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Abstract

The Granger causality test is reduced, after co-integration, to the test of the fact

that some coefficients of linear regressions are equal to zero or not.

In this paper we will build multi-variate Bayes tests for the signification of the

parameters of linear regression provided by the above Granger causality, instead

of using the classical F statistics. We will consider the cases of known variance,

respectively unknown variance.

Because we replace in practice the Student tests by the Z tests if the involved

number of degrees of freedom is at least 30, we can replace in our paper the case of

unknown variance with that of known variance, if the above number of degrees of

freedom is at least 30.
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1 Introduction

Consider X a random variable whose distribution depends on the parameter θ ∈ Θ.
If X is discrete, we denote by p (x| θ0) = P (X = x| θ = θ0), and, if X is continuous, by
f (x| θ) the pdf. of X conditioned on the fact that θ = θ0.

In the Bayesian inference the parameter θ is a random variable with the pdf g (θ), called
prior pdf. of θ. To determinate the posterior pdf. of θ we use the formula of Bayes, and
we obtain (Preda, 1992; Liu, 1996; Lo and Cabrera, 1987)
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g (θ0|x) =
p (x| θ0) · g (θ0)∫

Θ

p (x| θ) · g (θ)dθ
(1)

in the discrete case, respectively

g (θ0|x) =
f (x| θ0) · g (θ0)∫

Θ

f (x| θ) · g (θ)dθ
(1’)

in the continuous case.

Definition 1 (Preda, 1992) A family of prior distribution P is called conjugated prior
distribution for the pdfs family F = {f (x| θ)| θ ∈ Θ} if (∀g ∈ P) (∀f ∈ F) we have g (θ|x) ∈
P.

A special case of conjugated family of prior distribution is that when P and F are
identical to the normal family (Preda, 1992): if X ∼ N (θ, σ2) with known σ2, and θ ∼
N (µ, τ 2) then

θ|X ∼ N

(
τ 2 · X + σ2 · µ

σ2 + τ 2
,

σ2 · τ 2

σ2 + τ 2

)
. (2)

For Bayes estimators we have to define first some loss function, like U (θ1, θ0) =
(θ1 − θ0)

2, or U (θ1, θ0) = |θ1 − θ0| (Preda, 1992). In these formulae U (θ1, θ0) is the loss
function if we decide that θ = θ1 if in fact θ = θ0. Other loss function, as weighted
quadratic one is used by Ciumara (2005).

Definition 2 (Preda, 1992) Consider g (θ|x) the posterior pdf. of the parameter θ and
U (θ1, θ0) a loss function as above. The Bayes risk is E (U (θ, θ0)), where θ0 is the decided
(chosen) value of θ, and the pdf. of the random variable θ is g (θ|x).

Definition 3 (Preda, 1992) The Bayes estimator of the parameter θ is the value θ0 cho-
sen such that the Bayes risk is minimum.

If U (θ1, θ0) = (θ1 − θ0)
2 the Bayes estimator is the average, and if U (θ1, θ0) = |θ1 − θ0|

the Bayes estimator is the median.
In Preda (1992) there is presented a bilateral Bayes test with the first degree error (the

treshold) ε. There are considered the conditioned pdf. f (x| θ), the prior pdf. of θ, g (θ),
and the number p0 ∈ (0, 1). Because p0 is interpreted as the prior probability to have
θ = θ0, we usualy choose p0 = 0.5 from the maximum entropy principle. The posterior
probability to have θ = θ0 is

P (θ = θ0|X) =
p0 · f (x| θ0)

p0 · f (x| θ0) + (1 − p0)
∫

Θ

f (x| θ) · g (θ)dθ
. (3)
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We accept the null hypothesis H0 : θ = θ0 against the alternative hypothesis H1 : θ 6= θ0

with the treshold ε if and only if P (θ = θ0|X) > 1 − ε.
The computation of the integral from the denominator is done, and the example of the

Bayes bilateral test in the case of the normal distribution with known variance is presented
(Preda, 1992).

Consider n points in R
k+1, X(1), ..., X(n), where X(i) =

(
X

(i)
1 , X

(i)
2 , ..., X

(i)
k , Yi

)
. The

regression hyper-plane is

H : Y = A0 +
k∑

i=1

AiXi such that (4)

n∑

i=1

u2
i is minimum, (4’)

where the residues ui have the formula

ui = Yi − A0 −

k∑

j=1

AjX
(i)
j . (4”)

For the computation of Ai from (4) we have to solve the system (Saporta, 1990)

k∑

j=0

Xi · Xj · Aj = Xi · Y , i = 0, k, (5)

where X0 · Xi = Xi and X2
0 = 1.

The polynomial model is in fact the multilinear model (4) with the explanatory variables
X1 = X, X2 = X2 and so on (Ciuiu, 2010).

For the obtained estimators of Ai using (5) and for the residues ui we have the following
hypotheses (Jula, 2003; Voineagu et al., 2007):

1. The estimators of Ai are linear.

2. The estimators of ui have the expectation 0 and the same variance (homoskedastic-
ity).

3. The estimators of ui are normal.

4. The random variables ui are independent.

From the above hypotheses and from Gauss—Markov theorem we obtain the following
properties (Jula, 2003; Voineagu et al., 2007):

1. The estimators of Ai are consistent.

2. The estimators of Ai are unbiased.
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3. The estimators of Ai have the minimum variance.

4. The estimators of Ai have the maximum likelihood.

If we denote by Â the vector of the estimated parameters Ai, the variance-covariance
matrix of Â is (Jula, 2003)

V ar
(
Â

)
= σ2

e (XX ′)
−1

. (6)

If we denote by dij the value from the row i and column j in the matrix (XX ′)−1, we
obtain the estimator of σ2

Ai

S2
❜Ai

= σ2
u · dii, (7)

where σ2
u is the estimated variance of the residues.

For testing the null hypothesis H0 : Ai = 0 against the alternative hypothesis H1 : Ai >

0 we use the Student test (Jula, 2003). We compute

Ti =
Âi

S ❜Ai

, (8)

and we accept the null hypothesis (the parameter is not significant) if and only if Ti <

tn−k−1;ε, where n is the data size, k is the number of explanatory variables, and tn−k−1;ε is
the centil of the error ε of the Student distribution with n − k − 1 degrees of freedom.

The Granger causality test is based uppon the following regressions (Jula, 2003)






yt = β0 +
N∑

k=1

βk · yt−k +
N∑

l=1

αl · xt−l + ut

xt = γ0 +
N∑

k=1

δk · yt−k +
N∑

l=1

γl · xt−l + vt

, (9)

where N is the common number of lags, ut is the residue of the regression equation of y in
term of x, and vt is the residue of the regression equation of x in term of y.

The test consists in testing the null hypothesis H0: αl = 0, respectively δk = 0 for
any l = 1, N (k = 1, N) against the alternative hypothesis H1: there exist l = 1, N (or
k = 1, N) such that αl 6= 0 (or δk 6= 0), with a given error ε. If in both cases it is accepted
H0 we have no causality between x and y. If at least one αl is statisticaly significant and
all δk = 0, then x is a cause for y (y can be explained by x). In the reverse way, if at least
one δk is statisticaly significant and all αl = 0, then y is a cause for x (x can be explained
by y). If the above existence is fulfilled bot for at least one l and at least one k, then the
causality is in both senses.

For each of the equations we use the statistics (Jula, 2003)

F =
RSSr − RSSn

RSSn

·
T − 2N − 1

N
, (10)
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where T is the number of observation, N is the above number of considered lags, RSSr is
the sum of square of the residues in the case of restricted equation (all the coefficients zero),
and RSSn is the same sum of squares in the case of non-restricted equation. We notice that
the above F statistics is well built, taking into account that for the non-restricted equation
we have T − 2N − 1 (the number of observation minus the number of parameters), and for
the restricted one we have to subtract the number of parameters we enforce to be zero, i.e.
N .

2 The Bayes Test for Multi-Variate Normal Distrib-

ution

2.1 Case of Known Variance

If we expand the fraction of (3) by g(θ0)❘
Θ

f(x|θ)·g(θ)dθ
we obtain the posterior probability to

have θ = θ0 in the case of Bayes bilateral test

P (θ = θ0|X) =
p0 · g (θ0|X)

p0 · g (θ0|X) + (1 − p0) · g (θ0)
. (11)

Therefore for testing if θ = θ0 with a given error using Bayes test is enough to know the
prior and posterior densities of θ. Therefore it does not matter if we have θ ∈ R or θ ∈ R

d

with d > 1. The case of the known variance is easy generalized, because the marginals of
the normal distribution (the distribution of the coefficients that must be zero according to
the null hypothesis) are also normal.

Consider then the conditional distribution of the vector θ̂ of θ (the k involved parame-
ters) being normal N (θ, n · Σ1). Consider also the prior distribution of being k−variate
normal distribution N (µ, Σ2).

The posterior distribution of θ|X is (Preda, 1992)

θ|X ∼ N
((

Σ−1
1 + Σ−1

2

)−1 (
Σ−1

1 µ + Σ−1
2 X

)
,
(
Σ−1

1 + Σ−1
2

)−1
)

. (12)

The above formula is if we consider the bilateral case for each component, i.e. the
alternative hypothesis is θ 6= 0 (of course, as vector). If we consider for some components
unilateral case (left if the estimator is less than zero, and right in the contrary case), the
involved multiple integral is computed by the Monte Carlo method (Văduva, 2004): we
generate 1000 vectors according to the prior distribution and we compute the average of a
function on the generated vectors that takes the value zero if the generated vector is not
in the right domain, otherwise the value of the conditional pdf.

In the case of the coefficients of linear regression, we replace Σ1 with the estimated
variance-covariance matrix of the corresponding coefficients.
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2.2 Case of unknown variance

In this case the difficulty consists in the unknown variance-covariance matrix Σ1. Nev-
ertheless, tacking into account (6), the only extra parameter is σ2

e .
Therefore we consider the same conditional distribution for θ| θ, σ2

e as for previous θ| θ
in the case of known variance-covariance matrix, but we replace Σ1 by σ2

e · (XX ′)−1, with
σ2

e unknown. For the corresponding coefficients we consider only these rows/ columns of
the above matrix.

Denote by σ2 = σ2
e , by f1 the conditional distribution of θ̂

∣∣∣ θ, σ2, by f2 the conditional

distribution of σ̂2

∣∣∣ σ2, by g1 the prior distribution of θ, and by g2 the prior distribution of

σ2.
We compute for each value of σ2 the posterior probability as in the case of known

variance, and we apply the total probability formula.
The prior distribution g2 is considered Γ having the expectation equal to the estimated

σ2, and the variance 1
n
.

When we apply the total probability formula we use the Monte Carlo method as follows.
We generate first 1000 random variables having the above Gamma distribution (Văduva,
2004), and we compute the average of the posterior probabilities computed for the generated
variances.

3 Results

Example 1 Consider data on GDP per capita in PPS (Purchasing Power Standards) and
on energy intensity of the economy (gross inland consumption of energy divided by GDP:
kilograms of oil equivalent per 1000 Euro). The data are according to EUROSTAT, and
there is considered the case of Romania in the period 1996-2009. We denote GDP by X,
and energy intensity of the economy by Y . The data are in appendix A.

If we consider two lags we obtain the regressions (9)

{
yt = 397.86263 + 0.67716yt−1 − 0.01952yt−2 − 9.22994xt−1 + 4.6304xt−2

xt = 31.57469 − 0.0008yt−1 − 0.02319yt−2 + 0.39113xt−1 + 0.34242xt−2

The prior coefficients we want to test that are zero are those of x in the first equa-
tion, respectively y in the second one. The prior expectations are (−9 5)T , respectively

(−0.001 − 0.025)T , and the prior variance-covariance matrices are

(
41 −40
−40 45

)
and

(
0.25 −0.22
−0.22 0.22

)
. In fact the values are taken such that they are closed to the estimated

values.
The prior values of a are 15000, respectively 30, and the prior values of b are 0.001,

respectively 0.05.
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The posterior probabilities to have the coefficients equal to zero are 0.00367 in the first
case (Y resulting variable), respectively 0.99966 in the first case (X resulting variable).

Therefore the coefficients of GDP per capita are significant for energy intensity of the
economy, and it means that the last variable can be explained by GDP , i.e. GDP is
Granger cause for energy intensity of the economy.

In the second case the conclusion is that GDP can not be explained by energy intensity
of the economy, hence it is not Granger cause for GDP .

4 Conclusions

The case of unknown variance of residues can be reduced, as we have seen in this paper
to the case of known variance. We consider also a prior distribution for the variance and
we apply the total probability formula.

The idea of using Bayes test for Granger causality is that in fact we must have the same
thing for non-causality: some coefficients of derived linear regressions are zero. That’s why
we have replaced the F test by the Bayes test.

An open problem is to find a possible explanation of sign change for GDP as Granger
cause for energy intensity of the economy: the coefficient of xt−1 is −9.22994, and the
coefficient of xt−2 is 4.6304.
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A The data for Romania according EUROSTAT, on

GDP per capita and energy intensity of the econ-

omy

Year GDP per capita Energy intensity of the economy
An1996 33 1128.9
An1997 29 1116.17
An1998 27 1037.95
An1999 26 924.41
An2000 26 906.05
An2001 28 869.24
An2002 29 857.74
An2003 31 847.43
An2004 34 766.7
An2005 35 732.99
An2006 38 704.78
An2007 42 659.09
An2008 47 612.76
An2009 46 576.9
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