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Abstract

This paper analyzes traffic bottleneck congestion when drivers randomly

cause incidents that temporarily block the bottleneck. Drivers have general

scheduling preferences for time spent at home and at work. They indepen-

dently choose morning departure times from home to maximize expected

utility without knowing whether an incident has occurred. The resulting de-

parture time pattern may be compressed or dispersed according to whether

or not the bottleneck is fully utilized throughout the departure period on

days without incidents. For both the user equilibrium (UE) and the social

optimum (SO) the departure pattern changes from compressed to dispersed

when the probability of an incident becomes sufficiently high. The SO can

be decentralized with a time-varying toll, but drivers are likely to be strictly

worse off than in the UE unless they benefit from the toll revenues in some

way. A numerical example is presented for illustration. Finally, the model is

extended to encompass minor incidents in which the bottleneck retains some

capacity during an incident.
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1 Introduction

Traffic congestion imposes a heavy burden in urban areas. The Texas Transporta-

tion Institute conducts an annual survey of traffic congestion in the US. According

to its 2012 report, in 2011 congestion caused an estimated 5.5 billion hours of

travel delay and 2.9 billion gallons of extra fuel consumption with a total cost of

$121 billion (Schrank et al., 2012). The average cost per automobile commuter

in the urban areas studied was $818. Nonrecurring traffic congestion due to acci-

dents, bad weather, special events, and other shocks accounts for a large fraction

of the total delays. According to Schrank et al. (2011, Appendix B, p. B-27)

incident-related delays alone contribute 52 - 58 percent of total delay in US urban

areas.1

Unanticipated travel delays upset peoples’ travel plans, and may cause them

to arrive late with serious consequences for commuting, business, and other types

of trips. Travelers can sometimes adjust to the threat of delays by changing their

transport mode or destination, or even cancelling trips, but a more common re-

sponse is to adjust departure times. Researchers have long been interested in

studying the adjustment process, and they have adopted various modeling ap-

proaches. In an early and insightful study, Gaver (1968) derived the optimal de-

parture time for a driver faced with stochastic travel time who incurs costs from

both travel time and schedule delay. The optimal policy, which Gaver called a

headstart strategy, entails a probabilistic trade-off between arriving early and ar-

riving late. Gaver assumed that travel time has a constant and exogenous variance,

and he did not attempt to derive an endogenous travel time distribution as a dy-

namic equilibrium. His approach was adopted and extended by Knight (1974);

Hall (1983); Noland and Small (1995), and Noland (1997).

All these studies use models with flow congestion. An alternative approach is

to use the Vickrey (1969) bottleneck model in which congestion delay takes the

form of queuing. A series of studies by Arnott et al. (1991, 1999) and Lindsey

(1994, 1999) introduced stochasticity into the bottleneck model by assuming that

capacity and/or demand fluctuate randomly from day to day, but are constant dur-

ing the period of use on a given day. For want of a better term, we will call this

the “daily-shocks” model.2

1The 2012 Report does not repeat this estimate. As Hall (1993) observes, the contribution of

nonrecurrent congestion is difficult to determine because it depends on the magnitude and timing

of recurrent congestion, and vice versa. Drivers may underestimate the prevalence of nonrecurrent

congestion because incident-induced queues can persist long after the incidents are cleared away.
2Arnott et al. (1991, 1999) and Li et al. (2008) analyze user equilibrium in the daily-shocks

model, whereas Lindsey (1994, 1999) focuses on the social optimum. Other recent papers have

also studied random travel times using the bottleneck model. Xin and Levinson (2007) assume

that travel times are exogenous and independently distributed over time, and their model does

not feature incidents per se. Fosgerau (2010) shows how the dynamics of random congestion
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Our paper differs from these earlier bottleneck-model studies in three ways.

First, they adopted the traditional specification of trip-timing preferences used

by Vickrey (1969) in which individuals have a preferred time to arrive at their

destination and incur a schedule delay cost proportional to the amount of time

they arrive earlier or later. Following Börjesson et al. (2012) we will call this the

“step” model. Here we adopt a more general scheduling utility function approach

that incorporates preferences for time spent at different activities. We apply the

model to commuting trips by specifying preferences for time spent at home and

at work.3

Second, and more fundamentally, we assume that capacity can fluctuate while

trips are being made rather than being determined before travel begins. Third,

we assume that capacity reductions are due to incidents caused by drivers during

their trip. The timing of shocks is therefore endogenous to the model rather than

exogenous as in earlier studies. Since drivers are responsible for most incidents,

this within-day, endogenous specification of capacity fluctuations accounts for a

significant portion of nonrecurring congestion that occurs. It also provides the

basis for assessing tolling and other policies to reduce the costs of congestion by

altering peoples’ travel decisions. For most of the paper we assume that capacity

is reduced to zero by an incident although in a final section we examine a variant

of the model in which loss of capacity is partial.

Two unpublished studies cover part of the same ground as we do. Schrage

(2006) derives the unregulated and socially optimal departure rates for a single

road link when the accident rate is a function of the inflow rate and therefore en-

dogenous. Her model differs from ours in three main respects. First, she uses the

Henderson (1974) flow congestion model in which a driver’s travel time is deter-

mined by the aggregate departure rate when he starts his trip. This model has no

state variable analogous to queue length in the bottleneck model. Second, capac-

ity is reduced only partially in an incident and it subsequently recovers slowly,

and deterministically, rather than all at once. Third, drivers are assumed to know

whether and when an accident has occurred before they depart. Schrage derives

the optimal time-varying and state-dependent toll that decentralizes the social op-

timum, but she does not solve for the timing of departures in either the unregulated

user equilibrium or the social optimum. In independent work, Peer et al. (2010)

induce characteristic loops in the relationship between the mean and the variance of travel time

over different times of day. de Palma and Fosgerau (2011) analyze random queue sorting whereby

travel time is random from the perspective of individual travellers, but capacity and demand are

fixed.
3Jenelius et al. (2011) use a similar scheduling utility function approach to study the effects of

unpredictable travel time shocks on trip-timing decisions. They apply the model to a full day of

activity including morning and evening commutes. Their model differs in featuring shocks that

are exogenous and independent of time of day. There is also no traffic congestion in their model.
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use the bottleneck model to analyze incidents in which, like Schrage (2006), ca-

pacity loss is partial. They treat incident timing as exogenous and assume that

an incident persists until all drivers have completed their trips. They also adopt

the “step” model of trip-timing preferences. Finally, they limit attention to the

unregulated user equilibrium and do not examine the social optimum or tolling.

In our paper we undertake a systematic analysis of both user (i.e., Nash) equi-

librium and socially optimal trip-timing decisions when drivers do not not know

whether an incident has occurred before they decide when to depart. We solve for

the optimal time-varying (but state-independent) toll that decentralizes the social

optimum. One of the questions we address is whether the bottleneck operates at

capacity throughout the travel period on days when no incident occurs, or whether

some capacity goes “unused”. We show that for both the user equilibrium and so-

cial optimum, spare capacity does exist for part, or all, of the travel period if

incidents are sufficiently probable.4 In contrast to the daily-shocks model, depar-

tures can be more spread out in the user equilibrium than in the social optimum.

Another difference is that the socially-optimal departure rate can decrease, rather

than increase, over time.

The paper is organized as follows. Section 2 describes the model. Section

3 summarizes the main features of user equilibrium and social optimum for the

deterministic variant of the model with no incidents. Section 4 derives properties

of the user equilibrium with incidents. Section 5 conducts a parallel analysis

of the social optimum. Section 6 presents a numerical example calibrated for

morning commutes, and then considers a variant for evening commutes. Section 7

undertakes a partial analysis of an extension of the model in which the bottleneck

retains some capacity during an incident. Finally, Section 8 concludes with a

summary and ideas for extension.

2 The model

A continuum of N identical individuals drive alone from a common origin through

a bottleneck to a common destination.5 To be concrete, in most of the paper the

trip is assumed to be a morning commute from home (H) to work (W ). (However,

an evening commute is also examined in the example section.) Departure time

from home is denoted by t. Drivers6 depart at a rate ρ (t) during a set of times T ;

4Holding spare capacity is broadly consistent with policies of reserving shoulder lanes for use

during accidents and other disruptions.
5A notational glossary is provided at the end of the paper.
6Throughout the paper we will refer to “drivers” even though individuals are treated as a con-

tinuum in the model so that there are no discrete or atomic agents. Reference to “drivers”, “users”,

“commuters” and so on is common in the bottleneck model literature, and it facilitates exposition.
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cumulative departures are thus R (t) =
∫

{v∈T |v≤t}
ρ (v) dv.7 Free-flow travel time

before and after reaching the bottleneck is normalized to zero. A driver departing

at t encounters a queuing delay of q (t) at the bottleneck and reaches work at

time a = t + q (t). Drivers have scheduling preferences8 described by the utility

function

(1) u (t, a) =

∫ t

tH

β (v) dv +

∫ tW

a

γ (v) dv.

The limits of integration, tH and tW , are chosen such that all travel takes place

within the interval [tH , tW ]. Function β (·) > 0 denotes the flow of utility from

being at home, and function γ (·) > 0 denotes utility from being at work. Func-

tions β (·) and γ (·) are assumed to be continuously differentiable with derivatives

β′ < 0 and γ′ > 0 and to intersect at time t∗.9 Utility from time spent driving

is normalized to zero. These assumptions ensure that, for any fixed trip dura-

tion, there is a unique departure time t, t < t∗, that maximizes scheduling utility.

They also assure that u (t, a) is strictly increasing in t, strictly decreasing in a,

and globally strictly concave. Two final assumptions, Lim
v→tH

β (v) = ∞ and Lim
v→tW

γ (v) = ∞, will ensure existence of a Nash equilibrium in departure times.10

If no incident is in progress, the bottleneck has a flow capacity of s. Incidents

are caused by a randomly determined driver and block the bottleneck for a de-

terministic period ∆ > 0. The incident occurs when the driver reaches the head

of the queue (if any) and is about to cross the bottleneck.11 At most one driver

causes an incident on a given day. Let ξ ∈ [0, N ] be the random variable that in-

dicates the position of the culpable driver in the departure schedule if an incident

occurs. Variable ξ has a continuously differentiable density f (ξ) and a cumula-

tive function F (ξ), where F (0) = 0 and F (N) < 1. Function f (·) will be called

7All statements about ρ in the paper will be “almost surely”, since ρ can take arbitrary values

on sets of Lebesgue measure zero without affecting aggregate behaviour or welfare. To ease

exposition this detail will be ignored.
8This formulation of scheduling preferences originates from Vickrey (1969, 1973) and has

been used by Tseng and Verhoef (2008), Fosgerau and Engelson (2011), Fosgerau and de Palma

(2012), Jenelius et al. (2011), and Börjesson et al. (2012).
9The notation differs from that in the step model where β denotes the cost per minute of

arriving before t∗, and γ denotes the cost per minute of arriving after t∗. The assumptions β′ < 0
and γ′ > 0 rule out the step model because the (implicit) β (·) and γ (·) functions in that model are

constants except at t∗ where γ (·) steps up. This is not particularly restrictive since the step-model

preferences can be approximated arbitrarily closely by differentiable functions. Nevertheless, the

assumptions could be generalized as in Fosgerau and Engelson (2011).
10These assumptions are relaxed in the example of Section 6 where β (·) and γ (·) are linear

functions.
11The mechanics of the model are the same if an incident occurs anywhere between home and

the exit point from the bottleneck. All drivers ahead of the culprit are unaffected by the incident.
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“incident risk” and F (N) “incident probability”.12 A baseline assumption is that

incident risk is constant, and this will be assumed in the numerical example of

Section 6. A day with an incident is called a “Bad day”, and a day without an

incident is called a “Good day”. Any costs associated with incidents other than

delay are ignored.13 For the analysis of the social optimum, we require f (·) to be

differentiable.

Drivers independently choose their departure times to maximize expected schedul-

ing utility while taking the departure rate as given and without knowing whether

an incident has occurred. The first driver departs at time t0. If the bottleneck op-

erates at capacity from t0 on, and driver ξ causes an incident, the incident occurs

at time t0+
R(ξ)
s

and capacity is restored at t0+
R(ξ)
s

+∆. A driver who is delayed

by an incident will be said to incur “queuing delay” even if the driver causes the

incident and there is no queue of drivers ahead. The duration of an incident, ∆,

is assumed to be long enough that the queue does not dissipate until after the last

driver departs. For future reference this is called the “persistent-queue” assump-

tion. If a queue develops on Good days, it may or may not dissipate before the

last driver departs.

3 User equilibrium and system optimum without in-

cidents

As a first step in analyzing the model, and also for later reference, we briefly

describe the user equilibrium and social optimum for a setting in which incidents

do not occur.

3.1 User equilibrium

Fosgerau and de Palma (2012) analyze user equilibrium (UE) in the model without

incidents and their treatment is briefly summarized here. Let superscript e denote

UE and 0 the setting without incidents. It is easy to show that departures take

place during an interval T e0 = [te00 , te0N ]. A queue exists throughout the interior

of T e0, but disappears at time te0N so that te0N = te00 + N
s

. de Palma and Fosgerau

12Incident risk depends on ξ, but not on the identity of the individual driver. The order in which

drivers depart therefore does not affect aggregate variables of interest. Incident risk also does

not depend on the rate at which drivers arrive at the bottleneck or on whether there is a queue.

(However, the probability that an incident occurs within a short interval of time is proportional to

the arrival rate at the bottleneck.) Relaxing these assumptions would complicate the analysis.
13Results of interest are unaffected if incidents create additional costs (e.g., related to emergency

response, vehicle repair, filing of insurance claims, etc.) as long as the costs are independent of t
and ξ.
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(2011) refer to elimination of the queue at te0N as the “no residual queue” property

of UE.

Since a queue exists in the interior of T e0, a driver departing at time t exits the

bottleneck at te00 + Re0(t)
s

. Scheduling utility is constant on T e0 and equal to

u

(

t, te00 +
Re0 (t)

s

)

=

∫ t

v=tH

β (v) dv +

∫ tW

v=te00 +
Re0(t)

s

γ (v) dv.

The UE departure rate is derived by differentiating u (·) with respect to t, setting

the derivative to zero, and rearranging terms:

(2)
ρe0 (t)

s
=

β (t)

γ
(

te00 + Re0(t)
s

) .

Since the first and last drivers receive the same expected utility, u (te00 , te00 ) =
u
(
te00 + N

s
, te00 + N

s

)
. This condition can be written as

(3)

∫ te00 +N

s

v=te00

(β (v)− γ (v)) dv = 0.

Eqn. (3) gives an implicit formula for te00 . It states that a driver who shifts from

departing first to departing last gains additional utility at home that just offsets

foregone utility at work.

A representative user equilibrium is shown in Figure 1. The first driver de-

parting at te00 has a scheduling utility equal to the area under curve abgjdef. This

area is smaller by area bgd than the ideal of leaving home at t∗, arriving immedi-

ately at work, and gaining utility of abcdef . The last driver departing at te0N has a

utility equal to the area under the curve abcdkef which is less than the ideal by

area dke. Condition (3) assures that areas dke and bgd are equal. Now consider

a driver departing at time t, and call this ‘driver t’. From time te00 to t, driver t

gains area bghc more utility than the first driver. From time t to te00 + Re0(t)
s

, driver

t is caught in the queue and gains less utility than the first driver by area hlmj.

In equilibrium, queuing time is such that area hlmj matches area bghc. This is

equivalent to the condition that driver t’s utility from time spent at home from te00
to t equals the first driver’s utility from time spent at work from t to te00 + Re0(t)

s
.

Note that driver t’s queuing time is shorter the higher his utility from work

because the driver foregoes more utility while traveling rather than being at work.

Thus, if utility functions β (·) and γ (·) were shifted upwards an equal amount,

area bghc would not change, but area hlmj would become taller and narrower.

This observation helps to explain a difference between the morning commute and
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Figure 1: Scheduling utility and timing of departures
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evening commute examples in Section 6.

3.2 The social optimum

The social optimum (SO), denoted by superscript w, is derived by choosing ρ (t)
to maximize aggregate scheduling utility:

U =

∫

t∈Tw0

ρ (t) u (t, a) dt,

where Tw0 is the set of SO departure times. The departure rate is maintained at

capacity throughout Tw0 so that no queue is allowed to form, a = t for each driver,

and tw0
N = tw0

0 + N
s

. Aggregate scheduling utility is therefore

U =

∫ tw0
0 +N

s

t=tw0
0

su (t, t) dt = s

∫ tw0
0 +N

s

t=tw0
0

[∫ t

v=tH

β (v) dv +

∫ tW

v=t

γ (v) dv

]

dt.

The first-order condition for tw0
0 is

(4)

∫ tw0
0 +N

s

v=tw0
0

(β (v)− γ (v)) dv = 0.

Equation (4) for tw0
0 is identical to eqn. (3) for te00 . Departures therefore occur

over the same time interval in UE and SO: Tw0 = T e0.

It is straightforward to show that the SO can be decentralized by levying a

time-varying toll, τw0 (t), such that u (t, t) − τw0 (t) is constant for t ∈ Tw0 and

lower for t /∈ Tw0. If demand were elastic, the toll must be zero at the beginning

and end of the travel period (Arnott et al., 1993). Here the number of drivers

is fixed, and a constant can be added to the toll schedule without affecting trip

timing. Nevertheless, it is natural to set the toll to zero at the beginning and end

of the departure period so that τw0 (tw0
0 ) = τw0 (tw0

N ) = 0.

4 User equilibrium with incidents

Consider now the case of interest in which incidents can occur. We begin by estab-

lishing some general characteristics of UE. This is followed by separate analyses

of the compressed departures and dispersed departures configurations.
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4.1 General characteristics of user equilibrium

Lemmas 1 and 2 below summarize properties of a UE.

Lemma 1 (a): The UE departure rate, ρe (t), is strictly positive on an interval

T e = (te0, t
e
N). (b): t∗ ∈ (te0, t

e
N). (c): Re (teN) = N ≤ s (teN − te0): on Good days

the no-residual queue property holds.

Proof. Part (a): ρe (t) cannot drop to zero in the interior of T e since otherwise

some driver could increase expected utility by departing during the gap. Part

(b): Clearly te0 < t∗; otherwise any driver departing after t∗ could increase util-

ity by departing at t∗ instead. Suppose teN ≤ t∗ so that β (teN) ≥ γ (teN). If

the last driver departed dt later, his expected utility would change by dE (u|teN) =
(β (teN)− (1− F (N)) γ (teN)) dt. Given β (teN) ≥ γ (teN) and F (N) > 0, dE (u|teN) >
0 and teN cannot be an individually optimal departure time. Part (c): If Re (teN) >
s (teN − te0), there would be a queue at teN . This would violate the no residual

queue property, and the last driver could leave home later without arriving at work

later.

Lemma 2 In UE the last departure time, teN , is such that

(5) F (N) ≤ 1−
β (teN)

γ (teN)
.

Proof. By Lemma 1, on Good days there is no residual queue at teN . And by the

persistent-queue assumption, if an incident occurs the queue persists until after

teN . A driver departing just after teN therefore encounters a queue with probability

F (N), and the driver’s expected utility changes at a rate

(6)
∂E (u|t)

∂t
= β (t)− (1− F (N)) γ (t) .

Expression (6) must be non-positive for t ≥ teN ; otherwise the last driver could

increase utility by departing later. Since (6) is largest for t = teN , inequality (5)

must hold.14

Expression (6) is readily interpreted. β (t) is the marginal benefit at time t
from staying longer at home, and γ (t) is the marginal cost of delaying arrival at

work. Departing later implies arriving later if no incident has occurred which is

the case with probability 1−F (N). If an incident has occurred, there is no cost of

delaying departure since the driver merely spends less time queuing and reaches

14There is no additional equilibrium condition analogous to (5) that applies to te0 because an

incident cannot occur before te0. Given te0 < t∗, departing before te0 would clearly not be optimal.
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work at the same time. If F (N) is sufficiently large, and ∆ is sufficiently small,

the persistent queue assumption will be violated since any teN that satisfies (5)

will occur after the queue dissipates. The persistent queue assumption therefore

imposes bounds on F (N) and ∆.

User equilibrium follows one of two patterns. In one, queuing on Good days

persists until the last driver has departed. Similar to UE with no incidents, all

drivers complete their trips within the minimum feasible time interval of N/s.

This pattern will be called “compressed” departures. In the second pattern, called

“dispersed” departures, queuing ends on Good days before the last driver departs

and departures extend for a time interval longer than N/s. The compressed-

departures and dispersed-departures patterns are examined separately in the next

two subsections.

4.2 User equilibrium with compressed departures

The main characteristics of a compressed-departures UE are summarized in the

following theorem.

Theorem 1 Assume departures are compressed. Then a unique Nash equilibrium

exists. The equilibrium departure rate is

ρe (t)

s
=

β (t)




(1− F (Re (t))) γ
(

te0 +
Re(t)

s

)

+ F (Re (t)) γ
(

te0 +
Re(t)

s
+∆

)

+f (Re (t))
∫ te0+

R
e(t)
s

+∆

v=te0+
Re(t)

s

γ (v) dv





.(7)

The departure time set T e is determined by the conditions teN = te0 +N/s and

(8)

∫ te
N

v=te0

(β (v)− γ (v)) dv = F (N)

∫ te
N
+∆

v=te
N

γ (v) dv.
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Proof. Expected utility from departing at t is

E (u|t) = (1− F (Re (t))) u

(

t, te0 +
Re (t)

s

)

+F (Re (t)) u

(

t, te0 +
Re (t)

s
+∆

)

=

∫ t

v=tH

β (v) dv +

∫ tW

v=te0+
Re(t)

s

γ (v) dv

−F (Re (t))

∫ v=te0+
R
e(t)
s

+∆

v=te0+
Re(t)

s

γ (v) dv,(9)

which is constant during T e.15 Differentiate and set to zero to obtain

β (t)− γ

(

te0 +
Re (t)

s

)
ρe (t)

s
− f (Re (t)) ρe (t)

∫ te0+
R
e(t)
s

+∆

v=te0+
Re(t)

s

γ (v) dv

−F (Re (t))
ρe (t)

s

(

γ

(

te0 +
Re (t)

s
+∆

)

− γ

(

te0 +
Re (t)

s

))

= 0.

Collecting terms in ρe (t) yields (7) which simplifies to (2) if f (n) = 0, ∀n.

Utility from departing at te0 is given by (9) with t = te0:

(10) E (u|te0) = u (te0, t
e
0) =

∫ te0

v=tH

β (v) dv +

∫ tW

v=te0

γ (v) dv.

Expected utility from departing at teN is given by (9) with t = teN :

(11) E (u|teN) =

∫ te
N

v=tH

β (v) dv +

∫ tW

v=te
N

γ (v) dv − F (N)

∫ te
N
+∆

v=te
N

γ (v) dv.

Equating (10) and (11) yields condition (8). The left-hand side of (8) is decreasing

in te0, while (given teN = te0 +N/s) the right-hand side is increasing. Any solution

is thus unique. Existence is guaranteed by the assumptions Lim
v→tH

β (v) = ∞ and

Lim
v→tW

γ (v) = ∞.

15The first expression for expected utility in (9) is explained as follows. The first term pertains

to utility when there is no incident which occurs with probability 1−F (Re (t)). The driver departs

at time t and arrives at te0 +
Re(t)

s
when the Re (t) preceding drivers have passed the bottleneck.

The second term pertains to utility when an incident has occurred, with probability F (Re (t)).

Since the bottleneck is shut for a period ∆, the driver arrives at te0 +
Re(t)

s
+∆.
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The candidate compressed UE described in Theorem 1 can be tested by solv-

ing for teN using (8), and substituting the result into Condition (5). If (5) is satis-

fied, the UE is indeed compressed. If (5) is violated, the UE is dispersed. Condi-

tion (5) is assumed to be satisfied in the balance of this subsection.

The right-hand side of (8) is an increasing function of F (N) and ∆. Thus, the

greater the incident probability and the longer an incident lasts, the earlier depar-

tures begin. This result is consistent with the Gaver (1968) analysis of headstart

strategies, mentioned in the introduction.

Corollary 1 Assume departures are compressed, and f (n) is independent of n.

Then ρe is decreasing so that Re is concave.

Proof. Concavity of Re follows from equation (7) since β (t) in the numerator is

a decreasing function of t, whereas in the denominator: γ
(

te0 +
Re(t)

s

)

,

γ
(

te0 +
Re(t)

s
+∆

)

,
∫ te0+

R
e(t)
s

+∆

v=te0+
Re(t)

s

γ (v) dv and F (Re (t)) are all increasing; γ
(

te0 +
Re(t)

s
+∆

)

>

γ
(

te0 +
Re(t)

s

)

; and f (Re (t)) is constant.

Concavity of the cumulative departure schedule implies that the departure rate

decreases monotonically over time, and also that on good days queuing can oc-

cur only during one connected time period. Concavity is also a property of user

equilibrium in the daily-shocks model (Arnott et al., 1999, Proposition 1).

From equation (7) the initial departure rate is

(12)
ρe (te0)

s
=

β (te0)

γ (te0) + f (0)
∫ te0+∆

v=te0
γ (v) dv

.

With no incidents, the initial departure rate is given by eqn. (2):

(13)
ρe0 (te00 )

s
=

β (te00 )

γ (te00 )
.

Compared to (13), eqn. (12) includes an additional term in the denominator, but

since te0 < te00 , β (te0) > β (te00 ) and γ (te0) < γ (te00 ). It is therefore unclear

whether incident risk induces drivers to depart at a faster or slower initial rate.

(In the example presented in Section 6 the departure rate is faster.) However, if

there is no incident risk for the first drivers (i.e., f (0) = 0), then it follows from

(13), (12), and te0 < te00 that the initial departure rate is higher when incidents can

occur. This is also a property of the model with exogenous incidents in Peer et al.

(2012).
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4.3 User equilibrium with dispersed departures

If a candidate UE with compressed departures is computed using equation (8), and

inequality (5) is violated, the UE is dispersed. Depending on the time path of f (·),
the departure rate can be nonmonotonic, and on Good days queuing can occur in

disjoint time intervals. This is conceivable if f (·) has a pronounced double peak,

but it seems unlikely since the natural baseline is for incident risk to be constant.

To keep the analysis tractable it is assumed that any queuing on Good days occurs

during a single interval beginning at te0. Thus, suppose that on Good days there is

a queue for t ∈
(
te0, t̃
)

and no queue for t ∈
[
t̃, teN

]
. For t ∈

(
te0, t̃
)
, the departure

rate is given by (7). For t ∈
[
t̃, teN

]
, equation (9) does not apply and expected

utility must be computed afresh. If an incident occurs at time v ≤ t̃, a driver

departing at t arrives at time a = te0 +
Re(t)

s
+∆. If v ≥ t̃, arrival time is defined

by the condition Re (v) + s (a− v −∆) = Re (t), or a = v +∆ + Re(t)−Re(v)
s

.16

Expected utility is therefore17

E (u|t) = (1− F (Re (t))) u (t, t)

+F
(
Re
(
t̃
))

u

(

t, te0 +
Re (t)

s
+∆

)

+

∫ t

v=t̃

ρ (v) f (Re (v)) u

(

t, v +∆+
Re (t)−Re (v)

s

)

dv.(14)

Differentiating (14) with respect to t, and setting the derivative to zero, one

16This equation is explained as follows. When an incident occurs at time v, Re (v) drivers have

passed the bottleneck. During the interval [v, v +∆], no further drivers can pass. After v + ∆,

drivers pass the bottleneck again at rate s as long as a queue persists. Cumulative passages through

the bottleneck by time a > v +∆ are therefore Re (v) + s (a− v −∆). A driver who departs at

time t is preceded by Re (t) other drivers. This driver therefore arrives when the bottleneck has

processed this number of drivers: Re (v) + s (a− v −∆) = Re (t).
17The first term in (14) covers instances in which no incident occurs. The probability of no

incident is 1 − F (Re (t)). The driver encounters no queue, and therefore arrives immediately at

t and receives a utility of u (t, t). The second term covers instances in which an incident occurs

before t̃ which happens with probability F
(
Re
(
t̃
))

. The number of drivers who have departed by

t is Re (t). Were there no incident, the driver departing at t would pass the bottleneck at te0+
Re(t)

s
.

With an incident, arrival is delayed by ∆ and the driver passes the bottleneck at te0 +
Re(t)

s
+ ∆.

The last term covers instances in which an incident occurs after t̃ but before the driver departs at t.

If an incident occurs at time v, the driver arrives at v +∆+ Re(t)−Re(v)
s

as explained above eqn.

(14). Since there is no queue before v, the driver responsible for an incident at time v leaves home

at time v. The probability that this driver causes an accident is f (Re (v)), and the rate at which

drivers are departing at time v is ρ (v). This explains the integrand of the last term.
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obtains

β (t)− (1− F (Re (t))) γ (t)− f (Re (t)) ρe (t)

∫ t+∆

v=t

γ (v) dv

−
ρe (t)

s
F
(
Re
(
t̃
))

γ

(

te0 +
Re (t)

s
+∆

)

−
ρe (t)

s

∫ t

v=t̃

ρ (v) f (Re (v)) γ

(

v +∆+
Re (t)−Re (v)

s

)

dv = 0.

Collecting terms in ρe (t) yields

(15)
ρe (t)

s
=

β (t)− (1− F (Re (t))) γ (t)



sf (Re (t))

∫ t+∆

v=t
γ (v) dv + F

(
Re
(
t̃
))

γ
(

te0 +
Re(t)

s
+∆

)

+
∫ t

v=t̃
ρ (v) f (Re (v)) γ

(

v +∆+ Re(t)−Re(v)
s

)

dv





.

The denominator of (15) is strictly positive. The numerator must be positive until

t = teN , and nonpositive thereafter. Thus, the departure rate drops to zero at teN
which is defined by the condition

(16) β (teN) = (1− F (N)) γ (teN) .

Condition (5) therefore holds as an equality when departures are dispersed.

The UE with dispersed departures can be solved numerically using the following

iterative procedure:

1. Guess te0.

2. Integrate eqn. (7) from t = te0 to t = t̃, where t̃ is defined by the condition

R
(
t̃
)
= s

(
t̃− te0

)
.

3. Integrate eqn. (15) from t = t̃ to t = teN where teN is defined by condition

(16).

4. If Re (teN) matches N within a tolerance limit, then stop. Otherwise return

to step 1.
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5 The social optimum with incidents

5.1 Preliminary results

The SO with incidents maximizes total expected utility:

(17) E (U) =

∫

t∈Tw

ρ (t)E (u|t) dt,

where Tw is the set of SO departure times. The SO departure rate, ρw (t), maxi-

mizes E (U) subject to the feasibility constraints ρw (t) ≥ 0 and Rw (twN) = N .

Before tackling this optimal control problem some general properties of ρw (t)
will be deduced.

Lemma 3 (a): The SO departure rate never exceeds capacity: ρw (t) ≤ s. (b):

t∗ ∈ int (Tw).

Lemma 3 is proved in Appendix B.1. Part (a) is obvious: exceeding capacity

would cause queuing on Good days without giving any driver extra time at home

or work. Part (b) is also intuitive: to maximize total scheduling utility at home

and work, the first driver must depart when home time is more valuable, and the

last driver must depart when work time has greater value.

Lemma 4 In the SO, the last departure time, twN , is such that

(18) F (N) ≤ 1−
β (twN)

γ (twN)
.

Proof. If the last driver is rescheduled to depart slightly after twN , other drivers are

unaffected and the change in total expected utility is limited to the last driver. The

proof of Lemma 2 therefore applies to Lemma 4.

Condition (18) on twN has the same functional form as condition (5) on teN .

This congruence will be used later to compare the timing of departures in the SO

and UE.

Lemmas 3 and 4 establish some bounds on the rate and timing of departures in

the SO, but a number of questions remain. Should ρw (t) ever be reduced below

capacity? If so, how does ρw (t) vary over time thereafter? Is ρw (t) a continuous

function? Is it ever optimal to reduce ρw (t) low enough and long enough to elimi-

nate queuing for at least some incident states? Various behaviors are possible. For

example, suppose an early incident is likely, the incident risk then declines, and

∆ is large. The model is then similar to the daily-shocks model for which ρw (t)
is weakly increasing over time (Lindsey, 1994). If, alternatively, an early incident

is likely, but ∆ is small, it is optimal to hold ρw (t) below capacity long enough to
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clear any queue from the probable, but short-lived incident. A third possibility is

that incident risk is increasing with n. In this case it may be prudent to accelerate

departures in order to induce incidents earlier, and allow them to be cleared away

sooner so that most drivers do not arrive inordinately late.

Given the wide range of possible solutions, the SO is difficult to analyze in

full generality. Technical obstacles also arise. These can be circumvented by

reformulating the optimization problem (see below), but the solution is tedious.

Consequently, attention will be focused on the optimal timing of departures and

on whether the departure rate should ever be reduced below capacity.

5.2 Optimal control formulation

Three technical difficulties arise if optimal control theory18 is applied to maximize

(17) with respect to ρw (t). First, the Hamiltonian depends on lagged values of

ρw. This problem is partly overcome by using the index or position of drivers

in the departure schedule, n, as the running variable rather than t. The control

variable becomes the time headway between successive drivers rather than the

departure rate. Second, the Hamiltonian depends on lagged values of the state

variable R. This problem is circumvented by replacing R with a set of state-

contingent queuing times.19 Third, the equation of motion for queuing time q (t) is

not differentiable at q = 0. This problem is addressed by imposing a nonnegativity

constraint on queuing time that binds during time intervals when ρw (t) = s.

The optimal solution of the reformulated problem is assumed to comprise two

stages. In Stage 1, which includes drivers n ∈ [0, n̂], headway – denoted by h – is

maintained at h (n) = 1/s. This is equivalent to holding the departure rate at ca-

pacity. In Stage 2, which encompasses the remaining drivers n ∈ (n̂, N ], headway

is increased above 1/s. The optimal value of n̂ is solved as described below. If

n̂ = N , Stage 2 is degenerate and the departure rate is held at capacity throughout

the travel period. On Good days, all drivers travel within a time span of N/s, and

the departure schedule is compressed in the same sense as it is compressed in the

UE. If n̂ = 0, Stage 1 is degenerate and the departure rate is held below capacity

throughout.

Total expected utility for the two stages combined is:

(19) E (U) =

∫ N

n=0

[
(1− F (n))U (t (n) , t (n) + q+ (n))

+
∫ n

ξ=0
f (ξ)U (t (n) , t (n) + qξ (n)) dξ

]

dn,

where t (n) is departure time for driver n, q+ (n) is queuing time experienced by

18Optimal control methods are described in Kamien and Schwartz (1981, Part II) and Leonard

and Van Long (1992, Chap. 6).
19Lindsey (1994) also uses this approach.
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driver n if no incident has occurred, and qξ (n) is queuing time experienced by

driver n if driver ξ ≤ n has caused an incident. The equations of motion for

q+ (n) and qξ (n) are:

dq+ (n)

dn
=

{
1
s
− h (n) if q+ (n) > 0, or q+ (n) = 0 and h (n) < 1

s

0 otherwise

}

,

dqξ (n)

dn
=

{
1
s
− h (n) if qξ (n) > 0, or qξ (n) = 0 and h (n) < 1

s

0 otherwise

}

, ξ < n.

In Stage 1, the constraint q+ (n) ≥ 0 is binding. Given the persistent-queue as-

sumption, the nonnegativity constraint qξ (n) ≥ 0 can be ignored in both stages.

5.2.1 Stage 1: Departure rate held at capacity

The equations of motion and constraints for Stage 1 are:

(20)
dt (n)

dn
= h (n) (costate variable µ1 (n) ≤ 0),

(21) q+ (n) ≥ 0 (multiplier Ψ(n) ≥ 0),

(22)
dq+ (n)

dn
=

1

s
− h (n) (costate variable λ+ (n) ≤ 0),

(23)
dqξ (n)

dn
=

1

s
− h (n) , ξ < n (costate variable λξ (n) ≤ 0).

Equation (20) stipulates that departure time, a state variable, increases at a rate

equal to the headway between successive drivers. Costate variable µ1 reflects the

benefit of occupying or “using up” departure time slots. Because departure time

slots are valuable in the interior of Tw, µ1 < 0. Initial conditions are:

(24) t (0) free,

(25) µ1 (0) = 0,
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(26) q+ (0) = 0,

(27) qξ (ξ) = ∆, ξ ∈ [0, N ] .

The departure time for the first driver is chosen freely as per Condition (24).

Costate variable µ1 is therefore zero for the first driver as per Condition (25).

Queuing time on Good days is initially zero as per Condition (26). If an incident

occurs, queuing time jumps from 0 to ∆ as per Condition (27).

The Hamiltonian is20

Ω = (1− F (n))U (t (n) , t (n) + q+ (n)) +

∫ n

ξ=0

f (ξ)U (t (n) , t (n) + qξ (n)) dξ

+µ1 (n)h (n) + (1− F (n))Ψ (n) q+ (n) + (1− F (n))λ+ (n)

(
1

s
− h (n)

)

+

∫ n

ξ=0

f (ξ)λξ (n) dξ

(
1

s
− h (n)

)

.(28)

Optimality conditions are21

(29)
∂Ω

∂h
= µ1 (n)
︸ ︷︷ ︸

(1)

− (1− F (n))λ+ (n)
︸ ︷︷ ︸

(2)

−

∫ n

ξ=0

f (ξ)λξ (n) dξ

︸ ︷︷ ︸

(3)

= 0,

(30)

∂µ1 (n)

∂n
= −

∂H

∂t (n)
= −







β (t (n))
︸ ︷︷ ︸

(1)

− (1− F (n)) γ (t (n) + q+ (n))
︸ ︷︷ ︸

(2)

−

∫ n

ξ=0

f (ξ) γ (t (n) + qξ (n)) dξ

︸ ︷︷ ︸

(3)







,

(31)
∂λ+ (n)

∂n
= −

∂H

∂q+ (n)
= γ (t (n) + q+ (n))−Ψ(n) ,

20In (28) the multiplier Ψ(n) and the costate variables λ+ (n) and λξ (n) are multiplied by their

respective probability and probability densities. This facilitates interpretation of the optimality

conditions.
21Second-order conditions for an optimum are assumed to hold.
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(32)
∂λξ (n)

∂n
= −

∂H

∂qξ (n)
= γ (t (n) + qξ (n)) , ξ < n.

Equation (29) identifies the net benefit from marginally increasing the headway

for driver n. Term (1) is the opportunity cost of allocating more departure time to

driver n. Term (2) is the expected benefit from reducing queuing time when no

incident has occurred. Similarly, Term (3) is the expected benefit from reducing

queuing time when an incident has occurred. At the optimum, the opportunity cost

matches the expected benefits. Equation (30) describes the evolution of µ1 (n),
where µ1 (n) < 0 corresponds to the disbenefit of using up departure time slots.

The term in braces is the rate of change in driver n’s expected utility as the driver’s

departure time increases. Term (1) is driver n’s utility from staying longer at

home. Term (2) is driver n’s expected loss of work-time utility if no incident

has occurred, and term (3) is the corresponding loss if an incident has occurred.

Finally, equations (31) and (32) describe the evolution of the costate variables,

λ+ (n) and λξ (n), which specify the shadow benefit of queuing time, and thus

are negative. Equation (31) governs the disbenefit of queuing time when there is

no incident. This disbenefit declines over time as fewer drivers remain who will

arrive late. Equation (32) is interpreted similarly.

5.2.2 Solution with compressed departures

Stage 1 can prevail for none, some, or all of the travel period. If it prevails for all

of it, the SO is compressed. The departure rate is held at capacity, and first-order

condition (29) is not needed to derive the solution. Total expected utility is given

by (19) with q+ (n) = 0, t (n) = tw0 + n/s, and t (n) + qξ (n) = t (ξ) + ∆ +
(n− ξ) /s = tw0 + n/s+∆. Using (1), this yields

E (U) =

∫ N

n=0

[ ∫ tw0 +n/s

v=tH
β (v) dv +

∫ tW
v=tw0 +n/s

γ (v) dv

−F (n)
∫ tw0 +n/s+∆

v=tw0 +n/s
γ (v) dv

]

dn.

The first-order condition for tw0 is

∂E (U)

∂tw0
=

∫ N

n=0

[
β (tw0 + n/s)− γ (tw0 + n/s)

−F (n) (γ (tw0 + n/s+∆)− γ (tw0 + n/s))

]

dn = 0,
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or

∫ N

n=0

(β (tw0 + n/s)− γ (tw0 + n/s)) dn =

∫ N

n=0

F (n) (γ (tw0 + n/s+∆)− γ (tw0 + n/s)) dn.(33)

Using integration by parts, the right-hand side of (33) can be written

F (n)

∫ tw0 +n/s+∆

t=tw0 +n/s

γ (v) dv

∣
∣
∣
∣
∣

N

n=0

−

∫ N

n=0

f (n)

∫ tw0 +n/s+∆

t=tw0 +n/s

γ (v) dtdn

= F (N)

∫ tw
N
+∆

t=tw
N

γ (t) dt−

∫ N

n=0

f (n)

∫ tw0 +n/s+∆

t=tw0 +n/s

γ (t) dtdn.

Changing the variable of integration from n to t = tw0 + n/s yields, finally,

∫ tw
N

t=tw0

(β (t)− γ (t)) dt =(34)

F (N)

∫ tw
N
+∆

t=tw
N

γ (t) dt− s

∫ tw
N

t=tw0

f (s (t− tw0 ))

(∫ t+∆

v=t

γ (v) dv

)

dt.

Holding F (N) fixed, the right-hand side of (34) is a decreasing function of f (·)
on the interval (0, N). Departures in the SO therefore begin later the higher the

incident risk for any given incident probability. The right-hand side of (34) is an

increasing function of ∆ so that, similar to the UE, departures begin earlier the

longer incidents last.

To determine whether the SO is indeed compressed, twN can be solved with

(34) and substituted into Condition (18).22 If the SO and UE are both compressed

it is possible to compare their trip timing and welfare as is done in the following

theorem.

Theorem 2 Assume departures are compressed in both UE and SO. Then (a):

Departures begin later in the SO than in the UE, but earlier than in the model

without incidents: te0 < tw0 < te00 = tw0
0 . (b): The SO can be implemented using a

time-dependent toll. (c): If the toll is constrained to be non-negative, drivers are

strictly worse off than in the UE if they do not benefit from the toll revenues.

22Condition (18) can be derived using the optimal control formulation in this subsection by

substituting µ1 (N) = 0, Ψ(N) q+ (N) = 0, h (N) = 1
s

, and t (N) + qξ (N) = tw0 +N/s +∆
into the Hamiltonian (28), differentiating it with respect to t (N), and evaluating the derivative at

t (N) = twN .
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Theorem 2 is proved in Appendix B.2. Part (a) of Theorem 2 indicates that

departures begin and end later in the SO than UE if both are compressed.23 To see

why, note that in the UE the first and last drivers gain the same expected utility

or, equivalently, incur the same expected private travel cost. The first driver is

therefore indifferent between continuing to depart first, and switching to depart

last. However, by switching to last the driver no longer imposes an accident risk

on other drivers. Starting from the UE departure schedule this switch is therefore

socially desirable at the margin, and the SO therefore has a later departure sched-

ule than the user equilibrium. Looked at another way, the last driver does not

impose an accident externality because there are no subsequent drivers to delay.

However, the last driver is concerned about being delayed by an incident caused

by one of the earlier drivers. By contrast, the first driver is not concerned about

being delayed, but does impose an externality on all the other drivers. Individuals

are therefore biased towards departing too early. In this respect, the UE is more

sensitive than the SO to incident risks.

Part (b) of Theorem 2 asserts that, as in the model without incidents, the SO

departure schedule can be decentralized with a time-varying toll. Part (c) states

that the toll makes drivers worse off. This is because the toll must be higher at

the beginning of the departure period than at the end so that drivers delay depar-

ture.24 Since negative tolls are ruled out by assumption, the first driver has to pay

a positive toll.

As noted above, Conditions (5) and (18) have the same functional form. Since

twN > teN if the UE and SO are both compressed, Condition (5) is more stringent

than Condition (18). It is therefore possible for Condition (5) to fail for a candidate

compressed UE so that the UE is dispersed, but for Condition (18) to hold so

that the SO is compressed.25 The results of Theorem 2 still apply in this case as

formalized in the following theorem.

Theorem 3 Assume departures are dispersed in the UE but compressed in the SO.

Then (a): Departures begin and end later in the SO than in the UE, but earlier

than in the model without incidents: te0 < tw0 < te00 = tw0
0 . (b): The SO can be

implemented using a time-dependent toll. (c): If the toll is constrained to be non-

negative, drivers are strictly worse off than in the UE if they do not benefit from

the toll revenues.

23This contrasts with the daily-shocks model in which the SO can begin earlier (Lindsey, 1994).
24This is unlike either the model without incidents or the daily-shocks model (see Lindsey

(1994, Proposition 10)).
25This possibility contrasts with a property of (deterministic) flow-congestion models that de-

partures are more spread out in the system optimum than user equilibrium as long as flow is not

hypercongested. See Chu (1995), Small and Verhoef (2007, Section 4.1.2), and DePalma and

Arnott (2012).
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Theorem 3 is proved in Appendix B.3. The intuition underlying Theorem 3 is

the same as for Theorem 2.

5.2.3 Stage 2: Departure rate held below capacity

The equations of motion and constraints for Stage 2 of the SO are similar to Stage

1:

(35)
dt (n)

dn
= h (n) (costate variable µ2 (n) ≤ 0),

(36)
dqξ (n)

dn
=

1

s
− h (n) , ξ < n (costate variable λξ (n) ≤ 0).

In Stage 2 the departure rate is held below capacity so that q+ (n) = 0. This

variable and its associated multiplier, Ψ(n), are thus omitted. Terminal conditions

are:

(37) µ2 (N) = 0,

(38) λξ (N) = 0, ξ ∈ (0, N ] .

Costate variable µ2 for departure time is zero for the last driver, as per Condition

(37), because departure time slots after t (N) are available, but undesirable. The

shadow value of queuing time is also zero for the last driver as per Condition (38)

because there are no further drivers to be delayed by a queue.

The Hamiltonian for Stage 2 is

Ω = (1− F (n))U (t (n) , t (n)) +

∫ n

ξ=0

f (ξ)U (t (n) , t (n) + qξ (n)) dξ

+µ2 (n)h (n) +

∫ n

ξ=0

f (ξ)λξ (n) dξ

(
1

s
− h (n)

)

.(39)

Optimality conditions are:

(40)
∂Ω

∂h
= µ2 (n)−

∫ n

ξ=0

f (ξ)λξ (n) dξ = 0,
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(41)
∂µ2 (n)

∂n
= −

∂H

∂t (n)
= −

{
β (t (n))− (1− F (n)) γ (t (n))
−
∫ n

ξ=0
f (ξ) γ (t (n) + qξ (n)) dξ

}

,

(42)
∂λξ (n)

∂n
= −

∂H

∂qξ (n)
= γ (t (n) + qξ (n)) , ξ < n.

Equations (40) and (41) have similar interpretations to (29) and (30) for Stage 1.

Integrating (42), and using terminal condition (38), gives an equation for λξ (n):

(43) λξ (n) = −

∫ N

v=n

γ
(
t (ξ) + ∆ + s−1 (v − ξ)

)
dv.

Differentiating (40) with respect to n, and matching the resulting expression

for
∂µ2(n)
∂n

with (41), one obtains:

(44) β (t (n)) = (1− F (n)) γ (t (n))− f (n)λn (n) , n ∈ [n̂, N) .

Equation (44) characterizes the optimal departure time for driver n. Except for

the last term, it has a similar interpretation to equation (6) for the UE. The left-

hand side is the marginal benefit to driver n from delaying departure. The first

term on the right-hand side is the expected marginal cost to driver n of delaying

arrival at work when there is no incident. The second term on the right-hand

side is the expected additional marginal external cost that driver n imposes on

subsequent drivers. This cost arises because any incident will end later and hence

cause subsequent drivers to arrive later and lose more time at work.

Given terminal condition (38), λN (N) = 0 and equation (44) simplifies with

n = N to

(45) β (tw (N)) = (1− F (N)) γ (tw (N)) ,

where superscript w is added to clarify comparison with the UE. Condition (18)

therefore holds as an equality if departures are dispersed in the SO. Equation (45)

for tw (N) is identical to equation (16) for teN with dispersed departures in UE.

Hence twN = teN : if departures are dispersed in both the SO and UE, then depar-

tures end at the same time. This contrasts with the case where both UE and SO

are compressed in which SO departures begin and end later.

If driver ξ causes an incident, driver n > ξ is delayed at the bottleneck until
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time

(46) t (n) + qξ (n) = t (ξ) + ∆ + s−1 (n− ξ) .

Using (46), and differentiating (44) with respect to n, one obtains (see Appendix

B.4) an expression for the SO headway:

(47)

h (n) =

f (n)

(
γ (t (n)) + γ (t (n) + ∆)

+s−1
∫ N

v=n
γ́ (t (n) + ∆ + s−1 (v − n)) dv

)

+ λn (n) ∂f (n) /∂n

(1− F (n)) γ́ (t (n))− β́ (t (n))

+f (n)
∫ N

v=n
γ́ (t (n) + ∆ + s−1 (v − n)) dv

.

The denominator of (47) is strictly positive. If f (n) = ∂f (n) /∂n = 0, the

numerator is zero which is inconsistent with the requirement that h (n) > 1/s
in Stage 2. Thus, Stage 2 can prevail for a given n only if incident risk f (n) is

sufficiently high and/or increasing. Optimal headway is an increasing function

of f (n) because queuing becomes more likely in the future, and increasing the

headway reduces queuing time. In the last term of the numerator, λn (n) < 0
for n < N . Optimal headway is therefore smaller if incident risk is increasing.

This is because accelerating departures induces incidents to occur and end sooner,

thereby allowing later drivers to arrive with shorter delays.

As noted above, if departures are dispersed in the SO, then they are also dis-

persed in the UE. The SO and UE with dispersed departures are difficult to com-

pare because the UE departure rate in (15) is very different in functional form

from the departure rate implied by the SO headway in (47). It is easy to show that

the SO can still be supported by a time-varying toll, but results analogous to those

in parts (a) and (c) of Theorems 2 and 3 have eluded us.

5.2.4 Numerical solution method

The SO with dispersed departures cannot, in general, be solved analytically. To

solve it numerically, eqn. (43) with ξ = n can be substituted into (44) to obtain an

equation for departure time during Stage 2, t2 (n). The remaining unknowns, tw0
and n̂, are solved using two conditions. First, the departure time for driver n̂ must

be the same in Stage 1 and Stage 2:

(48) t1 (n̂) = tw0 + n̂/s = t2 (n̂) .

Second, the costate variables µ1 and µ2 must match at n̂:

(49) µ1 (n̂) = µ2 (n̂) .
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µ1 (n̂) is computed by integrating (30) forward with respect to n, starting at

n = 0 with µ1 (0) = 0. µ2 (n̂) is computed by integrating (41) backward with

respect to n, starting at n = N with µ2 (N) = 0. (If Stage 2 is optimal throughout

the departure period, then n̂ = 0 and eqns. (48) and (49) do not have an interior

solution.) A notable feature of the solution with n̂ > 0 is that h2 (n̂) > 1/s.

Optimal headway is therefore discontinuous, and takes an upward jump at the

transition point from Stage 1 to Stage 2.

6 A numerical example

An example is now presented to obtain further insights into the characteristics of

the UE and SO, as well as to get a sense of the quantitative importance of inci-

dents. Following Fosgerau and Engelson (2011), the scheduling utility functions

for home and work are assumed to be linear: β (t) = β0−β1t and γ (t) = γ0+γ1t,
with β0, β1, γ0 and γ1 all strictly positive. Following Börjesson et al. (2012), this

will be called the “slope” model.

As demonstrated in the previous two sections, both the UE and SO are sensi-

tive to the shape of the incident risk function. A reasonable baseline assumption

is that incident risk is constant and this is assumed for the example: f (n) = f ,

where f is a constant. Appendix B.5 gives partial analytical solutions for the UE

and SO.

6.1 Calibration

Tseng and Verhoef (2008) derive non-parametric estimates of functions β (t) and

γ (t) for morning commuting trips by car or public transport. Their estimates

are approximated fairly well by the slope model. Linear regressions of β (t) and

γ (t) were therefore performed using the seven observations for their mixed-logit

estimates (see Table 3 of their paper). These produced estimates of β1 = 8.86

e/hr2 and γ1= 25.42 e/hr2. A complication with the estimates of β0 and γ0 is

that time spent traveling is preferred to time spent at work for working more than

about 10 min before t∗. Time spent traveling is also preferred to time spent at

home shortly before t∗. Such preferences would induce very high or infinite (i.e.,

mass) departures in UE (see Arnott et al., 1990). To avoid this, parameters β0 and

γ0 were set by trial and error to generate reasonable departure rates over the full

travel period. The values chosen were β0 = γ0 = 40; with β0 = γ0 this implies

t∗ = 0. The parameterized utility functions used are therefore β (t) = 40− 8.86t
and γ (t) = 40 + 25.42t.

There are relatively few studies of incident duration. For accidents that involve

one lane closure, Golob et al. (1987) find a mean incident duration of about one
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hour.26 Jones et al. (1991) obtain a similar mean of 55 min. Nam and Mannering

(2000) obtain a much higher mean of 162.5 min for incidents in an Incident Re-

sponse Team database that tend to be more severe than average. For the example

here, a smaller value of 30 min was selected for parameter ∆. This compensates

in a rough way for the assumption that incidents completely block the bottleneck

which is often not the case for multi-lane highways. It is in line with Hall (1993)

who assumes that durations are uniformly distributed between 5 and 60 min with

a mean of 32.5 min. It is also consistent with Koster and Rietveld (2011) who

assume that incidents last for 35 min and reduce capacity by 80 percent.

Parameters N and s were set to N = 8, 000 and s = 4, 000, and incident

risk was set to f = 0.2/N so that incident probability is fN = 0.2. This im-

plies that an incident occurs once per work week. On average, half the commuters

would pass the bottleneck before the incident occurred so that individual com-

muters would experience an incident-related delay on one day out of ten. The

results of the example are reported in the next subsection. The following subsec-

tion examines a modified version of the example that is descriptive of an evening

commute.

6.2 Results for the morning commute

In the example, departures are compressed in both the UE and SO.27 The two

solutions are compared in Table 1.

26For “rear-end and sideswipe collisions” the mean is 58 min, and for “hit-object, broadside,

and ‘other’ types of collisions” the mean is 62 min (Table 7 of their paper).
27Condition (5) for the UE is satisfied for fN < 0.4482, and Condition (18) for the SO is satis-

fied for fN < 0.4936. The UE and SO are therefore both compressed unless incident probability

is nearly 1/2.
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No incidents Incidents Effect of

fN = 0 fN = 0.2 incident risk

UE SO UE SO UE SO

1
First departure

time [hr]
-1.00 -1.00 -1.101 -1.037 -0.101 -0.037

2
Last departure

time [hr]
1.00 1.00 0.899 0.936 -0.101 -0.037

3
Expected average

social trip cost [e]
17.14 5.71 20.78 8.43 3.64 2.72

4

Average social

trip cost on

Good days [e]

17.14 5.71 18.16 5.74 1.02 0.03

5

Average social

trip cost on

Bad days [e]

— — 31.23 19.21 — —

6 Row 5 - Row 4 13.07 13.47

Table 1: Comparison of user equilibrium and social optimum (morning)

The UE begins about 6 min earlier than with no incident risk. The initial de-

parture rate is 15,389 veh/hr: appreciably higher than the rate of 13,405 veh/hr

without incidents.28 Consistent with Theorem 2, the SO also begins earlier than

without incidents but the time shift is much smaller than for the UE. Expected trip

costs are measured by the loss of expected utility relative to an ideal in which bot-

tleneck capacity is effectively infinite, incidents never occur, and all drivers can

therefore travel from home to work simultaneously at t∗. Without incidents, the

cost of a trip is e17.14 in the UE and e5.71 in the SO. SO cost is only one third

as large as UE cost because, in the slope model, two thirds of trip costs in the UE

are due to queuing time which is avoided in the SO. With incidents, expected trip

cost increases by e3.64 to e20.78 in the UE, and by e2.72 to e8.43 in the SO.

The proportional increase in expected cost is larger for the SO, and in this respect

the SO is less effective than the UE at adapting to incidents. One reason is that de-

partures begin later in the SO than the UE, so that incident-related delays impose

a higher cost from late arrivals. Another is that the SO with compressed depar-

tures is designed to avoid queuing on Good days while maintaining full capacity

utilization. The SO has no “margin of reserve”, and it is therefore vulnerable to

capacity breakdowns.

The increase in expected cost can be decomposed into an increase on Good

days and an increase on Bad days. Row 4 of Table 1 shows that the cost in-

crease on Good days is negligible for the SO (e0.03) but appreciable for the UE

28Introduction of a small incident risk invariably leads to an increase in the initial departure rate

if β1 < 2γ1; see Appendix B.5.
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(e1.02). This is because the shift toward earlier departures is more pronounced

in the UE. On Bad days, expected trip costs are higher in the UE (e31.23) than

the SO (e19.21). But the difference in costs between Good days and Bad days

is actually slightly higher in the SO (e13.47) than the UE (e13.07). In the UE,

drivers adjust their departure times in response to incident risk in order to reduce

the costs of lateness on Bad days while sacrificing some utility on Good days. As

explained above, the SO is less flexible because the rate of departures is fixed, and

only the timing of the travel period is adjusted.

Figure 2 plots the total cost of an incident (measured relative to Good days)

as a function of when the incident occurs.29 The SO curve lies slightly above the

UE curve at all times. Both curves decline monotonically because later incidents

affect fewer drivers. However, both curves are concave because drivers who depart

later are more adversely affected by incidents so that even late incidents impose a

significant loss.

Figure 2: Total cost of incidents in user equilibrium and social optimum (morning)

29Since incidents occur as drivers pass the bottleneck, the probability density of incidents is

uniform with respect to timing.
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Figures 3 and 4 plot individual driver’s trip costs in UE and SO (including

toll) according to whether or not they encounter an incident. In each case the cost

with no incident decreases with departure time while the cost with an incident

increases. The increase in cost due to an incident grows from about e10 for the

first driver to e35 for the last driver. Departing later is therefore riskier, and

if drivers were risk-averse they would tend to depart in order of decreasing risk

aversion.30

Figure 3: Individual cost of incident in user equilibrium (morning)

One way to reduce the costs of incidents is to reduce their frequency. Another

is to reduce their duration. The effects of incident frequency and duration are

easily determined in the model by varying parameters f and ∆. Figure 5 shows

how incident probability affects expected costs per trip for the UE, the SO, and

the SO including toll costs. In all three cases the relationship is nearly linear. The

elasticities are respectively 1.009 for the UE, 0.9928 for the SO, and 0.9899 for the

SO including toll. In the case of the SO the elasticity cannot exceed one; it would

equal one if the departure schedule were held fixed independent of the incident

30de Palma et al. (2012) develop a model of route choice with drivers that differ in risk aversion,

and show how the most risk-averse drivers select the safer route.
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Figure 4: Individual cost of incident in social optimum with toll (morning)
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probability, but this is generally not optimal. This reasoning does not apply to the

UE, and the elasticity is slightly above one. Thus, drivers’ uncoordinated response

to incident risks is collectively inefficient.

Figure 6 presents analogous results for incident duration. In each case, ex-

pected cost increases more than in proportion to duration. The elasticities are

1.109 for the UE, 1.111 for the SO, and 1.100 for the SO including toll. This

suggests that highest priority should be given to road links where major incidents

are common. The duration of incidents that require assistance is equal to the sum

of detection time, time required to dispatch emergency vehicles, travel time to the

incident location, and service time (Hall, 2002). Incident duration can be reduced

by expediting any of these stages. Carson et al. (1999) determine that even short

reductions in incident response and clearance times can yield high benefit-to-cost

ratios.

A notable feature of Figure 6 is how much the toll boosts the private costs of

incidents borne by drivers in the SO. Figure 7 displays the toll schedule for three

levels of incident duration as well as a case without incidents (effectively, inci-

dents of zero duration). As incident duration increases, the toll schedule increases

rapidly and it also advances slowly as departures begin earlier. With ∆ = 1.5
hr, the toll begins at e16.87 and rises to a maximum of e30.24 before declining

smoothly to zero. Such a high toll is attributable to the combined effects of inelas-

tic demand, relatively strong trip-timing preferences, and long-lasting incidents

that shut capacity down completely. In practice, tolls are likely to be lower than

this.

6.3 Results for the evening commute

To this point we have used the model to describe incidents that occur during the

morning commute. Yet the model can be applied to other situations in which

people wish to move from one location to another at the same time. An obvious

instance is the evening commute. The evening commute has not been studied as

extensively as the morning commute, either theoretically or empirically, but it is

generally considered that work time constraints are a major – if not dominating

– factor in determining when people leave work. In theoretical studies that have

used the step model to describe the evening commute it is typically assumed that

scheduling costs are determined by departure time (from work) rather than arrival

time (at home), and that the unit cost of departing from work early is greater than

the unit cost of departing late.31 In the slope model the corresponding assumption

is that β1 > γ1. This is what Börjesson et al. (2012) find using a stated preference

31See, for example, Fargier (1983), de Palma and Lindsey (2002), and Zhang et al. (2008).
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Figure 5: Effect of incident probability on incident costs (morning)
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Figure 6: Effect of incident duration on incident costs (morning)
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Figure 7: Effect of incident duration on socially optimal toll (morning)
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data set for a sample of people traveling for a variety of purposes.32 In contrast to

Tseng and Verhoef (2008), their estimate of β1 is more than three times as large

as their estimate of γ1 (see their Table 6).

We now briefly investigate how incident risk affects commuting behaviour in

the evening commute, and compare it with the morning. To simplify the com-

parison, instead of adopting the Börjesson et al. (2012) estimates we simply in-

terchange the estimates of β1 and γ1, and use β1 = 25.42 e/hr2 and γ1 = 8.86
e/hr2.33 Other parameter values are kept the same as for the morning.

In the absence of incident risk, the evening commute is a mirror image of

the morning commute for both UE and SO in terms of the departure period and

trip costs. However, the initial departure rate is lower in the evening than the

morning. Substituting parameter values into the formula ρ (te00 ) = 2β0+β1N/s
2β0−γ1N/s

s
one obtains an initial departure rate of 8,403 veh/hr for the evening compared to

13,405 veh/hr for the morning. Figure 1 offers an explanation for the difference.

The scheduling utility functions drawn there depict a morning commute with γ (·)
steeper than β (·) in the neighborhood of t∗ (in the slope model the two functions

are linear). For the evening commute, γ (·) is flatter than β (·). Area hlmj is

therefore taller than the area shown, and correspondingly narrower. Queuing time

therefore grows more slowly. The intuition for this is that utility from time spent

at home is relatively insensitive to time of day, and workers therefore have less

to gain by delaying departure from work. Another difference from the morning is

that introduction of a small incident risk leads to a reduction in the initial departure

rate.34

Table 2 displays other properties of the evening commute corresponding to

those for the morning commute shown in Table 1. Departures are again com-

pressed in both the UE and SO.35 Compared to the morning, departures in the UE

and SO begin later. The UE begins about 4 min earlier than without incident risk

compared to 6 min earlier for the morning. Incident risk has a smaller effect be-

cause, with a smaller value of γ1, arriving late is less costly. For the same reason,

average trip costs for UE and SO are lower on both Good days and Bad days than

in the morning.

32Rather surprisingly, they find no significant differences in scheduling parameters for either

morning and afternoon trips, or for different trip purposes.
33 The ratio β1/γ1 = 2.86 is similar to the ratio of 3.26 that Börjesson et al. (2012) obtain.
34This happens if 2β0 (2γ1 − β1) + β1γ1

(
N
s
−∆

)
< 0, which is satisfied in the example; see

Appendix B.5.
35Condition (5) for the UE is satisfied for fN < 0.5778, and Condition (18) for the SO is

satisfied for fN < 0.6763.
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No incidents Incidents Effect of

fN = 0 fN = 0.2 incident risk

UE SO UE SO UE SO

1
First departure

time [hr]
-1.00 -1.00 -1.074 -1.013 -0.074 -0.013

2
Last departure

time [hr]
1.00 1.00 0.936 0.987 -0.074 -0.013

3
Expected average

social trip cost [e]
17.14 5.71 19.75 7.97 2.61 2.26

4

Average social

trip cost on

Good days [e]

17.14 5.71 17.53 5.72 0.41 0.01

5

Average social

trip cost on

Bad days [e]

— — 28.66 16.98 — —

6 Row 5 - Row 4 11.13 11.26

Table 2: Comparison of user equilibrium and social optimum (evening)

For the UE, expected trip cost increases by only e2.61 compare to e3.64 for

the morning. For the SO, expected trip costs increases by e2.26 compared to

e2.72 for the morning. Again, the proportional increase in expected cost is much

larger for the SO than the UE for reasons similar to those for the morning.

Figure 8 plots the total cost of an incident as a function of when the incident

occurs. Unlike for the morning shown in Figure 2, the SO curve crosses the UE

curve twice rather than lying wholly above it. Both curves are still concave, but

less so than for the morning because late incidents are not as costly when the

penalty for arriving late at home is less severe.

Figures 9 and 10 plot individual driver’s trip costs in UE and SO according to

whether or not they encounter an incident. The two sets of curves are much flatter

than in Figures 3 and 4 for the morning. For both UE and SO, the cost incurred

when encountering an incident grows from about e16 for the first driver to e25

for the last driver. Departing later is therefore riskier, but much less so than for

the morning commute.

7 Incidents with partial reductions in bottleneck ca-

pacity

Most incidents on multi-lane highways do not reduce capacity to zero.36 Suppose

an incident reduces bottleneck capacity from s to k ∈ [0, s). Call an incident

36See Highway Capacity Manual 2000 (2000, Chapter 22, Table 22-6).
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Figure 8: Total cost of incidents in user equilibrium and social optimum (evening)
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Figure 9: Individual cost of incident in user equilibrium (evening)
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Figure 10: Individual cost of incident in social optimum with toll (evening)
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“major” if k = 0 (as in the basic model), and “minor” if k > 0. Minor incidents

are more complicated to analyze than major incidents, and some properties of

major incidents do not extend to minor incidents. Consequently, the analysis of

minor incidents here is brief.

7.1 User equilibrium

Lemmas 1 and 2 describing UE for major incidents also apply to minor inci-

dents.37 However, the delay due to a minor incident depends on when it occurs

and it is necessary to consider the amount of time elapsed between an incident

and when a driver departs. Figure 11 depicts the various possibilities. A driver

departing in the interval t ∈ [t0, R
−1 (k∆)] encounters one of two cases: (1) no

incident has yet occurred, or (2) an incident has occurred that ends after the driver

arrives at work. A driver departing in the interval t ∈ [R−1 (k∆) , t0 +∆] can

encounter a third case: (3) an incident has occurred that ends before the driver ar-

rives at work. Finally, a driver departing after t0 +∆ can encounter a fourth case:

(4) an incident has ended before the driver departs. Case 2 can temporarily “dis-

appear” either before or after t0+∆. (Figure 11 shows an example in which Case

2 disappears after t0 + ∆.) However, Case 2 necessarily “reappears” before the

last driver departs at tN . The delay due to an incident differs between the cases;

formulas are derived in Appendix B.6.

The first departure in UE is determined (see Appendix B.6) by the condition

∫ te
N

v=te0

(β (v)− γ (v)) dv = F

(

Re

(

teN −
k

s
∆

))∫ te
N
+ s−k

s
∆

v=te
N

γ (v) dv(50)

+

∫ te
N

v=te
N
− k

s
∆

f (Re (v)) ρe (v)

∫ te
N
+ s−k

s (teN−v)

t=te
N

γ (t) dtdv.

If k = 0, eqn. (50) simplifies to eqn. (8) for major incidents. Equation (50) in-

volves lagged values of the departure rate, ρe (v), for v ∈
[
teN − k

s
∆, teN

]
, and has

to be solved numerically. The initial departure rate turns out to be as in eqn. (2):

the same formula as without incidents. Since te0 < te00 , ρe (te0) > ρe0 (te00 ). Thus,

unlike for major incidents, the risk of minor incidents unambiguously raises the

initial departure rate. This is because minor incidents do not eliminate capacity,

and thus impose only a short delay on early drivers. The risk taken by postpon-

ing departure is therefore smaller, and the queue required to deter drivers from all

departing later is correspondingly longer.

37The proof of Lemma 2 for major incidents is slightly modified; see Appendix B.6.
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Figure 11: Timing of minor incidents (morning)
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7.2 The social optimum

Lemma 3 for major incidents carries over to minor incidents and the proof is the

same. However, the SO for minor incidents is tedious to derive since the SO

departure rate depends on both lagged and leading values of itself. Attention

is limited here to compressed departures. The SO departure period is derived in

Appendix B.6 where it is shown that ∂tw0 /∂k > 0. The SO therefore begins earlier

when incidents are more severe (i.e., k is smaller). We have been unable to rank

tw0 and te0.
The UE and SO with compressed departures can be derived for the example

in Section 6. Figure 12 plots for UE and SO of the morning commute the increase

in expected trip cost due to incidents as the fraction of capacity lost in an incident

(i.e., 1 − k/s) increases from 0 to 1. The two curves rise smoothly, and at k = 0
they reach the values of e3.64 and e2.72 that apply for major incidents. Both

curves are convex so that the expected cost of an incident is more than proportional

to the capacity lost. This is broadly consistent with the finding in Section 6 that

the cost of incidents is more than proportional to their duration.

Figure 12: Increase in expected trip cost from minor incidents (morning)
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8 Concluding remarks

Incidents are a major cause of traffic congestion in large urban areas. This paper

uses the bottleneck model to analyze the effects of incidents on trip-timing de-

cisions and trip costs. Incidents are assumed to be caused by individual drivers

while they travel. Unlike in previous studies except for Schrage (2006), the tim-

ing of incidents is endogenous to traveler behavior. This enriches the realism and

lessons derived from the model, but also adds complexity.

Several general results deserve highlighting. First, three biases are identified

in the timing of departures in the UE relative to the SO. One is the familiar bias

toward departing too quickly in the early stages of the travel period which leads to

queuing on Good days in the UE, but not in the SO. The other two biases are driven

by incident risk and they act in opposite directions. Drivers are biased toward de-

parting too early because they do not want to be delayed by an incident and arrive

seriously late. But they are also biased toward departing too late because they

ignore the delays they will impose on subsequent drivers if they cause an incident.

This last bias is missing from models in which incidents occur exogenously.

Second, if the probability of an incident is sufficiently high, then in both the

UE and the SO bottleneck capacity is not fully used for the entire travel period

on Good days when no incident occurs, and the departure pattern is “dispersed”.

For the SO this can be interpreted as a policy of maintaining reserve capacity in

order to moderate the adverse effects of incidents on Bad days. A third result is

that if departures are compressed in the SO, then drivers are worse off than in

the UE if the SO is decentralized using a non-negative time-varying toll. This

might aggravate resistance to congestion pricing and correspondingly strengthen

arguments for using toll revenues in a way that benefits drivers.

Further lessons concerning how the probability, duration, and magnitude of

incidents affect expected travel costs can be drawn from numerical examples. For

the parameterized slope-model example we use, incidents that occur early in the

travel period are more costly than later incidents because early incidents affect

more travellers. The expected costs of incidents in both the UE and SO are ap-

proximately linear in the probability of incidents, but convex in their magnitude

and duration. This suggests that, not surprisingly, priority for incident manage-

ment should be given to shortening major and long-lived types of incidents.

There are many ways in which the paper could be extended. The analysis

could be refined by relaxing the persistent-queue assumption. Heterogeneity in

drivers’ scheduling preferences could be introduced. The duration of incidents

could be treated as a random variable. More than one incident per day could

be allowed. The assumption that multiple incidents never occur is reasonable

if incidents are rare. For the base case of the numerical example it is assumed

that the probability of no incident is 0.8. Given the underlying hazard rate, more
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than one incident would occur with probability 0.0215, or about once every 45

days. Moreover, if a second incident occurs while the first is ongoing, the second

incident has no effect until the first is cleared up. In the case of minor incidents,

the effect of two concurrent incidents may be approximately equal to the impact

of the one that is more severe (Hall, 2002).

Another extension is to treat travel demand as price sensitive. The number of

trips taken would then differ for the user equilibrium and social optimum. It would

also depend on the frequency, severity, and duration of incidents. By reducing

the expected costs of travel, incident management schemes would stimulate more

trips, and correspondingly more incidents, that would partially offset the policy

benefits (Hall, 1993; Koster and Rietveld, 2011).

Another interesting extension is to assume that individuals are risk averse.

Börjesson et al. (2012) find that scheduling models severely underestimate the

disutility that individuals incur from travel time variability.38 They offer two plau-

sible explanations for this. One is that, contrary to what is assumed in scheduling

models, people do not have a fixed preferred arrival time (t∗ in the model here) be-

cause they can reschedule many activities given advance information about travel

time durations. The other explanation is that people may dislike uncertainty itself

because of the anxiety it creates, the costs incurred when decided when to depart,

or the costs of formulating contingency plans. As Börjesson et al. (2012) put it,

being ‘delayed’ can be worse than just being ‘late’. Risk aversion could be intro-

duced into the model in a crude way by adding to the expected utility function a

term proportional to the standard deviation of travel time.

Incident risk could be assumed to depend on time of day or other circum-

stances. For instance, incident risk is higher at night (Varghese and Shankar,

2007) and in rain (FHWA Road Weather Management Program, 2009). A more

radical step would be to reformulate the model using a flow congestion model

as in Schrage (2006). One reason for doing so is that queuing congestion mili-

tates against maintaining spare capacity since it does not offer a smooth trade-off

between higher capacity utilization on Good days and extra delay on Bad days.

Such a trade-off does exist with flow congestion. Another reason is that both the

frequency and severity of incidents per vehicle-km driven could depend on speed

and/or the density of vehicles on the road (Shefer and Rietveld, 1997). The empir-

ical evidence on this is limited and inconsistent.39 A few studies have found that

severe accidents are more common in light traffic. However, Wang et al. (2009)

conclude that traffic congestion has no statistically significant effect on accident

frequency on the M25 London orbital motorway. To the extent that incident rates

38This finding shows up in both the step model and the slope model they estimate.
39See, for example, Dickerson et al. (2000), Noland and Quddus (2005), and Small and Verhoef

(2007, Section 3.4.6).
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do vary with traffic conditions, the introduction of congestion tolls will affect not

only congestion externalities but also incident/accident externalities (Dickerson

et al., 2000).

A final extension worth noting is information about incidents. We have as-

sumed that drivers know the risk function for incidents, f (·), but not whether an

incident has occurred. It is true that pre-trip and en-route information about travel

conditions are now available from various media. Nevertheless, incidents often

occur after people have made their travel decisions and can alter them only with

difficulty — if at all. Changes of route may be possible in urban areas with dense

road networks, but drivers may be reluctant to switch route if alternatives are either

circuitous or unfamiliar. For example, the shortest route from metro Vancouver to

the US border is via the George Massey Tunnel on Highway 99. Long delays are

frequently encountered at the tunnel. The closest alternative crossing is via the

Alex Fraser Bridge on Highway 91 which is about 10 kilometres to the east. In

settings such as these, travellers have little alternative to queuing once they are en

route.

In other settings where travelers can respond to information, the effectiveness

of the response will depend on a number of factors including the timeliness and

precision of information, the fraction of travelers who have access to it, the pro-

portion of them who choose to respond and how, whether alternative routes are

congested, and so on. These and other design considerations for Advanced Trav-

eler Information Systems have been extensively studied since the late 1980s.40

The effects of information provision in an extended version of the current model

are not easy to envisage.

40For reviews see Rietveld (2011) and Chorus and Timmermans (2011).

46



References

Arnott, R., de Palma, A. and Lindsey, R. (1990) Economics of a bottleneck Jour-

nal of Urban Economics 27(1), 111–130.

Arnott, R., de Palma, A. and Lindsey, R. (1991) Does providing information to

drivers reduce traffic congestion? Transportation Research Part A: General

25(5), 309–318.

Arnott, R., de Palma, A. and Lindsey, R. (1993) A structural model of peak-period

congestion: A traffic bottleneck with elastic demand American Economic Re-

view 83(1), 161–179.

Arnott, R., de Palma, A. and Lindsey, R. (1999) Information and time-of-usage

decisions in the bottleneck model with stochastic capacity and demand Euro-

pean Economic Review 43(3), 525–548.

Börjesson, M., Eliasson, J. and Franklin, J. P. (2012) Valuations of travel time

variability in scheduling versus mean-variance models Transportation Research

Part B: Methodological 46(7), 855–873.

Carson, J., Mannering, F., Legg, B., Nee, J. and Nam, D. (1999) Are Incident

Management Programs Effective? Findings from Washington State Transporta-

tion Research Record: Journal of the Transportation Research Board 1683, 8–

13.

Chorus, C. and Timmermans, H. (2011) Personal intelligent travel assistants in

A. de Palma, R. Lindsey, E. Quinet and R. Vickerman (eds), A Handbook of

Transport Economics Edward Elgar pp. 604–623.

Chu, X. (1995) Alternative congestion pricing schedules Regional Science and

Urban Economics 29(6), 697–722.

de Palma, A. and Fosgerau, M. (2011) Random queues and risk averse users. ENS

du Cachan.

de Palma, A. and Lindsey, R. (2002) Comparison of Morning and Evening Com-

mutes in the Vickrey Bottleneck Model Transportation Research Record: Jour-

nal of the Transportation Research Board 1807(1), 26–33.

de Palma, A., Lindsey, R. and Picard, N. (2012) Risk Aversion, the Value of In-

formation, and Traffic Equilibrium Transportation Science .

47



DePalma, E. and Arnott, R. (2012) Morning commute in a single-entry traffic

corridor with no late arrivals Transportation Research Part B: Methodological

46(1), 1–29.

Dickerson, A., Peirson, J. and Vickerman, R. (2000) Road Accidents and Traffic

Flows: An Econometric Investigation Economica 67(265), 101121.

Fargier, P. (1983) Effects of the choice of departure time on road traffic conges-

tion in V. Hurdle, E. Hauer and G. N. Steuart (eds), Proceedings of the Eighth

International Symposium on Transportation and Traffic Theory University of

Toronto Press Toronto pp. 223–262.

FHWA Road Weather Management Program (2009) How do weather events im-

pact roads?

Fosgerau, M. (2010) On the relation between the mean and variance of delay

in dynamic queues with random capacity and demand Journal of Economic

Dynamics and Control 34(4), 598–603.

Fosgerau, M. and de Palma, A. (2012) Congestion in a city with a central bottle-

neck Journal of Urban Economics 71(3), 269–277.

Fosgerau, M. and Engelson, L. (2011) The value of travel time variance Trans-

portation Research Part B: Methodological 45(1), 1–8.

Gaver, D. P. (1968) Headstart Strategies for Combating Congestion Transporta-

tion Science 2(2), 172–181.

Golob, T. F., Recker, W. W. and Leonard, J. D. (1987) An analysis of the severity

and incident duration of truck-involved freeway accidents Accident Analysis &

Prevention 19(5), 375–395.

Hall, R. W. (1983) Travel outcome and performance: The effect of uncertainty on

accessibility Transportation Research Part B: Methodological 17(4), 275–290.

Hall, R. W. (1993) Non-recurrent congestion: How big is the problem? Are trav-

eler information systems the solution? Transportation Research Part C: Emerg-

ing Technologies 1(1), 89–103.

Hall, R. W. (2002) Incident dispatching, clearance and delay Transportation Re-

search Part A: Policy and Practice 36(1), 1–16.

Henderson, J. (1974) Road congestion: A reconsideration of pricing theory Jour-

nal of Urban Economics 1(3), 346–365.

48



Highway Capacity Manual 2000 (2000) Transportation Research Board, National

Research Council Washington, DC.

Jenelius, E., Mattsson, L.-G. and Levinson, D. (2011) Traveler delay costs and

value of time with trip chains, flexible activity scheduling and information

Transportation Research Part B: Methodological 45(5), 789–807.

Jones, B., Janssen, L. and Mannering, F. (1991) Analysis of the frequency

and duration of freeway accidents in Seattle Accident Analysis & Prevention

23(4), 239–255.

Kamien, M. and Schwartz, N. (1981) Dynamic Optimization: The Calculus of

Variations and Optimal Control in Economics and Management North Holland:

Elsevier Science Amsterdam.

Knight, T. E. (1974) An approach to the evaluation of changes in travel unrelia-

bility: A ”Safety margin” hypothesis Transportation 3(4), 393–408.

Koster, P. and Rietveld, P. (2011) Optimising Incident Management on the Road

Journal of Transport Economics and Policy (JTEP) 45(1), 63–81.

Leonard, D. and Van Long, N. (1992) Optimal Control Theory and Static Opti-

mization in Economics Cambridge University Press Cambridge.

Li, H., Bovy, P. H. and Bliemer, M. C. (2008) Departure time distribution in the

stochastic bottleneck model International Journal of ITS Research 6(2).

Lindsey, R. (1994) Optimal departure scheduling in the morning rush hour when

capacity is uncertain Niagara Falls, Ontario.

Lindsey, R. (1999) Effects of driver information in the bottleneck model in R. Em-

merink and P. Nijkamp (eds), Behavioural and Network Impacts of Driver In-

formation Systems Aldershot Ashgate/Avebury pp. 15–51.

Nam, D. and Mannering, F. (2000) An exploratory hazard-based analysis of high-

way incident duration Transportation Research Part A: Policy and Practice

34(2), 85–102.

Noland, R. B. (1997) Commuter Responses to Travel Time Uncertainty under

Congested Conditions: Expected Costs and the Provision of Information Jour-

nal of Urban Economics 41(3), 377–406.

Noland, R. B. and Quddus, M. A. (2005) Congestion and safety: A spatial analysis

of London Transportation Research Part A: Policy and Practice 39(79), 737–

754.

49



Noland, R. B. and Small, K. A. (1995) Travel-Time Uncertainty, Departure Time

Choice, and the Cost of Morning Commutes Transportation Research Record

1493, 150–158.

Peer, S., Koster, P., Verhoef, E. T. and Rouwendal, J. (2010) Traffic incidents and

the bottleneck model VU Amsterdam.

Rietveld, P. (2011) The economics of information in transport in A. de Palma,

R. Lindsey, E. Quinet and R. Vickerman (eds), A Handbook of Transport Eco-

nomics Edward Elgar pp. 586–603.

Schrage, A. (2006) Traffic Congestion and Accidents Regensburger Diskussions-

beitrage zur Wirtschaftswissenschaft, Working paper 419.

Schrank, D., Eisele, B. and Lomax, T. (2012) TTI’s 2012 Urban Mobility Report

Technical report Texas Transportation Institute, Texas A&M University College

Station.

Schrank, D., Lomax, T. and Eisele, B. (2011) TTI’s 2011 Urban Mobility Report

Technical report Texas Transportation Institute, Texas A&M University College

Station.

Shefer, D. and Rietveld, P. (1997) Congestion and Safety on Highways: Towards

an Analytical Model Urban Studies 34(4), 679–692.

Small, K. A. and Verhoef, E. T. (2007) Urban transportation economics Rout-

ledge London and New York.

Tseng, Y. Y. and Verhoef, E. T. (2008) Value of time by time of day: A

stated-preference study Transportation Research Part B: Methodological 42(7-

8), 607–618.

Varghese, C. and Shankar, U. (2007) Passenger Vehicle Occupant Fatalities by

Day and Night A Contrast Traffic Safety Facts - Research Note (HS-810 637).

Vickrey, W. (1969) Congestion theory and transport investment American Eco-

nomic Review 59(2), 251–260.

Vickrey, W. (1973) Pricing, metering, and efficiently using urban transportation

facilities Highway Research Record 476, 36–48.

Wang, C., Quddus, M. A. and Ison, S. G. (2009) Impact of traffic congestion on

road accidents: A spatial analysis of the M25 motorway in England Accident

Analysis & Prevention 41(4), 798–808.

50



Xin, W. and Levinson, D. (2007) Stochastic congestion and pricing model with

endogenous departure time selection and heterogeneous travelers Conference

CD Paper No. 07-1035 Washington, D.C.

Zhang, X., Huang, H. J. and Zhang, H. (2008) Integrated daily commuting pat-

terns and optimal road tolls and parking fees in a linear city Transportation

Research Part B: Methodological 42(1), 38–56.

51



A Notational Glossary

A.1 Latin characters

a : arrival time at work [clock time]

e: superscript denoting user equilibrium

E (): expectations operator

f : probability density of an incident (“incident risk”)

F : cumulative probability of an incident (“incident probability”)

h: headway between successive departures [hr]

H: subscript denoting home

k : bottleneck capacity during incident (k = 0 for major incidents) [veh./hr]

n : index of drivers in order of departure

n̂ : value of n at which socially optimal departure rate drops below capacity

N : number of drivers

q (t): queuing time [hr]

q+ (n): queuing time in social optimum if no incident has occurred [hr]

qξ (n): queuing time in social optimum if driver ξ causes an incident [hr]

R : cumulative departures [veh]

s : bottleneck capacity with no incident [veh./hr]

t : departure time from home [clock time]

t0 : time when first driver departs from home [clock time]

tH : time at which utility accounting begins (at home) [clock time]

tN : time when last driver departs from home [clock time]

tW : time at which utility accounting ends (at work) [clock time]

t∗ : preferred time to transfer instantaneously from home to work [clock time]

T : set of departure times

u : scheduling utility

U : aggregate utility

v: clock time (used as variable for integration)

w: superscript denoting social optimum

W : subscript denoting work

A.2 Greek characters

β: rate of utility derived from time spent at home

β0, β1: parameters of linear β () function

γ: rate of utility derived from time spent at work

γ0, γ1: parameters of linear γ () function

∆: duration of incident [hr]

λ+ (n): costate variable for q+ (n)
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λξ (n): costate variable for qξ (n)
µ1: costate variable for departure time in Stage 1 of social optimum

µ2: costate variable for departure time in Stage 2 of social optimum

ξ: index of driver who causes an incident

ρ: aggregate departure rate from origin [veh./hr]

τ : toll [e]

Ψ: multiplier on nonnegativity constraint q+ (n) ≥ 0
Ω: Hamiltonian for social optimum

A.3 Other characters

0: superscript denoting model without incidents.

B Mathematical appendixes

B.1 Proof of Lemma 3

Part (a): Suppose ρw (t) > s on some interval. Then Rw (t) intersects a fam-

ily of lines s
(
t− t̂

)
parameterized by t̂. For any such t̂, a queue exists for all

t ∈ T̂ ≡
{
t : Rw (t) > s

(
t− t̂

)}
. Reducing Rw (·) to s

(
t− t̂

)
on T̂ postpones

departures from home for a cohort of drivers without delaying their arrivals at

work. The cohort’s utility increases strictly without affecting the utility of other

drivers. Hence ρw (t) ≤ s on Tw.

Part (b), proof that tw0 < t∗: Following the approach of Section 5.2, write total

expected utility as:

E (U) =

∫ N

n=0

[
(1− F (n))U (t (n) , t (n))

+
∫ n

ξ=0
f (ξ)U (t (n) , t (n) + qξ (n)) dξ

]

dn,

where t (n) is the departure time of driver n, and qξ (n) is queuing time for driver

n if driver ξ < n causes an incident. Consider slightly advancing the departure

times of all drivers by dt > 0. Total expected utility changes by

dE (U) = dt

∫ N

n=0

[
(1− F (n)) (γ (t (n))− β (t (n)))

+
∫ n

ξ=0
f (ξ) (γ (t (n) + qξ (n))− β (t (n))) dξ

]

dn

= dt

∫ N

n=0

[
−β (t (n)) + (1− F (n)) γ (t (n))
+
∫ n

ξ=0
f (ξ) γ (t (n) + qξ (n)) dξ

]

dn.

If tw0 ≥ t∗, then β (t (n)) ≤ γ (t (n)) ≤ γ (t (n) + qξ (n)), ∀n, with β (t (n)) <
γ (t (n)) for n > 0. Hence dE (U) > 0, and tw0 ≥ t∗ cannot be optimal.
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Part (b), proof that twN > t∗: Suppose twN ≤ t∗, and let the last driver depart dt
later. The last driver’s expected utility changes by dE (u| twN) = (β (twN)− (1− F (N)) γ (twN)) dt.
Given β (twN) ≥ γ (twN) and F (N) > 0, dE (u| twN) > 0, and twN ≤ t∗ cannot be

optimal. �

B.2 Proof of Theorem 2

Part (a): The right-hand side of (34) can be bounded above and below:

0 < F (N)

∫ tw
N
+∆

t=tw
N

γ (t) dt− s

∫ tw
N

t=tw0

f (s (t− tw0 ))

(∫ t+∆

v=t

γ (v) dv

)

dt

< F (N)

∫ tw
N
+∆

t=tw
N

γ (t) dt.

Comparison with equation (8) for te0 shows that tw0 ∈ (te0, t
e0
0 ).

Part (b): If a toll implements the SO, expected utility net of the toll must be

constant over the departure interval Tw and lower outside Tw. Such a toll has the

form τw (t) = E (u|t)+c =
∫ t

v=tH
β (v) dv+

∫ tW
v=t

γ (v) dv−F (n)
∫ t+∆

v=t
γ (v) dv+c

where c is a constant.

Part (c): Expected utility when departing in the UE at teN is given by (11):

E (u|teN) =
∫ te

N

v=tH
β (v) dv+(1− F (N))

∫ tW
v=te

N

γ (v) dv+F (N)
∫ tW
v=te

N
+∆

γ (v) dv.

The same equation applies for E (u|twN) in the SO since, as in the UE, there is

no queue on Good days, and the delay due to an incident does not depend on

when it occurs. Therefore E (u|twN) − E (u|teN) =
∫ tw

N

v=te
N

(β (v)− γ (v)) dv +

F (N)
(∫ tw

N

v=te
N

γ (v) dv −
∫ tw

N
+∆

v=te
N
+∆

γ (v) dv
)

. The first term in this expression is

negative since twN > teN > t∗. The second expression is also negative since

twN > teN , ∆ > 0, and γ (·) is an increasing function. Expected utility gross of

the toll is therefore lower in the SO than the UE. If the toll cannot be negative,

drivers are therefore worse off in the SO if toll revenues are not used in a way that

benefits them.

B.3 Proof of Theorem 3

Part (a): If UE departures are dispersed, then β (teN) = (1− F (N)) γ (teN) and

te0 < teN−N/s. If SO departures are compressed, then β (twN) < (1− F (N)) γ (twN)
and tw0 = twN −N/s. Therefore, tw0 = twN −N/s > teN −N/s > te0. The proof that

tw0 < tw0
0 is the same as for Theorem 2.

Part (b): The proof that the SO can be implemented using a time-dependent

toll is the same as for Theorem 2.
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Part (c): The proof is similar to the proof for Theorem 2. Expected utility

when departing in the UE at teN is given by (14):

E (ue|teN) = (1− F (N)) u (teN , t
e
N)

+F
(
Re
(
t̃
))

u

(

teN , t
e
0 +

N

s
+∆

)

+

∫ te
N

v=t̃

ρ (v) f (Re (v)) u

(

teN , v +∆+
N −Re (v)

s

)

dv.(51)

where a superscript e has been added to u since formulas for expected utility differ

for the UE and SO. Integrating the last term of (51) by parts, and rearranging

terms, one obtains

E (ue|teN) = u (teN , t
e
N)− F (N)

∫ te
N
+∆

v=te
N

γ (v) dv

+

∫ te
N

v=t̃

F (Re (v))

(

1−
ρe (v)

s

)

γ

(

v +∆+
N −Re (v)

s

)

dv.(52)

Expected utility when departing in the SO at twN is

(53) E (uw|twN) = u (twN , t
w
N)− F (N)

∫ tw
N
+∆

v=tw
N

γ (v) dv.

Subtracting (52) from (53):

E (uw|twN)− E (ue|teN) =

∫ tw
N

v=te
N

(β (v)− γ (v)) dv

+F (N)

(
∫ tw

N

v=te
N

γ (v) dv −

∫ tw
N
+∆

v=te
N
+∆

γ (v) dv

)

−

∫ te
N

v=t̃

F (Re (v))

(

1−
ρe (v)

s

)

γ

(

v +∆+
N −Re (v)

s

)

dv.

The first two terms in this expression are negative (see proof of Theorem 2).

The third term is also negative since ρe (v) < s for v ∈
[
t̃, teN

]
. Expected utility

net of the toll is therefore lower in the SO than UE. If the toll cannot be negative,

and drivers do not benefit from toll revenues, drivers are worse off.
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B.4 Optimal headway in Stage 2

Differentiating (44) totally with respect to n one obtains:

β́ (t (n))h (n) = (1− F (n)) γ́ (t (n))h (n)

−f (n) γ (t (n))− f (n)
∂λn (n)

∂n
− λn (n)

∂f (n)

∂n
.(54)

Now
∂λn (n)

∂n
=

∂λξ (n)

∂n

∣
∣
∣
∣
ξ=n

+
∂λξ (n)

∂ξ

∣
∣
∣
∣
ξ=n

.

Given (43),

(55)
∂λξ (n)

∂n

∣
∣
∣
∣
ξ=n

= γ (t (n) + ∆) ,

and

∂λξ (n)

∂ξ
= −

∫ N

v=n

γ́
(
t (ξ) + ∆ + s−1 (v − ξ)

)
dv

(

h (ξ)−
1

s

)

,

so that

∂λξ (n)

∂ξ

∣
∣
∣
∣
ξ=n

= −

∫ N

v=n

γ́
(
t (n) + ∆ + s−1 (v − n)

)
dv

(

h (n)−
1

s

)

(56)

=

(
1

s
− h (n)

)∫ N

v=n

γ́
(
t (n) + ∆ + s−1 (v − n)

)
dv.

Adding (55) and (56) yields

∂λn (n)

∂n
= γ (t (n) + ∆)(57)

+

(
1

s
− h (n)

)∫ N

v=n

γ́
(
t (n) + ∆ + s−1 (v − n)

)
dv.

Substituting (57) into (54), and rearranging terms, yields equation (47) in the text

for the optimal headway.
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B.5 Analytical solution for linear example

B.5.1 User equilibrium

Given (8), the first departure in UE is at time

te0 =
β0 − γ0 − (β1 + γ1)

N
2s

− fs∆
(
γ0 + γ1

(
N
s
+ ∆

2

))

β1 + γ1 + fγ1∆s
.

From (9), cumulative arrivals, Re (t), are given by the positive root of the quadratic

equation

γ1
2s

(1 + 2fs∆) (Re (t))2 +

(

(1 + fs∆) (γ0 + γ1t
e
0) +

fsγ1
2

∆2

)

Re (t)

−β0s (t− te0) +
β1s

2

(
t2 − (te0)

2) = 0.

Assuming without loss of generality that β0 = γ0, it can be shown that

Sgn

(

∂ρ (te0)

∂f

∣
∣
∣
∣
f=0

)

= 2β0 (2γ1 − β1) + β1γ1

(
N

s
−∆

)

.

A small incident risk leads to an increase in the initial departure rate unless pa-

rameter γ1 is small compared to β1.

B.5.2 Social optimum

Stage 1 If the SO is compressed, eqn. (34) applies and the first departure occurs

at time

tw0 =
β0 − γ0
β1 + γ1

−
N

2s
−

γ1
β1 + γ1

fN∆

2
.

It is easy to check that tw0 > te0 if f > 0. Condition (18) is satisfied for the

candidate compressed SO if the following quadratic equation in Z ≡ fNγ1 is

negative:

(58)

−∆Z2 +

(

2

(

β0 +
β1γ0
γ1

)

+ (β1 + γ1)

(
N

s
+∆

))

Z − (β1 + γ1)
2 N

s
< 0.

Condition (58) is clearly satisfied for small values of f .

The costate variable for departure time during Stage 1 is a negative, convex,
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and quadratic function of n:

µ1 (n) = (γ0 − β0 + (β1 + γ1) t
w
0 )n+

(

f∆γ1 +
β1 + γ1

s

)
n2

2
, n ∈ [0, n̂] .

Stage 2 Departure time in Stage 2 is given by eqn. (44) which has an analytical

solution:

t2 (n) =
β0 − γ0 − fγ0 (N − 2n)− fγ1

(
∆+ N−n

2s

)
(N − n)

β1 + γ1 + fγ1 (N − 2n)
, n ∈ [n̂, N ] .

The last driver departs at

twN = t2 (N) =
β0 − γ0 (1− fN)

β1 + γ1 (1− fN)
.

If the SO entails only Stage 2, n̂ = 0 and the first driver departs at

tw0 = t2 (0) =
β0 − γ0 − fN

(
γ0 + γ1

(
∆+ N

2s

))

β1 + γ1 (1 + fN)
.

The costate variable for departure time in stage 2, µ2 (n), is solved numerically

by integrating (41) backwards with respect to n from n = N .

B.6 Minor incidents

B.6.1 User equilibrium: Proof of Lemma 2 for minor incidents

A driver who deviates from a candidate compressed UE and departs at t ∈
(
teN , t

e
N + s−k

s
∆
)

has an expected utility

E (u|t) = (1− F (N)) u (t, t) +

tN∫

v=tN− k

s
∆

f (R (v)) ρ (v) u

(

t,
s

k
tN −

s− k

k
v

)

dv

+F

(

R

(

tN −
k

s
∆

))

u

(

t, tN +
s− k

s
∆

)

.

The derivative of expected utility is

∂E (u|t)

∂t
= β (t)− (1− F (N)) γ (t) ,

which is the same as for major incidents. Hence condition (5) still applies. �
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B.6.2 Timing of departures in user equilibrium

As noted in the text, the delay imposed by an incident on a driver depends on

when it occurs. Four cases are possible.

Case 1: No incident has occurred A driver departing at t arrives at a = t0 +
R (t) /s. The contribution to the driver’s expected utility is:

(59) ∆ue
1 = (1− F (R (t))) u (t, t0 +R (t) /s) .

Case 2: An incident has occurred that persists throughout the driver’s trip

If the incident occurs at time v, a driver departing at t arrives when the number of

drivers who have passed the bottleneck catches up with cumulative departures at

t: s (v − t0) + k (a− v) = R (t). Hence a = R(t)+st0
k

− s−k
k
v. Since the driver

must arrive before the incident ends, a ≤ v + ∆. This condition translates to

v ≥ t0 +
R(t)−k∆

s
. The incident must also occur before the driver departs: v ≤ t.

Accounting for these conditions, the contribution to the driver’s expected utility

is:

(60)

∆ue
2 =

t∫

v=Max[t0,t0+R(t)−k∆
s ]

f (R (v)) ρ (v) u

(

t,
R (t) + st0

k
−

s− k

k
v

)

dv.

Case 3: An incident has occurred that ends before the driver arrives Arrival

time is determined by the condition s (v − t0)+k∆+s (a− v −∆) = R (t) which

yields a = t0 +
s−k
k
∆ + R(t)

s
. The incident cannot end before the driver departs:

v > t − ∆. But it must end before the driver arrives: v ≤ t0 +
R(t)−k∆

s
. The

contribution to the driver’s expected utility is:

∆ue
3 =

Min[t,t0+R(t)−k∆
s ]

∫

v=Max[t0,t−∆]

f (R (v)) ρ (v) u

(

t, t0 +
s− k

k
∆+

R (t)

s

)

dv

=

(

F

(

R

(

Min

[

t, t0 +
R (t)− k∆

s

]))

− F (R (Max [t0, t−∆]))

)

u

(

t, t0 +
s− k

k
∆+

R (t)

s

)

.(61)

Case 4: An incident has ended before the driver departs Arrival time is de-

termined by the same condition as for Case 3 so that a = t0 +
s−k
k
∆ + R(t)

s
. The
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incident must end before the driver departs: v < t − ∆. The contribution to the

driver’s expected utility is:

(62) ∆ue
4 = F (R (Max [t0, t−∆])) u

(

t, t0 +
s− k

s
∆+

R (t)

s

)

.

For the last driver who departs at tN , Cases 1-4 are all applicable. Using eqns.

(59)-(62) and R (tN) = N , the last driver’s expected utility is

E (u|tN) = (1− F (N)) u (tN , tN) +
tN∫

v=tN− k

s
∆

f (R (v)) ρ (v) u

(

tN ,
s

k
tN −

s− k

k
v

)

dv

+F

(

R

(

tN −
k

s
∆

))

u

(

tN , tN +
s− k

s
∆

)

.

Equilibrium departure period The timing of the departure period [te0, t
e
N ] is

determined by the condition teN = te0 + N/s and the condition that E (u|tN) =
u (t0, t0). Using eqn. (1), the latter condition works out to eqn. (50) in the text:

∫ te
N

v=te0

(β (v)− γ (v)) dv = F

(

Re

(

teN −
k

s
∆

))∫ te
N
+ s−k

s
∆

v=te
N

γ (v) dv(63)

+

∫ te
N

v=te
N
− k

s
∆

f (Re (v)) ρe (v)

∫ te
N
+ s−k

k (teN−v)

t=te
N

γ (t) dtdv.

Equation (63) can be solved numerically using the following iterative proce-

dure:

1. Guess te0 and set t = te0.

2. Increment departure time by a small time step dt from t to t+ dt.

3. Determine which of Cases 1-4 are applicable. Set the derivative of E (u|t)
to zero, and solve for ρe (t).

4. Update Re (t+ dt) = Re (t) + ρe (t) dt.

5. Repeat steps 2-4 until t = te0 +N/s.

6. Evaluate condition (63) using the values computed for ρe (t), t ∈
[
teN − k

s
∆, teN

]
.

If condition (63) is satisfied to within a tolerance limit, then stop. Otherwise

return to step 1.
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Initial departure rate For the first few drivers, only Cases 1 and 2 apply. Using

eqns. (59) and (60), expected utility is

(1− F (R (t))) u (t, t0 +R (t) /s)

+

t∫

v=t0

f (R (v)) ρ (v) u

(

t,
R (t) + st0

k
−

s− k

k
v

)

dv.

Differentiating this expression with respect to t, and evaluating it at t = t0, one

obtains
ρe (te0)

s
=

β (te0)

γ (te0)
.

This is the same as eqn. (2) with t = te00 for the model without incidents. Since

te0 < te00 , ρe (te0) > ρe0 (te00 ).

B.6.3 Social optimum

Expected utility of drivers for the SO is derived in a similar way to UE, but using

the formula that cumulative departures equal R (t) = s (t− t0).

Case 1: No incident has occurred A driver departing at t arrives at t. The

contribution to the driver’s expected utility is:

(64) ∆uw
1 = (1− F (s (t− t0))) u (t, t) .

Case 2: An incident has occurred that persists throughout the driver’s trip

If the incident occurs at time v, a driver departing at t arrives when the number

of drivers who have passed through the bottleneck catches up with cumulative

departures at t: s (v − t0) + k (a− v) = s (t− t0). The driver therefore arrives at

a = s
k
t− s−k

k
v. Since the driver must arrive before the incident ends, a ≤ v +∆,

which translates to v ≥ t − k
s
∆. The incident must also occur before the driver

departs: v ≤ t − ∆. Accounting for these conditions, the contribution to the

driver’s expected utility is:

(65) ∆uw
2 =

t∫

v=Max[t0,t− k

s
∆]

f (s (v − t0)) su

(

t,
s

k
t−

s− k

k
v

)

dv.

Case 3: An incident has occurred that ends before the driver arrives Arrival

time is determined by the condition s (v − t0) + k∆ + (s− v −∆) = s (t− t0)
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which yields a = t + s−k
s
∆. Since the driver must arrive after the incident ends,

v ≤ t− k
s
∆. The contribution to the driver’s expected utility is:

∆uw
3 =

t− k

s
∆

∫

v=Max[t0,t−∆]

f (s (v − t0)) su

(

t, t+
s− k

s
∆

)

dv,

which can be broken out into three intervals:

(66)

∆uw
3 =







0 if t < t0 +
k
s
∆

F (s (t− t0)− k∆) u
(
t, t+ s−k

s
∆
)

if t ∈
(
t0 +

k
s
∆, t0 +∆

)

(F (s (t− t0)− k∆)− F (s (t−∆− t0)))
u
(
t, t+ s−k

s
∆
)

if t > t0 +∆.

Case 4: An incident has ended before the driver departs Arrival time is deter-

mined by the same condition as for Case 3 so that a = t+ s−k
s
∆. The contribution

to expected utility is:

(67) ∆uw
4 = F (s (t−∆− t0)) u

(

t, t+
s− k

s
∆

)

.

Summing terms in (64)-(67) one obtains

E (u|t) =







(1− F (s (t− t0))) u (t, t)

+s
t∫

v=t0

f (s (v − t0)) u
(
t, s

k
t− s−k

k
v
)
dv if t < t0 +

k
s
∆

(1− F (s (t− t0))) u (t, t) + F (s (t− t0)− k∆) u
(
t, t+ s−k

s
∆
)

+s
t∫

v=t− k

s
∆

f (s (v − t0)) u
(
t, s

k
t− s−k

k
v
)
dv if t > t0 +

k
s
∆

.

Changing the variable of integration from t to n, total expected utility becomes:
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E (U) =

∫ k∆

n=0




(1− F (n))

∫ t0+n/s

v=tH
β (v) dv +

∫ tW
v=t0+n/s

γ (v) dv

+
∫ n

ξ=0
f (ξ)

(∫ t0+n/s

v=tH
β (v) dv +

∫ tW
v=t0+

n

k
− s−k

sk
ξ
γ (v) dv

)

dv



 dn

(68)

+

∫ N

n=k∆







(1− F (n))
∫ t0+n/s

v=tH
β (v) dv +

∫ tW
v=t0+n/s

γ (v) dv

+F (n− k∆)
(∫ t0+n/s

v=tH
β (v) dv +

∫ tW
v=t0+

n

s
+(s−k)∆

γ (v) dv
)

dv

+
∫ n

ξ=n−k∆
f (ξ)

(∫ t0+n/s

v=tH
β (v) dv +

∫ tW
v=t0+

n

k
− s−k

sk
ξ
γ (v) dv

)






dn.

Differentiating (68) with respect to t0, and collecting terms, the equation defining

the optimal tw0 can be written

∫ N

n=0

(β (t (n))− γ (t (n))) dn+

∫ N

n=0

F (n) γ (t (n)) dn(69)

−

∫ N

n=k∆

F (n− k∆) γ (t∆ (n)) dn

−

∫ k∆

n=0

∫ n

ξ=0

f (ξ) γ (tξ (n)) dξdn−

∫ N

n=k∆

∫ n

ξ=n−k∆

f (ξ) γ (tξ (n)) dξdn = 0,

where t (n) = tw0 + n/s, t∆ (n) = tw0 + n/s + s−k
s
∆, and tξ (n) = tw0 + n/s +

s−k
sk

(n− ξ). Condition (69) has the form

∫ N

n=0

(β (t (n))− γ (t (n))) dn+ Z = 0.

Now

∂Z

∂k
=

∆

s

∫ N

n=k∆

F (n− k∆) γ́ (t∆ (n))(70)

+k−2

∫ k∆

n=0

∫ n

ξ=0

f (ξ) γ́ (tξ (n)) (n− ξ) dξdn

+k−2

∫ N

n=k∆

∫ n

ξ=n−k∆

f (ξ) γ́ (tξ (n)) (n− ξ) dξdn.

All components of (70) are strictly positive. Given (69) and t (n) = tw0 +n/s, this

implies that ∂tw0 /∂k > 0.
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