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Abstract

We study the strategic advantages of following rules of thumb that bundle different games together

(called rule rationality) when this may be observed by one’s opponent. We present a model in which

the strategic environment determines which kind of rule rationality is adopted by the players. We

apply the model to characterize the induced rules and outcomes in various interesting environments.

Finally, we show the close relations between act rationality and “Stackelberg stability” (no player

can earn from playing first). JEL classification: C72, D82.

1 Introduction

Act rationality is the notion that perfectly rational agents choose actions that maximize their utility

in every specific situation. However, both introspection and experimental evidence suggest that people

behave differently and follow “rule rationality”: they adopt rules of thumb, or modes of behavior, that

maximize some measure of average utility taken over the set of decision situations to which that rule

applies; then, when making a decision, they choose an action that accords with the rule they have

adopted. As a result of bundling together many decision situations, this rule of thumb induces smaller

cognitive costs and fewer informational requirements (see Baumol & Quandt, 1964; Harsanyi, 1977;

Ellison & Fudenberg, 1993; Aumann, 2008, and the references there).

Reducing the cognitive costs is arguably the main advantage of such rules of thumb, but it is not the

only advantage. In this paper we focus on an aspect of rule rationality that has not been studied in the

literature. If players tend to bundle games together while interacting with others who gradually learn

the structure of bundling, then bundling can serve as a commitment device.1The contribution of this

paper is threefold: (1) We present a tractable model in which the properties of the strategic environment

determine which kind of rule rationality is adopted by the players; (2) we characterize the induced rules

and outcomes in various interesting environments; and (3) we show the close relations between act

rationality and “Stackelberg stability” (no player can earn from playing before his opponent).

A common manifestation of bundling as a commitment device is the tendency to stress moral or

ideological principles for strategic reasons. When the US declares that it will never abandon its allies, or

∗Department of Economics and Nuffield College, University of Oxford. yuval.heller@economics.ox.ac.uk. URL:
https://sites.google.com/site/yuval26/.

†Center for the Study of Rationality and Department of Economics, Hebrew University of Jerusalem.
mseyal@mscc.huji.ac.il . URL: http://www.ma.huji.ac.il/∼mseyal/. The author is grateful to the German Israeli Founda-
tion for Scientific Research and to Google for their financial support.

1This “commitment” advantage of rule rationality might be of importance also in single-player games as a “self com-
mitment” device with a multiple-selves interpretation.
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2 1 INTRODUCTION

when a businessman claims that he has never reneged on his promises on moral grounds, they are doing

precisely this. Since these commitments refer not to a single game but to a class of games, they are

distinguishable from those often discussed in the economics or the political science literature (see, e.g.,

the seminal work of Schelling, 1960, and the recent papers of Bade et al., 2009; Renou, 2009). Moral

principles by their nature bundle multiple situations by means of the action that the principle dictates.

Indeed, the extent to which the commitment to act according to a moral or ideological principle is

credible depends on comparing the cost of adhering to the principle relative to the cost of losing the

commitment benefits in the future. These are the kind of considerations we employ in our model to

define rule rationality. The declaration of such principles can be viewed as a signal that facilitates the

gradual learning about one’s bundling strategy by others. To be sure, these signals are not fully revealing

but the fact that these declarations are very often made and often taken seriously suggests that stressing

ideological or moral principles is not merely cheap talk either.

Another form of rule rationality relevant to our context includes firms or organizations that adopt

rigid policies applying to a broad class of circumstances without elaborating the rationale of each policy.

If a craftsman rejects an offer to accept 50% of his proposed price for doing 50% of the job on the basis

the it is "unprofessional" or when a chain store rejects a returned item after the refund deadline even

under exceptional circumstances by simply arguing that “it is against our policy”, they act within this

form of rule rationality.

We now briefly present our model. An environment is a finite set of two-player normal-form games

that share the same set of feasible actions.2 The environment is endowed with a function that determines

the probability of each game being played. Each environment induces the following two-stage meta-game:

at stage 1, each player chooses a partition over the set of games; at stage 2, each player chooses an action

after observing the element of his partition that includes the realized game and his opponent’s partition.3

A rule-rational equilibrium of the environment is defined as a subgame-perfect equilibrium of the meta-

game. We interpret such an equilibrium as a stable outcome of a dynamic process of social learning,

in which the choices of partitions in the first stage (interpreted as rules of thumb that bundle games

together) and the behaviors in the second stage (given the partitions) evolve. A rule-rational equilibrium

is act-rational if players play a Nash equilibrium in all games, and it is non-act-rational if at least one

of the players do not best reply in at least one game.

The following motivating example demonstrates that a non-act-rational equilibrium can strictly

Pareto dominate the set of of all act rational equilibrium payoff.

Example 1. Consider an environment with the two games shown in Table 1: The Prisoner’s Dilemma

(G1) and the Stag-Hunt Game (G2).

Table 1: Prisoner’s Dilemma and Stag Hunt
G1 (Prisoner’s Dilemma)

C D
C 9,9 0,9.5
D 9.5,0 1,1

G2 (Stag Hunt)
C D

C 9,9 0,8.5
D 8.5,0 1,1

These two games are relatively “similar” in the sense that the maximal difference between the two

payoff matrices is 1. Note that in the Prisoner’s Dilemma, (D, D) is the unique Nash equilibrium, while

the Stag-Hunt game admits two pure Nash equilibria: (D, D) and the Pareto-dominant (C, C). In any

2Assuming a fixed set of action is without loss of generality; see Footnotes 6 and 9.
3In Section 7.2 we extend our results to a setup with partial observability of the opponent’s partition.
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act-rational equilibrium of this environment, players play the unique Nash equilibrium (D, D) in ω1.

Thus each player can achieve an expected (ex-ante) payoff of at most 5 in any act-rational equilibrium.

Consider the following non-act-rational equilibrium. Both players choose the coarse partition (i.e., bundle

together both games), play C on the equilibrium path, and play D (in both games) if any player deviated

while choosing his partition. This equilibrium yields both players a payoff of 9. Note that the coarse

partition in this example can be interpreted as if each player did not pay attention to small differences

in the payoffs (say, up to one utility point).

Section 4 presents additional motivating examples. Example 2 shows an environment in which players

choose a coarse partition that pays attention only to the sum of payoffs, and hence they implement an

outcome that strictly Pareto-dominates the set of act-rational payoffs in all games (and not only from the

ex-ante perspective). Example 3 presents an environment that admits only non-act-rational equilibria.

Finally, Examples 4 and 5 demonstrate that non-act-rational equilibria can fit experimentally observed

behaviors in the “Ultimatum game” and the “Chainstore paradox” (see Camerer, 2003, and the references

there).

In Section 5 we characterize rule-rational equilibria in various families of environments. An environ-

ment is redundant if all its games are strategically equivalent (Moulin & Vial, 1978). Note that such

games share the same set of correlated equilibria (Aumann, 1974). Our first results (Propositions 1-4)

show that rule rationality in redundant environments can only induce behavior that is consistent with the

correlated equilibria of the underlying games; moreover, if the redundant environment is large enough,

and each game has a small probability, then the correlated equilibrium of each underlying game can be

approximated by a rule-rational equilibrium.

Next, we study environments in which in each game the sum of the payoffs is constant. We show

that such constant-sum environments always admit an act-rational equilibrium. They may admit also

non-act-rational equilibria, but these equilibria are limited in two ways: they must yield the same ex-ante

expected payoff as the act-rational equilibrium, and they are not robust, i.e., they are not stable to a

perturbation that yields an arbitrarily small probability that the choice of partition is not observed by

the opponent. Examples 8-9 show that these properties need not hold if the games are strategically

zero-sum (Moulin & Vial, 1978).

Proposition 5 deals with environments in which each game admits a Pareto-dominant action profile,

and we show that such environments admit an act-rational equilibrium that strictly Pareto-dominates

all non-act-rational equilibria.4 Next we characterize (Proposition 1) a “folk theorem” result for environ-

ments in which a specific action profile is a Nash equilibrium in all games. This is followed by showing

that if a specific action is dominant for one of the players in all games in the environment, then the

environment admits only act-rational equilibria. Finally, we generalize Example 1 and show that if an

environment assigns high enough probability to game g∗ that admits strict equilibrium a∗ that dominates

another strict equilibrium, then there is a rule-rational equilibrium that bundles together all games that

have payoff matrices close enough to g∗, and players play a∗ in all these games.

In Section 6 we show the close relationship between the existence of act-rational equilibria and of

Stackelberg stability. A Nash equilibrium in a game is Stackelberg-stable if it yields both players at least

their mixed-action Stackelberg payoff (Mailath & Samuelson (2006)); that is, no player can guarantee a

higher payoff by being a Stackelberg leader, i.e., playing first, and having his chosen strategy observed by

his opponent before playing. A game is Stackelberg-stable if it admits a Stackelberg-stable equilibrium.

Examples of Stackelberg-stable games are constant-sum games, games with a Pareto-dominant action

4A similar result was obtained in the framework of value of information in Bassan et al. (2003).
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profile, and games in which both players have dominant actions. We first show that if all games in the

environment are Stackelberg-stable, then the environment admits an act-rational equilibrium. Second, we

show that for any Stackelberg-unstable game G∗, there is an environment in which only G∗ is Stackelberg-

unstable, and the environment does not admit an act-rational equilibrium. Finally, we show that any

act-rational equilibrium of a generic environment is preserved when a Stackelberg-stable game is added

to the environment with small enough probability.

We conclude the paper with a discussion of a few extensions and implications of our model (Section 7):

(1) we use our model to study the value of information (see the related literature in the following section)

and its relations to Stackelberg stability; (2) we extend the model to a setup of partial observability; (3)

we discuss the empirical predictions of our model; and (4) we present ideas for future research.

2 Related Literature

This paper is related to and inspired by three strands of literature (in addition to the literature commit-

ments mentioned earlier). The first strand presents an evolutionary foundation for seemingly irrational

behavior in strategic environments. Pioneered by Guth & Yaari (1992), the literature on the evolution

of preferences shows that if the preferences of an agent are observed by an opponent, then his subjective

preferences (which the agent maximizes) may differ from his material preferences (which determine his

fitness); see, e.g., Dekel et al. (2007); Winter et al. (2010) interprets these subjective preferences to

be “rational emotions”.5 This literature describes stable outcomes of an evolutionary process in which

subjective preferences evolve slowly, and behavior (given the subjective preferences) evolves at a faster

pace. Recently, a few papers have used a similar methodology to study the evolution of cognitive biases,

such as the “endowment effect” (Frenkel et al., 2012) and bounded forward-looking (Heller, 2013). In

this paper we adopt a similar approach, and study evolutionary foundations for ignoring the differences

between different games, and bundling them together in a single equivalence set.

The second strand of literature studies categorization. It is commonly accepted in the psychology

literature that people categorize the world around them in order to help the cognitively limited categorizer

to deal with the huge amount of information he obtains from his complex environment. Samuelson

(2001) presents a model of cognitively limited agents who bundle together different kinds of bargaining

games in order to free up cognitive resources for competitive tournament games. Jehiel (2005) models

players who bundle together different nodes in an extensive-form game, and best reply to aggregate

opponent’s behavior in this “analogy set.” Azrieli (2009) studies games with many players, and shows that

categorizing the opponents into a few groups can lead to efficient outcomes. Mohlin (2011) studies the

optimal categorization in prediction problems. Finally, Mengel (2012) studies a learning process in which

agents jointly learn which games to bundle together, and how to play in each partition element. The main

novelty of this paper relative to this existing literature is the study of the the strategic “commitment”

advantages of “observable” categorization, and the presentation of an equilibrium concept for classes of

games (rather than for specific games).

The third strand deals with the value of information. In a seminal paper, Blackwell (1953) shows

that for single-agent decision problems, more information for the agent is always better. This result can

also be extended to constant-sum games, but it is not true, in general, for non-constant-sum games. A

classical example of this is given in Akerlof (1970), which shows that providing the seller with private

information might render any trade impossible, and thereby reduce the welfare of both the seller and the

5Also related are the papers that study environments in which a player can choose a delegate (with different incentives)
to play on his behalf (see, e.g., Fershtman et al. (1991)).
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buyer; see additional examples in Kamien et al. (1990). A few papers characterize specific environments

in which information has positive value. Bassan et al. (2003) show that if all games have common

interests, then information has a (Pareto-)positive value: more information yields a Pareto-dominant

equilibrium (see also Lehrer et al. (2010)). In Section 7 we show that our model can be reinterpreted to

the above framework, and this yields interesting insights about the value of information.

3 Model

Throughout the paper we focus on two-player games and we use index i to denote one of the two players

and −i to denote his opponent. An environment is a finite set of possible two-player games and a

probability function according to which nature chooses the realized game. Formally:

Definition 1. An environment ((Ω, p) , A, u) is a tuple where:

• (Ω, p) is a finite probability space. That is, Ω is a finite set of states of nature, and p is a probability

function over Ω. Without loss of generality, we assume that p (ω) > 0 for each ω ∈ Ω.

• A = A1 ×A2, and each Ai is a finite set of pure actions for player i that are assumed to be available

to him at all states of nature.6

• u = Ω × A → R
2 is the payoff function that determines the payoff for each player at each state of

the world for each action profile.

We assume that both players evaluate random outcomes by using the von Neumann–Morgenstern ex-

pected utility extension of u, and, with a slight abuse of notation, we denote by u also this linear

extension. Observe that each state of nature ω induces a normal-form game (A, u (ω)) with a set of

actions A and a payoff function u.

Remark 1. For simplicity, we define only for environments with two players. However, all the definitions

and all the results can be extended to n-player environments in a straightforward way.

A partition over a set X is a set of non-empty subsets (partition elements) of X such that every

element in X is in exactly one of these subsets. Let ΠΩ denote the set of all partitions over Ω. A

(behavior) strategy of player i is a function si : Ω → ∆ (A) that assigns a mixed action to each state

of nature. Strategy si is πi-measurable (where πi ∈ ΠΩ) if si (ω) = si (ω′) for each two states in the

same partition element in πi. Let Si,πi
be the set of πi-measurable (behavior) strategies of player i. Let

π̄ = {{ω} |ω ∈ Ω} denote the finest partition, and let π = {Ω} denote the coarsest partition. Given a

partition πi ∈ ΠΩ and a state ω ∈ Ω, let πi (ω) be the partition element of πi that includes state ω.

Each environment induces a two-player two-stage meta-game:

1. At stage 1, each player i chooses a partition πi.

2. At stage 2, nature chooses the state ω ∈ Ω according to p, and each player i observes the chosen

partition profile (π1, π2) and his partition element πi (ω), and chooses an action ai ∈ Ai.

Remark 2.

6The assumption that a player has the same set of actions in all states is without loss of generality. If, originally, player
i has different actions in different states, this can be modeled by having Ai large enough, relabeling actions in different
states, and having several actions yielding the same outcome in some states.
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1. We interpret the partition chosen by a player as a behavioral phenomenon, and not necessarily

as a cognitive limitation. If two games belong to the same element of the partition it does not

necessarily mean that the player is unaware of the fact that these are two different games. It does,

however, say that the player is bounded to use the same strategy in both games. This could for

instance arise from attributing irrelevance to the difference between these games or because the

player is driven by some moral concern that leads him to use the same actions in both games. Note

that this interpretation of the role of the partition allows us to assume that while a player bundles

two games in the same element of the partition, he can still reasonably believe that his opponent

will treat these two games differently.

2. We view the observability of the opponent’s partition as a reduced-form model to a richer setup

where players either (1) communicate about the strategic setup before playing it, and this reveals

information about the opponent’s partition, or (2) observe each other’s past behavior or a trait that

is correlated with the partition. The assumption of perfect observability is taken for tractability,

and it is extended to partial observability in Section 7.2.

A meta-strategy is a behavior strategy in the meta-game.

Definition 2. A (behavior) meta-strategy for player i is a pair τi = (µi, σi), where:

1. µi ∈ ∆ (ΠΩ) is a distribution over the set of partitions.

2. σi : ΠΩ × ΠΩ → Si,πi
is a function that assigns a πi-measurable (behavioral) strategy for each pair

of partitions (πi, π−i).

Given a meta-strategy profile τ = (τ1, τ2) and a state ω ∈ Ω, let xτ (ω) ∈ ∆ (A) be the interim

outcome of τ - the (possibly correlated) action profile that is induced in state ω given that both players

follow the meta-strategy profile τ . Let x̄τ ∈ ∆ (A) be the ex-ante outcome of τ , i.e., ∀a ∈ A x̄τ (a) =
∑

ω∈Ω p (ω) ·xτ (ω) (a). Let C (µ) denote the support of the distribution µ. With some abuse of notation,

let πi also denote the distribution with mass 1 on partition πi.

A rule-rational equilibrium is a subgame-perfect equilibrium of the two-stage meta-game. Formally:

Definition 3. A meta-strategy profile τ∗ = ((µ∗
1, σ∗

1) , (µ∗
2, σ∗

2)) is a rule-rational equilibrium if for each

player i:

1. Each strategy is a best reply in each subgame: for each partition profile (π1, π2) and for each

πi-measurable strategy s′
i:

∑

ω∈Ω

p (ω) · ui

(

σ∗
i (π1, π2) (ω) , σ∗

−i (π1, π2) (ω)
)

≥
∑

ω∈Ω

p (ω) · ui

(

s′
i (ω) , σ∗

−i (π1, π2) (ω)
)

.

2. Each partition is a best reply: for each chosen partition π∗
i ∈ C (µ∗

i ) and for each partition π′
i:

∑

π−i∈C(µ∗

−i)

µ−i (π−i) ·
∑

ω∈Ω

p (ω) · ui

(

σ∗
i (π∗

i , π−i) (ω) , σ∗
−i (π∗

1 , π−i) (ω)
)

≥

∑

π∗

−i
∈C(µ∗

−i)

µ−i (π−i) ·
∑

ω∈Ω

p (ω) · ui

(

σ∗
i (π′

i, π−i) (ω) , σ∗
−i (π′

i, π−i) (ω)
)

.

Note that existence of rule-rational equilibria in any environment is immediately implied from the

well-known existence result of subgame-perfect equilibria in finite games (Selten (1975)).
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Remark 3.

1. We do not interpret the rule-rational equilibria to be the result of an explicit payoff maximization

of “hyper-rational” agents who choose optimal partitions. Rather, we see the optimization in both

stages as arising from an evolutionary process of social learning (similar to the literature of the

“indirect evolutionary approach”; see, e.g., Dekel et al., 2007). Each agent in the population has

a type that determines both his rules of thumb for bundling games together in a partition, and

also his behavior in the second stage (given the partition). New agents usually adopt one of the

existing types, and they are more likely to initiate the types of more successful agents. Every so

often, a few agents (“mutants”) may experiment with a new rule of thumb. It is well known that

in the long run, the surviving types that are used in a stable state are optimal (i.e, Nash equilibria;

see Nachbar, 1990). Recurrent entries of a few “mutants” and “trembles” of the incumbents imply

that behavior also off-the-equilibrium path is optimal (i.e., subgame perfect).7

2. A rule-rational equilibrium differs from any standard solution concept of the incomplete information

game induced by the environment (with a fixed information structure), as it allows players’ plays

to differ from best-replying in some states of nature. However, a rule-rational equilibrium can be

interpreted as a solution concept of the incomplete information game in which players can choose

(at the ex-ante stage) how much information to obtain (see Section 7.1 for further discussion).

The following definition divides the rule-rational equilibria into two disjoint subsets: (1) act-rational

equilibria in which both players play a Nash equilibrium in all states, and (2) non-act-rational equilibria

in which at least one of the players does not best reply in at least one state.

Definition 4. A rule-rational equilibrium ((µ∗
1, σ∗

1) , (µ∗
2, σ∗

2)) is act-rational if for each state ω ∈ Ω, and

for each chosen partition profile (π∗
1 , π∗

2) ∈ C (µ∗
1)×C (µ∗

2), the strategy profile (σ∗
1 (π∗

1 , π∗
2) (ω) , σ∗

2 (π∗
1 , π∗

2) (ω))

is a Nash equilibrium in the game (A, u (ω)) . A rule-rational equilibrium is non-act-rational if it is not

act-rational.

Remark 4.

1. Note that in an act-rational equilibrium a player is not required to play different actions in different

games, or to use the finest partition. Moreover, the induced interim outcome xτ (ω) need not be

a Nash equilibrium. However, it is immediate that the interim outcome in all states must be in

the convex hull of the set of Nash equilibria (because the realized partition profile may be used

as a random public signal to choose among the different Nash equilibria). Thus any act-rational

equilibrium can be implemented with each player choosing his finest partition, provided that players

have a rich enough source of “sunspots” to coordinate which Nash equilibrium they play.

2. In any non-act-rational equilibrium at least one of the players must not know his own payoff matrix

in some states. That is, it must be that there exist two states ω, ω′ and player i ∈ {1, 2}, such that

with positive probability ω and ω′ are in the same partition element of player i and ui (ω) 6= ui (ω′).

Otherwise, rule rationality would imply act rationality.

7It is well known that any evolutionarily stable strategy (Maynard-Smith & Price (1973)) is a subgame-perfect equi-
librium (see, e.g., Weibull, 1997). Evolutionary stability refines subgame perfection by also requiring stability against a
small group of “mutants.” We choose to use subgame perfection as the solution concept rather than evolutionary stability
(or one of its adaptations to extensive-form games, such as Selten, 1983’s notion of limit ESS), for the following reasons:
(1) a subgame-perfect equilibrium is a simpler solution concept that is more familiar to readers and it suffices to yield
most of the insights of the analysis, and (2) unlike evolutionarily stable strategies, subgame-perfect equilibria exist in all
environments. We leave for future research the application of evolutionary stability in this setup.
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4 Motivating Examples

This section includes four motivating examples. Example 2 shows an environment in which a coarse

partition that pays attention only to the sum of payoffs yields a Pareto-dominant outcome in all states

(relative to the set of act-rational payoffs). Example 3 demonstrates an environment that does not

admit act-rational equilibria. Finally, in Section 4.3 we demonstrate that non-act-rational equilibria

can fit experimentally observed behavior in the “Ultimatum game” (Example 4) and the “Chainstore

paradox” (Example 5).

4.1 Non-act Rationality Pareto-dominates Act Rationality

Our first example demonstrates that non-act-rational equilibria may yield a strict Pareto improvement

in all states relative to the best outcome that can be achieved by act-rational equilibria .

Example 2. Let Ω = {ω1, ω2}, and let A and each ωi be described as in Table 2.

Table 2: Payoffs of Prisoner’s Dilemma with Two Defections
ω1

C D1 D2

C 9,9 0,10 2,8
D1 10,0 1,1 1,1
D2 8,2 1,1 1,1

ω2

C D1 D2

C 9,9 2,8 0,10
D1 8,2 1,1 1,1
D2 10,0 1,1 1,1

The interpretation of this environment is a Prisoner’s Dilemma with two options to “testify against

the partner” (D1 and D2), such that in each state of the world one of these actions is better for the

defector. Observe that both games (A, u (ω1)) and (A, u (ω2)) admit a unique Nash equilibrium payoff

of (1, 1). This implies that (1, 1) is the unique act-rational equilibrium payoff. This payoff can be

implemented by the following act-rational equilibrium: both players choose the finest partition, and

both play 0.5 · D1 + 0.5 · D2 in both states (for any realized partition profile). One can see that the

following meta-strategy profile is a rule-rational equilibrium for every 1
10 < p (ω1) < 9

10 :

• Coarse partitions for each player (πi = π).

• Playing (C, C) on the equilibrium path.

• Both players playing 0.5 · D1 + 0.5 · D2 if any player deviated by choosing a different partition.

Observe that this rule-rational equilibrium induces a payoff of 9 for each player, which strictly Pareto-

dominates the unique act-rational equilibrium payoff of 1 in both games. Further observe that the coarse

partition in this example can be interpreted as if each player knows only the sum of the payoffs (which

is the same in both states), but not how this sum is divided among the players when exactly one of the

players plays C.

4.2 An Environment Without Act-rational equilibria

The following example demonstrates an environment that does not admit any act-rational equilibrium.

Example 3. Let Ω = {ω1, ω2}, and let A and each u (ωi) be described in Table 3.
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Table 3: Environment with Act-Rational Equilibria
ω1

L R
C 9,9 0,7
D1 10,0 1,1
D2 7,0 -2,1

ω2

L R
C 9,9 0,7
D1 7,0 -2,1
D2 10,0 1,1

We now show that for every 1
3 < p (ω1) < 2

3 , the game admits no act-rational equilibrium. This

implies that this is what the players must play in any act-rational equilibrium, and that each player

obtains a payoff of 1. However, if player 1 deviates to the coarsest partition π, then for both possible

partitions of player 2, the induced Bayesian subgame admits a unique Nash equilibrium in which the

players play (C, L) and this yields both players a payoff of 9. This shows that the environment does not

admit any act-rational equilibrium. An example for a non-act-rational equilibrium in this environment

is as follows: let π∗
1 = π, π∗

2 = π, and let σ∗ be equal to (C, L) on-the-equilibrium path or if player 2

deviated to π; otherwise (i.e., if player 1 deviated to π) let σ∗ be equal to (D1, R) in ω1 and (D2, R) in

ω2 . Observe that each game ωi admits a unique Nash equilibrium: (D1, R) in ω1 and (D2, R) in ω2.

4.3 Environments with Extensive-form Games

To simplify the presentation of the general model in Section 3 we defined an environment consisting

of normal-form games. The following two examples differ somewhat in that in each state of nature

players interact in sequential games. Accordingly, with some abuse of notation, in this subsection we

have extensive-form games in each state of nature, and we require a rule-rational equilibrium to be a

subgame-perfect equilibrium (given the extensive-form representation of the games).

4.3.1 Ultimatum Game

The following example describes a situation in which players may either play an Ultimatum game, or a

bargaining game in which the responder can make a counteroffer.

Example 4. Consider an environment that includes two states Ω = {ω1, ω2} with equal probability. In

both states the two risk-neutral8 players have to agree how to divide 1 dollar between them. In ω1 they

play the Ultimatum game: player 1 offers a division, which player 2 either accepts or rejects; in the case

of rejection both players get nothing. In ω2 they play a two-stage sequential bargaining game: at stage

1 player 1 makes an offer; then player 2 either accepts the offer or makes a counteroffer; in the case of a

counteroffer, player 1 may either accept or reject it; in the case of rejection both players get nothing.9

One can see that the game admits two pure rule-rational equilibria:

1. Act-rational equilibrium - Both players choose the finest partition. Player 1 offers 0 to the responder

in ω1 (Ultimatum) and 1 in ω2. Player 2 accepts these offers (and rejects any lower offer off the

equilibrium path).

2. Non-act-rational equilibrium - Player 2 chooses the coarsest partition. Player 1 may either choose

the finest or the coarsest partition. Player 1 offers the responder 0.5 in both games. Player 2

8Results are qualitatively the same for risk-averse players and for having a discount factor.
9As stated above, the players have different sets of actions in each state. However, this can also be modeled with the

same set of actions in each state. Specifically, one may assume that in both states the players have the richer set of actions
of state ω2, and that in state ω1 the counteroffer of player 2 leads to a payoff of 0 for each player regardless of player 1’s
final action (accepting or rejecting).
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accepts this offer (and rejects any lower offer off the equilibrium path).

Observe that both equilibria yield both players the same ex-ante payoff (0.5 for each player). The second

equilibrium fits the stylized fact that people tend to reject offers that are substantially lower than half

the pie when playing the ultimatum game.

4.3.2 Chainstore Paradox

The following example shows that a non-act-rational equilibrium, in which the monopolist chooses not to

pay attention to the exact number of potential entrants, implies a reputation-like behavior that fits the

experimentally observed behavior, which cannot be supported by act-rational equilibria. In this example

we extend the model by allowing the set of states to be countable (and not finite as in our general model).

Example 5. Consider an environment with a countable number of states: Ω = N. Let p be any

distribution satisfying: (1) full support - p (ω) > 0 ∀ω ∈ N, and (2) “continuation” probability that

is high enough - ∀k ∈ N, p (ω = k|ω ≥ k) < 2/3. In particular these requirements are satisfied by any

geometric distribution with high enough expectation. The state ω describes the number of potential

competitors that the monopolist (player 1) faces. The game lasts ω rounds. To simplify notation and

fit our two-player setup, we represent all potential competitors by a single “impatient” player 2, the

competitor. At each round, player 2 chooses In or Out. Out yields a stage payoff of 5 to the monopolist

and 1 to the competitor. If he chose In, then the monopolist chooses Fight or Adapt. Fight yields stage

payoff of 0 to both players, and Adapt yields 2 to both players. The total game payoff of the monopolist

is the discounted sum of stage payoffs for some high enough discount factor 0 << λ ≤ 1. The total

payoff of the competitor is a discounted sum of the payoffs with a low discount factor 0 ≤ λ << 1.

In the classical setup in which the monopolist knows the state of nature, the game admits a unique

subgame-perfect equilibrium: the competitor always plays In, and the monopolist always plays Adapt.

In our setup, however, there is an additional non-act-rational equilibrium that yields a better payoff

to the monopolist. In this equilibrium the monopolist chooses the coarsest partition, and plays Fight

following any entry. The competitor chooses the finest partition and plays Out, unless he observes an

out-of-equilibrium history in which the monopolist played Adapt.

5 Results for Specific Families of Environments

This section characterizes rule-rational equilibria in families of environments that satisfy certain prop-

erties. In Section 5.1 we show that rule-rational equilibria are closely related to correlated equilibria in

environments that include strategically equivalent games. In Section 5.2 we show that environments that

only include constant-sum games essentially admit only act-rational equilibria (but this is not true for

the larger family of strategically zero-sum games). Section 5.3 shows that environments with common

interests admit a Pareto-dominant act-rational equilibrium. In Section 5.4 we characterize rule-rational

equilibria in environments in which a specific action profile is a Nash equilibrium in all games. Finally, in

Section 5.5 we study environments that assign high enough probability to a game with an undominated,

strict equilibrium.

5.1 Redundant Environments

Recall (Moulin & Vial, 1978), that two games with the same set of actions, (A, u) and (A, ũ), are

strategically equivalent if for each player i ∈ {1, 2}, for each mixed action xi ∈ ∆ (Ai), and for each two
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mixed actions x−i, x′
−i ∈ ∆ (A−i), ui (xi, x−i) ≥ ui

(

xi, x′
−i

)

⇔ ũi (xi, x−i) ≥ ũi

(

xi, x′
−i

)

. That is, each

player has the same preference over his set of mixed actions given any mixed action of his opponent.

It is immediate to see that strategically equivalent games admit the same sets of Nash equilibria and

correlated equilibria. An environment is redundant if it includes only strategically equivalent games.

That is, for each ω, ω′ ∈ Ω, the games (A, u (ω)) and (A, u (ω′)) are strategically equivalent.

Recall that a correlated equilibrium is a Nash equilibrium of an extended game that includes a pre-

play stage in which each player observes a private signal (and the signals may be correlated). Formally:

Definition 5. (Aumann, 1974, as reformulated in Osborne & Rubinstein, 1994) A correlated equilibrium

of a two-player normal-form game G = (A, u) is a tuple ζ =
((

Ω̃, p̃
)

, (π̃1, π̃2) , (η̃1, η̃2)
)

that consists of:

• A finite probability space
(

Ω̃, p̃
)

,

• A partition profile (π̃1, π̃2) ∈ ΠΩ̃ × ΠΩ̃,

• A strategy profile (η̃1, η̃2), where each η̃i : Ω → Ai is a π̃i-measurable strategy,

such that for every player i and every πi-measurable strategy η′
i : Ω → Ai, we have

∑

ω∈Ω̃

p̃ (ω) · ui (η̃i (ω) , η̃−i (ω)) ≥
∑

ω∈Ω̃

p̃ (ω) · ui (η′
i (ω) , η̃−i (ω)) .

The following example demonstrates that a redundant environment that includes only copies of the

same game, may admit a rule-rational equilibrium with a payoff outside the convex hull of the set of

Nash equilibrium payoffs.

Example 6. Consider the following redundant environment: Ω = {ω1, ω2, ω3}, p is uniform, and (A, u)

is the same “Chicken” (or “Hawk-Dove”) game in all states (see Table 4). Consider the following rule-

Table 4: Payoffs of the “Chicken” Game in All States
C D

C 3,3 1,4
D 4,1 0,0

rational equilibrium: player 1 chooses partition π∗
1 = {{ω1, ω2, } ω3} and player 2 chooses partition

π∗
2 = {ω1, {ω2, ω3}}. On the equilibrium path each player plays C when he does not know the exact

state of nature, and plays D otherwise. Off the equilibrium path, if a player chooses any other partition,

the deviator plays C and his opponent plays D.10 This rule-rational equilibrium (which “imitates” a

correlated equilibrium of the “Chicken” game) yields each player a payoff of 8/3 (and this is outside the

convex hull of the set of Nash equilibria).

The following proposition shows that redundant environments can only induce behavior that is con-

sistent with correlated equilibria. Formally:

Proposition 1. Let ((Ω, p) , A, u) be a redundant environment. Then:

1. Any Nash equilibrium can be induced by an act-rational equilibrium.

10For brevity, throughout the proofs in this paper we specify only the strategies after a single player deviates. The
play following simultaneous deviations of both players at the partition stage can be determined arbitrarily as any Nash
equilibrium of the induced subgame.
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2. The induced aggregate action profile of every rule-rational equilibrium is always a correlated equi-

librium (of every game in the environment).

Proof.

1. Let x ∈ ∆ (A1) × ∆ (A2) be a Nash equilibrium of the games (A, u (ω))ω∈Ω. It is immediate that

any arbitrary choice of partitions, followed by playing x in all states (regardless of the chosen

partitions), yields an act-rational equilibrium.

2. Let τ∗ = ((µ∗
1, σ∗

1) , (µ∗
2, σ∗

2)) be a rule-rational equilibrium. Intuitively, a mediator can “mimic”

the choice of the state of nature and of the partition that each player uses, and inform each player

about his partition and about the partition element that includes the state. Formally, we construct

a correlated equilibrium ζτ∗ =
((

Ω̃, p̃
)

, (π̃1, π̃2) , (η̃1, η̃2)
)

(of every game in the environment) as

follows. Let Ω̃ = Ω × ΠΩ × ΠΩ, and let p̃ (ω, π1, π2) = p (ω) · µ∗
1 (π1) · µ∗

2 (π2). For each player i, let

π̃i ((ω0, π1, π2)) = {(ω, π1, π2) |ω ∈ πi (ω0)}, and let η̃i (ω0) = σ∗
i (π1, π2) (ω0). The fact that τ∗ is a

rule-rational equilibrium immediately implies that ζτ∗ is a correlated equilibrium.

The following proposition shows that the converse is also true: any correlated equilibrium (which is

not dominated by the set of Nash equilibria) can be induced by a redundant environment that includes

several copies of the same game.

Definition 6. A correlated equilibrium is undominated if for each player i there exists a Nash equilibrium

that yields player i a weakly worse payoff.

Proposition 2. For every undominated correlated equilibrium ζ in game (A, u0), there exists a redundant

environment ((Ω, p) , A, u) and a rule-rational equilibrium that induces ζ as the aggregate outcome.

Proof. Let ζ =
((

Ω̃, p̃
)

, (π̃1, π̃2) , (η1, η2)
)

be a correlated equilibrium of the game (A, u0). Consider the

following redundant environment ((Ω, p) , A, u): (Ω, p) =
(

Ω̃, p̃
)

and u (ω) = u0 in all states. Consider

the following strategy profile τζ = ((µ1, σ1) , (µ2, σ2)) : each µi assigns mass 1 to π̃i, and σi = ηi if the

realized partition profile is (π̃1, π̃2). If player i deviates and plays a different partition, both players play

in all states the Nash equilibrium that yields player i a worse payoff. It is immediate to see that τζ is a

rule-rational equilibrium.

Finally, the following proposition shows that the implementation of correlated equilibria does not de-

pend on using “tailored” probability distributions. Specifically, it shows that any undominated correlated

equilibrium can be approximately induced by any large enough “atomless” environment (an environment

in which each state has a small probability). Formally:

Definition 7. Given ǫ ≥ 0, a meta-strategy profile τ∗ = ((µ∗
1, σ∗

1) , (µ∗
2, σ∗

2)) is a rule-rational ǫ-

equilibrium if for each player i:

1. Each strategy is an ǫ-best reply in each sub-game: for each partition-profile (π1, π2) and for each

πi-measurable strategy s′
i:

∑

ω∈Ω

p (ω) · ui

(

σ∗
i (π1, π2) (ω) , σ∗

−i (π1, π2) (ω)
)

≥
∑

ω∈Ω

p (ω) · ui

(

s′
i (ω) , σ∗

−i (π1, π2) (ω)
)

− ǫ.
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2. Each partition is an ǫ-best reply: for each chosen partition π∗
i ∈ C (µ∗

i ) and for each partition π′
i:

∑

π−i∈C(µ∗

−i)

µ−i (π−i) ·
∑

ω∈Ω

p (ω) · ui

(

σ∗
i (π∗

i , π−i) (ω) , σ∗
−i (π∗

1 , π−i) (ω)
)

≥

∑

π∗

−i
∈C(µ∗

−i)

µ−i (π−i) ·
∑

ω∈Ω

p (ω) · ui

(

σ∗
i (π′

i, π−i) (ω) , σ∗
−i (π′

i, π−i) (ω)
)

− ǫ.

Definition 8. Given a normal-form game (A, u) and ǫ ≥ 0, two correlated action profiles x, y ∈ ∆ (A)

are ǫ-close if maxa∈A (|x (a) − y (a)|) ≤ ǫ.

Definition 9. Given a normal-form game (A, u0), let ū0 = maxa,a′∈A,i∈{1,2} |ui (a) − ui (a′)| be the

maximal difference between any two values in the payoff matrix.

Proposition 3. Let (A, u0) be a game, let ζ be an undominated correlated equilibrium in (A, u0), and

let ǫ > 0. Let ((Ω, p) , A, u0) be a redundant environment that satisfies p (ω) < ǫ/ū0 ∀ω ∈ Ω. Then, the

environment ((Ω, p) , A, u0) admits a rule-rational ǫ-equilibrium that induces an ex-ante outcome, which

is ǫ-close to ζ.

Proof. Let xζ ∈ ∆ (A) be the outcome of the correlated equilibrium ζ. It is immediate that there exists a

function g : Ω → A that identifies each set of states with an action profile in A, such that for each action

profile a ∈ A, |p ({ω|g (ω) = a}) − xζ (a)| < ǫ/ū0. Let gi (ω) : Ω → Ai be the function that identifies

each state with the induced action of player i (i.e, g (ω) = (g1 (ω) , g2 (ω)). For each player i let partition

πi be defined as follows: πi (ω0) = {ω|gi (ω) = gi (ω0)}. Consider the following meta-strategy profile

τζ,ǫ = ((π1, σ1) , (π2, σ2)): on the equilibrium path σi (π1, π2) (ω) = gi (ω), and if player i deviates and

chooses a different partition, then both agents play in all states the Nash equilibrium that yields player

i a worse payoff. It is immediate to see that τζ,ǫ is a rule-rational ǫ-equilibrium that yields an outcome

that is ǫ/ū0 close to ζ.

5.2 Constant-sum and Strategically Zero-sum Environments

Environment ((Ω, p) , A, u) is constant-sum if for each state ω ∈ Ω, the game (A, u (ω)) is a constant-sum

game. For each state ω ∈ Ω, let v (ω) be the interim value of the game (A, u (ω)), and let v (Ω) =
∑

p (ω)·

v (ω) be the ex-ante value of the environment. The following example shows a zero-sum environment

that admits a non-act-rational equilibrium.

Example 7. Let Ω = {ω1, ω2}, p (ω1) = 0.5, and let A and each u (ω) be defined according to Table

5. Consider the following meta-strategy profile. Both players choose the coarsest partition (∀i π∗
i = π)

Table 5: Payoffs of a Zero-sum Environment
ω1

L R
T 1,-1 0,0
D 0,0 0,0

ω2

L R
T -1,1 0,0
D 0,0 0,0

and they both play (T, L) on the equilibrium path, and (R, D) off the equilibrium path (if any player

deviated and chose a different partition). It is immediate to see that this profile is a non-act-rational

equilibrium. Note that this equilibrium yields the players in each state ωi a payoff different from the

interim value v (ωi) = 0, while the ex-ante value, v (Ω) = 0, is unchanged.
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Our next result shows that rule rationality is very limited in constant-sum environments. Specifically,

any rule-rational equilibrium induces the same ex-ante payoff as the act-rational equilibria and it is

not robust, in the sense that stability is destroyed if there is an arbitrarily small probability that the

opponent may overlook a deviation at the partition stage. Formally, our notion of robustness assumes

that when a player deviates while choosing a partition, then: (1) with very high probability the deviation

is observed by the opponent and the players follow the off-equilibrium-path strategies, and (2) with very

low probability the deviation is unobserved by the opponent, and the deviating player (who is aware of

the fact that his deviation was unobserved) can play any strategy that is consistent with his partition.

Definition 10. Rule-rational equilibrium τ∗ = ((µ∗
1, σ∗

1) , (µ∗
2, σ∗

2)) is robust if there exists ǭ > 0 such

that for each ǫ < ǭ, for each player i, for each chosen partition π∗
i ∈ C (µ∗

i ), and for each partition π′
i:

∑

π∗

−i
∈C(µ∗

−i)

µ−i (π−i) ·
∑

ω∈Ω

p (ω) · ui

(

σ∗
i (π∗

1 , π∗
2) (ω) , σ∗

−i (π∗
1 , π∗

2) (ω)
)

≥

∑

π∗

−i
∈C(µ∗

−i)

µ−i (π−i) ·

(

(1 − ǫ) ·
∑

ω∈Ω

p (ω) · ui

(

σ∗
i

(

π′
i, π∗

−i

)

(ω) , σ∗
−i

(

π′
i, π∗

−i

)

(ω)
)

+ǫ ·
∑

ω∈Ω

p (ω) · ui

(

maxσi∈Si,π′i
σi (ω) , σ∗

−i (π∗
1 , π∗

2) (ω)
)

)

.

Proposition 4. Let ((Ω, p) , A, u) be a constant-sum environment. Then:

1. The environment admits an act-rational equilibrium.

2. All rule-rational equilibria yield the same ex-ante payoff, v (Ω).

3. Any non-act-rational equilibrium is not robust.

Proof.

1. Consider the meta-strategy in which each player chooses the finest partition and then plays a

minimax strategy in each game (regardless of the partition his opponent chose). It it immediate

that this meta-strategy profile is an act-rational equilibrium.

2. This is immediately implied by the fact each player may deviate by choosing the finest partition,

and playing a minimax strategy in each game, which yields an ex-ante payoff of at least v (Ω).

3. For every ǫ > 0, a player can strictly earn by deviating from a rule-rational equilibrium into

choosing the finest partition, and playing a minimax strategy in each game. The deviator will earn

the same ex-ante payoff if the deviation is observed, and will earn a strictly higher payoff otherwise

(as there is a state in which with positive probability the players do not play a Nash equilibrium,

and one of the player can earn by best-replying to its opponent’s play).

Recall (Moulin & Vial, 1978) that a game is strategically zero-sum if it is strategically equivalent

to a zero-sum game. An environment ((Ω, p) , A, u) is strategically zero-sum if for each state ω ∈ Ω,

the game (A, u (ω)) is strategically zero-sum. Note that each constant-sum environment is strategically

zero-sum, but the converse is not necessarily true. The following two examples demonstrate that all parts

of Proposition 4 may fail in strategically zero-sum environments. Example 8 demonstrates a strategically
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zero-sum environment with a robust non-act-rational equilibrium that ex-ante strictly Pareto-dominates

the unique act-rational equilibrium payoff.

Example 8. Let Ω = {ω1, ω2}, p (ω1) = 0.5, and let A and each u (ω) be defined as in Table 6. First,

Table 6: Payoffs of a Strategically Zero-sum Environment
ω1

L R
T 2,-1 0,0
D 0,0 0,0

ω2

L R
T -1,2 0,0
D 0,0 0,0

note that each game is strategically zero-sum. Specifically, the first (second) game A, u (ω1) (A, u (ω2))

is derived from the first (second) zero-sum game of Example 7 by multiplying the payoff matrix of player

1 (player 2) by two. Next, note that each game admits a unique Nash equilibrium payoff of (0, 0). This

implies that any act-rational equilibrium admits an interim payoff (0, 0) in both states. Finally, consider

the following meta-strategy profile. Both players choose the coarsest partition (∀i π∗
i = π) and they both

play (T, L) on the equilibrium path, and (R, D) off the equilibrium path (if any player has deviated and

chosen a different partition). It is immediate that this profile is a non-act-rational equilibrium, and that

it yields each player an ex-ante payoff of (0.5, 0.5), which Pareto-dominates the payoff of each act-rational

equilibrium.

The following example demonstrates a strategically zero-sum environment that does not admit any

act-rational equilibrium.

Example 9. Let Ω = {ω1, ω2}, p (ω1) = 0.5, and let A and each u (ω) be defined as in Table 7. First,

Table 7: Payoffs of a Strategically-Zero-Sum Environment
ω1

L R
T 0,0 0,0
D 3,-3 4,-4

ω2

L R
T 11,-1 -1,1
D 9,1 1,-1

note that each game is strategically zero-sum: (A, u (ω1)) is a zero-sum game, and (A, u (ω2)) is derived

from a zero-sum Matching Pennies game by adding 10 to the first column of the matrix payoff of player

1 (Moulin & Vial, 1978 show that this implies that (A, u (ω2)) is strategically zero-sum). Next, note

that each game admits a unique Nash equilibrium: (L, D) in ω1 and ((0.5, 0.5) , (0.5, 0.5)) in ω2. These

action profiles yield player 1 an ex-ante payoff of 4 = 0.5 ∗ 3 + 0.5 ∗ 5. Assume to the contrary that

these action profiles were the interim outcome of an act-rational equilibrium. Note that player 1 can

deviate by choosing the coarsest partition. Given this deviation, playing D is a strictly dominant action

for player 1, and this implies that playing(D, L) is the unique Nash equilibrium of the induced game,

and that it yields player 1 an ex-ante payoff of 6. This contradicts the assumption that an act-rational

equilibrium exists.

5.3 Environments with Common Interests

A game (A, u0) has common interests (Aumann & Sorin, 1989) if there is an action profile ã ∈ A

that Pareto-dominates all other action profiles: ∀i ∈ {1, 2} , a ∈ A, ui (ã) > ui (a). An environment

((Ω, p) , A, u) has common interests if it includes only games with common interests. The following

example shows that rule-rational equilibria may exist in environments with common interests.
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Example 10. Let Ω = {ω1, ω2}, and let A and each u (ωi) be defined as in Table 8. One can see that

Table 8: Payoffs of an Environment with Common Interests
ω1

L R
T 5,5 0,0
M 6,6 0,0
D 0,0 1,1

ω2

L R
T 5,5 0,0
M 0,0 0,0
D 0,0 1,1

the following meta-strategy profile is a non-act-rational equilibrium for every p (ω1) < 5/6: the players

choose the coarsest partition (πi = π) and play (T, L) on the equilibrium path, and (D, R) if any player

deviated by choosing a different partition.

The following proposition shows that rule rationality is very limited in environments with common

interests, in the sense that any rule-rational equilibrium is strictly Pareto-dominated by an act-rational

equilibrium.11 The proposition is related to an existing result of Bassan et al. (2003), which shows that

information has a (Pareto) positive value if each game has common interests.

Proposition 5. Let ((Ω, p) , A, u) be an environment with common interests. Then there exists an

act-rational equilibrium that strictly Pareto-dominates all non-act-rational equilibria.

Proof. It is immediate that the meta-strategy profile in which players choose the finest partition and

then play the Pareto-optimal action profile in every game is an act-rational equilibrium. Consider any

non-act-rational equilibrium. This equilibrium induces in some ω0 ∈ Ω a profile that is not a Nash

equilibrium. The fact that each game has common interests implies that the interim payoff of the non-

act-rational equilibrium is weakly dominated by the interim payoff of the above act-rational equilibrium,

and that it is strictly dominated in ω0.

5.4 Uniform-profile Environments

The following simple claim deals with environments with a uniform Nash equilibrium, i.e., with envi-

ronments in which the same mixed action profile is a Nash equilibrium in all states. It shows that such

environments admit an act-rational equilibrium in which the above action profile is played in all states.

Formally:

Claim 1. Let ((Ω, p) , A, u) be an environment, and let x ∈ ∆ (A) be a mixed action profile that is a Nash

equilibrium in all states. The the environment admits an act-rational equilibrium in which the players

choose the coarsest partitions and play x in all states.

Proof. It is immediate that the following meta-strategy profile is a rule-rational equilibrium: both players

choose the coarsest partition π, and play mixed action x regardless of the realized partition profile.

The following proposition shows that if an environment admits a uniform dominant action for one of

the players, then the environment admits only act-rational equilibria. Formally:

Proposition 6. Let ((Ω, p) , A, u) be an environment with a player i ∈ {1, 2} and an action ai ∈ Ai that

is strictly dominant in all states. Then the environment admits only act-rational equilibria.

11In addition, one can show that all the non-act-rational equilibria in common-interest environments do not satisfy the
forward-induction refinement (Govindan & Wilson (2008)), while the Pareto-dominant act-rational equilibrium satisfies it.
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Proof. Let ai ∈ Ai be the strictly dominant action for player i in all games. It is immediate that the

following meta-strategy profile is an act-rational equilibrium: both players choose the finest partition,

player i plays ai in each state (also off the equilibrium path), and player −i best-replies to action ai

in each game. Any strategy profile that induces a different interim outcome than playing ai by player

i and best-replying to ai in each state by player −i is not a rule-rational equilibrium because: (1) if

player i plays with positive probability a different action in some state, then he can strictly earn more

by deviating and playing ai in all states; and (2) if player i always plays ai but his opponent does not

best-reply to ai in some state, then player −i can earn strictly more by deviating to the finest partition

and best-replying to ai in all states.

5.5 Environments with an Undominated Strict Equilibrium

In this section we consider an environment that includes a game g∗ with a strict equilibrium a that

dominates other strict equilibria. The first result shows that if the other games in the environment

have payoff matrices that are close enough to g∗, and if the probability of g∗ is large enough, then the

environment admits a rule-rational equilibrium in which players bundle all the similar games together

by choosing the coarsest partition and then playing a in all states. Note that if there is a state in which

a is not a Nash equilibrium, then this is a non-act-rational equilibrium. Formally:

Definition 11. Let δ > 0. A pure action profile a in a game (A, u) is a δ-strict Nash equilibrium if for

each player i and each action bi ∈ Ai, ui (a) ≥ ui
(

bi, a−i
)

+ δ.

Proposition 7. Let ǫ, δ > 0. Let (A, u0) be a game with δ-strict equilibria (a, b1, b2) such that ∀i ∈ {1, 2},

ui (a) > ui (bi)+δ. Let ((Ω, p) , A, u) be an environment such that: (1) it includes game (A, u0): ∃ω0 ∈ Ω

such that u (ω0) = u0; (2) the payoff matrices in all states are ǫ-close to uo: ∀ω ∈ Ω, a ∈ A i ∈ {1, 2} :
∣

∣ui (ω) (a) − ui
0 (a)

∣

∣ ≤ ǫ; and (3) p (ω0) ≥ ǫ−δ
ǫ

. Then the environment admits a rule-rational equilibrium

in which players choose the coarsest partition and play a in all states.

Proof. Consider the following meta-strategy profile. The players choose the coarsest partition and play

a. If player i deviates and chooses a different partition, then the players play profile bi in the partition

element that includes ω0, and they play an arbitrary equilibrium in the subgame that is induced by the

choice of partitions and by fixing the play of profile bi in ω0. Note that any unilateral deviation in the

partition element that includes ω0 yields the deviator a loss of at least δ utility points in ω0 and a profit

of at most ǫ − δ in any other state. Thus, this deviation yields an expected profit of at most

(

1 −
ǫ − δ

ǫ

)

· (ǫ − δ) −
ǫ − δ

δ
· δ =

δ

ǫ
· ǫ − δ = 0.

This implies that the above strategy is an equilibrium of the subgame that is induced by the chosen

partitions also without fixing profile bi in ω0. Observe that a player who deviates at the partition stage

loses at least δ in ω0 and gains at most ǫ − δ in any other state; thus the maximal profit from a deviation

from the meta-strategy profile is

(

1 −
ǫ − δ

ǫ

)

· (ǫ − δ) −
ǫ − δ

ǫ
· δ = 0.

This implies that the above meta-strategy profile is a rule-rational equilibrium.

The following corollary shows that if g∗ (a game with a strict equilibrium a that dominates other

strict equilibria) has high enough probability, then the environment admits a rule-rational equilibrium



18 6 STACKELBERG STABILITY AND ACT RATIONALITY

in which players bundle all the other “unlikely” games with the prominent game g∗, and play a in all

games. Formally:

Corollary 1. Let (A, u0) be a game with strict equilibria (a, b1, b2) such that ∀i ∈ {1, 2}, ui (a) > ui (bi).

Then there exists 0 < p0 < 1 such that each environment ((Ω, p) , A, u) that satisfies ω0 ∈ Ω, u (ω0) = u0,

and p (ω0) ≥ p0, admits a rule-rational equilibrium in which players choose the coarsest partition and

play a in all states.

Proof. Let δ > 0 be small enough such that: (1) the profiles (a, b1, b2) are δ-strict equilibria in game

(A, u0), (2) for each player i, ui (a) − ui (bi) > δ. Let ǫ > 0 be large enough such that all games are

ǫ-close to g∗: ∀ω ∈ Ω, a1 ∈ A1 , a2 ∈ A2 i ∈ {1, 2}
∣

∣ui
(

a1, a2
)

− ui
0

(

a1, a2
)
∣

∣ ≤ ǫ. Let p0 = ǫ−δ
ǫ

. Then

proposition 7 implies that there is a rule-rational equilibrium in which the players choose the coarsest

partition, and play a in all states.

6 Stackelberg Stability and Act Rationality

This section shows that the existence of act-rational equilibria is closely related to the question of

whether the Nash equilibria of the games in the environment are stable against the possibility that one

of the players becomes a “Stackelberg” leader and commits in advance to a specific strategy. At the

end of Section 2 we discussed the implications of the results of this section for the study of the value of

information.

Given mixed action xi ∈ ∆
(

Ai
)

of player i in a normal-form game G = (A, u), let BR
(

xi
)

⊆ A−i be

the set of (pure) best replies of player −i to xi. Let vi
(

xi
)

= minx−i∈BR(xi) ui

(

xi, x−i
)

be the payoff that

player i can guarantee himself when playing xi before his opponent plays (under the assumption that his

opponent best-replies to the player’s commitment). Let v̄i (G) = maxxi∈∆(Ai) vi
(

xi
)

be the payoff that

player i can guarantee when playing as a Stackelberg leader (called a mixed-action Stackelberg payoff in

Mailath & Samuelson (2006)). Let NE (G) be the set of Nash equilibrium payoff vectors in G.

We say that a Nash equilibrium is Stackelberg-stable if no player can guarantee a higher payoff by

being a Stackelberg leader. Formally:

Definition 12. A Nash equilibrium payoff vector u ∈ NE (G) is Stackelberg-stable if for each player i,

v̄i (G) ≤ ui.

A game is Stackelberg-stable if it admits at least one Stackelberg-stable equilibrium, and it is Stackelberg-

unstable otherwise. The following fact shows a few simple families of Stackelberg-stable games. In

particular, both constant-sum games and optimal-profile games have this property.

Fact 1. Each of the following games are Stackelberg-stable.

1. Constant-sum games (all equilibria are stable).

2. Optimal-profile games (the Pareto-dominant equilibrium is stable).

3. Games in which both players have a strictly dominant action, e.g., Prisoner’s Dilemma (the unique

equilibrium is stable).

The following propositions show the close relation between act-rational equilibria and Stackelberg-

stable games. The first proposition shows that if all games are Stackelberg-stable, then an act-rational

equilibrium exists.
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Proposition 8. If every game in the environment is Stackelberg-stable, then the environment admits an

act-rational equilibrium.

Proof. Consider the following meta-strategy profile. Each player chooses the finest partition, and the

players play on the equilibrium path a Stackelberg-stable equilibrium in each game. If any player devi-

ates to a different partition, then the players play a Nash equilibrium of the induced subgame, such that

the deviating player earns weakly less than its payoff on the equilibrium path. The induced subgame

admits such a Nash equilibrium because otherwise the deviating player would have a strictly profitable

Stackelberg commitment in at least one game in the environment, and this would contradict our assump-

tion that players play Stackelberg-stable equilibria in all states. The above argument implies that this

meta-strategy profile is an act-rational equilibrium.

The following proposition shows that a single Stackelberg-unstable equilibrium is enough to prevent

the existence of an act-rational equilibrium in the environment. Formally:

Proposition 9. For any Stackelberg-unstable game G = (A, u0), there exists an environment such that:

(1) it includes only (A, u0) and Stackelberg-stable games, and (2) it does not admit any act-rational

equilibrium.

Proof. For each Nash equilibrium payoff v ∈ NE (G) in G, let i (v) be a player and let si (v) be a

strategy such that player i can guarantee a strictly higher payoff than vi by committing to playing

mixed action si (v) (such a strategy exists because G does not admit Stackelberg-stable equilibria). Let

Γ = (i (v) , si (v))v∈NE(G) be the set of all such pairs. Let the states in the environment be

Ω =
{

ω0,
{

ω(i(v),si(v))

}

(i(v),si(v))∈Γ

}

.

Let u (ω0) = u0. For each state ω(i(v),si(v)), define u
(

ω(i(v),si(v))

)

as the payoff matrix of a zero-sum

game in which strategy si (v) is the unique (possibly mixed) action that guarantees player i the value

of the game
(

A, uSi(v)

)

. We now show that if p (ω0) is low enough, then the environment (Ω, p, A, u)

does not admit an act-rational equilibrium. Assume to the contrary that an act-rational equilibrium

exists, and let v0 be the induced Nash equilibrium in ω0 in this act-rational equilibrium. Assume

that p (ω0) is sufficiently low. Then, it is strictly profitable for player i (v0) to deviate to partition
{{

ω0, ω(i(v0),si(v0))

}

, {ω}ω∈Ω

}

, and to play si (v0) in
{

ω0, ω(i(v0),si(v0))

}

and a minimax strategy in all

other states. This leads to a contradiction.

A normal-form game is generic if all action profiles yield different payoffs. Call an environment

generic if all its games are generic. The following proposition shows that any act-rational equilibrium

of a generic environment is preserved when a Stackelberg-stable game is added to the environment with

small enough probability. Formally:

Proposition 10. Let ((Ω, p) , A, u) be a generic environment that admits an act-rational equilibrium

τ = ((π∗
1 , σ∗

1) , (π∗
2 , σ∗

2)). Extend the environment by adding an additional state ω̃ to Ω with probability q

in which a Stackelberg-stable game (A, u (ω̃)) is played, and multiply the probabilities of any state ω ∈ Ω

by 1 − q. Then if q is small enough, the new environment ((Ω ∪ {ω̃} , p̃) , A, u) admits an act-rational

equilibrium that induces the same play in Ω.

Proof. Consider the following meta-strategy. Each player i chooses the partition π̃i = {{ω̃} , π∗
i }. The

players play a Stackelberg-stable equilibrium in ω̃ with payoff v, and follow (σ∗
1 , σ∗

2) in Ω both on the
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equilibrium path and after any player has deviated in the first stage. If player i has deviated by choosing

a partition in which ω̃ is part of a non-trivial partition element, then the opponent plays in ω̃ a best-

reply to the deviator’s mixed action (which is determined by his play in the remaining states in the

partition element), which yields the deviator a payoff of at most vi (such a best reply exists due to the

Stackelberg stability of ω̃. The fact that ω̃ τ is act-rational and the environment is generic implies that

strict equilibria are played in all states. This implies that for sufficiently small q, the above strategy

profile is an act-rational equilibrium.

7 Discussion

We conclude by discussing the extension of our model to partial observability, the empirical predictions

of our model, and directions for future research.

7.1 Value of Information

One can reinterpret an environment as an incomplete-information game in which each player has a

minimal bound (the coarsest partition) and a maximal bound (the finest partition) on the amount of

information he may acquire about the state of nature. Each player first chooses how much information to

obtain within these bounds, and this choice is observable by the opponent, and then plays the incomplete

information game induced by his choice. The partition profile of a rule-rational equilibrium thus describes

an optimal information allocation (given his opponent’s behavior): each player acquires an optimal

amount of information, so that either obtaining more information or giving up information (weakly)

reduces the player’s payoff.

The results of Section 6 can be adapted to this interpretation as follows. Proposition 8 shows that if

all games in the environment are Stackelberg-stable, then information has a positive value, and there exist

an equilibrium in which both players choose to obtain the maximal amount of information. This extends

related existing results for constant-sum games and games with common interests (both families of games

are subsets of the set of Stackelberg-stable games). Proposition 9 shows that for any Stackelberg-unstable

game, there is an environment in which it is the only game with this property, and information has a

negative value: at least one of the players chooses to give up some information, and he will strictly lose

by obtaining that additional information. Finally, Proposition 10 shows that if the value of information

is positive at a specific equilibrium, then perturbing the environment by adding a Stackelberg-stable

game with small probability maintains the positive value of information.

7.2 Partial Observability

In this section, we briefly sketch how the model and the results can be extended to a setup in which

players only sometimes observe the partition of their opponent. Specifically, we change the definition of

the two-stage meta-game that is induced by the environment by assuming that each player privately and

independently observes his opponent’s partition with probability 0 ≤ q ≤ 1 (à la Dekel et al. (2007)).12

Accordingly, we extend the definition of a meta-strategy to describe the behavior also after obtaining a

non-informative signal about the opponent’s partition. Finally, we define a rule-rational equilibrium as

a sequential equilibrium (Kreps & Wilson, 1982) of the meta-game.

12The results can be extended also to a setup in which the signal about the opponent’s partition is publicly observed (or
has a positive probability of being observed by the opponent).
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Observe that the case of q = 0 (i.e., non-observability of the opponent’s partition) can only induce

act-rational equilibria, and the case of q = 1 is equivalent to the basic model of Section 3. Most of the

results in this paper hold also in this extended setup for all values of 0 ≤ q ≤ 1: Prop. 1, 4-6, and 8-10.

The remaining results (Prop. 2-3 and 9) hold for a sufficiently high q < 1 (the threshold may depend on

the specific environment and the specific action profile).

7.3 Empirical Implications

One model implies that the predictive power of a Nash equilibrium is expected to be stronger in

Stackelberg-stable games, such as zero-sum games and coordination games, relative to Stackelberg-

unstable games, in which the ability to commit and to play first is advantageous. This implications fits

the stylized experimental facts (see Camerer, 2003, and the references there): (1) the aggregate play in

zero-sum games is close to the Nash equilibrium (see also the empirical support for this from the behavior

of professional tennis players in Walker & Wooders, 2001) ; (2) players are very good at coordinating

on one of the pure equilibria of a coordination game; and (3) the predictive power of Nash equilibria in

most other games is more limited.

Another insight from our the model is that the way in which people play a certain game depends

not only on its payoff, but also on the propensity of playing the game within the relevant environment.

Moreover, our model implies that games that are played proportionally more often should yield behavior

that is closer to the predictions of Nash equilibrium.

7.4 Future Research

We consider the current paper as a first step in a research agenda that studies the relations between

rule rationality and environment-related commitments that operate on emotional levels (See also Winter

et al., 2010). In what follows we briefly sketch two interesting directions to study in future research.

First, it would be interesting to extend the model by adding small costs for using more complex playing

rules (i.e., finer partitions). Second, it would be interesting to study environments that include games

in extensive form (rather than normal form), and adapt the notion of rule rationality also to actions at

decision nodes, and not only to strategies as a whole (e.g., a rule by which your first move is always

towards the terminal node with the highest payoff).
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