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Abstract

In the paper, a one-sector neoclassical model with stochastic growth has been constructed.

The key concept of economic maturity is well-defined in the abstract model economy, and also a

thorough characterization of the minimum time needed to economic maturity is supplied for the

first time. Moreover, it is confirmed that the capital-labor ratio corresponding to the state of
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accumulation.
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1. INTRODUCTION

When concerning the problems of economic development for underdeveloped

economies, one may notice that the principle of maximum speed is widely employed,

for example, the Germany and Japan after World War II and China after 1978s (see,

Song et al., 2011). That is to say, provided the existence of the maximum sustainable

terminal path consumption per capita or von Neumann path consumption per capita,

which would be regarded as the state of economic maturity in a certain sense, the

major goal of the people and the government is to choose appropriate or optimal

savings strategy and fiscal policies, respectively, such that the state of economic

maturity can be reached as soon as possible. Indeed, the underlying motivation of the

present exploration, in line with Kurz (1965), is to derive conditions under which the

specified economy can reach the maximum terminal path in minimum time. In

particular, we only analyze the economy before economic maturity in the model, i.e.,

we focus on underdeveloped economies, and we leave those types of economies

having reached economic maturity to future research.

Although we focus on a one-sector neoclassical aggregate growth model (see,

Solow, 1956; Cass, 1965), the present study extends Kurz’s analyses in many ways,

for instance, first, we consider the economy lying in a persistently non-stationary

environment; second, the nature or social planner is naturally incorporated into the

macroeconomic model, and it is asserted that the endogenous savings rate and the

minimum time just form the sub-game perfect Nash equilibrium of the stochastic

differential dynamic game between the nature or social planner and the representative

agent; third, it is demonstrated that the minimum time needed to reach economic

maturity is completely characterized by the maximum sustainable level of terminal

path capital-labor ratio or the state corresponding to economic maturity, and also the

terminal path of capital-labor ratio provides us with a robust turnpike; finally, the

maximum sustainable level of terminal path consumption per capita or capital-labor

ratio is endogenously determined in the present model rather than that of Kurz (1965),

Samuelson (1965) and Cass (1966), where the terminal capital-labor ratio is
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exogenously given or prescribed.

The rest of the paper is organized as follows. In section 2, the basic model is

constructed, some necessary assumptions and definitions, especially the definitions of

economic maturity and the minimum time needed to economic maturity, are

introduced. Section 3 will be the major part of the paper, where both Asymptotic

Turnpike Theorem and Neighborhood Turnpike Theorem are established. Section 4

proves the robustness of the turnpike theorems demonstrated in section 3, i.e., we

assert the existence of a robust turnpike deduced by economic maturity based upon

section 3. There is a brief concluding section, where we have discussed about possible

extensions of the basic framework. All proofs, unless otherwise noted in the text,

appear in the Appendix.

2. THE ENVIRONMENT

Here, and throughout the paper, we consider a one-sector neoclassical model

with stochastic growth. As usual, we employ the following neoclassical production

function,

( )( ) ( ), ( )Y t F K t L t= . (1)

which is a strictly concave function, and also it exhibits constant returns to scale with

( )K t denoting the aggregate capital stock and ( )L t representing the labor force or

population size. Thus, the following law of motion of capital accumulation is derived,

( )( )
( ), ( ) ( ) ( )

dK t
F K t L t K t C t

dt
δ= − − . (2)

where δ , an exogenously given constant, denotes the depreciation factor and ( )C t

stands for aggregate consumption in period t .

Now, suppose that ( )( ),0B t t T≤ ≤ stands for a standard Brownian motion

defined on the following filtered probability space ( , ,Ω F { }
0t t T≤ ≤

F ),P with F �

{ }
0t t T≤ ≤

F the −P augmented filtration generated by ( )( ),0B t t T≤ ≤ with
T

�F F

for 0T∀ > , that is, the underlying stochastic basis satisfies the well-known usual
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conditions. Then, based upon the given probability space and in line with Merton

(1975), we define,

( ) ( ) ( ) ( )dL t nL t dt L t dB tσ= + . (3)

subject to (0) 0B = a.s.- P and { }0 0σ ∈ −\ � \ , a constant. Thus, combining (2)

with (3) and applying Itô’s rule leads us to,

( ) ( ) ( )2( ) ( ) ( ) ( ) ( ) ( )dk t s k t f k t n k t dt k t dB tδ σ σ⎡ ⎤= − + − −⎣ ⎦ . (4)

with 0(0) 0k k≡ > and ( ) ( ) ( )k t K t L t� , ( ) ( ) ( )( )

( )
( ) ( ), ( ) ( ) ,1K t

L t
f k t F K t L t L t F=� ,

( ) ( )
( )

( )
( ) 1 c t

f k t
s k t −� and ( ) ( ) ( )c t C t L t� denoting the capital-labor ratio, per capita

output, savings per unit output and per capita consumption, respectively, at time t .

Specifically, for the SDE of capital-labor ratio given by (4), Chang and Malliaris

(1987) proved the following theorem,

THEOREM 1: If the production function f is strictly concave, continuously

differentiable on [ )0,∞ , (0) 0f = , and ( ) ( )( )

( ) ( ) ( )
lim ( ) lim 0

df k t

k t k t dk t
f k t→∞ →∞′ =� , then

there exists a unique solution to (4).

Thus, we directly give,

ASSUMPTION 1: The assumptions or conditions given by Theorem 1 are assumed

to be fulfilled throughout the current paper.

2.1. Economic Maturity

It is assumed that the abstract economy consists of ( )L t identical individuals in

period t , each of whom possesses perfect foresight as usual. Hence, we suppose there

is a representative agent with the following objective function,

( )( ) ( )( ) ( )( )0 0

0

0

( ) ( )

1 21 ( ) ( ) ( )t t t

t

t

e U s k t f k t dt e U f k

τ
ρ ρ τ τ− − − −

⎡ ⎤
− +⎢ ⎥

⎢ ⎥⎣ ⎦
∫E . (5)

where
0t

E denotes the expectation operator depending on
0t
F with 0 0t ≥ ,

0 1ρ< < represents the discount factor, ( )τ τ ω ∈� �T { −F stopping times} for
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ω∈Ω , and 1( )U ⋅ , 2 ( )U ⋅ are strictly increasing, strictly concave instantaneous utility

functions of per capita consumption and per capita output, respectively, with the

well-known Inada conditions satisfied.

It is easily seen that the criterion defined by (5) is widely used in existing

economic literatures, including the macroeconomic studies. Nevertheless, ( )τ τ ω�

is usually pre-specified and is deterministic, i.e., ( ) 0Tτ ω ≡ > for all ω∈Ω , for

any exogenously given constant 0 T< ≤ ∞ , in most of the excellent macroeconomic

literatures. Noting that τ truly implies interesting and also important economic

implications in accordance to Kurz (1965), we will extend Kurz’s work by

introducing the nature or social planner into the present macroeconomic model.

Rather, the nature or the social planner will choose an admissible value ( )τ τ ω∗ ∗�

so that (5) is maximized. Formally, we give,

DEFINITION 1: We define the dynamic game Γ between the nature and the

representative agent according to the following order of action,

Step 1: The nature will choose a strategy ( )τ ω∗ ∈T such that the criterion in (5)

is maximized subject to the SDE of capital-labor ratio in (4).

Step 2: Given Step 1 and ( )τ τ ω∗= ∈T , the representative agent chooses a

savings strategy ( )0( ),s k t tτ∗ ∗ − such that the criterion defined in (5) is maximized

subject to the SDE of capital-labor ratio in (4).

Then, following the classical Backward Induction Principle, we define,

PROBLEM 1: The representative agent will find a savings policy ( )0( ),s k t tτ∗ −

so as to,

( )( ) ( )( ) ( )( )0 0

0

0

( ) ( )

1 2max 1 ( ) ( ) ( )t t t

t

t

e U s k t f k t dt e U f k

τ
ρ ρ τ τ− − − −

⎡ ⎤
− +⎢ ⎥

⎢ ⎥⎣ ⎦
∫E .

subject to the SDE of capital-labor ratio in (4), for τ∀ ∈T .

If Problem 1, the modified Ramsey (1928) problem, has a solution, we obtain the

optimal path of capital-labor ratio as follows,
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( ) ( ) ( )2

0( ) ( ), ( ) ( ) ( ) ( )dk t s k t t f k t n k t dt k t dB tτ δ σ σ∗⎡ ⎤= − − + − −⎣ ⎦ . (6)

And we put,

PROBLEM 2: The optimization problem facing the nature or the social planner is

to find a stopping rule ( )τ ω∗ ∈T , so as to,

( )( ) ( )( ) ( )( )0 0

0

0

( ) ( )

1 0 2sup 1 ( ), ( ) ( )t t t

t

t

e U s k t t f k t dt e U f k

τ
ρ ρ ττ τ− − − −∗

⎡ ⎤
− − +⎢ ⎥

⎢ ⎥⎣ ⎦
∫E .

subject to the SDE of capital-labor ratio given by (6).

REMARK 2.1: (i) It is especially worth emphasizing that Problem 2 can also be

modified by focusing entirely upon the final state as that of Radner (1961). That is,

the criterion of preference facing the nature or social planner is given by,

( )( )0

0

( )

2 ( )t

t e U f k
ρ τ τ− −⎡ ⎤⎣ ⎦E

which of course will result in a new turnpike. Nevertheless, we argue that similar

turnpike theorems can also be proved for the new turnpike.

(ii) Moreover, in particular, one may notice certain similarity of the present

approach to those literatures studying endogenous lifetime or endogenous longevity in

growth models (see, Chakraborty, 2004; de la Croix and Ponthiere, 2010, and among

others), there exist obvious differences between the both especially when referring to

economic intuitions and economic implications behind the formal models. Existing

studies focus on OLG models and health-investment behaviors while the current

exploration emphasizing issues of macroeconomic development, i.e., the

characterization of economic maturity for underdeveloped economies and the

corresponding characteristics of their optimal capital-accumulation paths.

(iii) It is easily seen that the maximum sustainable capital-labor ratio

corresponding to the state of economic maturity is endogenously determined as well

as the minimum time needed to economic maturity by using stochastic optimal

stopping theory that is widely applied in mathematical finance. However, in Kurz’s

(1965) study, the targets or the maximum sustainable level of terminal path capital-

labor ratios are exogenously specified, and the corresponding minimum time problem

is expressed as: for any given initial capital-labor ratios, to chose strategies so that the
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prescribed targets can be reached as soon as possible. The major innovation of the

present approach, therefore, is both endogenously determining the terminal path, the

minimum time and taking the economic-welfare considerations of the representative

agent into account in solving the minimum time problem.

(iv) It follows from the specification of Problem 2 that we focus on the period of

the economy before reaching economic maturity as Kurz (1965), Samuelson (1965)

and Cass (1966). That is, the present framework is suitable for the studies on

underdeveloped economies and we leave the relative exploration of developed

economies, i.e., economies having reached economic maturity, to future research.

Thus, if Problem 2 has a solution, we get the optimal stopping time ( )τ ω∗ ∈T .

And also ( )( )0( ), ( ), ( )s k t tτ ω τ ω∗ ∗ ∗ − forms the sub-game perfect Nash equilibrium

of the dynamic game Γ given by Definition 1. Moreover, we supply the following

formal definition,

DEFINITION 2: Provided Definition 1 and if Problem 1 and Problem 2 are

solvable, we then obtain the minimum time needed to economic maturity for the

present abstract aggregate economy, and we denote it by ( )τ ω∗ ∈T .

REMARK 2.2: It is especially worth mentioning that we define the standard of

economic maturity from the perspective of economic welfare, which is of course

reasonable in the current model economy. Notice that the state of economic maturity

for any given economy should imply a peak state that yields the highest level of

economic welfare,2 we argue that the minimum time needed to economic maturity

given by Definition 2 is well-defined in some sense. In particular, we only consider

the economy before the economic maturity and we leave the economy after economic

maturity to future research, i.e., we focus on underdeveloped economy.

Finally, noting that we do not focus on the endogenous savings behavior of the

representative agent and also the explicit expression of the minimum time needed to

2 We of course admit that there are many other standards that can characterize the state of economic maturity.
Nevertheless, we persuasively argue that economic welfare will always be the appropriate choice when noting that
the major goal of economic growth and economic development is to improve the economic welfare of the people
for any modern economies. And in order to make things easier and tractable, we focus on the highest level of
economic welfare, and this is, however, without loss of any generality in the model economy.
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economic maturity in the current paper, we directly put,

ASSUMPTION 2: It is assumed that both Problem 1 and Problem 2 are solvable,

i.e., there is an optimal savings policy ( )0( ), ( )s k t tτ ω∗ ∗ − and there is a minimum

time needed to economic maturity ( )τ ω∗ ∈T . Moreover, suppose that there exists a

constant 0 k ∗< < ∞ such that { }( ) inf 0; ( )t k t kτ ω∗ ∗≥ = < ∞� a.s.-P .

REMARK 2.3: (i) In fact, Problem 1 can be solved by employing stochastic

dynamic programming, and Merton (1975) proved the existence of optimal savings

policy in a quite similar case. On the other hand, Problem 2 can also be solved under

certain conditions, and one can refer to Karatzas and Wang (2001), Jeanblanc et al.

(2004), and Øksendal and Sulem (2005) for more details. And the major goal of the

present exploration is to confirm that k
∗ defines a robust turnpike, which is certainly

deduced by economic maturity based on the above constructions and assumptions.

(ii) Moreover, Assumption 2 ensures the existence of the turnpike from the

viewpoint of pure mathematical techniques. We, however, emphasize here that the

existence can be taken for granted in reality. In other words, for any developed

economy today, it certainly has experienced the state of economic maturity in its

history. Thus, the existence of the state of economic maturity is easily ensured in

reality. And here we specifically express it via using mathematical formulas and

meanwhile we equip these kinds of mathematical formulas with special economic

intuitions.

3. TURNPIKE THEOREMS

Now, based on Assumption 2, we get,

( ) ( ) ( )2

0( ) ( ), ( ) ( ) ( ) ( )dk t s k t t f k t n k t dt k t dB tτ δ σ σ∗ ∗⎡ ⎤= − − + − −⎣ ⎦

( ) ( )( ) ( ) ( )k t dt k t dB tϕ ψ+� . (7)

subject to 0(0) 0k k≡ > , a deterministic constant. And,

{ }( ) inf 0; ( )t k t kτ ω∗ ∗≥ = < ∞� a.s.-P (8)
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for some endogenously given constant 0 k
∗< < ∞ . We are encouraged to show that

k
∗ exhibits turnpike property provided the above assumptions. And this is the major

goal of the present section.

THEOREM 2 (Asymptotic Turnpike Theorem)3: Provided the SDE of capital-

labor ratio defined in (7) and the minimum time needed to economic maturity given by

(8), then we always get that ( )k t converges in 1( )L P and the corresponding limit

belongs to 1( )L P , specifically, it uniformly converges to k
∗ a.s.-P , or equivalently,

lim ( ) 0
t

t t

k t k ε
∞

∗

′→∞
′=

⎛ ⎞⎡ ⎤− ≥ =⎜ ⎟⎣ ⎦⎝ ⎠
∪P .

for 0ε∀ > , if we have ( )( ) 0k tϕ = a.s.- P , i.e., ( ) ( )0( ), ( )s k t t f k tτ∗ ∗ − = ( nδ +

2 ) ( )k tσ− a.s.-P , in (7).

PROOF: See Appendix A. ■

REMARK 3.1: It is interesting to notice that Joshi (1997) also studies the turnpike

theory in a stochastic aggregate growth model, in which stochastic environments as

independent variables are directly and exogenously incorporated into the production

function, by applying supermartingale property to confirm the corresponding

convergence. However, one may easily tell the difference between Joshi’s method and

our proof. Moreover, it is persuasively argued that the essential requirement in

Theorem 2 can be easily met thanks to the stochastic volatility term represented by

σ .

However, if ( )( ) 0k tϕ ≠ , we define a new process ( )tθ by,

( ) ( )( ) ( ) ( )k t t k tϕ θ ψ= .

for a.a. [ ]( , ) 0,t Tω ∈ ×Ω . Then we put,

2

0 0

1
( ) exp ( ) ( ) ( )

2

t t

Z t s dB s s dsθ θ
⎧ ⎫
− −⎨ ⎬
⎩ ⎭
∫ ∫� .

3 This proof brings the idea from Dai (2012). And our turnpike theorems satisfy the classical characteristics, i.e.,
any optimal paths stay within a small neighborhood of the turnpike almost all the time and the turnpike is
independent of initial conditions (see, McKenzie, 1976; Yano, 1984).
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Define a new measure Q on
T
F by,

( ) ( ) ( )d Z T dω ω=Q P .

i.e., ( )Z T is the Radon-Nikodym derivative. Now, we need the following

assumption,

ASSUMPTION 3: Here, we suppose that at least one of the following two

conditions holds,

(i) We have [ ]( ) 1Z T =E ;

(ii) The following Novikov Condition holds, i.e.,

2

0

1
exp ( )

2

T

t dtθ
⎡ ⎤⎛ ⎞

< ∞⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

∫E for 0 T≤ < ∞ .

Thus, based upon Assumption 3 and according to the Girsanov Theorem, we get

that Q is a probability measure on
T
F , Q is equivalent to P and ( )k t is a

martingale w. r. t. Q on the stochastic basis ( , ,Ω F F ),Q . Using Girsanov

Theorem again, we conclude that the following process,

0

ˆ( ) ( ) ( )
t

B t s ds B tθ +∫� , [ ]0,t T∀ ∈ .

is a Brownian motion w. r. t. Q with ˆ(0) (0) 0B B= = a.s., and expressed in terms

of ˆ( )B t we can get,

( ) ˆ( ) ( ) ( )dk t k t dB tψ= . (9)

subject to 0(0) 0k k≡ > , a deterministic constant. Now, based on (9) and similar to

(8), we, by slightly modifying Assumption 2, give,

{ }ˆˆ ( ) inf 0; ( )t k t kτ ω∗ ∗≥ = < ∞� a.s.-Q (10)

for some endogenously determined constant ˆ0 k∗< < ∞ . Therefore, employing the

same proof as that of Theorem 2, we establish,

THEOREM 3 (Asymptotic Turnpike Theorem): Provided the SDE of capital-labor

ratio defined in (9) and the minimum time needed to economic maturity given by (10),



11

then we always get that ( )k t converges in 1( )L Q and the corresponding limit

belongs to 1( )L Q , specifically, it uniformly converges to k̂∗ a.s.-Q , or equivalently,

ˆlim ( ) 0
t

t t

k t k ε
∞

∗

′→∞
′=

⎛ ⎞⎡ ⎤− ≥ =⎜ ⎟⎣ ⎦⎝ ⎠
∪Q .

for 0ε∀ > .

In what follows, we proceed to prove the neighborhood turnpike theorem. We do

this by first giving the following assumption,

ASSUMPTION 4: Suppose that [ ]( ) 0,k t ++∈ ∞\ � , which is the one point

compactification of \ at infinity with the induced topology, for 0t∀ ≥ . Moreover, it

is assumed that there exists a unique invariant Borel probability measure π on ++\

such that ( ) { } { }0 0bdπ π++ ⎡ ⎤+∞ =⎡ ⎤⎣ ⎦ ⎣ ⎦\ � ∪ , i.e., ( )bd ++\ denotes the boundary

of ++\ . And we denote the Borel probability measure corresponding to the SDE

defined in (9) by π̂ with the above requirements totally met.

REMARK 3.2: Mirman (1972) constructs a one-sector growth model with

uncertain technology, i.e., random variables, which are assumed to be independent

and identically distributed, are directly introduced into the neoclassical production

function, thereby resulting in a discrete-time Markov process of the capital stock.

Specifically, Mirman defines the Borel probability measure on the Borel sets of the

non-negative real line by using the corresponding probability transition function of

the above Markov process. Moreover, Theorem 2.1 of Mirman confirms that there

exists a stationary probability measure that has no mass at either zero or infinity. In

contrast, the present paper constructs continuous time Markov process of capital-labor

ratio. Nonetheless, one can still prove that there exists a unique invariant Borel

probability measure satisfies the requirements of Assumption 4 under certain

relatively weak conditions. For more details, one may refer to Theorem 2.1 of Imhof

(2005), Theorem 3.1 of Benaïm et al. (2008) and Theorem 5 of Schreiber et al (2011).

The present paper omits the corresponding proof is just for the sake of simplicity.

Thus, the following theorem is derived,
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THEOREM 4 (Neighborhood Turnpike Theorem)4: Based upon Theorem 2 and

Assumption 4, we can get that there exists a constant 0Σ > such that for 0α∀ >

with α > Σ ,

(i)
( )0

( )

,
( )

B k

dist k k

α
τ ω

α∗

∗

⎡ ⎤ ≤⎣ ⎦ −Σ
E ,

(ii) ( ) 1 1B kαπ ε
α

∗ Σ⎡ ⎤ ≥ − −⎣ ⎦ � .

where,

{ }( ) ( ) ; ( ) , 0B k k t k t k tα α∗ ∗
++∈ − < ≥� \ ,

{ }( )
( ) inf 0; ( ) ( ) ( )

B k
t k t B k clB k

α
α ατ ω∗

∗ ∗≥ ∈� � ,

and,

( ) ( )0 0, logdist k k k k k
∗ ∗ ∗� .

for 0 (0) 0k k >� .

PROOF: See Appendix B. ■

Similarly, we derive the following theorem,

THEOREM 5 (Neighborhood Turnpike Theorem): Based upon Theorem 3 and

Assumption 4, we can get that there exists a constant ˆ 0Σ > such that for ˆ 0α∀ >

with ˆα̂ > Σ ,

(i)
( )

ˆ

0

ˆ( )

ˆ,
ˆ ( )

ˆˆB k

dist k k

α
τ ω

α
∗

∗

⎡ ⎤ ≤⎣ ⎦ −Σ
QE ,

(ii) ˆ

ˆ
ˆ ˆˆ ( ) 1 1

ˆ
B kαπ ε

α
∗ Σ⎡ ⎤ ≥ − −⎣ ⎦ � .

where,

( ) { }ˆ
ˆ ˆ ˆ( ) ; ( ) , 0B k k t k t k tα α∗ ∗

++∈ − < ≥� \ ,

( ){ }
ˆ

ˆ ˆ ˆ( )

ˆ ˆˆ ( ) inf 0; ( ) ( )
B k

t k t B k clB k
α

α ατ ω∗
∗ ∗≥ ∈� � ,

and,

4 This proof brings the method employed by Imhof (2005) and Dai (2012).
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( ) ( )0 0
ˆ ˆ ˆ, logdist k k k k k
∗ ∗ ∗� .

for 0 (0) 0k k >� .

REMARK 3.3: Theorem 4 shows that the Borel probability measure π will

place nearly all mass close to the turnpike k
∗ . And similarly, Theorem 5 reveals that

the corresponding probability distribution π̂ will place almost all mass close to the

new turnpike k̂∗ . Indeed, Theorem 4 and 5 demonstrate the turnpike property from

the viewpoints of both time dimension and space dimension, i.e., in the sense of

Markov time and in the sense of invariant probability distribution, which of course

will provide us with a much more complete characterization of the neighborhood

turnpike property when compared with existing studies (see, McKenzie, 1976; Bewley,

1982; Yano, 1984, and among others).

4. ROBUSTNESS

It follows from (7) that,

( ) ( )( ) ( ) ( ) ( )dk t k t dt k t dB tϕ ψ= +

( ) ( )0 0( ) ( ) ( ) ( ) ( )k t k t dt k t k t dB tϕ ψ+� , (11)

Now, we introduce the following SDE,

( ) ( )( ) ( ) ( ) ( )dk t k t dt k t dB tϕ ψ= +� � �� �

( ) ( )0 0( ) ( ) ( ) ( ) ( )k t k t dt k t k t dB tϕ ψ+� � � �� �� , (12)

where we have assumed that,

ASSUMPTION 5: For any 0ξ > , we suppose that,

0 0 0 0
, 0 , 0

sup ( ) ( ) sup ( ) ( )
k k k k

k k k kϕ ϕ ψ ψ ξ
> >

− ∨ − ≤
� �

� �� � .

That is to say, (12) defines the ξ − perturbation of (11).

Moreover, we need the following assumption for the sake of convenience,

ASSUMPTION 6: We suppose that there exist constants φ , φ� and 0φ < ∞ such
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that,

2 2
( ) ( )k k k kϕ ψ φ∨ ≤ ,

2 2

( ) ( )k k k kϕ ψ φ∨ ≤� � � ��� � ,

and,

2 2

0 0 0
0 0

sup ( )) sup ( )
k k

k kϕ ψ φ
> >

∨ ≤ .

for 0k∀ > , 0k∀ >� .

REMARK 4.1: One can easily find that Assumption 6 is truly reasonable thanks to

Assumption 1. Assumption 6 is indeed without loss of any generality and is just for

the sake of convenience in the following proofs.

LEMMA 1: Provided the above assumptions, we find that there exist constants

0( , , )e k p T < ∞ and 0( , , )e k p T < ∞� such that,

(i) 0
0

sup ( ) ( , , )
p

t T

k t e k p T
≤ ≤

⎡ ⎤ ≤⎢ ⎥⎣ ⎦
E ;

and,

(ii) 0
0

sup ( ) ( , , )
p

t T

k t e k p T
≤ ≤

⎡ ⎤ ≤⎢ ⎥⎣ ⎦
� �E .

for 0(0) (0) 0k k k= = >� , 0T∀ > and p∀ ∈` , 2p ≥ .

PROOF: See Appendix C. ■

Specifically, if both ( )k t and ( )k t� are martingales w. r. t. P , then without the

above assumptions we still get,

LEMMA 2: If both ( )k t and ( )k t� are martingales w. r. t. P , then there exist

constants η < ∞ and η < ∞� such that,

(i)
2

0

lim sup ( )
T t T

k t η
→∞ ≤ ≤

⎡ ⎤ <⎢ ⎥⎣ ⎦
E ;

And,

(ii)
2

0

lim sup ( )
T t T

k t η
→∞ ≤ ≤

⎡ ⎤ <⎢ ⎥⎣ ⎦
� �E .

for 0(0) (0) 0k k k= = >� .
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PROOF: See Appendix D. ■

Now, we can derive the following proposition,

PROPOSITION 1: Based on the above assumptions and Lemma 1 or Lemma 2,

and suppose that 0(0) (0) 0k k k= = >� , then we get,

2

0

lim sup ( ) ( ) 0
T t T

k t k t
→∞ ≤ ≤

⎡ ⎤− →⎢ ⎥⎣ ⎦
�E as 0ξ → .

PROOF: See Appendix E. ■

REMARK 4.2: It should be pointed out here that in the proof of Proposition 1, we

have implicitly used the following facts or assumptions, i.e., the speed of ξ

approaching zero is much faster than that of time T approaching infinity and also

0×∞ 0≡ . Moreover, we can get the same conclusion by taking the limit as 0ξ →

first and then as T →∞ .

Accordingly, the following theorem is established,

THEOREM 6 (Robust Turnpike): Provided Theorem 2 and 4, we show that k
∗ is

a robust turnpike.

PROOF: To prove the robustness, one just need combine Theorem 2 with

Proposition 1 or combine Theorem 4 with Proposition 1. And noting the following

fact,

2 2 2 2

( ) ( ) ( ) ( ) 2 ( ) ( ) ( )k t k k t k t k t k k t k t k t k
∗ ∗ ∗⎡ ⎤− = − + − ≤ − + −⎢ ⎥⎣ ⎦

� � � .

Thus, we leave the details to the interested reader. ■

Similarly, one can also assert,

THEOREM 7 (Robust Turnpike): Provided Theorem 3 and 5, one can show that

k̂
∗ is a robust turnpike.

REMARK 4.3: Theorem 6 and 7 have confirmed the asymptotic stability of the

turnpikes k
∗ and k̂

∗ , respectively, under the above relatively weak assumptions. To

summarize, by noticing that our theorems show that the optimal path of capital

accumulation will robustly converge to the corresponding turnpike in the sense of
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uniform topology, we argue that the current study indeed extends existing turnpike

theorems (see, Scheinkman, 1976; McKenzie, 1983; Yano, 1998) to much stronger

cases. And this would be regarded as one innovation of the present paper.

5. CONCLUDING REMARKS

In the current exploration, we are encouraged to study the economic maturity of

a given one-sector neoclassical model with stochastic growth. To the best of our

knowledge, we, for the first time, supply a relatively complete characterization of the

minimum time needed to economic maturity for any given abstract economy and

further to show that the corresponding capital-labor ratio indeed exhibits both

asymptotic turnpike property and neighborhood turnpike property under reasonable

conditions. In other words, the optimal path of capital accumulation or the equilibrium

path of capital accumulation will uniformly and robustly converge to the turnpike

capital-labor ratio or will spend almost all the time staying in any given neighborhood

of the turnpike capital-labor ratio, respectively, under relatively weak conditions and

in a persistently non-stationary environment.

Noting that we assume very general forms of preference for the representative

agent and production technology for the firm, one can easily apply the present

framework to study many different macroeconomic models with stochastic economic

growth. Moreover, we argue that the present basic model can be naturally extended to

other cases with different environments, including multi-sector models, heterogeneous

-agent models or dynamic general equilibrium models (e.g., Bewley, 1982; Yano,

1984, and among others). Finally, one may easily notice that the present framework

can be also extended to include multiple priors through applying the theory developed

by Riedel (2009). And we leave these interesting and also important explorations to

future research.

APPENDIX

A. Proof of Theorem 2
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Put ( )( ) 0k tϕ = in (7), then we find that ( )k t will be a martingale w. r. t. P . Thus,

by the Doob’s Martingale Inequality, we obtain,

0

0

1
sup ( ) ( )

t T

k
k t k Tλ

λ λ≤ ≤

⎛ ⎞≥ ≤ ⎡ ⎤ =⎜ ⎟ ⎣ ⎦⎝ ⎠
P E , 0λ∀ > , 0T∀ > . (A.1)

Without loss of generality, we put 2mλ = for m∈` , then,

0
0

1
sup ( ) 2

2

m

m
t T

k t k
≤ ≤

⎛ ⎞≥ ≤⎜ ⎟
⎝ ⎠

P , m∀ ∈` , 0T∀ > .

Using the well-known Borel-Cantelli Lemma, we arrive at,

0

sup ( ) 2 . . 0m

t T

k t i m m
≤ ≤

⎛ ⎞≥ =⎜ ⎟
⎝ ⎠

P , 0T∀ > .

in which . .i m m represents “infinitely many m ”. So for a.a. ω∈Ω , there exists

( )m ω ∈` such that,

0

sup ( ) 2m

t T

k t
≤ ≤

< a.s. for ( )m m ω≥ , 0T∀ > .

i.e.,

0

lim sup ( ) 2m

T t T

k t
→∞ ≤ ≤

≤ a.s. for ( )m m ω≥ .

Consequently, ( ) ( , )k t k t ω= is uniformly bounded for [ ]0,t T∈ , 0T∀ > and for

a.a. ω∈Ω . Thus, it is ensured that ( ) ( , )k t k t ω= converges a.s.- P and the limit

belongs to the space 1( )L P thanks to the Doob’s Martingale Convergence Theorem.

Moreover, by Kolmogorov’s or Chebyshev’s Inequality, we get,

2
0

1
sup ( ) var ( )

t T

k t k Tλ
λ≤ ≤

⎛ ⎞≥ ≤ ⎡ ⎤⎜ ⎟ ⎣ ⎦⎝ ⎠
P , 0 λ∀ < < ∞ , 0T∀ > .

It follows form (A.1) that,

0

2

1
var ( )

k
k T

λ λ
⎡ ⎤ ≤⎣ ⎦ ⇔ 0var ( )k T kλ⎡ ⎤ ≤⎣ ⎦ , 0T∀ > . (A.2)

Noting that,

2 2

0var ( ) ( ) ( )k T k T k⎡ ⎤⎡ ⎤ = −⎣ ⎦ ⎣ ⎦E , 0T∀ > .

We get by (A.2),
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2

0 0( ) ( )k T k kλ⎡ ⎤ ≤ + < ∞⎣ ⎦E , 0 λ∀ < < ∞ , 0T∀ > .

which yields,

2

0 0
0

sup ( ) ( )
T

k T k kλ
≥

⎡ ⎤ ≤ + < ∞⎣ ⎦E .

Hence, ( ) ( , )k t k t ω= converges in 1( )L P by applying the Doob’s Martingale

Convergence Theorem again.

Furthermore, it is easily seen that ( )k t k
∗− is also a martingale w. r. t. P . Thus,

applying the Doob’s Martingale Inequality again implies that,

0

1
sup ( ) ( )

t T

k t k k T kε
ε

∗ ∗

≤ ≤

⎛ ⎞ ⎡ ⎤− ≥ ≤ −⎜ ⎟ ⎣ ⎦⎝ ⎠
P E , 0ε∀ > , 0T∀ > . (A.3)

Provided that { }( ) inf 0; ( )t k t kτ ω∗ ∗≥ = < ∞� a.s.-P given by (8), we see that there

exists 0β > such that the above martingale inequality in (A.3) still holds for ∀

( )τ ω ∈ ( ) { }( ) ( ) ; ( ) ( )Bβ τ ω τ ω τ ω τ ω β∗ ∗∈ − ≤� T by using the Doob’s Optional

Sampling Theorem. Then, we get that ( )k kτ ∗− is uniformly bounded on the

compact set ( )( )Bβ τ ω∗ by applying the Heine-Borel Theorem and Weierstrass

Theorem. Therefore, we, without loss of any generality, set up 2 mβ −= for m∀ ∈` .

Employing the continuity of martingale w. r. t. time t for any given ω∈Ω , for ∀

m
τ ∈ ( ) ( )2

( ) ( )mB Bβ τ ω τ ω−
∗ ∗� , by using the Lebesgue Dominated Convergence

Theorem, we are led to,

0

1
limsup sup ( ) limsup ( ) 0

m

m
m t m

k t k k k
τ

ε τ
ε

∗ ∗

→∞ ≤ ≤ →∞

⎛ ⎞ ⎡ ⎤− ≥ ≤ − =⎜ ⎟ ⎣ ⎦⎝ ⎠
P E .

almost surely. And this implies that,

0

limsup sup ( ) 1
mm t

k t k
τ

ε∗

→∞ ≤ ≤

⎛ ⎞− < ≥⎜ ⎟
⎝ ⎠

P a.s.-P

Letting 02 mε −= , 0m∀ ∈` , we get,

0

0

limsup sup ( ) 2 1
m

m

m t

k t k
τ

−∗

→∞ ≤ ≤

⎛ ⎞− < =⎜ ⎟
⎝ ⎠

P a.s.-P , 0m∀ ∈` .
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It follows from the well-known Fatou’s Lemma that,

0

0 ( )

sup ( ) 2 1m

t

k t k
τ ω∗

−∗

≤ ≤

⎛ ⎞
− < =⎜ ⎟

⎝ ⎠
P a.s.-P , 0m∀ ∈` .

Then, applying the Borel-Cantelli Lemma again implies that,

0

0
0 ( )

sup ( ) 2 . . 1m

t

k t k i m m
τ ω∗

−∗

≤ ≤

⎛ ⎞
− < =⎜ ⎟

⎝ ⎠
P .

where 0. .i m m stands for “infinitely many 0m ”. So for a.a. ω∈Ω , there exists

0 ( )m ω ∈` such that,

0

0 ( )

sup ( ) 2 m

t

k t k
τ ω∗

−∗

≤ ≤
− < a.s. for 0 0 ( )m m ω∀ ≥ .

That is,

0 0 ( )

limsup sup ( ) 0
m t

k t k
τ ω∗

∗

→∞ ≤ ≤
− ≤ , a.s.-P

which yields,

( ) 0 ( )

limsup sup ( ) 0
t

k t k
τ ω τ ω∗ ∗

∗

→∞ ≤ ≤
− ≤ , a.s.-P

That is to say,

1 0

1
( ) 0

m t t t

k t k
m

∞ ∞ ∞
∗

′ ′= = =

⎛ ⎞⎡ ⎤− ≥ =⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠
∪∩∪P .

Equivalently, for m∀ ∈` , we arrive at,

0

1
( ) 0

t t t

k t k
m

∞ ∞
∗

′ ′= =

⎛ ⎞⎡ ⎤− ≥ =⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠
∩∪P .

i.e., for 0ε∀ > ,

lim ( ) 0
t

t t

k t k ε
∞

∗

′→∞
′=

⎛ ⎞⎡ ⎤− ≥ =⎜ ⎟⎣ ⎦⎝ ⎠
∪P .

which gives the desired assertion. ■

B. Proof of Theorem 4

Given the SDE defined by (7), we can define the following characteristic operator of

( )k t ,
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( ) ( ) ( ) ( ) ( )
2

2

0 0 0 0 02

0 0

1

2 ( )

g g
g k k k k k

k k
ϕ ψ∂ ∂

= +
∂ ∂

A .

for any 0 (0) 0k k >� . We now define Kullback-Leibler type distance (see, Bomze,

1991; Imhof, 2005) between 0k and k
∗ as follows,

( ) ( )0 0

0

, log 0
k

g k dist k k k
k

∗
∗ ∗ ⎛ ⎞

≥⎜ ⎟
⎝ ⎠

� � .

Then we get,

( ) ( ) ( )2

0 0 0

0 0

1

2

k
g k k k

k k
ϕ ψ

∗⎡ ⎤
= − +⎢ ⎥
⎣ ⎦

A .

By Theorem 2, we find that there exists 0T < ∞ such that,

0

sup ( )
t T

k t k μ∗

≤ ≤
− < for 0μ∀ > , 0T T∀ ≥ .

Thus, we have,

( ) ( ) ( )2

0 0 0

0 0

1
( )

2

k
g k k k k t k

k k
ϕ ψ μ

∗
∗⎡ ⎤

≤ − + + − −⎢ ⎥
⎣ ⎦

A ( )k t k
∗Σ − −� . (B.1)

Define,

{ }( ) ( ) ; ( ) , 0B k k t k t k tα α∗ ∗
++∈ − < ≥� \ ,

{ }( )
( ) ( ) inf 0; ( ) ( ) ( )

B k
t k t B k clB k

α
α ατ ω τ ω∗

∗ ∗≥ ∈� � � � .

where ( )B kα
∗ denotes the closure of ( )B kα

∗ . Suppose that α > Σ , for every ( )k t

( )B kα
∗∉ , i.e., ( )k t ∈ ( )C

B kα
∗ , we get,

( )0g k α≤ − + ΣA .

by (B.1). Then by Dynkin’s formula,

( )( ) ( ) ( )0

0

0 ( )
t

g k t g k g k s ds

τ

τ
∧⎡ ⎤

⎡ ⎤≤ ∧ = + ⎢ ⎥⎣ ⎦
⎣ ⎦
∫
�

�E E A ( ) [ ]0 ( ) ( )g k tα τ ω≤ + Σ − ∧ �E .

Since t τ∧ � / τ� as t →∞ . Then by Lebesgue Monotone Convergence Theorem,

we obtain,

( ) [ ]00 ( ) ( )g k α τ ω≤ + Σ − �E .
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which produces,

[ ] ( ) ( )00

( )

,
( ) ( )

B k

dist k kg k

α
τ ω τ ω

α α∗

∗

⎡ ⎤ = ≤ =⎣ ⎦ −Σ −Σ
�E E .

as required in (i). Moreover, for some constant ( )0W g k> , set up,

( ){ }( ) inf 0; ( )
W W

t g k t Wτ τ ω= ≥ =� .

Thus, by Dynkin’s formula and inequality (B.1),

( )( ) ( ) ( )0

0

0 ( )
Wt

Wg k t g k g k s ds

τ

τ
∧⎡ ⎤

⎡ ⎤≤ ∧ = + ⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦
∫E E A

( ) [ ]0

0

( ) ( )
Wt

Wg k k s k ds t

τ

τ ω
∧

∗
⎡ ⎤

≤ − − + Σ ∧⎢ ⎥
⎢ ⎥⎣ ⎦
∫E E .

If W →∞ , we get ( )
W

t tτ ω∧ → , and by applying the well-known Lebesgue

Bounded Convergence Theorem and Levi Lemma,

( )0

0

0 ( )
t

g k k s k ds t
∗⎡ ⎤

≤ − − +Σ⎢ ⎥
⎣ ⎦
∫E .

which yields,

( )0

0

1
( )

t g k
k s k ds

t t

∗⎡ ⎤
− ≤ + Σ⎢ ⎥

⎣ ⎦
∫E .

Thus, we have,

0

1
limsup ( )

t

t

k s k ds
t

∗

→∞

⎡ ⎤
− ≤ Σ⎢ ⎥

⎣ ⎦
∫E . (B.2)

If we let ( )
( )

( )CB k
k t

α
χ ∗ denote the indicator function of set ( )C

B kα
∗ , then by (B.2)

and Assumption 4, we arrive at,

( )
( )

0

1
( ) limsup ( )C

t

C

B k
t

B k k s ds
t α

απ χ ∗
∗

→∞

⎡ ⎤
⎡ ⎤ = ⎢ ⎥⎣ ⎦

⎣ ⎦
∫E

0

( )1
limsup

t

t

k s k
ds

t α

∗

→∞

⎡ ⎤−
⎢ ⎥≤
⎢ ⎥⎣ ⎦
∫E

α
Σ

≤ .

which implies that,

( ) 1 1B kαπ ε
α

∗ Σ⎡ ⎤ ≥ − −⎣ ⎦ � .

which gives the desired assertion in (ii). ■
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C. Proof of Lemma 1

Applying Itô’s rule to (11) produces,

( ) ( ) ( )22 2

0

0 0 0

( ) 2 ( ) ( ) ( ) 2 ( ) ( ) ( )
t t t

k t k k s k s ds k s ds k s k s dB sϕ ψ ψ= + + +∫ ∫ ∫ .

By using Assumption 6 we get that for [ ]1 0,t T∈ and for some constant ( , )e e p T�

< ∞ , which may be different from line to line throughout the proof,

[ ]
2 21

1 1

2

0
0 0

0 0

sup ( ) ( ) sup ( ) ( ) ( )

p p

t t
p p

t t t t

k t e k k s ds k s k s dB sφ ψ
≤ ≤ ≤ ≤

⎧ ⎫⎡ ⎤⎪ ⎪≤ + +⎢ ⎥⎨ ⎬
⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭
∫ ∫ .

It follows from Cauchy-Schwarz Inequality that,

[ ]
21

1 1

0
0 0

0 0

sup ( ) ( ) sup ( ) ( ) ( )

p

t t
p p p

t t t t

k t e k k s ds k s k s dB sψ
≤ ≤ ≤ ≤

⎧ ⎫⎪ ⎪≤ + +⎨ ⎬
⎪ ⎪⎩ ⎭

∫ ∫ .

Taking expectations on both sides and applying the Burkholder-Davis-Gundy

Inequality (see, Karatzas and Shreve, 1991, pp.166) shows that,

( )
4

1 1

1

22

0
0

0 0

sup ( ) ( ) ( ) ( )

p

t t
p p p

t t

k t e k k s ds k s k s dsψ
≤ ≤

⎧ ⎫⎡ ⎤⎡ ⎤ ⎪ ⎪⎡ ⎤≤ + + ⎢ ⎥⎨ ⎬⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭
∫ ∫E E E . (C.1)

Now, using the Young Inequality (see, Higham et al, 2003), Assumption 6, and Rogers

-Hölder Inequality reveals that,

( )
4

1
22

0

( ) ( )

p

t

k s k s dsψ
⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦
∫E ( )

4
1

2

1

2

0
0

sup ( ) ( )

p

p
t

t t

k t k s dsψ
≤ ≤

⎡ ⎤⎛ ⎞⎢ ⎥≤ ⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
∫E

( )
2

1

1

2

0
0

1
sup ( ) ( )

2 2

p

t
p

t t

e
k t k s ds

e
ψ

≤ ≤

⎡ ⎤⎡ ⎤≤ + ⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦
∫E E

2
1

2

1

2

0
0

1
sup ( ) ( )

2 2

p

p
t

p

t t

e
k t k s ds

e
φ

≤ ≤

⎡ ⎤⎡ ⎤≤ + ⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦
∫E E

1
2

2 2

10
0

1
sup ( ) ( )

2 2

p p
t

p p

t t

e
k t T k s ds

e
φ

−

≤ ≤

⎡ ⎤⎡ ⎤≤ + ⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦
∫E E

Substituting this into (C.1) yields,
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0
0

0

sup ( ) ( )
T

p p p

t T

k t e k k t dt
≤ ≤

⎧ ⎫⎡ ⎤ ⎡ ⎤≤ +⎨ ⎬⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎩ ⎭
∫E E .

Thus, by applying the following fact (see, Higham et al., 2003),

( )0( ) 1
p p

k t e k⎡ ⎤ ≤ +⎣ ⎦E .

We hence arrive at,

0
0

sup ( ) ( , , )
p

t T

k t e k p T
≤ ≤

⎡ ⎤ ≤ < ∞⎢ ⎥⎣ ⎦
E .

which gives the desired result in (i). Noting that the proof of (ii) is quite similar to that

of (i), we omit it. And this completes the whole proof. ■

D. Proof of Lemma 2

By the Doob’s Martingale Inequality, we obtain,

0

0

1
sup ( ) ( )

t T

k
k t k Tλ

λ λ≤ ≤

⎛ ⎞≥ ≤ ⎡ ⎤ =⎜ ⎟ ⎣ ⎦⎝ ⎠
P E , 0 λ∀ < < ∞ , 0T∀ > . (D.1)

Similarly, by Kolmogorov’s or Chebyshev’s Inequality, we get,

2
0

1
sup ( ) var ( )

t T

k t k Tλ
λ≤ ≤

⎛ ⎞≥ ≤ ⎡ ⎤⎜ ⎟ ⎣ ⎦⎝ ⎠
P , 0 λ∀ < < ∞ , 0T∀ > .

It follows form (D.1) that,

0

2

1
var ( )

k
k T

λ λ
⎡ ⎤ ≤⎣ ⎦ ⇔ 0var ( )k T kλ⎡ ⎤ ≤⎣ ⎦ , 0T∀ > . (D.2)

Noting that,

2 2

0var ( ) ( ) ( )k T k T k⎡ ⎤⎡ ⎤ = −⎣ ⎦ ⎣ ⎦E , 0T∀ > .

We get by (D.2),

2

0 0( ) ( )k T k kλ⎡ ⎤ ≤ + < ∞⎣ ⎦E , 0 λ∀ < < ∞ , 0T∀ > . (D.3)

which implies that ( )k t is a square-integrable martingale. We define,

( )k tζ � ,
0

( ) sup ( )
s t

k t k sζ ∗
∞

≤ ≤
� � , { }

1
22

2
( ) ( )k t k t⎡ ⎤

⎣ ⎦� E .

Thus, applying Doob’s Martingale Inequality and the well-known Fubini Theorem,

we arrive at for some constant N < ∞ ,
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2

Nζ ∗⎡ ⎤∧⎢ ⎥⎣ ⎦
E ( )

0

2 ( )x N x dxζ ω
∞

∗= ∧ ≥∫ P

{ }0 ( )

2 ( ) ( )
N x

d dx

ζ ω

ζ ω ω
∗

∞

∧ ≥

≤ ∫ ∫ P

{ }( )
0

2 ( ) ( )
N x

d dx
ζ ω

ζ ω χ ω∗

∞

∧ ≥
Ω

= ∫ ∫ P

( )

0

2 ( ) ( )
N

dxd

ζ ω

ζ ω ω
∗ ∧

Ω

= ∫ ∫ P

( )2 ( ) ( ) ( )N dζ ω ζ ω ω∗

Ω

= ∧∫ P

( )2 Nζ ζ ∗⎡ ⎤= ∧⎣ ⎦E

It follows from Rogers-Hölder Inequality that,

2 2

22 2
2N N Nζ ζ ζ ζ∗ ∗ ∗⎡ ⎤∧ = ∧ ≤ ∧⎢ ⎥⎣ ⎦

E .

which produces,

22
2Nζ ζ∗ ∧ ≤ .

Noting that,

2
2

N Nζ ∗⎡ ⎤∧ ≤ < ∞⎢ ⎥⎣ ⎦
E

And hence applying Lebesgue Dominated Convergence Theorem leads us to,

22
2ζ ζ∗ ≤ ⇔

2 2

22
4ζ ζ∗ ≤ .

i.e.,

2 2

0 0
0

sup ( ) 4 ( ) 4( )
s t

k s k t k kλ
≤ ≤

⎡ ⎤ ⎡ ⎤≤ ≤ + < ∞⎢ ⎥ ⎣ ⎦⎣ ⎦
E E , 0t∀ ≥ .

by using the inequality given by (D.3). Accordingly, a canonical application of

Lebesgue Monotone Convergence Theorem or Levi Lemma gives the required

assertion in (i). The proof of (ii) is similar to that of (i), we hence omit it. And

therefore the whole proof is complete. ■

E. Proof of Proposition 1

Provided the SDEs defined in (11) and (12), and it follows from Lemma 1 that for ∀
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2 p≤ < ∞ , 0T∀ > , there exists some constant W < ∞ such that,

0 0

sup ( ) sup ( )
pp

t T t T

k t k t W
≤ ≤ ≤ ≤

⎡ ⎤ ⎡ ⎤∨ ≤⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
�E E . (E.1)

where by Assumption 1,

( ) ( )0 0 0

0 0

( ) ( ) ( ) ( ) ( ) ( )
t t

k t k k s k s ds k s k s dB sϕ ψ= + +∫ ∫ ,

( ) ( )0 0 0

0 0

( ) ( ) ( ) ( ) ( ) ( )
t t

k t k k s k s ds k s k s dB sϕ ψ= + +∫ ∫� � � � �� � .

Moreover, we put ( ) ( )k t k t W∨ ≤ < ∞� , for 0t∀ ≥ , otherwise, we just consider

( )k t W∧ and ( )k t W∧� instead of ( )k t and ( )k t� , respectively, then we get the

desired result by sending W to infinity thanks to the well-known Lebesgue

Dominated Convergence Theorem. In what follows, we first define the following

stopping times,

{ }inf 0; ( )
W

t k t Wτ ≥ ≥� , { }inf 0; ( )
W

t k t Wτ ≥ ≥�� � ,
W W W
τ τ τ∗ ∧ �� .

By the Young Inequality (see, Higham et al, 2003) and for any 0R > ,
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It follows from (E.1) that,
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Similarly, one can get ( ) p

W
T W Wτ ≤ ≤�P . So,
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,
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Moreover, we obtain by (E.1),
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Hence, (E.2) becomes,
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By the Cauchy-Bunyakovsky-Schwarz Inequality, we get,
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Taking expectations on both sides and using Itô’s Isometry, we have for Tτ∀ ≤ ,
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where we have used Assumption 5 and 6. Hence, applying Gronwall’s Inequality (see,

Higham et al, 2003) implies that,
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Inserting this into (E.3) leads us to,
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Hence, for 0ε∀ > , we can choose R and W such that,
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p
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ε+

≤ and
2

2
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3p p

p W

pR W

ε
−

−
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And for any given 0T > , we put ξ such that,

[ ]2 2

08 ( 1) exp 8( 1)
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Thus, for 0ε∀ > , we obtain,
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3 3 3t T

k t k t
ε ε ε ε
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Notice the arbitrariness of ε , and employ the Levi Lemma to give the desired result.

And this proof is thus complete. ■

REFERENCES

[1] Benaïm, M., J. Hofbauer and W. H. Sandholm, 2008. Robust Permanence and Impermanence

for the Stochastic Replicator Dynamic. Journal of Biological Dynamics 2, 180-195.

[2] Bewley, T., 1982. An Integration of Equilibrium Theory and Turnpike Theory. Journal of

Mathematical Economics 10, 233-267.

[3] Bomze, I. M., 1991. Cross Entropy Minimization in Uninvadable States of Complex

Populations. Journal of Mathematical Biology 30, 73-87.

[4] Cass, D., 1965. Optimum Growth in an Aggregative Model of Capital Accumulation. Review

of Economic Studies 32, 233-240.

[5] Cass, D., 1966. Optimum Growth in an Aggregative Model of Capital Accumulation: A

Turnpike Theorem. Econometrica 34, 833-850.

[6] Chakraborty, S., 2004. Endogenous Lifetime and Economic Growth. Journal of Economic

Theory 116, 119-137.

[7] Chang, F.-R. and A. G. Malliaris, 1987. Asymptotic Growth under Uncertainty: Existence and

Uniqueness. Review of Economic Studies 54, 169-174.

[8] Dai, D., 2012. Stochastic Versions of Turnpike Theorems in the Sense of Uniform Topology.

Annals of Economics and Finance 13, 389-431.



29

[9] de la Croix, D. and G. Ponthiere, 2010. On the Golden Rule of Capital Accumulation Under

Endogenous Longevity. Mathematical Social Sciences 59, 227-238.

[10] Higham, D. J., X. R. Mao and A. M. Stuart, 2003. Strong Convergence of Euler-Type

Methods for Nonlinear Stochastic Differential Equations. SIAM Journal on Numerical Analysis 40,

1041-1063.

[11] Jeanblanc, M., P. Lakner and A. Kadam, 2004. Optimal Bankruptcy Time and Consumption

/Investment Policies on an Infinite Horizon with a Continuous Debt Repayment until Bankruptcy.

Mathematics of Operations Research 29, 649-671.

[12] Joshi, S., 1997. Turnpike Theorem in Nonconvex and Nonstationary Environment.

International Economic Review 38, 225-248.

[13] Karatzas, I. and S. E. Shreve, 1991. Brownian Motion and Stochastic Calculus. Volume 113

of Graduate Texts in Mathematics. New York: Springer-Verlag, second edition.

[14] Karatzas, I. and H. Wang, 2001. Utility Maximization with Discretionary Stopping. SIAM

Journal on Control and Optimization 39, 306-329.

[15] Kurz, M., 1965. Optimal Paths of Capital Accumulation Under the Minimum Time Objective.

Econometrica 33, 42-66.

[16] Imhof, L. A., 2005. The Long-Run Behavior of the Stochastic Replicator Dynamics. Annals

of Applied Probability 15, 1019-1045.

[17] McKenzie, L., 1976. Turnpike Theory. Econometrica 44, 841-865.

[18] McKenzie, L., 1983. Turnpike Theory, Discounted Utility, and the von Neumann Facet.

Journal of Economic Theory 30, 30-52.

[19] Merton, R. C., 1975. An Asymptotic Theory of Growth Under Uncertainty. Review of

Economic Studies 42, 375-393.

[20] Mirman, L. J., 1972. On the Existence of Steady State Measures for One Sector Growth

Models with Uncertain Technology. International Economic Review 13, 271-286.

[21] Øksendal, B. and A. Sulem, 2005. Applied Stochastic Control of Jump Diffusions. Berlin:

Springer-Verlag.

[22] Radner, R., 1961. Paths of Economic Growth that are Optimal with Regard only to Final

States: A Turnpike Theorem. Review of Economic Studies 28, 98-104.



30

[23] Ramsey, F. P., 1928. A Mathematical Theory of Saving. Economic Journal 38, 543-559.

[24] Riedel, F., 2009. Optimal Stopping with Multiple Priors. Econometrica 77, 857-908.

[25] Samuelson, P. A., 1965. A Catenary Turnpike Theorem Involving Consumption and the

Golden Rule. American Economic Review 55, 486-496.

[26] Scheinkman, J., 1976. On Optimal Steady States of n-Sector Growth Models when Utility is

Discounted. Journal of Economic Theory 12, 11-20.

[27] Schreiber, S. J., M. Benaïm and K. A. S. Atchadé, 2011. Persistence in Fluctuating

Environments. Journal of Mathematical Biology 62, 655-683.

[28] Solow, R. M., 1956. A Contribution to the Theory of Economic Growth. Quarterly Journal of

Economics 70, 65-94.

[29] Song, Z., K. Storesletten and F. Zilibotti, 2011. Growing Like China. American Economic

Review 101, 202-241.

[30] Yano, M., 1984. The Turnpike of Dynamic General Equilibrium Paths and Its Insensitivity to

Initial Conditions. Journal of Mathematical Economics 13, 235-254.

[31] Yano, M., 1998. On the Dual Stability of a Von Neumann Facet and the Inefficacy of

Temporary Fiscal Policy. Econometrica 66, 427-451.


