Zipf plot of Figure 2, panel (a), USA in 1950. In short, the discrepancy 

)()( xfdcxcdf −  has been amplified in the upper tail by taking logarithms of the ranks. 

This observation is not in contradiction with common wisdom about Zipf plots but 

rather reinforces and qualifies it: Zipf plots are adequate to see whether there are 

deviations between theoretical and empirical cumulative distribution functions at the 

upper tail, but bearing in mind that the possible discrepancies are automatically 

amplified. Thus, if it happens that there is absence of differences between empirical and 

theoretical Zipf plots at the upper tail, then we can assure that the fit is extremely good. 

Moreover, this observation can contribute to the clarification of recent questions raised 

in the literature (Levy, 2009; Eeckhout, 2009). In particular, this is why the confidence 

bands in Zipf plots fan out as population increases in the upper tail of the distribution. 

Finally, we study the graphical representation of the cumulative distribution 

functions (Eeckhout, 2004; Giesen et al., 2010). Panel (b) in Figure 2 shows the cdf s 

corresponding to the same cases in which we illustrated the Zipf plots. The black dots 

represent the empirical cdf  and the blue line is the estimated cdf  corresponding to the 

lognormal distribution. In principle, we would expect the results to be similar to those 

of the Zipf plots, but we can see that this is not exactly true. Surprisingly, the fit in the 

lower tail is not as good as it seemed in the Zipf plots, while the fit in the upper tail 
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seems almost perfect. To explain this apparent paradox it is useful to turn again to 

Equations (4) and (5). From these, we deduce: 
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Imagine first that the fit in ranks for the estimated distribution was very good 

except for the smallest cities, which would mean that )()( xrxr ≅  for practically all 

points, so that Equation (7) would be:  
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Equation (8) is obtained assuming that the fit in ranks is almost perfect ( )()( xrxr ≅  

except for the smallest cities). The cdf s fit less well as the difference 00 rr −  increases. 

Also, the discrepancy in cdf s increases with )(1 xcdf− , i.e., it increases as x  

decreases, and tends to disappear gradually as x  increases.
4
 Thus, the discrepancy in 

cdf s could be perfectly compatible with an almost perfect rank fit, except for the 

smallest cities. Furthermore, it is unavoidable if 000 ≠− rr . This happens for the cdf  in 

Spain in 1950. 

Second, however, in most cases of our estimated lognormal distribution it 

happens that  00 rr ≅  (remember that 0r  is identified with the sample size), so that 

Equation (7) is actually reduced to:  

    ))()((
1

)()(
0

xrxr
r
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Thus, we derive that when 00 rr ≅ , any lack of fit in ranks (not logarithms of ranks) is 

directly transferred, in most of our estimations with the lognormal, to a lack of fit in 

cdf s. These (rather small) discrepancies are shown in the cdf s plotted for Italy in 1951 

and for the US in 1950 and 2000.  

5. Conclusions 

                                                 
4 See Figure 2(b). The divergence between )(xfdc  and )(xcdf  is noticeable for )ln(x  (in the 

horizontal axis) lower than, say, 7, and from that value the differences are negligible. 
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In this paper we show some limitations of the traditional graphs used to study 

size distributions in economics: histograms, Zipf plots and plotted cumulative density 

functions. We fit a lognormal distribution to un-truncated city population data from 

three countries: the US, Spain and Italy. We obtain some statistical properties to explain 

the graphical behaviours at the lower and upper tail distribution. This evidence suggests 

that the appropriate tools to test statistical size distributions properly are standard 

statistical tests and information criteria (see Giesen et al., 2010; González-Val et al., 

2013a), rather than these graphical tools. 
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Figure 1. Histogram of Spanish cities in 1900 
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Figure 2. Zipf and cdf  plots 
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(a) Zipf plots 
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(b) cdf plots 
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Figure 3. Plot of )()( xfdcxcdf −  (red) and )(1 xcdf−  (blue) for the upper tail city size 

distribution in the US (1950) 
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Figure 4. Plot of 
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