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Abstract 

 The present study is an attempt to test whether sectoral indices of Bombay stock Exchange have 

diversification benefits in the same. For the analysis, we used daily data spanning from 2/1/1999 

to 3/31/2011. To test our hypothesis we used Fractional cointegration test. Study found that, in 

general, no evidence of cointegration in the sectoral indices of Bombay stock Exchange and 

hence conclude that there is benefit to domestic investors for sectoral diversification in the 

Bombay stock Exchange Sectoral indices of Indian stock market. 

Keywords: BSE stock Market, Fractional cointegration test, long memory returns, sectoral 
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1. Introduction 

Bombay Stock Exchange (BSE) and National Stock Exchange (NSE) are the two major stock 

exchange of India. In order to attract more and more investment as well as to induce trading both 

of these stock exchanges have maintained indices for different sector. In the present era, every 

investor wants to make portfolios, and they want to invest in growth-oriented sector. The 

importance of sector-oriented investment is popular in these days. In case of India to an extent 

year by year, growth in each sector is entirely depended on the government policies. In this 

paper, we are looking in to Sectoral indices of Bombay Stock Exchange (BSE). BSE Sectoral 

indices consist of 11 sectors whereas for analysis purpose we focused ourselves to only 7 indices 

as rest of 4 indices were recently started and therefore we do not have data for these 4 indices for 

the period we considered in our analysis.
1
  

The main purpose of this study is to examine whether there is any long run dependency among 

the Sectoral indices of BSE of India. We examined whether movement of Sectoral indices are 

predictable based on other sector. This will help investors to identify whether there are any 

sectoral diversification benefits in the same.  

2. A brief Literature review  

Lobato and Savin (1997) tested the presence of long memory in daily stock returns and their 

squares using a robust semi- parametric procedure. They have addressed this problem by 

analyzing sub- periods of returns and using individual stocks. The result indicates that no 

evidence of long memory in the levels of the returns. For the squared returns, the result favors 

long memory and furthermore their result suggests that the evidence in favor of long memory is 

real, not spurious. Cheung and Lai (1993) provides an empirical evidence from the perspective of 

long memory analysis on the behavior of stock returns over long as opposed to short run. The 

study has been used Morgan Stanley Capital Internal stock index data for eighteen countries for 

                                                           
1
 11 sectors are: Auto, Capital Goods, Consumer Durables, IT, Healthcare, Oil and gas, Metal, Power, 

Tech, FMCG and Reality. And excluded sectors are: Power, Tech, FMCG and Reality. 
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the analysis. Their study finds little support for long memory, in general, in international stock 

returns. Moreover, their findings are robust to inflation adjustments in stock returns, data source, 

and statistical methods used. Ding, Granger and Engle (1993) studied the long memory property 

of stock market returns. They found that there is a substantial correlation between absolute return 

than return them and the power transformation of the absolute returns also has quite high 

autocorrelation for long lags. Ganger and Hyung (2004) compare two time series models, an 

occasional- break model and an I(d) model to analysis S&P 500 absolute stock returns. The 

paper shows that occasional breaks generate slowly decaying autocorrelations and other 

properties of I(d) process, where d can be a fraction. In general, they found that an occasional – 

break model provides less competitive forecast, but not significantly. However, their result 

suggests a possibility such that, at least, part of long memory may be caused by the presence of 

neglected break in the series. Henry (2002) suggests those long horizons are forecastable. While 

this phenomenon is usually attributed to time varying expected returns, or speculative fads, it 

may also be due to long memory in the return series. He has tested the long-range dependence on 

a sample of nine international stock index returns using parametric and semi-parametric 

estimators. The author founds the evidence of long memory in the German, Japanese, South 

Korean, and Taiwanese market. Bilel and Nadhem (2009) examined the presence of long 

memory property in monthly and quarterly stock returns of seven countries, namely Japan, 

France, UK, Italy, Canada, Germany, and the USA. The finds some evidence for positive long 

memory in 5 of the 7 series considered. Mishra, Sehgal and Bhanumurthy (2011) have tested the 

presence of nonlinear dependence and deterministic chaos in the rate of return series for six 

Indian stock market indices. The overall result of the analysis suggests that the return is not 

following the random walk process. Furthermore, the study reveals that there is strong evidence 

of nonlinear dependence in daily increments of all equity analyzed. There are other various 

studies conducted for India and analyzed for different indices of BSE or NSE. However, there is 

no such study for sectoral indices in case of India wherein sectoral diversification benefits have 

been analyzed. Therefore, to the best of our knowledge, we are the first in this direction.  

 

 

 



Journal of Emerging Financial Markets, Vol. 2, No. 1: pp. 37-45 (2011).                                 

3. Data and Methodology: Fractional cointegration analysis 

While the usual notion of integration has the strict I(0) and I(1) distinction, fractional 

cointegration allows the variables to be fractionally cointegrated.
2
 A system of I(1) variables 

},...,1,{ njsS j == is said to be fractionally cointegrated if a cointegrating vector β  exists such 

that S'β  is integrated of order d with 10 << d . A fractionally integrated process has long 

memory since its autocorrelations decay hyperbolically, in contrast to a faster, geometric decay 

of a finite order ARMA process (Granger and Joyeux, 1980; Hosking, 1981). Furthermore, an 

I(d) process with 1<d  is mean-reverting (Cheung and Lai, 1993). Thus, if stock indices are 

fractionally cointegrated, then an equilibrium relationship among the stock indices in the system 

will prevail in the long run.  

When testing fractional cointegration, we can adopt the Engle and Granger (1987) two-step 

cointegration approach, though a different method than the standard unit root test is preferred in 

the second step. Cheung and Lai (1993) suggest the use of Geweke and Porter-Hudak’s (1983, 

henceforth GPH) method to detect the order of integration in the error correction term estimated 

from the ordinary least squares regression. 

Consider the error correction term, ),...,( 1 Tt ZZZ =
 

and its first difference, tX , denoted 

tt ZLX )1( −= , where L  is the lag (or backward-shift) operator by way of an autoregressive 

fractionally-integrative moving-average (ARFIMA) process of order ( qdp ,, ) becomes:  

),,0(~)()1)(()1)(( 2

,
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where d is a fractional difference operator and possibly a non-integer; and )(LΦ and )(LΘ  are 

the autoregressive and moving average lag polynomials of orders p  and q , respectively, [i.e., 
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2 In this study we computed a modified form of the Geweke and Porter-Hudak (GPH, 1983) estimate of the long memory 

(fractional integration) parameter, d, of a time series, proposed by Phillips (1999a, 1999b). This is because if a series exhibits 

long memory, then distinguishing unit-root behavior from fractional integration may be problematic, given that the GPH 

estimator is inconsistent against d>1 alternatives. This weakness of the GPH estimator is solved by Phillips’ (1999a, 1999b) 

Modified Log Periodogram Regression estimator, in which the dependent variable is modified to reflect the distribution of d 

under the null hypothesis that d=1. The estimator gives rise to a test statistic for d=1 which is a standard normal variate under the 

null. Phillips suggests (1999a, 1999b) that deterministic trends should be removed from the series before application of the 

estimator.  
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)(⋅Γ denoting the gamma or generalized factorial function] with roots lying outside the unit 

circle. An integer value of 0=d  yields a standard ARMA process (i.e., the process exhibits 

short memory for 0=d , whereas 1=d  gives rise to the unit-root nonstationary process. For 

)5.0,0(∈d  and 0≠d , the ARFIMA process is said to exhibit long memory and the 

autocorrelations of the ARFIMA process decay hyperbolically to zero as .∞→k  For 

)0,5.0(−∈d , the ARFIMA process is said to exhibit intermediate memory (see Granger and 

Joyeux, 1980). Although for )1,5.0(∈d  the process implies mean reversion, however, it is not a 

covariance stationary process. Finally 1>d  implies that the process is not mean reverting. The 

fractional integration test due to GPH (1983) is used to detect the nature of stationarity. GHP 

(1983) demonstrate that the fractional differencing parameter d can be estimated consistently 

from the least squares regression at frequencies near zero: 

,))2/(sin4ln())(ln(
2

jjj vI ++= ωβαω                  Jj ,...,1=                 (4) 

where α  is the constant term, )1,...,1(/2 −== TjTjj πω  TTTJ ,<<= η is the number of 

observations, and )( jI ω is the periodogram of time series tX at frequency jω . With a proper 

choice of J, the negative of the OLS estimate of β  coefficient gives a consistent and 

asymptotically normal estimate of the order of integration d . 

Moreover, this is true regardless the orders and the estimates of the parameters of the ARMA 

process. While 5.0=η  is suggested in the empirical analysis, we set η  also equal to 0.475 and 

0.525 for checking the sensitivity of the results to the selection of η .
3
 To ensure that stationarity 

and invertibility are achieved, we conduct the GPH test on the first-differenced series, i.e., tX .  

As d of the level series equals ,'1 d+  a value of 'd  equal to zero corresponds to a unit root in 

tZ . Thus, the GPH test is used as a unit root test as we apply it to the first differences of the 

relevant series. The unit root null hypothesis 1=d )0'( =d d can be tested against the one-sided, 

                                                           
3 Cheung and Lai (1993) conducted a Monte Carlo experiment and found better performance for η  = 0.55, 0.575, and 0.6. In 

another investigation, Cheung (1993) used η  = 0.5 (which is commonly used to test for fractional integration), and also reports 

results for η  = 0.45 and 0.55 to check the sensitivity of the estimates. Overall, it may be inferred that, irrespective of sample 

size, a value of η , between 0.5 and 0.6 appears to be the ideal choice. 
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long-memory, fractionally integrated alternative 1<d )0'( <d . The rejection of the unit-root null 

hypothesis would suggest the existence of fractional integration. 

As with the GPH approach, there is a substantial amount of evidence documenting the poor 

performance of the Robinson’s semiparametric estimator in terms of bias (see Baillie, 1996). 

Therefore, to examine further the characteristics of long-memory and mean-reversion in the 

cointegrating series of stock markets, we employ the rescaled range (R/S) test. The R/S statistic 

is formed by measuring the range between the maximum and minimum distances that the 

cumulative sum of a stochastic random variable has deviated from its mean and then dividing 

this by its standard deviation. An unusually small (large) R/S statistic signifies mean-reversion 

(mean-aversion). Mandelbrot (1972) demonstrates that the R/S statistic can uncover not only 

periodic dependence but also non-periodic cycles. He further shows that the R/S statistic is a 

more general test of long-memory in time series than examining either autocorrelations (i.e., the 

variance ratio test) or spectral densities. 

Lo (1991) points out that the original version of the R/S analysis (which may be termed as 

classical R/S test) has limitations in that it cannot distinguish between short and long-term 

dependence, nor is it robust to heteroskedasticity. Lo (1991) developed a test for short memory 

versus long memory based on a simple modification of the rescaled range or RS statistic 

introduced by Hurst (1951). The modified RS statistic is  

,)()(
ˆ

1
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Under the null hypothesis, Lo (1991) showed that 
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The distribution function of the random variable RSU  was derived by Feller (1951) and has the 
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This distribution function is used to calculate the critical values of the modified RS test. Critical 

values at various significance level are available in Table 2 in Lo (1991). Further, for estimation 

in our analysis we considered two lag truncation procedures: a lag truncation equals to zero and 

the Andrews’ formula.
4
 

4. Results 

Table 1 displays the results of the GPH estimates of d, the degree of fractional integration, 5 

along with F-statistics for the null hypotheses of 1=d . A concern in the application of the GPH 

estimator is the choice of J  (as in most cases, the results vary across the different values of η ), 

the number of spectral ordinates from the periodogram of tX , to include in the estimation of d. 

Here results are presented for ηTJ = ; where 6.0,55.0,5.0=η , where T represents the sample 

size (i.e., number of observations).  

Table 1: Results of the Geweke-Porter-Hudak (GPH) test for fractional integration and Robinson 

estimates6 

Modified LPR estimate of fractional differencing parameter  

  0.5 0.55 0.6 

Rescaled range 

(R/S) analysis 

of long memory 

Variable d d=0 d=1 d d=0 d=1 d d=0 d=1 Lag=0 Lag=1 

auto –cd 0.847888 10.1806* -1.759*** 0.962598 11.8832* -0.5282 1.030209 15.5711* 0.5203 1.26 11.9 

cd- auto 0.845323 10.6298* -1.789*** 0.960361 12.1736* -0.5597 1.040926 0.7049* 15.8915 1.52 14.2 

auto –cg 1.180851 17.0904* 2.0915** 1.201516 18.9674* 2.8456* 1.21258 21.0557* 3.6615* 1.5 14.3 

                                                           
4 In practice, however, a bandwidth value q has to be selected in the construction of the tests. Consequently, the finite sample 

performance of these tests depends on the choice of the bandwidth. The most popular bandwidth choice is probably the data-

dependent automatic bandwidth 
)12/(1),(ˆ += p

k nkfq δµ where kµ  is a constant associated with the kernel 

function k, ),( kfδ  is a function of the unknown spectral density and is estimated using a plug-in method, and p is the 

characteristic exponent of k. This bandwidth choice has been studied by Andrews (1991) in the estimation of a covariance matrix 

for stationary time series and is now widely used in econometrics applications. It has the advantage that it partially adapts to the 

serial correlation in the underlying time series through the data-dependent component ),(ˆ kfδ . Lima and Xiao (2010) find that 

the problem of choosing the optimal q is not solved yet, but providing a bandwidth procedure that is robust against both the null 

and alternative models may help practitioners in their investigation on the presence of long memory in financial time series. 
5 Diebold and Rudebusch (1991) demonstrate that the standard unit root tests have low power against fractional alternatives. 
6 Agiakloglou et al. (1993) suggest that the estimate of the order of fractional integration from the GPH method could be biased 

for a model with large ARMA parameters. However, if the estimates d remain stable for different η ’s, there is no hint of a bias 

due to ARMA parameters (Hassler and Wolters, 1995). 
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cg- auto 1.232133 13.4683* 2.6846* 1.242237 16.9989* 3.4206* 1.250588 18.9681* 4.3162* 1.92 18.4 

cd- cg 0.80497 8.7092* -2.2555** 0.907593 12.5425* -1.3049 1.080993 16.6189* 1.395 1.45 13.2 

cg- cd 0.847094 9.6628* -1.768*** 0.960442 12.9335* -0.5586 1.126481 16.3749* 2.1785** 1.93 17.7 

auto – hc 0.899774 11.1319* -1.1591 0.913788 13.1952* -1.2174 0.97493 16.2655* -0.4318 1.23 10.8 

hc –auto 0.870828 10.5021* -1.4938 0.898058 12.7688* -1.4395 0.965871 15.9183* -0.5878 1.3 11.2 

 auto-it 0.882661 10.345* -1.357 0.970153 12.6033* -0.4215 1.102973 17.386* 1.7736*** 1.66 15.3 

it-auto 0.883098 9.9942* -1.3519 0.959514 13.471* -0.5717 1.099999 19.171* 1.7224*** 1.39 12.2 

auto -metal 1.215363 11.5806* 2.4906** 1.140633 15.1506* 1.9859** 1.172001 19.1069* 2.9626* 1.29 12 

metal -auto 1.156399 11.5185* 1.8087*** 1.079141 15.6231* 1.1175 1.160903 19.1889* 2.7714* 1.76 16.3 

 cd- hc 1.010867 10.479* 0.1257 1.097629 14.3309* 1.3786 1.039163 17.7918* 0.6745 1.33 12.1 

hc –cd 0.969478 10.4611* -0.353 1.067512 14.8513* 0.9533 1.024245 17.8662* 0.4176 1.34 12.1 

cd-it 0.752353 7.0805* -2.864* 0.877236 10.7071* -1.734*** 0.963833 16.0014* -0.6229 1.67 15 

it –cd 0.878024 8.9952* -1.4106 0.977615 12.1731* -0.3161 1.046319 17.6819* 0.7978 1.29 11 

cd-metal 0.987996 10.2171* -0.1388 1.088026 13.7001* 1.243 1.097389 18.1773* 1.6774*** 1.37 12.5 

metal-cd 0.983426 10.8849* -0.1917 1.050785 15.282* 0.7171 1.092185 19.8418* 1.5878 1.49 13.5 

cd- og 0.931506 11.4036* -0.7921 0.983763 14.3246* -0.2293 1.064633 16.8092* 1.1132 1.41 13.2 

og-cd 0.919041 11.2566* -0.9363 0.966058 13.7763* -0.4793 1.043813 16.707* 0.7546 1.92 18.1 

cg-hc 1.099139 12.8607* 1.1465 1.130569 17.5638* 1.8438*** 1.089082 21.6674* 1.5344 1.68 15.7 

hc-cg 1.01706 11.9424* 0.1973 1.078126 16.5111* 1.1032 1.080128 20.2839* 1.3801 1.2 11.1 

cg-it 0.912875 10.6708* -1.0076 0.986995 14.2847* -0.1836 1.105077 19.3062* 1.8099*** 1.86 12.2 

cg-metal 0.843504 9.6919* -1.809*** 0.836546 13.3618* -2.3081** 1.009341 17.7542* 0.1609 1.69 14.9 

metal- cg 0.844929 9.9824* -1.793*** 0.834336 13.6908* -2.3393** 1.011945 18.1187* 0.2057 1.36 11.8 

cg- og 0.884812 10.5287* -1.3321 0.914349 12.9246* -1.2095 0.987927 15.7288* -0.208 1.4 12.2 

og- cg 0.855712 10.2523* -1.669*** 0.887486 12.6052* -1.5888 0.958704 16.2598* -0.7113 1.51 13.2 

hc- it 0.809348 9.4947* -2.2048** 0.9418 12.5023* -0.8218 1.089113 15.0141* 1.5349 1.77 16.4 

it- hc 0.871272 11.0913* -1.4887 0.987375 13.2268* -0.1783 1.104572 18.1316* 1.8012*** 1.32 11.8 

hc- metal 1.043541 11.0685* 0.5035 1.018169 14.7558* 0.2566 1.020457 18.6137* 0.3524 1.04 9.39 

metal-hc 1.04235 10.3876* 0.4898 1.004711 13.6422* 0.0665 1.007531 17.665* 0.1297 1.49 13.4 

hc- og 1.061305 11.8004* 0.709 1.068843 14.9173* 0.9721 1.057163 16.8799* 0.9846 1.42 13.3 

og-hc 1.067993 10.2439* 0.7863 1.05885 13.212* 0.831 1.022426 15.9736* 0.3863 1.92 18.2 

it-metal 0.93155 15.3071* -0.7916 1.021074 16.1585* 0.2976 1.157628 20.3193* 2.715* 1.35 12.1 

metal- it 0.859653 9.47* -1.6231 0.917436 12.9336* -1.1659 1.083687 17.0595* 1.4414 1.66 15.5 

it-og 0.925835 12.0631* -0.8577 1.002385 15.275* 0.0337 1.102277 20.361* 1.7616*** 1.38 12.5 

og- it 0.958628 12.2534* -0.4785 1.00167 15.1735* 0.0236 1.086107 18.4339* 1.4831 1.91 18.1 

metal-og 0.929456 8.8478* -0.8158 1.020585 12.0775* 0.2907 1.010839 15.3614* 0.1867 1.49 13.5 

og-metal 0.938995 9.1632* -0.7055 1.022832 13.1838* 0.3224 1.008088 16.4487* 0.1393 1.8 16.4 

Note: *, **, and *** denotes significance at 1%, 5% and 10% level. 

Source: Authors’ calculation  
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Results reported in Table 1 of the GPH estimates suggest that the results are very much sensitive 

to the choice of η . The null hypothesis of d=0 is rejected in all cases irrespective of the value of 

η . However, the null hypothesis of d=1 is rejected in only three cases (i.e., Auto-cg, cg-auto and 

auto–metal)
7
 irrespective of the value of η , implying that the error correction in those three 

cases clearly are fractionally integrated (i.e., long memory), suggesting that the stock indices of 

Auto-cg, cg-auto and auto–metal are fractionally cointegrated. Further, there are 18 cases
8
 where 

we find that null hypothesis of d=1 is not rejected at any value of η . This implies the absence of 

long-memory in the error correction term of the sectoral BSE indices. Further, for the cases 

where the value of  )1,5.0(∈d  despite the choice of the value of η  implies that though the stock 

indices is mean reverting (i.e., cointegrated), however, it is not a covariance stationary process.  

Further, if we see the results of R/S analysis we find very interesting results in that when lag 

truncation procedures is set equal to zero value of d is between 1 to 2 whereas when lag 

truncation procedures assumes the Andrews’ formula the value of d is very high in all cases. This 

shows the complete absence of cointegration of the sectoral stock indices. Hence, it provides 

evidence that diversification benefits in Indian sectoral indices are enormous.  

 

5. Conclusion: 

The study used the techniques of fractional cointegration of the modified GPH test, along with 

the Rescaled Range approach for India’s BSE sectoral indices for the time period 1997 to 2011.  

We find that GPH estimates are very much sensitive to the choice of η . However, the null 

hypothesis of d=1 is rejected in only three cases (i.e., Auto-cg, cg-auto and auto–metal) 

irrespective of the value of η , implying that the error correction in those three cases clearly are 

fractionally integrated (i.e., long memory), suggesting that the stock indices of Auto-cg, cg-auto 

and auto–metal are fractionally cointegrated. Importantly, in most of cases we find that null 

hypothesis of d=1 is not rejected at any value of η . This implies the absence of long-memory in 

the error correction term of the sectoral BSE indices. Further, the results of R/S analysis show 

the complete absence of cointegration of the sectoral stock indices. Hence, it provides evidence 

                                                           
7
 In the Table cg, og, hc and cd denotes capital goods, Oil and gas, healthcare and consumer durables respectively.  

8
 These 28 cases are: auto–hc, hc-auto, cd-hc, hc-cd, it–cd, metal-cd, cd-og, og-cd, hc-cg, cg-og, hc-metal, metal-hc, 

hc-og, og-hc, metal-it, og-it, metal-og and og-metal.   
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that diversification benefits in Indian sectoral indices are enormous. The results could be 

specifically used for both fundamental and technical analysis of stock markets. Since stock 

markets are a barometer for the economy, the results can also help us examine the overall 

economic situation and the existence of problems in the financial system. 

It should be remarked that the use of daily would mean that the limits for daily price would be 

affected by the closing price of the previous day. There are chances that the data would have hit 

a circuit breaker and distort the data. Even then, daily price data is necessary to understand the 

behavior of the series. It should be pointed out that relations among stock markets are also 

affected by macroeconomic variables such as trade and levels of foreign exchange. Further 

studies could look into incorporating these to give more insightful results.   
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