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Abstract

In this paper, we revisit bear market predictability by employing a number of variables

widely used in forecasting stock returns. In particular, we focus on variables related to the

presence of imperfect credit markets. We evaluate prediction performance using in-sample

and out-of-sample tests. Empirical evidence from the US stock market suggests that among

the variables we investigate, the default yield spread, inflation, and the term spread are

useful in predicting bear markets. Further, we find that the default yield spread provides

superior out-of-sample predictability for bear markets one to three months ahead, which

suggests that the external finance premium has an informative content on the financial mar-

ket.
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1. Introduction

Stock return predictability has attracted considerable attention in the literature, and a number of

variables have been identified as generally good predictors of future stock returns. For example,

financial variables, such as the dividend–price, earnings–price, and book-to-market ratios and

dividend growth, have been found to be significant in predicting future stock returns (Campbell

and Shiller, 1988, 1989; Fama and French, 1988; Goetzmann and Jorion, 1993; Lettau and

Ludvigson, 2005; Lewellen, 1999; Menzly et al., 2004; Pontiff and Schall, 1998). In addition,

macroeconomic variables have also been found to be good candidates for the prediction of stock

market movements (Rapach et al., 2005; Thorbecke, 1997). See Goyal and Welch (2008) for a

comprehensive review of stock return predictability.

However, instead of predicting stock returns, some recent studies have shifted the focus

to bear market predictability. Shen (2003) shows that by forecasting bear markets, investors

can exploit profitable opportunities by optimally timing their portfolios. They can thus obtain

higher returns by following a timing strategy rather than a buy-and-hold strategy. Therefore,

predicting the turning points of stock markets becomes an informative task in investment. Fur-

thermore, from a policy perspective, predicting the swings in the stock market provides useful

information about business cycles (Estrella and Mishkin, 1998). In particular, widespread liq-

uidity problems may account for credit crunches in financial markets during bear market periods

(Bernanke and Lown, 1991). Thus, monetary authorities, which are generally responsible for

maintaining and ensuring overall financial stability, can make use of information about future

stock market booms and busts when implementing monetary policy ex ante (Rigobon and Sack,

2003). As an example, a recent study by Chen (2009) evaluates bear market predictability using

various macroeconomic variables, and concludes that the term spread and inflation are useful

in predicting the bear markets. Nyberg (2013) subsequently confirms the empirical findings in
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Chen (2009) using dynamic binary time series models.

The purpose of this paper is to examine bear market predictability in stock markets using

a range of financial variables, particularly those related to the presence of imperfect capital

markets. There are several reasons why this exercise is both useful and appealing. First, al-

though Chen (2009) shows that macroeconomic variables are informative in forecasting bear

stock markets, it would be more practically relevant to consider financial variables as predic-

tors, as these are not typically subject to revision. Second, focusing on variables related to

imperfect capital markets is motivated by the well-known fact that imperfect capital markets

play an important role in the propagation mechanism of exogenous shocks during business cy-

cles (Bernanke and Gertler, 1995; Bernanke et al., 1999; Hubbard, 1998). Thus, it is intuitive to

relate imperfect capital markets to stock market dynamics. To explore this possibility, we follow

existing studies, such as Bernanke and Gertler (1995), Bernanke et al. (1999), and Carlstrom

and Fuerst (1997), in measuring the changing conditions of credit markets using the external

finance premium (EFP). This is because the literature regards the EFP as a key indicator of

credit market imperfections. In brief, as the probability that borrowers will default increases,

lenders will charge a higher premium to compensate for the greater default risk, and the EFP

will rise. Clearly, the increased risk of borrowers defaulting coincides with a more pessimistic

economic outlook, which tends to suppress the stock market. That is, changes in the EFP may

have significant power to predict stock markets.

Compared with the voluminous literature on the predictability of stock returns, few studies

explore the predictability of bear markets, particularly using financial variables and measures of

EFP. Accordingly, our paper focuses on examining the predictability of bear markets, employing

a measure of EFP in addition to other financial and macroeconomic variables.

Using US data from 1952M1 to 2011M12, we consider 14 stock return predictors as po-

tential candidates for predicting bear markets. The variables we consider comprise several
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valuation ratios (including the dividend–price and earnings–price ratios and dividend yield), a

number of variables related to corporate and equity market activity (the book-to-market and

dividend–payout ratios, net equity expansion, and stock return variance), and a macro variable

(inflation). We also specify a range of interest rate-related variables, including both short- and

long-term interest rates and the term spread (Treasury bill rates, long-term bond yields, long-

term bond returns, and the term spread). Finally, we also consider the default risk premium as

a proxy for the EFP (default yield spread and default returns).1 Given that existing empirical

studies suggest that the cyclical variations in the US stock market are well characterized by

Markov switching (MS) models (Maheu and McCurdy, 2000; Perez-Quiros and Timmermann,

2000), we identify bear markets by extracting the filtered probabilities using a two-state MS au-

toregressive (AR) model of aggregate returns. We then use predictive regression to investigate

whether we are able to predict bear markets using various financial variables.

We conduct both in-sample and out-of-sample tests of predictability to evaluate forecast-

ing performance. We find that among the variables investigated, the default yield spread, as

measured by Baa-rated corporate bond yields minus Aaa-rated corporate bond yields, performs

well in predicting bear markets, especially at horizons of one to three months. To compare our

results with Chen (2009), we also implement non-nested tests. The results of these tests also

demonstrate that the EFP yields better short-term market predictability than the term spread and

inflation. On the other hand, inflation and the term spread best predict bear markets at medium

to long horizons. Our findings therefore suggest that including the EFP, such as in the form of

1In the present analysis, we predict bear markets using monthly data exclusively. Recently, some studies have

focused on linking the macroeconomy and financial markets and constructing new predictors of stock returns.

Most of these assume the presence of a long-term cointegrating relationship between macroeconomic variables,

including labor income, consumption, and asset wealth. For instance, Lettau and Ludvigson (2001) propose the

prediction of stock returns using the consumption–wealth ratio. Lettau and Ludvigson (2005) employ a similar

concept to construct the consumption–dividend ratio. Lastly, Lustig and Van Nieuwerburgh (2005) suggest the

use of housing collateral to predict stock returns, as measured by the long-term cointegrating relationship between

housing and human wealth. In general, there is now evidence that these variables are useful when predicting stock

returns. However, monthly data are not available.
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the default yield spread, which is generally perceived to be a measure of the credit conditions

faced by firms, can significantly enhance the predictability of bear markets. This is also remi-

niscent of past findings that the EFP of firms helps explain asset market movements (Bernanke

and Gertler, 1995).

To check for robustness, we apply different measures of bear stock markets. In particular,

we use the nonparametric method proposed by Candelon et al. (2008) to obtain an indicator

series showing periods of bear market. We also consider multivariate regression specifications

and an alternative measure of the EFP– TED spread (the difference between the interest rates

on interbank loans and short-term US government debt). Our results remain robust. That is,

different measures of EFP all perform well as leading indicators of bear markets.

The remainder of the paper is structured as follows. Section 2 introduces the list of pre-

dictors used to forecast bear markets. Section 3 explains the sources of data and the statistical

properties of these time series. Section 4 presents a MS model and shows how this model iden-

tifies bear market periods. Sections 5 and 6 document our main findings on the predictability of

bear markets. Section 7 provides the robustness checks, while Section 8 details the economic

significance of predictions of bear markets. Finally, Section 9 offers some concluding remarks.

2. Potential Predictors

We consider 14 predictors of bear markets, including financial and macroeconomic variables

and measures of the EFP. A brief explanation of these predictors follows.

Dividend–Price Ratio and Dividend Yield The log dividend–price ratio was first proposed

by Campbell and Shiller (1988). They show that the log dividend–price ratio dp can be written

as:

dp ≡ dt − pt = dp+Et

∞

∑
j=0

ρ j[(rt+ j − r)− (∆dt+ j −d)], (1)
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where dt is the log dividends paid on the stock, pt is the log of the stock price, and rt is the log

stock return at time t, and ρ denotes the discount factor. Finally, the mean of the log dividend–

price ratio dp is a function of the growth rate of log dividends d and expected log return r in the

steady state:

dp = log(exp(r)− exp(d))−d.

According to equation (1), the dividend–price ratio is high when it is expected that the future

log stock return rt will be high or the future dividend growth rates ∆dt will be low.

In addition to the dividend–price ratio, we include a variant often used in the literature:

namely, the log dividend–yield ratio. This is calculated by subtracting the log of the lagged

stock price from the log dividend, i.e., dt − pt−1.

Earnings–Price Ratio Another valuation ratio often used in the literature is the earnings–

price ratio (ep), as derived from a dynamic Gordon growth model. Assuming that companies

pay out a constant proportion of earnings as dividends, the earnings–price ratio can be expressed

as in equation (1), except that dividends are replaced by earnings. This assumption relies on

the observation made by Lintner (1965) that corporations have a certain target payout ratio, and

that variations in the earnings–price ratio should predict expected stock returns.

Dividend–Payout Ratio Lamont (1998) argues that the ratio of dividends to earnings is a

good predictor of excess returns because high dividends typically forecast high returns, whereas

high earnings typically forecast low returns. Hence, an increases in the dividend–payout ratio

is associated with a high probability of a bear market.

Stock Variance Goyal and Welch (2008) and Guo (2006) show that the variance of stock

returns predicts the future equity premium. That is, an increase in the variance of stock returns
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indicates an increase in the future volatility of the stock market and a high probability of bear

markets.

Book-to-Market Ratio Lewellen (1999) and Kothari and Shanken (1997) show that an ag-

gregate book-to-market ratio predicts stock returns. Pontiff and Schall (1998) argue that this

is because the book value proxies for expected cash flows; i.e., the book-to-market ratio is the

ratio of a cash flow proxy to the current price level. Holding expected cash flow constant, a

decrease in market value leads to an increase in the book-to-market ratio. This explains the

positive relation between the current book-to-market ratio and future stock returns.

Net Equity Expansion Net equity issuing activity refers to initial public offerings (IPOs),

seasoned equity offerings (SEOs), and stock repurchases minus distributed dividends, which is

closely related to the net payout yield proposed by Boudoukh et al. (2007) and Goyal and Welch

(2008) as a predictor of future stock returns.

Inflation The inflation rate has been investigated extensively in empirical literature (Fama,

1981; Rapach et al., 2005). Chen (2009) also finds that the inflation rate, apart from the term

spread, is useful in predicting bear markets.

Treasury Bill Rate Campbell (1991) and Hodrick (1992) show that the Treasury bill rate is

able to forecast future stock returns. In this paper, we specify the three-month Treasury bill rate.

Long-Term Yield, Long-Term Return, and Term Spread We follow Goyal and Welch

(2008) and Rapach and Zhou (2012) and also consider long-term government bond yields and

long-term government bond returns as predictors. The difference between the long-term yield

and the Treasury bill rate is the term spread, which has been widely used in stock return fore-

casting exercises (See, for example Ang and Bekaert, 2007; Campbell and Yogo, 2006; Fama
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and French, 1989; Keim and Stambaugh, 1986; Pontiff and Schall, 1998). In particular, Chen

(2009) finds this to be significant in predicting bear markets.

Default Yield Spread and Default Return Spread Fama and French (1989) show that the

default yield spread, which is the spread between the yields on low- and high-grade corporate

bonds, is a good predictor of long-horizon stock returns. The intuition is that the default yield

spread not only proxies the EFP required by outside investors but also serves as a good indicator

of general business conditions, and hence should be able to capture any long-term business cycle

variation in stock returns. In this paper, we also follow Goyal and Welch (2008) and include a

similar predictor, namely the default return spread, which is defined as the difference in returns

between a long-term corporate bond and a long-term government bond.

3. Data

The monthly data used in this paper spans the period from 1952M1 to 2011M12. We use CRSP

value-weighted returns to proxy the aggregate stock returns. The CRSP Index (which includes

the NYSE, AMEX, and NASDAQ markets) provides a better proxy for US stock market returns

because it is a much broader measure of market behavior than the Standard & Poor (S&P)

Index.2

The dividend–price ratio dp is calculated using the log of a 12-month moving sum of the

CRSP dividends minus the log of the CRSP value-weighted (VW) stock index (imputed from

the CRSP-VW returns, including dividends). For the dividend yield, we use the log of a 12-

month moving sum of dividends minus the log of the lagged CRSP value-weighted stock index.

To calculate the earnings–price ratio ep, we use the log of a 12-month moving sum of

2The data on the stock return predictors are mostly available on Amit Goyal’s Web page at

http://www.hec.unil.ch/agoyal/, with the exception of some series obtained from the CRSP database and

the Board of Governors of the US Federal Reserve. The data and their sources are described in detail in Goyal and

Welch (2008).
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earnings per share on the S&P 500 Index minus the log of the S&P Composite Index. The

dividend–payout ratio de is also measured based on data from the S&P 500 Index. We use

the log of a 12-month moving sum of dividends minus the log of a 12-month moving sum of

earnings.

Stock variance svar is measured by the monthly sum of squared daily returns on the S&P

500 Index. The book-to-market ratio bm is the ratio of book value to market value for the Dow

Jones Industrial Average (DJIA).

Net equity expansion ntis is the ratio of the 12-month moving sum of net equity issues by

NYSE-listed stocks to the total end-of-year market capitalization of NYSE stocks. The amount

of net equity issues (IPOs, SEOs, and stock repurchases, less dividends) for NYSE-listed stocks

is computed from the CRSP data as:

net equity issues = MCAPt −MCAPt−1 × (1+vwretxt),

where MCAPt is the total market capitalization, and vwretxt is the value-weighted return (ex-

cluding dividends) on the NYSE Index.

The inflation rate in f l is calculated using the Consumer Price Index (All Urban Consumers)

from the Bureau of Labor Statistics. We use one-month lagged inflation to measure the inflation

rate to account for any delays in the release of the CPI.

The three-month Treasury bill yield tbl is obtained from the Board of Governors of the

US Federal Reserve. As constant maturity rates are available only from 1982 onward, we

follow Estrella and Trubin (2006) and use the secondary market three-month rates (which is on

a discount basis) and express these on a bond-equivalent basis. Specifically:

r =
365× rd/100

360−91× rd/100
×100,
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where rd is the three-month discount rate, and r is the bond-equivalent rate.

The long-term government bond yield lty is from Ibbotson’s Stocks, Bonds, Bills, and Infla-

tion Yearbook. The same source also provides long-term government bond returns ltr. The term

spread tms is the difference between the ten-year yield on Treasury bonds and the three-month

Treasury bill rate.

Finally, the default yield spread d f y is constructed using the difference between Moody’s

Baa-rated corporate bond rate and the Aaa-rated corporate bond rate, while the default return

spread d f r is measured by the difference in returns between long-term corporate bonds and

long-term government bonds.

Among the predictors investigated, the unit root test results indicate that the null hypotheses

of nonstationarity are not rejected for dp, dy, bm, tbl, and lty. To avoid the problem of nonsta-

tionarity in tbl and lty, we follow the suggestions by Campbell (1991) and Hodrick (1992) and

use interest rates minus their respective 12-month moving averages to obtain a “relative Trea-

sury bill rate” (rrel) and a “relative long-term bond yield” (rlty), so as to remove the stochastic

trends in tbl and lty. As for dp, dy, and bm, we follow Lettau and Van Nieuwerburgh (2008)

and correct for structural breaks in the means of dp, dy, and bm, and use the deviations of dp,

dy, and bm from their time-varying means to predict bear markets; we denote these deviations

as d̃ p, d̃y, and b̃m, respectively, henceforth. The appendix provides details on the construction

of d̃ p, d̃y, and b̃m using the method suggested by Lettau and Van Nieuwerburgh (2008).

Finally, we run Augmented Dickey–Fuller (ADF) and Phillips–Perron (PP) unit root tests

on each of the time series we employ. The results are presented in Table 1. Clearly, the null

hypothesis of a unit root process is rejected for all series.
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4. Identifying Bull and Bear Markets

Following Maheu and McCurdy (2000), Frauendorfer et al. (2007), and Chen (2009), we iden-

tify busts (bears) and booms (bulls) in the stock market using an MS approach. We consider a

two-state MS-AR model of stock returns with lag length p (MS-AR(p)) as follows:

Rt = αSt
+φ1(Rt−1 −αSt−1

)+ · · ·+φp(Rt−p−αSt−p
)+ut ,ut ∼ N(0,σ2

St
), (2)

where

αSt
= α0(1−St)+α1St ,

and

σSt
= σ0(1−St)+σ1St .

The unobserved state variable St is a latent dummy variable taking a value of either 0 or 1,

indicating a bear or bull market in stock returns, respectively. αSt
and σSt

are the state-dependent

mean and standard deviation of Rt , respectively. That is, the mean and standard deviation are

(α0, σ0) for bear markets and (α1, σ1) for bull markets. Finally, the parameters (φ1, . . . ,φp)

capture the autoregressive components of stock returns.

Furthermore, the transition probability matrix of the MS model is assumed to be time in-

variant and is expressed as follows:

P =




P00 1−P11

1−P00 P11


 ,

where

P00 = P(St = 0|St = 0) =
exp(θ0)

1+ exp(θ0)
,
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P11 = P(St = 1|St = 1) =
exp(θ1)

1+ exp(θ1)
.

We use the information criterion proposed by Psaradakis and Spagnolo (2003) to determine the

optimal lag length p of the MS-AR(p) model in equation (2). According to the Psaradakis–

Spagnolo Akaike information criterion (AIC) and Bayesian information criterion (BIC) pre-

sented in Table 2, the lag length is taken to be p = 1. Moreover, although we specify a two-state

MS model to identify the bear and bull markets, it is possible that a third market state (regime)

may exist, such as a huge bear or bull market. Again we compute the information criterion pro-

posed by Psaradakis and Spagnolo (2003) to determine the optimal number of states. The AIC

and BIC are 4081.09 and 4140.55, respectively, for the three-state MS-AR(1) model, while

the AIC and BIC are 4074.16 and 4106.18, respectively, for the two-state MS-AR(1) model.

Clearly, the MS-AR(1) model with two regimes is chosen via the information criterion.

The estimation results using the MS-AR(1) model are presented in Table 3. The results

indicate that the MS-AR(1) model identifies a regime with a higher mean (µ1 = 1.327) and

lower standard deviation (σ1 = 3.101) and a regime with a lower mean (µ0 = 0.267) and larger

standard deviation (σ0 = 5.771). We identify the former as a bull market and the latter as a bear

market. This result resembles the findings in Maheu and McCurdy (2000) in their investigation

of CRSP returns.

Once we have statistically identified the bear and bull markets, we calculate the filtered

probabilities of each state as follows:

Q j,t = P(St = j|Ωt), j = {0,1}, (3)

where Ωt denotes the information set at time t. For example, the filtered probability Q0,t =

P(St = 0|yt) is an estimate of the probability of a bear market at time t. Figure 1 displays the
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estimated filtered probabilities based on the MS-AR(1) model.

5. Predictive Regression and In-Sample Tests

After obtaining the filtered probability of a bear market from equation (2), we follow Chen

(2009) and consider the following predictive regression:

Q0,t+k = α +βxt + et+k, (4)

where Q0,t+k is the bear market probability at a horizon k months ahead, and xt is the predictor

under investigation.

The in-sample test for the predictability of future bear markets investigates the forecasting

power of xt in equation (4). Table 4 reports the estimates of β , p-values based on Newey–West-

corrected t-statistics, and the adjusted R2 (denoted as R
2
). The in-sample predictive power is

measured at horizons of 1, 3, 6, 12, and 24 months.

We summarize the empirical findings as follows. First, the valuation ratios, such as d̃ p,

ep, and b̃m, have no predictive power at any horizon. 3 Second, the estimates of equity risk,

such as svar, predict bear markets at k = 1,3,6,12. Third, inflation also predicts bear markets

at k = 1,3,6,12 months. This concurs with the finding in Chen (2009) that the inflation rate

is a good leading indicator of bear markets. Finally, most of the interest rate spread variables

predict bear markets. For instance, the default yield spread predicts bear markets at horizons

of k = 1,3,6,12 months. The term spread predicts bear markets at long horizons, such as

k = 12,24. According to the adjusted R2, the default yield spread has better goodness-of-fit

at short horizons, while the term spread is more powerful in forecasting future bear markets at

long horizons.

3We also used the original series for the dividend–price ratio, dividend yield, and book-to-market ratio, and

these results are also not significant.
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It is worth noting that according to Table 4, the sign of the estimates of β also generally

accords with the economic intuition. For instance, svar, d f y, and in f l are positively associated

with future bear markets, implying that an increase in stock market volatility, default risk, or

inflation raises the likelihood of a future recession in the stock market. On the other hand,

tms is negatively correlated with future bear markets, 4 which implies that when the long-term

bond supply increases due to expected future expansion in the stock market, long-term bond

yields will rise and therefore the probability of a future bear market will decrease. Overall,

our in-sample results show that most of our predictors, including stock variance, long-term

government bond returns, default yield spread, and inflation, have good predictive power for

bear markets.

6. Out-of-Sample Tests

6.1. Nested Forecast Comparisons

As a first step, we conduct out-of-sample tests by making forecast comparisons for the nested

models. That is, we compare the mean squared prediction error (MSPE) from an unrestricted

model that includes the predictor under investigation with that from a restricted benchmark

model that excludes this same variable. Thus, the unrestricted model nests the benchmark

model. Specifically, the nested models are as follows:

restricted model: Q0,t+k = α1 + ε1t ,

unrestricted model: Q0,t+k = α2 +βxt + ε2t .

4In Chen (2009), the term spread is defined as the difference between the short- and long-term interest rates.

Thus, the term spreads in Chen (2009) are positively correlated with future bear markets.
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It is clear that the unrestricted model nests the restricted model under the no-predictability null,

β = 0. We may conclude that xt is a useful predictor in out-of-sample tests if the predictive

ability of the unrestricted model is better than that of the restricted model. Let MSPEu be the

error for the unrestricted model and let MSPEr be the error for the restricted model. Then

MSPEu/MSPEr < 1 indicates that the unrestricted model performs better in forecasting Q0,t+k;

that is, xt has predictive power for future bear markets.

To evaluate the out-of-sample forecasting performance, we conduct out-of-sample forecasts

at horizons k months ahead. First, we divide the total sample of T observations into in-sample

and out-of-sample periods. Let there be R in-sample and P out-of-sample observations. The out-

of-sample forecasts of Q0,t+k for the restricted and unrestricted models are Q̂1
0,t+k and Q̂2

0,t+k,

respectively, and ê1
t+k and ê2

t+k are the corresponding forecast errors for these two models. To

test whether the unrestricted model outperforms the restricted model, we compute the mean

square error-adjusted statistic proposed by Clark and West (2007) as follows:

CW =
f√

V/P
,

where f = P−1 ∑T
t=R+1 f̂t+k, f̂t+k = (ê1

t+k)
2− [(ê2

t+k)
2−(Q̂1

0,t+k−Q̂2
0,t+k)

2], and V is the sample

variance of f̂t+k − f . The Clark–West test is an approximately normal test for equal predictive

accuracy in nested models. The null hypothesis specifies equal MSPEs for these two models,

while the alternative is that the unrestricted model has a smaller MSPE than the restricted model.

We set the out-of-sample period to be 1965M1–2011M12, corresponding to a period when

P/R ≈ 4, as identified by Clark and West (2007) in their empirical analysis of the US stock

market.5 We then use recursive regressions to reestimate the forecasting model and calculate

a series of forecasts k months ahead. Table 5 provides the results for the out-of-sample tests,

5We specified several different P/R ratios: P/R=3, 2, and 1. The results are not reported here but are available

upon request.
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including the Clark–West MSPE-adjusted statistics and the corresponding asymptotic p-values.

As shown in the table, d̃ p and d̃y predict future bear markets one and three months ahead.

For the other predictors, the out-of-sample test results are similar to those of the in-sample tests.

The exception is svar, which shows no predictive power at any horizon. It is worth noting that

the default yield spread displays statistically significant out-of-sample predictive power at short

horizons (less than six months), whereas inflation and term spread deliver significant out-of-

sample predictive power at short and medium (k = 1,6,12) and long horizons (12 months and

longer). Overall, our empirical results show that among the tested predictors, the dividend–price

ratio and default yield spread predict bear markets well in out-of-sample tests.

6.2. Non-Nested Forecast Comparisons

The out-of-sample Clark–West test results in the preceding section show that most financial

variables are able to predict bear markets. It is of interest to see which predictors have smaller

mean square errors at different forecasting horizons. In doing so, we test the equality of the

MSPEs using the modified Diebold–Mariano (MDM) test proposed by Harvey et al. (1998),

which is a version of the Diebold and Mariano (1995) test statistic modified to account for

finite-sample bias. Let ê
j
t+k denote the forecasting errors of the “competing model” j, and let

êi
t+k denote the forecasting errors of the “preferred model” i. We express the MDM test statistic

as follows:

MDM = h · d√
Ω̂
,

where h = [p+ 1− 2k + p−1k(k − 1)]1/2, k is the forecasting horizon, d = p−1 ∑T
t=R+1 d̂t+k,

d̂t+k = (ê
j
t+k)

2 − (êi
t+k)

2, and Ω̂ is a consistent estimator of the long-term variance of dt =

(ê
j
t )

2 − (êi
t)

2. The MDM statistic aims to evaluate whether the difference in prediction errors

between the “competitive model” and “preferred model” is correlated with the prediction error
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of the model encompassed under the null, and the statistic is compared with the critical values

from a t distribution with p−1 degrees of freedom.

For each forecasting horizon k, we select a combination of two models from {d f y, tms, in f l},

so that in total there are three pairs of models for the non-nested tests. The reason for choosing

{d f y, tms, in f l} is that d f y exhibits superior predictive power according to the Clark–West test,

and therefore it is of interest to compare its forecasting performance with that of tms and in f l,

which are considered to be useful predictors of bear markets (Chen, 2009). For this purpose, we

denote the model with the smaller MSPE as the “preferred model” (model i), such that the null

hypothesis is that the “competitor model” (model j) encompasses the preferred model, and the

alternative hypothesis is that the preferred model contains information that could have improved

the forecasts of the competitor model. Specifically:

H0 : MSPE of model i = MSPE of model j,

H1 : MSPE of model j > MSPE of model i.

Therefore, a significantly positive MDM statistic implies that the preferred model has better

predictive power.

We report the ratios of the MSPEs of models i and j, the MDM statistics, and the associated

asymptotic p-values in Table 6. At k = 1 and 3, the tests indicate that d f y contains information

that produces forecasts superior to those of tms and in f l, and these findings are statistically sig-

nificant at the 10% level.6 This demonstrates that the default yield spread has superior predictive

power for bear markets at short horizons. At k = 12,24, tms produces the smallest MSPE, and

this indicates that the term spread has superior predictive power at long horizons. However,

6We also considered other potential variables, such as d̃ p, as candidate competitor models. However, the

MDM tests indicate that no predictors can encompass d f y at k = 1 and 3. The results are not reported here but are

available upon request.
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the MDM test statistics indicate that there is no significant difference between tms and d f y or

between tms and in f l. Overall, our out-of-sample non-nested test results suggest that using the

default yield spread to forecast bear markets at short horizons would consistently yield forecasts

superior to those delivered using other popular forecasting variables. Conversely, inflation and

the term spread have better predictive power at medium and long horizons.

7. Robustness Checks

7.1. Smoothing Probability

To check for robustness, we also measure the probabilities of bear markets by computing the

smoothing probabilities:

Q j,t = Pr(st = j|ΩT ), j = {1,2},

where ΩT denotes the information set at time T . That is, it is the posteriori probability given that

all sample observations are available. The idea is that we compute the probability of being in a

certain state of the economy from an ex post point of view, and thus the full set of information

is utilized. The smoothing probability is plotted in Figure 2.

Tables 7 and 8 present the in-sample and out-sample results, respectively. The results

presented closely resemble those obtained in Tables 4 and 5. Moreover, in f l has predictive

power at all the horizons we investigated, and d f y has significant predictive power at horizons

k = 1,3,6,12. The results of the non-nested out-of-sample tests are presented in Table 9, and as

before, the default yield spread still stands out as the best predictor at k = 1,3, which suggests

that our main empirical results are robust.
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7.2. Other Stock Market Indicators

We use S&P 500 returns for an additional robustness check. First, we obtain the S&P 500 stock

returns following Chen (2009):

Rt = 100× (pt − pt−1),

where pt is the log of the S&P 500 Index. The in-sample and out-of-sample results for the

S&P 500 stock returns are reported in Tables 10, 11, and 12. 7 As shown, our empirical results

remain intact, and d f y continues to outperform the other predictors at short horizons. The only

difference from our previous results is that the out-of-sample performance of in f l turns out to

be insignificant in predicting bear markets.

7.3. Bootstrapping Out-of-Sample Statistics

Our benchmark out-of-sample Clark–West test results for predictive power are based on the

asymptotic critical values assuming a normal distribution, as suggested by Clark and West

(2007). However, Rogoff and Stavrakeva (2008) criticize the asymptotic Clark–West test on

the grounds that it may yield overestimates when using a recursive scheme. We thus compute

bootstrapped p-values.

We follow Rapach et al. (2005) and obtain the bootstrapped p-values of the Clark–West

statistic. The data are generated by the following system under the null hypothesis of no pre-

dictive power for the bear market probabilities Q0,t :

Q0,t = a0 + e1t , (5)

7We use the dividends paid on the S&P 500 Index to construct d̃ p and d̃y here.
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and the data-generating process of the predictor xt :

xt = b0 +b1x1t + · · ·+bpxt−p + e2t , (6)

where (e1t ,e2t)
′ is i.i.d. with covariance matrix Ω. We first estimate equations (5) and (6) using

ordinary least squares (OLS), where the lag order p in equation (6) is selected using the AIC. We

then obtain the OLS residuals, {ê1t , ê2t}t−p
t=1 . In order to generate a series of disturbances for our

pseudo-sample, we randomly draw (with replacement) T + 100 times from the OLS residuals

{ê1t , ê2t}T−p
t=1 , giving us a pseudo-series of disturbance terms {ê∗1t , ê

∗
2t}T+100

t=1 . Note that we draw

from the OLS residuals in tandem, thus preserving the contemporaneous correlation between

the disturbances in the original sample. We denote the OLS estimate of a0 in equation (5) by

â0 and denote the OLS estimate of in equation (6) by {b̂0, b̂1, · · · b̂p}. Using {ê∗1t , ê
∗
2t}T+100

t=1 and

{â0, b̂0, b̂1, · · · b̂p} in equations (5) and (6), we can build up a bootstrapped sample of T +100

observations, {Q∗
t ,x

∗
t }T+100

t=1 . We drop the first 100 transient startup observations, which leaves

us with a bootstrapped sample of T observations, matching the original sample size. Finally,

we calculate the out-of-sample Clark–West statistics for each bootstrapped sample.

The out-of-sample Clark–West test results based on the bootstrapped p-values are reported

in Table 13. Clearly, the results do not change our conclusions about significance when we apply

the bootstrapping method in calculating the p-values. This indicates that our benchmark out-of-

sample Clark–West test results are robust with respect to the bootstrapped distribution. We also

apply a similar bootstrapping procedure to the MDM statistics for the non-nested out-of-sample

tests. The results are reported in Table 14. Clearly, the bootstrapped p-values yield similar

conclusions, which suggests that our main results concerning the out-of-sample predictability

tests are robust with respect to the bootstrapping method.
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7.4. Multivariate Regression

In the previous sections, we examined the predictive power of the predictors individually, and

the out-of-sample test results indicate that d f y strongly predicts bear markets at short hori-

zons while tms predicts bear markets at long horizons. It is of interest to question whether a

regression including many predictors could improve the accuracy of forecasts at the different

horizons. For this purpose, we consider a multivariate regression that includes several predictors

as explanatory variables to see whether we can improve the accuracy.

Table 15 provides the out-of-sample results from multivariate predictive regressions that in-

clude a number of variables discussed in Section 4 thought to have predictive power for bear

markets. Specifically, the upper panel presents the results based on the multivariate regres-

sion models specifying d f y as an explanatory variable. We consider three sets of predictors:

{d f y, tms}, {d f y, tms, in f l}, and {d f y, tms, in f l,ntis, d̃ p}. The lower panel shows the empiri-

cal results of the models excluding d f y as an explanatory variable, and in this case we consider

{tms, in f l} and {tms, in f l,ntis, d̃ p}.

Clearly, the MSPEs of the models including d f y are always lower than those of the restricted

model at k = 1,3,6,12. Moreover, the results indicate that the multivariate regressions including

d f y predict bear markets at k = 1,3,6,12,24 based on the Clark–West test. For the models

excluding d f y, predictive power is insignificant at k = 3,6. Our results thus demonstrate that

including d f y as a predictor can significantly improve the out-of-sample predictability of bear

markets, especially at short horizons.

7.5. Nonparametric Approach to Dating Bear Markets

We follow Candelon et al. (2008) and Chen (2009) and use an alternative nonparametric ap-

proach to identify bull and bear markets. Candelon et al. (2008) and Chen (2009) use a Bry–
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Boschan dating algorithm to identify the local maxima and minima of the log of the stock price

index as peaks and troughs, and then a bull (bear) market period is identified as the period

between the trough (peak) and the next peak (trough). This definition implies that the stock

market has transitioned from a bull (bear) market to a bear (bull) market if prices have declined

(increased) for a substantial period since their previous peak (trough).

We identify the (local) peaks and troughs by choosing a window of six months. Let pt

denote the log of stock prices. The peaks and troughs are identified as follows:

Peak = [pt−6, · · · pt−1,< pt > pt+1, · · · , pt+6],

Trough = [pt−6, · · · pt−1,> pt < pt+1, · · · , pt+6].

Once the peaks and troughs are obtained, let It be a binary dummy variable that indicates a bust

or boom in the stock market, and then define the peak-to-trough and trough-to-peak periods as

the bear (It = 1) and bull (It = 0) markets, respectively. We then employ the following probit

model to evaluate the predictability of the bear market:

Pr(It+k = 1) = F(α +βxt). (7)

To measure the in-sample goodness-of-fit of the probit model, we follow Estrella and Mishkin

(1998) and compute the pseudo-R2 developed by Estrella (1998). Let Lu and Lr be the likeli-

hoods yielded by the unrestricted model and the restricted model, respectively. The statistic is

given by:

Pseudo-R2 = 1−
(

logLu

logLr

)−(2/T ) logLr

.

The in-sample results, including p-values based on the Newey–West-corrected t-statistics and
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pseudo-R2,8 are given in Table 16. As shown, d f y predicts bear markets at k = 1 and k = 24,

while in f l predicts bear markets at k = 1,3,6. The only difference from our previous results is

that tms becomes an insignificant predictor, as it has no particular predictive power when k is

greater than one month.

To evaluate the out-of-sample forecasting performance of the probit model, we use the

quadratic probability score (QPS) and log probability score (LPS) proposed by Diebold and

Rudebusch (1989) as follows:

QPS =
1

P

T

∑
t=R+1

2[P̂r(It+k = 1)− It+k]
2,

LPS =
1

P

T

∑
t=R+1

[(1− It) ln(1− P̂r(It+k))+ It ln(P̂r(It+k = 1))],

where P̂r(It+k = 1) = F(α̂ + β̂xt) denotes the expected probability of a bear market. Notice that

the QPS and LPS range from 0 to 2 and from 0 to ∞, respectively. A score of zero for both the

QPS and LPS indicates that the probit model has perfect predictive accuracy. Lower values of

QPS and LPS indicate the better predictability of the model.

Tables 17 and 18 report the QPS and LPS for different predictors. As shown, all of the scores

are less than one, which suggests that the predictors under investigation have good predictive

power. The results indicate that rlty has the smallest QPS and LPS at k = 1,3,24.

It is worth noting that the values of the QPS and LPS are very close across the different pre-

dictors. Hence, we adopt the MDM test to compare the predictive accuracies of d f y, in f l, and

tms at k = 1,3,24 using rlty as the benchmark, and the results are reported in Table 19. Clearly,

we fail to reject the null hypothesis of equal forecasting accuracy at most horizons. Never-

theless, we could interpret the overall result as indicating no significant difference between

8The details of our calculations of the Newey–West standard errors in the probit model are discussed in Estrella

and Mishkin (1998).
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{d f y, in f l, tms} and rlty in terms of out-of-sample predictive power when the bear market is

dated using the Bry–Boschan method.

7.6. An Alternative Measure of the EFP: The TED Spread

So far, our empirical results indicate that the default yield spread has superior predictive power

for bear markets, particularly at short horizons. In the literature, the default yield spread is

closely related to the notion of the EFP, which is considered to be a measure of the default risk

premium and hence a reflection of the credit market conditions faced by nonfinancial firms.

In this section, we consider an alternative measure of credit market conditions: the TED

spread, T ED. In general, T ED reflects the credit market liquidity conditions faced by banks:

a rising T ED often indicates a tight credit market as liquidity is being withdrawn, and this is

linked with a higher probability of a bear market.

We measure the TED spread by taking the difference between the interest rate for the three-

month London Interbank Offering Rate (LIBOR) and the three-month US Treasury bill rates,

from 1971M1 to 2011M12. The in-sample and out-of-sample prediction results, based on the

filtered probabilities obtained from the CRSP-VW returns, are presented in Table 20. Clearly,

both the in-sample and out-of-sample test results suggest that T ED predicts bear markets at all

the horizons investigated. To sum up, our empirical findings demonstrate that proxies for EFP

are also useful for predicting bear markets.

8. Implementing the Regime-Switching Trading Strategy Based on Predicted Bear Mar-

kets

In this section, we further investigate whether predicting bear markets is useful for investors

seeking profitable opportunities.

We consider the regime-switching investment strategy discussed in Pesaran and Timmer-
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mann (1995) and Chen (2009), by which investors invest all funds in three-month Treasury

bonds if the probability of a bear market one month ahead is more than 30%; otherwise, they

invest all funds in the S&P500 Index. This regime-switching strategy would be ideal for in-

stitutional investors, e.g., pension funds and mutual funds, which would like to exploit market

conditions but at the same time prefer to trade in high-liquidity securities. The probabilities

of bear markets are obtained by recursively forecasting the probability of a bear market at a

horizon of one month based on the predictors we investigated. Table 21 shows the terminal val-

ues of a $1 investment over the period from 1965M1 to 2011M12 and the monthly compound

returns. Investing $1 in the S&P500 Index (a buy-and-hold strategy) would yield $15.648 and

a monthly compound return of 0.483%. On the other hand, a switching strategy based on bear

market prediction models with different predictors would yield higher terminal wealth and com-

pound returns in general, and the forecasts based on svar, d f y, and in f l yield much better results

in terms of terminal wealth and compounded returns. This result demonstrates the usefulness

of predicting bear markets, which in turn supports the economic significance of the identified

predictors.

9. Conclusion

In this paper, we revisit bear market predictability using a number of financial variables widely

employed in stock return forecasting. In particular, we focus on the forecasting power of the

EFP, such as the default yield spread and the default return spread, as the EFP is the key indicator

of the extent of credit market imperfections and should therefore be related to stock market

dynamics. We find that the default yield spread has good predictive power for bear markets,

particularly at short horizons. We find that these results are robust with respect to different

specifications, including different measures of bear markets (such as the measures based on

the S&P 500 Index), different econometric specifications (such as the probit model), and an
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alternative measure of the EFP (the TED spread). We have shown that it is important to consider

measures of the credit market conditions in predicting stock markets, especially for investors

implementing trading strategies and for monetary authorities responsible for financial market

stabilization.

Appendix

This appendix details how we construct the adjusted series for the dividend–price ratio, dividend

yields, and book-to-market ratio using the method proposed by Lettau and Van Nieuwerburgh

(2008).

In equation (1), Lettau and Van Nieuwerburgh (2008) show evidence of the breaks in the

constant mean dp. That is, if either the steady-state growth rate d or expected return r were

to change, the effects on the dividend–price ratio and their stochastic relationships with returns

would be profound, and this means the dividend–price ratio becomes very persistent. For this

reason, Lettau and Van Nieuwerburgh (2008) consider the dividend–price ratio with a time-

varying mean as follows:

dpt ≡ dt − pt = dpt +Et

∞

∑
j=1

ρ j−1
t [(rt+ j − rt)− (∆dt+ j −dt)], (8)

where ρt = (1+ exp(dpt))
−1. In equation (8), the dividend–price ratio varies over time and

is nonstationary. For instance, when the steady-state growth rate permanently increases, the

steady-state dividend–price ratio decreases, and the current dividend–price ratio declines per-

manently. However, even though the dividend–price ratio in equation (8) is nonstationary, Let-

tau and Van Nieuwerburgh (2008) show that deviations in dpt = from its time-varying steady

state, dpt − dpt , are stationary as long as the deviations in dividend growth and returns from

their respective steady states are also stationary. Lettau and Van Nieuwerburgh (2008) then
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provide evidence that the deviations of dpt from the time-varying mean have much stronger

forecasting power for stock market returns than does the original dividend–price ratio given in

equation (1).

To construct the adjusted dividend–price ratio d̃ pt = dpt −dpt , the adjusted dividend yield

d̃y = dyt −dyt , and the book-to-market ratio b̃m = bmt −bmt , we first apply the structural break

test proposed by Bai and Perron (1998) to dp, dy, and bm. By setting the maximum number

of breaks to five, we obtain the test results based on the sup-F test statistics given in Table

22. It is worth noting that all the sup-F statistics in Table 22 are significant at the 1% level,

which suggests that the null hypothesis of four breaks (against the alternative of five breaks) is

rejected. However, the null of four breaks is not rejected (the data are not shown in the table but

are available upon request), and we conclude that four breaks in the mean of dp, dy, and bm are

statistically significant.

Given the break dates τ1, τ2, τ3, and τ4, we can construct the adjusted series by subtracting

the mean in the corresponding subsamples. Using the dividend–price ratio as an illustration, the

adjusted dividend–price ratio d̃ p is:

d̃ p ≡ d̃ pt =





dpt −dp1, for t = 1, · · · ,τ1

dpt −dp2, for t = τ1 +1, · · · ,τ2

dpt −dp3, for t = τ2 +1, · · · ,τ3

dpt −dp4, for t = τ3 +1, · · · ,τ4

dpt −dp5, for t = τ4 +1, · · · ,T,

where dpi, i = 1, . . . ,5 are the sample means for the corresponding subsamples. The method

described above can be applied to dy and bm, and the calculation is straightforward.
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Figure 1: Filtered Probabilities Based on the MS-AR(1) Model of CRSP Value-Weighted Returns
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Figure 2: Smoothing Probabilities Based on the MS-AR(1) Model of CRSP Value-Weighted Returns
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Table 1: Unit Root Tests

ADF PP

d̃ p -4.249 -4.493

d̃y -4.291 -4.546

ep -2.631 -3.408

de -4.175 -4.349

b̃m -2.984 -4.245

svar -4.590 -17.126

ntis -3.142 -3.769

in f l -2.701 -15.089

rrel -5.101 -6.005

rlty -7.136 -7.513

ltr -6.884 -25.602

tms -3.237 -4.089

d f y -3.117 -3.882

d f r -29.196 -29.304

Note: All statistics are signifi-

cant at the 10% level or above.

Table 2: AIC and BIC Values of Two-State Markov Switching Models

Lag length

0 1 2 3 4

AIC 4096.44 4074.16 4075.36 4077.31 4078.93

BIC 4123.92 4106.18 4111.95 4118.47 4124.67

Note: Bold type indicates the smallest values among the MS-

AR(p) models we investigated.

Table 3: Estimation Results for the MS-AR(1) Model

Parameters µ0 µ1 σ0 σ1 φ1 P00 P11 LogLik

0.267 1.327 5.771 3.101 0.043 0.946 0.967 -2030.082

(0.572) (0.000) (0.000) (0.000) (0.308) (0.000) (0.000)

Note: The numbers in parentheses are p-values. Bold type indicates significance at the 10% level or

above. LokLik indicates the likelihood values of MS-AR(1) model.
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Table 4: In-Sample Predictability Results: Dependent Variable is Measured by the Filtered Probabilities

Obtained from the Markov-Switching Autoregressive Model Based on CRSP Value-Weighted Returns

k=1 k=3 k=6 k=12 k=24

d̃ p β̂ 0.113 0.093 0.041 -0.020 -0.126

p-value (0.208) (0.308) (0.652) (0.846) (0.234)

R
2

[0.020] [0.013] [0.001] [-0.001] [0.026]

d̃y β̂ 0.098 0.077 0.027 -0.025 -0.122

p-value (0.271) (0.395) (0.764) (0.807) (0.247)

R
2

[0.015] [0.009] [0.000] [0.000] [0.024]

ep β̂ -0.075 -0.075 -0.077 -0.093 -0.009

p-value (0.566) (0.553) (0.531) (0.434) (0.931)

R
2

[0.009] [0.009] [0.009] [0.014] [-0.001]

de β̂ 0.102 0.066 0.003 -0.050 -0.270

p-value (0.489) (0.660) (0.984) (0.757) (0.126)

R
2

[0.008] [0.002] [-0.001] [0.001] [0.060]

b̃m β̂ 0.007 -0.058 -0.164 -0.282 -0.265

p-value (0.980) (0.830) (0.503) (0.178) (0.151)

R
2

[-0.001] [0.000] [0.009] [0.029] [0.025]

svar β̂ 31.848 28.508 22.423 11.005 6.492

p-value (0.001) (0.001) (0.004) (0.079) (0.239)

R
2

[0.168] [0.134] [0.080] [0.018] [0.006]

ntis β̂ -2.249 -2.333 -2.737 -3.860 -4.916

p-value (0.001) (0.100) (0.146) (0.030) (0.000)

R
2

[0.015] [0.016] [0.023] [0.048] [0.079]

in f l β̂ 15.448 19.476 22.338 19.586 9.536

p-value (0.001) (0.007) (0.003) (0.005) (0.186)

R
2

[0.026] [0.043] [0.056] [0.043] [0.009]

rrel β̂ -6.189 -4.331 -3.043 1.116 2.968

p-value (0.076) (0.189) (0.353) (0.789) (0.360)

R
2

[0.030] [0.014] [0.006] [0.000] [0.006]

rlty β̂ -0.058 4.418 9.359 7.500 -1.707

p-value (0.992) (0.369) (0.060) (0.258) (0.789)

R
2

[-0.001] [0.004] [0.021] [0.013] [-0.001]

ltr β̂ 0.906 0.954 -0.346 -0.258 0.324

p-value (0.066) (0.045) (0.389) (0.507) (0.588)

R
2

[0.005] [0.006] [-0.001] [-0.001] [-0.001]

tms β̂ 0.640 -0.424 -1.419 -4.601 -5.128

p-value (0.475) (0.811) (0.544) (0.068) (0.032)

R
2

[-0.001] [-0.001] [0.003] [0.041] [0.050]

d f y β̂ 34.486 29.867 23.310 12.847 4.451

p-value (0.000) (0.000) (0.000) (0.031) (0.474)

R
2

[0.240] [0.180] [0.109] [0.032] [0.003]

d f r β̂ -0.330 -0.914 -1.023 -0.154 -1.315

p-value (0.776) (0.379) (0.234) (0.881) (0.146)

R
2

[-0.001] [0.000] [0.000] [-0.001] [0.002]

Note: The numbers in parentheses are p-values. Bold type indicates signifi-

cance at the 10% level or above.

36



Table 5: Nested Out-of-Sample Predictability Test Results: Dependent Variable is Measured by the Fil-

tered Probabilities Obtained from the Markov-Switching Autoregressive Model Based on CRSP Value-

Weighted Returns

k=1 k=3 k=6 k=12 k=24

d̃ p MSPEu/MSPEr 0.979 0.991 1.008 1.025 1.022

CW-stat 2.744 1.299 -1.502 -5.683 -0.934

p-value (0.003) (0.097) (0.934) (1.000) (0.825)

d̃y MSPEu/MSPEr 0.985 0.995 1.010 1.025 1.023

CW-stat 2.272 0.892 -2.147 -5.300 -0.966

p-value (0.012) (0.186) (0.984) (1.000) (0.833)

ep MSPEu/MSPEr 0.996 1.017 1.043 1.090 1.128

CW-stat 0.210 -0.665 -2.295 -4.721 -6.839

p-value (0.417) (0.747) (0.989) (1.000) (1.000)

de MSPEu/MSPEr 0.999 1.036 1.077 1.180 1.136

CW-stat 0.991 -0.741 -2.362 -3.521 -1.321

p-value (0.161) (0.771) (0.991) (1.000) (0.907)

b̃m MSPEu/MSPEr 1.003 1.011 1.013 1.004 1.004

CW-stat -0.583 -1.405 -1.135 -0.074 -0.062

p-value (0.720) (0.920) (0.872) (0.529) (0.525)

svar MSPEu/MSPEr 1.618 1.386 1.318 1.127 1.007

CW-stat -0.373 -0.364 -0.709 -0.906 -1.932

p-value (0.645) (0.642) (0.761) (0.818) (0.973)

ntis MSPEu/MSPEr 0.991 1.017 1.037 1.025 0.954

CW-stat 1.368 -0.763 -1.460 -1.052 2.947

p-value (0.086) (0.777) (0.928) (0.854) (0.002)

in f l MSPEu/MSPEr 0.975 0.968 0.955 0.981 1.013

CW-stat 2.431 0.831 1.444 1.551 -0.221

p-value (0.008) (0.203) (0.074) (0.060) (0.587)

rrel MSPEu/MSPEr 0.970 1.000 1.023 1.039 1.040

CW-stat 4.563 0.052 -1.289 -1.540 -2.793

p-value (0.000) (0.479) (0.901) (0.938) (0.997)

rlty MSPEu/MSPEr 1.014 1.021 1.023 1.037 1.104

CW-stat -0.721 0.409 -0.602 -1.045 -5.229

p-value (0.765) (0.341) (0.726) (0.852) (1.000)

ltr MSPEu/MSPEr 1.001 0.999 1.002 1.03 1.010

CW-stat 0.210 3.007 -0.278 -0.532 -1.502

p-value (0.417) (0.001) (0.610) (0.702) (0.934)

tms MSPEu/MSPEr 1.006 1.017 1.021 0.967 0.979

CW-stat -0.248 -0.532 0.323 6.566 21.161

p-value (0.634) (0.847) (0.821) (0.000) (0.000)

d f y MSPEu/MSPEr 0.740 0.812 0.900 0.996 1.048

CW-stat 10.153 7.183 4.913 0.357 -3.169

p-value (0.000) (0.000) (0.000) (0.360) (0.999)

d f r MSPEu/MSPEr 1.007 1.002 1.002 1.004 1.001

CW-stat -2.012 -0.247 -0.267 -0.827 1.072

p-value (0.978) (0.597) (0.605) (0.796) (0.142)

Note: The numbers in parentheses are p-values. Bold type indicates signifi-

cance at the 10% level or above.
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Table 6: Non-Nested Out-of-Sample Tests Comparison: Dependent Variable is Measured by the Fil-

tered Probabilities Obtained from the Markov-Switching Autoregressive Model Based on CRSP Value-

Weighted Returns

k = 1

MSPEi/MSPE j Model i Model j MDM statistic Asymptotic PV

0.745 d f y tms 5.745 0.000

0.766 d f y in f l 5.301 0.000

0.973 in f l tms 0.814 0.208

k = 3

MSPEi/MSPE j Model i Model j MDM statistic Asymptotic PV

0.808 d f y tms 2.069 0.019

0.845 d f y in f l 1.724 0.043

0.956 in f l tms 0.618 0.269

k = 6

MSPEi/MSPE j Model i Model j MDM statistic Asymptotic PV

0.889 d f y tms 0.965 0.167

0.948 d f y in f l 0.503 0.308

0.938 in f l tms 0.716 0.237

k = 12

MSPEi/MSPE j Model i Model j MDM statistic Asymptotic PV

0.967 tms d f y 0.313 0.377

0.988 in f l d f y 0.169 0.433

0.979 tms in f l 0.309 0.379

k = 24

MSPEi/MSPE j Model i Model j MDM statistic Asymptotic PV

0.935 tms d f y 0.984 0.163

0.969 in f l d f y 0.579 0.282

0.965 tms in f l 0.549 0.291

Note: The numbers in parentheses are p-values. Bold type indi-

cates significance at the 10% level or above.
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Table 7: In-Sample Results: Dependent Variable is Measured by the Smoothing Probabilities Obtained

from the Markov-Switching Autoregressive Model Based on CRSP Value-Weighted Returns

k=1 k=3 k=6 k=12 k=24

d̃ p β̂ 0.105 0.073 0.025 -0.022 -0.136

p-value (0.314) (0.464) (0.778) (0.787) (0.205)

R
2

[0.012] [0.005] [-0.001] [-0.001] [0.021]

d̃y β̂ 0.087 0.056 0.014 -0.025 -0.131

p-value (0.402) (0.574) (0.879) (0.754) (0.219)

R
2

[0.008] [0.002] [-0.001] [-0.001] [0.020]

ep β̂ -0.094 -0.101 -0.108 -0.098 -0.018

p-value (0.677) (0.646) (0.607) (0.605) (0.893)

R
2

[0.010] [0.012] [0.014] [0.011] [-0.001]

de β̂ 0.001 -0.030 -0.078 -0.155 -0.330

p-value (0.995) (0.887) (0.733) (0.561) (0.226)

R
2

[-0.001] [-0.001] [0.002] [0.013] [0.064]

b̃m β̂ -0.127 -0.199 -0.295 -0.332 -0.257

p-value (0.702) (0.519) (0.281) (0.171) (0.112)

R
2

[0.003] [0.009] [0.022] [0.028] [0.017]

svar β̂ 33.168 27.735 21.153 14.173 6.446

p-value (0.001) (0.006) (0.033) (0.101) (0.238)

R
2

[0.130] [0.090] [0.051] [0.022] [0.003]

ntis β̂ -3.708 -4.120 -4.881 -6.459 -5.882

p-value (0.044) (0.037) (0.026) (0.004) (0.010)

R
2

[0.031] [0.038] [0.055] [0.097] [0.081]

in f l β̂ 29.737 30.726 30.498 26.522 17.109

p-value (0.039) (0.029) (0.020) (0.041) (0.064)

R
2

[0.072] [0.077] [0.076] [0.057] [0.023]

rrel β̂ -3.652 -1.895 -0.209 3.195 3.550

p-value (0.537) (0.768) (0.976) (0.650) (0.302)

R
2

[0.007] [0.001] [-0.001] [0.005] [0.006]

rlty β̂ 8.817 11.191 10.584 4.344 1.697

p-value (0.296) (0.175) (0.221) (0.631) (0.666)

R
2

[0.013] [0.022] [0.019] [0.002] [-0.001]

ltr β̂ 0.530 0.195 -0.271 -0.098 0.305

p-value (0.368) (0.770) (0.577) (0.841) (0.538)

R
2

[0.000] [-0.001] [-0.001] [-0.001] [-0.001]

tms β̂ -0.037 -0.052 -0.070 -0.095 -0.052

p-value (0.001) (0.031) (0.025) (0.005) (0.181)

R
2

[0.014] [0.029] [0.054] [0.100] [0.027]

d f y β̂ 37.133 31.897 25.690 15.987 7.732

p-value (0.000) (0.000) (0.000) (0.095) (0.383)

R
2

[0.198] [0.146] [0.095] [0.036] [0.007]

d f r β̂ -1.056 -1.324 -1.144 -0.852 -0.625

p-value (0.001) (0.000) (0.037) (0.219) (0.385)

R
2

[0.000] [0.001] [0.000] [0.000] [-0.001]

Note: The numbers in parentheses are p-values. Bold type indicates signifi-

cance at the 10% level or above.
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Table 8: Nested Out-of-Sample Predictability Test Results: Dependent Variable is Measured by the

Smoothing Probabilities Obtained from the Markov-Switching Autoregressive Model Based on CRSP

Value-Weighted Returns

k=1 k=3 k=6 k=12 k=24

d̃ p MSPEu/MSPEr 0.990 1.003 1.018 1.037 1.049

CW-stat 1.518 -0.390 -3.457 -5.866 -2.044

p-value (0.065) (0.652) (1.000) (1.000) (0.980)

d̃y MSPEu/MSPEr 0.994 1.005 1.019 1.038 1.049

CW-stat 1.069 -0.791 -3.598 -5.748 -2.064

p-value (0.143) (0.785) (1.000) (1.000) (0.980)

ep MSPEu/MSPEr 0.998 1.023 1.062 1.128 1.188

CW-stat 0.123 -0.832 -2.763 -4.974 -7.822

p-value (0.451) (0.797) (0.997) (1.000) (1.000)

de MSPEu/MSPEr 1.012 1.056 1.131 1.282 1.221

CW-stat -0.315 -1.310 -2.289 -2.554 -1.385

p-value (0.623) (0.905) (0.989) (0.995) (0.917)

b̃m MSPEu/MSPEr 1.001 1.004 1.003 1.013 1.019

CW-stat -0.020 0.085 -0.145 -0.579 -1.403

p-value (0.508) (0.466) (0.558) (0.719) (0.920)

svar MSPEu/MSPEr 1.458 1.353 1.245 1.094 1.010

CW-stat -0.367 -0.485 -0.766 -1.005 -1.550

p-value (0.643) (0.686) (0.778) (0.843) (0.939)

ntis MSPEu/MSPEr 0.975 0.993 1.007 0.975 1.008

CW-stat 2.252 0.305 -0.185 1.530 -0.167

p-value (0.012) (0.380) (0.573) (0.063) (0.566)

in f l MSPEu/MSPEr 0.927 0.931 0.938 0.967 0.996

CW-stat 4.979 1.549 1.814 1.855 0.999

p-value (0.000) (0.061) (0.035) (0.032) (0.159)

rrel MSPEu/MSPEr 0.998 1.023 1.040 1.031 1.038

CW-stat 0.089 -0.918 -1.311 -1.059 -2.832

p-value (0.465) (0.821) (0.905) (0.855) (0.998)

rlty MSPEu/MSPEr 0.994 1.006 1.035 1.059 1.072

CW-stat 1.558 3.220 -0.870 -1.790 -4.619

p-value (0.060) (0.001) (0.808) (0.963) (1.000)

ltr MSPEu/MSPEr 1.007 1.005 1.003 1.003 1.007

CW-stat -1.813 -1.238 -0.542 -0.621 -0.730

p-value (0.965) (0.892) (0.706) (0.733) (0.767)

tms MSPEu/MSPEr 0.989 0.990 0.983 0.969 1.046

CW-stat 0.465 0.507 3.350 8.970 8.180

p-value (0.321) (0.306) (0.000) (0.000) (0.000)

d f y MSPEu/MSPEr 0.790 0.859 0.935 1.021 1.088

CW-stat 9.153 5.543 2.890 -1.013 -3.023

p-value (0.000) (0.000) (0.002) (0.844) (0.999)

d f r MSPEu/MSPEr 1.005 1.001 1.003 1.002 1.001

CW-stat 2.629 0.039 -0.448 0.988 1.079

p-value (0.004) (0.484) (0.673) (0.162) (0.140)

Note: The numbers in parentheses are p-values. Bold type indicates signifi-

cance at the 10% level or above.
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Table 9: Non-Nested Out-of-Sample Predictability Comparison: Dependent Variable is Measured by the

Smoothing Probabilities Obtained from the Markov-Switching Autoregressive Model Based on CRSP

Value-Weighted Returns

k = 1

MSPEi/MSPE j Model i Model j MDM statistic Asymptotic PV

0.808 d f y tms 3.725 0.000

0.859 d f y in f l 2.698 0.004

0.941 in f l tms 1.271 0.102

k = 3

MSPEi/MSPE j Model i Model j MDM statistic Asymptotic PV

0.877 d f y tms 1.142 0.127

0.929 d f y in f l 0.677 0.249

0.944 in f l tms 0.649 0.258

k = 6

MSPEi/MSPE j Model i Model j MDM statistic Asymptotic PV

0.960 d f y tms 0.288 0.387

0.998 in f l d f y 0.014 0.495

0.958 in f l tms 0.429 0.334

k = 12

MSPEi/MSPE j Model i Model j MDM statistic Asymptotic PV

0.944 tms d f y 0.451 0.326

0.948 in f l d f y 0.524 0.300

0.995 tms in f l 0.047 0.481

k = 24

MSPEi/MSPE j Model i Model j MDM statistic Asymptotic PV

0.962 tms d f y 0.354 0.362

0.920 in f l d f y 0.912 0.181

0.957 in f l tms 0.538 0.296

Note: The numbers in parentheses are p-values. Bold type indi-

cates significance at the 10% level or above.
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Table 10: In-Sample Predictability Results: Dependent Variable is Measured by the Filtered Proba-

bilities Obtained from the Markov-Switching Autoregressive Model Based on Changes in the S&P 500

Composite Index

k=1 k=3 k=6 k=12 k=24

d̃ p β̂ 0.339 0.172 0.021 -0.094 -0.209

p-value (0.073) (0.348) (0.898) (0.547) (0.171)

R
2

[0.057] [0.014] [-0.001] [0.003] [0.020]

d̃y β̂ 0.243 0.122 -0.004 -0.104 -0.187

p-value (0.186) (0.495) (0.979) (0.510) (0.218)

R
2

[0.029] [0.006] [-0.001] [0.004] [0.016]

ep β̂ -0.063 -0.064 -0.063 -0.088 -0.036

p-value (0.356) (0.287) (0.260) (0.074) (0.443)

R
2

[0.012] [0.012] [0.012] [0.025] [0.003]

de β̂ 0.095 0.036 -0.036 -0.034 -0.157

p-value (0.263) (0.629) (0.560) (0.679) (0.128)

R
2

[0.013] [0.001] [0.001] [0.000] [0.036]

b̃m β̂ 0.122 -0.013 -0.140 -0.201 -0.194

p-value (0.431) (0.924) (0.185) (0.045) (0.085)

R
2

[0.009] [-0.001] [0.012] [0.026] [0.025]

svar β̂ 28.444 20.287 11.736 2.208 1.503

p-value (0.000) (0.000) (0.014) (0.466) (0.529)

R
2

[0.247] [0.124] [0.040] [0.000] [-0.001]

ntis β̂ -1.704 -1.919 -2.394 -2.455 -2.734

p-value (0.251) (0.198) (0.103) (0.038) (0.011)

R
2

[0.016] [0.021] [0.033] [0.035] [0.044]

in f l β̂ 5.352 6.855 9.697 7.088 0.694

p-value (0.452) (0.301) (0.066) (0.082) (0.788)

R
2

[0.005] [0.009] [0.019] [0.009] [-0.001]

rrel β̂ -3.113 -1.970 -1.488 -0.123 1.519

p-value (0.133) (0.312) (0.498) (0.962) (0.301)

R
2

[0.013] [0.005] [0.002] [-0.001] [0.002]

rlty β̂ -0.632 2.309 4.957 0.670 -1.623

p-value (0.860) (0.426) (0.138) (0.822) (0.544)

R
2

[-0.001] [0.001] [0.010] [-0.001] [0.000]

ltr β̂ 0.681 0.854 -0.571 -0.069 0.350

p-value (0.056) (0.018) (0.029) (0.780) (0.334)

R
2

[0.005] [0.009] [0.003] [-0.001] [0.000]

tms β̂ -0.004 -0.010 -0.016 -0.034 -0.026

p-value (0.578) (0.482) (0.369) (0.037) (0.153)

R
2

[-0.001] [0.002] [0.006] [0.031] [0.018]

d f y β̂ 16.375 11.921 6.435 1.217 0.260

p-value (0.001) (0.011) (0.081) (0.703) (0.926)

R
2

[0.099] [0.052] [0.014] [-0.001] [-0.001]

d f r β̂ -1.386 -1.838 -1.316 0.283 -0.431

p-value (0.021) (0.001) (0.032) (0.709) (0.585)

R
2

[0.005] [0.010] [0.004] [-0.001] [-0.001]

Note: The numbers in parentheses are p-values. Bold type indicates signifi-
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Table 11: Out-of-Sample Predictability Test Results: Dependent Variable is Measured by the Filtered

Probabilities Obtained from the Markov-Switching Autoregressive Model Based on Changes in the S&P

500 Composite Index

k=1 k=3 k=6 k=12 k=24

d̃ p MSPEu/MSPEr 0.940 0.998 1.021 1.019 1.013

CW-stat 6.011 3.853 -3.459 -2.600 2.202

p-value (0.000) (0.000) (1.000) (0.995) (0.014)

d̃y MSPEu/MSPEr 0.971 1.006 1.021 1.017 1.017

CW-stat 4.631 0.170 -3.389 -1.808 2.214

p-value (0.000) (0.433) (1.000) (0.965) (0.013)

ep MSPEu/MSPEr 0.993 1.013 1.028 1.013 1.041

CW-stat 0.376 -0.690 -2.814 -1.068 -4.762

p-value (0.354) (0.755) (0.998) (0.857) (1.000)

de MSPEu/MSPEr 0.995 1.037 1.047 1.111 1.067

CW-stat 1.648 -1.295 -2.200 -3.633 -1.156

p-value (0.050) (0.902) (0.986) (1.000) (0.876)

b̃m MSPEu/MSPEr 0.991 1.010 1.000 0.988 0.997

CW-stat 2.167 -1.677 0.061 1.292 0.574

p-value (0.015) (0.953) (0.476) (0.098) (0.283)

svar MSPEu/MSPEr 1.415 1.079 1.100 1.040 1.006

CW-stat -0.003 0.324 -0.654 -1.433 -1.718

p-value (0.501) (0.373) (0.743) (0.924) (0.957)

ntis MSPEu/MSPEr 0.996 1.013 1.018 1.017 0.995

CW-stat 1.429 -0.744 -0.820 -0.793 0.616

p-value (0.077) (0.772) (0.794) (0.786) (0.269)

in f l MSPEu/MSPEr 1.003 1.013 1.002 1.018 1.006

CW-stat 0.335 -0.413 0.055 -0.889 -1.727

p-value (0.369) (0.660) (0.478) (0.813) (0.958)

rrel MSPEu/MSPEr 0.988 1.004 1.017 1.036 1.030

CW-stat 2.374 -0.414 -1.321 -1.857 -3.430

p-value (0.009) (0.661) (0.907) (0.968) (1.000)

rlty MSPEu/MSPEr 1.009 1.013 1.030 1.027 1.043

CW-stat -0.485 0.169 -0.867 -1.514 -3.058

p-value (0.686) (0.433) (0.807) (0.935) (0.999)

ltr MSPEu/MSPEr 1.000 0.995 1.000 1.002 1.011

CW-stat 0.442 4.926 0.230 -0.692 -0.442

p-value (0.329) (0.000) (0.409) (0.756) (0.671)

tms MSPEu/MSPEr 1.006 1.017 1.027 1.009 1.009

CW-stat -0.336 -0.627 -0.349 2.835 9.196

p-value (0.631) (0.735) (0.636) (0.002) (0.000)

d f y MSPEu/MSPEr 0.897 0.959 1.002 1.011 1.034

CW-stat 5.027 3.027 0.150 -5.368 -3.437

p-value (0.000) (0.001) (0.441) (1.000) (1.000)

d f r MSPEu/MSPEr 1.002 0.994 1.000 1.005 1.006

CW-stat 11.578 1.081 0.351 -1.193 -1.350

p-value (0.000) (0.140) (0.363) (0.884) (0.912)

Note: The numbers in parentheses are p-values. Bold type indicates signifi-

cance at the 10% level or above.
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Table 12: Non-Nested Out-of-Sample Predictability Comparison: Dependent Variable is Measured by

the Filtered Probabilities Obtained from the Markov-Switching Autoregressive Model Based on the S&P

500 Composite Index

k = 1

MSPEi/MSPE j Model i Model j MDM statistic Asymptotic PV

0.896 d f y tms 3.194 0.001

0.901 d f y in f l 2.116 0.017

0.995 in f l tms 0.149 0.441

k = 3

MSPEi/MSPE j Model i Model j MDM statistic Asymptotic PV

0.945 d f y tms 1.066 0.143

0.952 d f y in f l 0.713 0.238

0.992 in f l tms 0.156 0.438

k = 6

MSPEi/MSPE j Model i Model j MDM statistic Asymptotic PV

0.974 d f y tms 0.485 0.314

0.993 in f l d f y 0.170 0.432

0.967 in f l tms 0.770 0.221

k = 12

MSPEi/MSPE j Model i Model j MDM statistic Asymptotic PV

0.996 d f y tms 0.112 0.455

0.993 d f y in f l 0.212 0.416

0.997 tms in f l 0.090 0.464

k = 24

MSPEi/MSPE j Model i Model j MDM statistic Asymptotic PV

0.980 tms d f y 0.659 0.255

0.978 in f l d f y 1.059 0.145

0.998 in f l tms 0.087 0.465

Note: Bold type indicates significance at the 10% level or above.
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Table 13: Nested Out-of-Sample Predictability Test Results with Bootstrapped p-values: Dependent

Variable is Measured by the Filtered Probabilities Obtained from the Markov-Switching Autoregressive

Model Based on CRSP Value-Weighted Returns

k=1 k=3 k=6 k=12 k=24

d̃ p MSPEu/MSPEr 0.979 0.991 1.008 1.025 1.022

CW-stat 2.744 1.299 -1.502 -5.683 -0.934

p-value (0.015) (0.055) (0.745) (1.000) (0.519)

d̃y MSPEu/MSPEr 0.985 0.995 1.010 1.025 1.023

CW-stat 2.272 0.892 -2.147 -5.300 -0.966

p-value (0.021) (0.069) (0.943) (1.000) (0.521)

ep MSPEu/MSPEr 0.996 1.017 1.043 1.090 1.128

CW-stat 0.210 -0.665 -2.295 -4.721 -6.839

p-value (0.158) (0.385) (0.953) (1.000) (1.000)

de MSPEu/MSPEr 0.999 1.036 1.077 1.180 1.136

CW-stat 0.991 -0.741 -2.362 -3.521 -1.321

p-value (0.063) (0.446) (0.972) (0.999) (0.676)

b̃m MSPEu/MSPEr 1.003 1.011 1.013 1.004 1.004

CW-stat -0.583 -1.405 -1.135 -0.074 -0.062

p-value (0.396) (0.767) (0.638) (0.218) (0.221)

svar MSPEu/MSPEr 1.618 1.386 1.318 1.127 1.007

CW-stat -0.373 -0.364 -0.709 -0.906 -1.932

p-value (0.246) (0.243) (0.411) (0.515) (0.940)

ntis MSPEu/MSPEr 0.991 1.017 1.037 1.025 0.954

CW-stat 1.368 -0.763 -1.460 -1.052 2.947

p-value (0.050) (0.447) (0.748) (0.606) (0.013)

in f l MSPEu/MSPEr 0.975 0.968 0.955 0.981 1.013

CW-stat 2.431 0.831 1.444 1.551 -0.221

p-value (0.072) (0.073) (0.032) (0.054) (0.293)

rrel MSPEu/MSPEr 0.970 1.000 1.023 1.039 1.040

CW-stat 4.563 0.052 -1.289 -1.540 -2.793

p-value (0.006) (0.222) (0.714) (0.818) (0.989)

rlty MSPEu/MSPEr 1.014 1.021 1.023 1.037 1.104

CW-stat -0.721 0.409 -0.602 -1.045 -5.229

p-value (0.462) (0.157) (0.423) (0.612) (1.000)

ltr MSPEu/MSPEr 1.001 0.999 1.002 1.003 1.010

CW-stat 0.210 3.007 -0.278 -0.532 -1.502

p-value (0.192) (0.018) (0.276) (0.380) (0.814)

tms MSPEu/MSPEr 1.006 1.017 1.021 0.967 0.979

CW-stat -0.248 -0.532 0.323 6.566 21.161

p-value (0.286) (0.377) (0.211) (0.004) (0.000)

d f y MSPEu/MSPEr 0.740 0.812 0.900 0.996 1.048

CW-stat 10.153 7.183 4.913 0.357 -3.169

p-value (0.001) (0.001) (0.005) (0.141) (0.999)

d f r MSPEu/MSPEr 1.007 1.002 1.002 1.004 1.001

CW-stat -2.012 -0.247 -0.267 -0.827 1.072

p-value (0.926) (0.272) (0.279) (0.494) (0.069)

Note: The numbers in parentheses are p-values. Bold type indicates signifi-

cance at the 10% level or above.
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Table 14: Non-Nested Out-of-Sample Predictability Comparison with Bootstrapped p-values: Depen-

dent Variable is Measured by the Filtered Probabilities Obtained from the Markov-Switching Autore-

gressive Model Based on CRSP Value-Weighted Returns

k = 1

MSPEi/MSPE j Model i Model j MDM statistic Bootstrapped PV

0.745 d f y tms 5.745 0.000

0.766 d f y in f l 5.301 0.000

0.973 in f l tms 0.814 0.212

k = 3

MSPEi/MSPE j Model i Model j MDM statistic Bootstrapped PV

0.808 d f y tms 2.069 0.026

0.845 d f y in f l 1.724 0.040

0.956 in f l tms 0.618 0.280

k = 6

MSPEi/MSPE j Model i Model j MDM statistic Bootstrapped PV

0.889 d f y tms 0.965 0.180

0.948 d f y in f l 0.503 0.302

0.938 in f l tms 0.716 0.249

k = 12

MSPEi/MSPE j Model i Model j MDM statistic Bootstrapped PV

0.967 tms d f y 0.313 0.393

0.988 in f l d f y 0.169 0.436

0.979 tms in f l 0.309 0.376

k = 24

MSPEi/MSPE j Model i Model j MDM statistic Bootstrapped PV

0.935 tms d f y 0.984 0.198

0.969 in f l d f y 0.579 0.299

0.965 tms in f l 0.549 0.292

Note: The numbers in parentheses are p-values. Bold type indi-

cates significance at the 10% level or above.
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Table 15: Nested Out-of-Sample Predictability Test Results: Multivariate Regression

Models including d f y

k=1 k=3 k=6 k=12 k=24

d f y, tms MSPEu/MSPEr 0.736 0.812 0.899 0.924 1.000

CW-stat 7.804 4.427 6.349 8.071 15.004

p-value (0.000) (0.000) (0.000) (0.000) (0.000)

d f y, tms, in f l MSPEu/MSPEr 0.734 0.805 0.882 0.921 1.027

CW-stat 7.038 4.804 5.309 8.557 12.142

p-value (0.000) (0.000) (0.000) (0.000) (0.000)

d f y, tms, in f l,ntis, d̃ p MSPEu/MSPEr 0.727 0.830 0.949 1.033 1.029

CW-stat 6.346 3.818 3.539 3.809 8.343

p-value (0.000) (0.000) (0.000) (0.000) (0.000)

Models excluding d f y

k=1 k=3 k=6 k=12 k=24

tms, in f l MSPEu/MSPEr 0.983 0.988 0.982 0.957 0.998

CW-stat 1.994 0.318 0.433 7.052 15.842

p-value (0.023) (0.375) (0.332) (0.000) (0.000)

tms, in f l,ntis, d̃ p MSPEu/MSPEr 0.956 0.999 1.027 1.030 0.963

CW-stat 6.346 3.818 3.539 3.809 8.343

p-value (0.021) (0.469) (0.720) (0.000) (0.000)

Note: Bold type indicates significance at the 10% level or above.
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Table 16: In-Sample Predictability Results: Dependent Variable is the Date of Bear Markets Identified

by the Bry–Boschan Method

k=1 k=3 k=6 k=12 k=24

d̃ p β̂ -0.716 -0.842 -0.928 -0.563 -0.224

p-value (0.000) (0.001) (0.005) (0.190) (0.491)

pseudo-R2 [0.047] [0.064] [0.075] [0.029] [0.005]

d̃y β̂ -0.809 -0.910 -0.898 -0.552 -0.209

p-value (0.000) (0.001) (0.013) (0.193) (0.507)

pseudo-R2 [0.060] [0.074] [0.072] [0.029] [0.004]

ep β̂ 0.165 0.080 -0.038 -0.067 -0.055

p-value (0.130) (0.702) (0.930) (0.814) (0.826)

pseudo-R2 [0.003] [0.001] [0.000] [0.000] [0.000]

de β̂ -0.250 -0.428 -0.510 -0.550 0.131

p-value (0.142) (0.174) (0.212) (0.273) (0.711)

pseudo-R2 [0.003] [0.007] [0.010] [0.011] [0.001]

b̃m β̂ -0.137 -0.926 -1.916 -2.309 -0.352

p-value (0.598) (0.060) (0.001) (0.001) (0.617)

pseudo-R2 [0.000] [0.017] [0.063] [0.083] [0.003]

svar β̂ 115.224 47.161 0.698 4.203 0.879

p-value (0.000) (0.030) (0.993) (0.821) (0.892)

pseudo-R2 [0.050] [0.015] [0.000] [0.000] [0.000]

ntis β̂ -6.159 -4.621 -2.753 -3.069 -5.144

p-value (0.033) (0.442) (0.737) (0.702) (0.454)

pseudo-R2 [0.008] [0.004] [0.002] [0.002] [0.005]

in f l β̂ 50.970 56.497 63.710 19.820 12.733

p-value (0.003) (0.031) (0.023) (0.474) (0.648)

pseudo-R2 [0.018] [0.021] [0.025] [0.002] [0.001]

rrel β̂ 18.032 21.328 23.880 13.151 -11.818

p-value (0.002) (0.055) (0.067) (0.345) (0.324)

pseudo-R2 [0.015] [0.021] [0.026] [0.009] [0.007]

rlty β̂ 57.565 64.260 51.176 11.726 -5.328

p-value (0.000) (0.001) (0.019) (0.656) (0.839)

pseudo-R2 [0.044] [0.052] [0.035] [0.002] [0.000]

ltr β̂ -0.050 -0.561 -4.429 -1.416 0.779

p-value (0.879) (0.691) (0.009) (0.465) (0.541)

pseudo-R2 [0.000] [0.000] [0.008] [0.001] [0.000]

tms β̂ -0.115 -0.110 -0.125 -0.083 -0.002

p-value (0.004) (0.166) (0.212) (0.400) (0.983)

pseudo-R2 [0.012] [0.011] [0.014] [0.006] [0.000]

d f y β̂ 33.711 19.596 13.902 28.703 46.239

p-value (0.014) (0.153) (0.298) (0.043) (0.002)

pseudo-R2 [0.013] [0.004] [0.002] [0.010] [0.026]

d f r β̂ -8.024 -10.353 -0.567 0.689 4.547

p-value (0.037) (0.004) (0.860) (0.843) (0.262)

pseudo-R2 [0.007] [0.011] [0.000] [0.000] [0.002]

Note: The numbers in parentheses are p-values. Bold type indicates signifi-

cance at the 10% level or above.
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Table 17: Out-of-Sample Results of the Probit Model: QPS

k = 1 k=3 k=6 k=12 k=24

d̃ p 0.478 0.488 0.506 0.524 0.470

d̃y 0.478 0.488 0.507 0.522 0.468

ep 0.435 0.444 0.457 0.486 0.443

de 0.440 0.439 0.438 0.446 0.441

b̃m 0.444 0.443 0.426 0.434 0.431

svar 0.422 0.431 0.445 0.449 0.449

ntis 0.463 0.475 0.488 0.482 0.451

in f l 0.424 0.420 0.418 0.435 0.427

rrel 0.416 0.424 0.440 0.435 0.442

rlty 0.404 0.413 0.430 0.444 0.424

ltr 0.434 0.433 0.424 0.437 0.429

tms 0.436 0.445 0.442 0.424 0.440

d f y 0.424 0.434 0.438 0.442 0.450

d f r 0.428 0.426 0.430 0.435 0.428

Note: Bold type indicates the smallest QPS among

the predictors for a given k.

Table 18: Out-of-Sample Results of the Probit Model: LPS

k=1 k=3 k=6 k=12 k=24

d̃ p 0.691 0.708 0.735 0.750 0.680

d̃y 0.692 0.711 0.738 0.747 0.677

ep 0.629 0.641 0.654 0.687 0.641

de 0.629 0.630 0.631 0.645 0.641

b̃m 0.640 0.646 0.622 0.621 0.625

svar 0.616 0.622 0.654 0.646 0.644

ntis 0.683 0.706 0.736 0.709 0.642

in f l 0.623 0.612 0.608 0.629 0.622

rrel 0.608 0.618 0.645 0.636 0.637

rlty 0.594 0.605 0.639 0.653 0.617

ltr 0.627 0.626 0.616 0.632 0.622

tms 0.635 0.648 0.645 0.618 0.636

d f y 0.614 0.626 0.631 0.635 0.647

d f r 0.621 0.617 0.623 0.629 0.621

Note: Bold type indicates the smallest LPS among

the predictors for a given k.
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Table 19: Non-Nested Out-of-Sample Tests Comparison: Probit Model

k = 1

MSPEi/MSPE j Model i Model j MDM statistic Asymptotic PV

0.973 d f y rlty 0.843 0.200

0.970 in f l rlty 1.059 0.145

0.937 tms rlty 1.757 0.040

k = 3

MSPEi/MSPE j Model i Model j MDM statistic Asymptotic PV

0.959 d f y rlty 0.864 0.194

0.986 in f l rlty 0.300 0.382

0.933 tms rlty 1.033 0.151

k = 24

MSPEi/MSPE j Model i Model j MDM statistic Asymptotic PV

0.970 d f y rlty 0.461 0.323

0.998 in f l rlty 0.149 0.441

0.961 tms rlty 1.898 0.029

Note: Bold type indicates significance at the 10% level or above.

Table 20: Predictive Performance of the TED Spread: In-Sample and Out-of-Sample Results

In-sample results

Variable k=1 k=3 k=6 k=12 k=24

T ED β̂ 0.118 0.127 0.111 0.099 0.076

p-value (0.013) (0.007) (0.014) (0.031) (0.098)

R
2

[0.093] [0.106] [0.081] [0.062] [0.035]

Out-of-sample results

Variable k=1 k=3 k=6 k=12 k=24

T ED MSPEu/MSPEr 0.960 0.958 0.949 0.956 0.987

CW-stat 6.494 6.760 6.598 7.292 1.609

p-value (0.000) (0.000) (0.000) (0.000) (0.054)

Note: Bold type indicates significance at the 10% level or above.

50



Table 21: Economic Value of a Regime-Switching Trading Strategy based on the Prediction of Bear

Markets: Out-of-Sample Performance

Buy-and-hold strategy

Terminal wealth ($) Monthly compounded return (%)

15.648 0.483

Switching strategy

Predictors Terminal wealth ($) Monthly compounded return (%)

d̃ p 13.957 0.463

d̃y 11.756 0.433

ep 34.535 0.622

de 31.100 0.604

b̃m 15.648 0.483

svar 280.639 0.992

ntis 15.971 0.486

in f l 196.041 0.930

rrel 14.839 0.479

rlty 45.870 0.681

ltr 15.648 0.483

tms 31.664 0.607

d f y 192.884 0.926

d f r 15.648 0.483

Table 22: Tests for Changes in Mean of d p, dy, and bm

Test (H0,H1) d p dy bm

sup-F(0,1) 1117.594 2642.417 2630.713

sup-F(1,2) 589.439 1518.679 1516.452

sup-F(2,3) 229.018 738.610 736.066

sup-F(3,4) 50.310 178.077 174.484

Note: All sup-F statistics are significant at the 1%

level.
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