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Abstract 

This paper studies the risk hedging between stock index and underlying futures. The hedging ratios are optimized 
using the mean-variance utility function as considering the hedging cost. The trend of returns and variance are 
estimated by the model of regime switch on both vector autoregression (VAR) and GARCH(1,1) compared to three 
restricted models: VAR switch only, GARCH(1,1) switch only, and no switch. The hedge portfolio is constructed 
by Morgan Stanley Taiwan Index (MSTI) and Singapore Traded MSTI futures. The hedge horizon is set as a week 
to reduce the hedging cost and the weekly in-sample data cover from 08/09/2001 to 05/31/2007. The rolling 
window technique is used to evaluate the hedge performances of out-of-sample period spanning subprime, Greek 
debt, and post-risk durations. The subprime period indeed is evidenced very vital to achieve the hedge performance. 
All models perform surprisingly far above average during subprime period. The hedge ratios indeed are the tradeoff 
between maximum expected return and minimum variance. It is demonstrated challenging for all models to 
increase returns and reduce risk together. The hedge context is further classified into four hedge states: uu, ud, du, 
and dd (u and d denote respectively usual and down) using the state probabilities of series. The regime switch 
models are found to have much greater wealth increase when in dd state. It is decisive to hedge risk in dd state 
when volatility is extensively higher as observed recurrently in subprime period. Remarkably, the trend switch is 
found having larger wealth increase while the volatility switch is not found prominent between models. While the 
no switch model has larger utility increase in uu state as most observed in Greek debt or post risk period, its 
performance is far below average like other models. 
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1. Introduction 

The stock indices are fluctuated frequently by the shocks of erupted information from everywhere 

including economic, political, and natural disasters. The major market crises such as Asian currencies, 

subprime, 311 earthquake in Japan, Greek debt have all caused the panic and tumble of the global stock 

markets. That’s why the hedge of stock portfolio is necessary.  

In this paper, the MSCI Taiwan stock index is regarded as an spot position owned by international 

investors that is susceptible to shocks of either bad or good news to Taiwanese stock market. To hedge the 

spot position, the hedge tools used is the futures of MSCI Taiwan stock index coded and traded as STW on 

the Singapore Exchange (SGX) formed in 1999 from the merger of the Stock Exchange of Singapore (SES) 

and the Singapore International Monetary Exchange (SIMEX). At present, with the remove of investment 

quotas for foreign investors in July 2003, the foreign investors can invest in the Taiwan Stock Exchange 

(TWSE) openly and feely. As the end of 2012, the total market capitalization of the Taiwan stock exchange 

has grew 70 % compared to 2008 and amounted to US$666 billion with 797 listed companies, the daily 

trading value reached about US$3 billion and the market turnover rate was around 119.87%. Today, 

surprisingly over 80% of trading value is fulfilled by foreign investors. It becomes more and more 

important for foreign investors to understand how to hedge their portfolio risk.    

The optimal hedging ratios i.e. amount of suitable futures to hedge spot position are calculated using 

the mean-variance method and the regime switch models. Since the stock markets are non-stationary, there 

exhibit different states of trend and volatility. For example, the trend of returns often shifts up and down 

swiftly and the volatility is persistent for a while in high or low state. The traditional regression method 

concerning only one state equation for one explanatory variable is not enough to describe the dynamic 

behavior of stock market. So, the regime switch vector autoregression and GARCH model is proposed here 

to fit to the different states in trend of returns as well as volatility. With the help of regime switch, the trend 

of returns is allowed to shift between different states and the volatility can be persistent either in high or low 

state. Once the trend of returns and volatility are predicted by model, the hedging ratios are computed 

consequently as taking into account the hedge cost.  

The remainder of the paper proceeds as follows. In section two, the methodologies of hedging ratios 

and the regime switch models are discussed according to related articles. In section three, the sample of 

data, the estimations of regime switches, the methods of hedging ratio calculation, and the measurements 

of hedge performance are described in detail. In section four, the hedging ratios are obtained through 

rolling window technique and the hedge results are compared between different hedge models, 

measurements, periods, and states. The final section concludes some important remarks.  
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2. Literature Reviews 

Investors would always ask how to find the optimal hedging ratio to reach the best hedge of portfolio 

risk. According to Markowitz (1952), the investors would like to pursue the minimum risk of their 

investment. Hence, the minimum-variance optimization method was applied by early authors like Johnson 

(1960), Stein (1961), and Ederington (1979) and later authors like Baillie and Myers (1991), Koutmos and 

Pericli (1998), Moschini and Myers (2002), Harris and Shen (2003), Poomimars et al. (2003), Alizadeh et 

al.(2008), Lien and Yang (2008) etc. However, the method ignores the profit or wealth effect and does not 

take into account the hedge cost either. 

As Working (1962) pointed out the investors would chase not only the minimum risk but the 

expectation of profit, hence the mean-variance utility (MVU) method was adopted by authors like Heifner 

(1972), Kroner and Sultan (1993), Lence (1995), Gagnon, et al. (1998). The MVU method incorporating the 

expectation of investment return and variance into utility function with a fine degree of risk aversion. 

Further, Frechette (2000) described that the cost of hedging would affect the hedging profits and ratios. 

Thus, later authors like Haigh and Holt (2000, 2002), Liu et al. (2001), Yun and Kim (2010), Jin and Koo 

(2006) have derived their hedging ratios while taking into accounting the cost of hedging as well. Through 

their demonstration of hedging ratio formulas, the hedging cost indeed affects the hedging ratios and 

performances.  

The hedging ratio determination requires to predict return and variance. Hamilton (1990, 1991) has 

found that the stock returns exhibit high and low states of volatilities and the volatility state tends to 

persist for a while. In this regard, Hamilton and Susmel (1994) proposed an unobserved Markov chain in 

ARCH to model the property of volatility regime switch. They however have recognized that the regime 

switch in GARCH is not feasible because the condition variance has the issue of path dependence. In 

other words, the conditional variance is the recursive solution of past state random variable and hence the 

pattern of past regimes should be accountable in estimation. To overcome the path dependence of 

estimation, Gray (1996) has developed a framework of regime switch GARCH to model the time-varying 

conditional volatilities in different regimes. Later, Klassen (2002), Haas et al. (2004), and Marcucci 

(2005) proposed the more advanced methods to describe the dynamic regime switch volatility process. 

For the conditional variance and covariance model of multivariate assets, multivariate GARCH 

(MGARCH) has been used in Bollerslev et al. (1988), Ng (1991), and Hansson and Hordahl (1998). It 

was also applied to explain the spillover effect of contagion as in Tse and Tsui (2002) and Bae, Karolyi 

and Stulz (2003). Further, Ramchand and Susmel (1998), Ang and Bekaert (2002), Honda (2003), Haas et 

al. (2004), and Haas and Mittnik (2008) have developed a Markov-switching MGARCH model.   



4 
 

3. Research Objects and Methodology 

The purpose of this paper is to describe the hedging ratio and effectiveness of Morgan Stanley 

corporation’s MSCI Taiwan stock index coded with MXTW in Bloomberg. The MXTW index is created 

and constructed by the stock shares of 100 Taiwanese larger companies including most electronics 

companies and financial banks. The underlying futures contracts on the MSCI Taiwan Index coded with 

STW were started to trade on the Singapore Exchange (SGX) on January 9, 1997. Before long, the Taiwan 

Futures Exchange started to trade futures contracts on the MSCI Taiwan Index on March 27, 2006 but 

stopped trading for higher transaction cost comprising 0.004% tax rate of contract value plus NT$20 

commission fee per contract and less demand compared to SGX.  

To hedge the risk of MXTW, the STW futures are deemed as the hedge tools. They are traded based on 

the underlying asset of MXTW index with contract size: US$100 x SGX MSCI Taiwan Index Futures(i.e. 

STW) price, contract months: 2 nearest serial months and 12 quarterly months on a cycle of March, June, 

September and December, tick size: equal to 0.1 index point equivalent to US$10, and the daily price lime: 

≤7%. There is no trading tax for short or long STW but the commission fee is US$2.85 per contract per side 

based on Interactive Brokers. 

In fact, the hedgers would take into account both the return and volatility of hedged portfolio. As a 

result, the hedging return, variance, and cost must be considered at the same time and the mean-variance 

utility should be maximized to search for the optimal hedging ratios. The hedge models are used to 

estimate the conditional returns and volatilities in utility function and the hedge model performances are 

evaluated by wealth increase, variance decrease or utility increase. 

The stock markets are evidenced to be nonlinear and leptokurtotic in many documents. For example, 

the impact of bad and good news are asymmetric to the market and investors usually overact to the bad 

news while accustomed to the good news. Besides, trend of stock returns is swift often very quickly and  

volatility is not stable always. In this regards, the specification of the vector autoregression and GARCH 

with regime switch is described to estimate the trend and volatility of MXTW and STW under different 

states. The dynamic changes of returns and volatility are asymmetric. In fact, volatility is persistent for a 

while between high and low states and trend of returns is swift between up and down states. Therefore, two 

different sets of parameters in VAR and GARCH are established here to describe their behaviors. 

In this paper, four models are proposed as follows: (1) regime switch for both VAR and GARCH, (2) 

regime switch for VAR only, (3) regime switch for GARCH only, and (4) no switch for VAR and 

GARCH. The VAR is capable to catch the trend property of data and the GARCH is to catch the volatility 

property of data so that the VAR and GARCH regime switch is used to catch not only both data properties 

but the asymmetric effect i.e. data properties in different states. The framework of VAR and GARCH 
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regime switch model is described in detail as follows. The other three models can be constructed 

accordingly since they are just the restricted cases of the VAR and GARCH regime switch.  

3.1 Vector autoregression with regime switch 

The regime switch VAR for bivariate STW and MXTW is expressed to interpret the trend of returns 

and is written as   

 
1

,t t

k
s s

t i t i t

i




 r θ r ε  (1)  

where tS  is a transition state variable at time t. It is assumed switching between two different states. In our 

case, the trend of returns is supposed to stay in “up” state denoted by outcome ts =u or “down” state 

denoted by outcome
ts =d and the state probability is written as 

 
1, 1 1 1)  ( | , , ,

t ts s t t t t tp P S s S s with s u d
          (2) 

Hence the variance covariance of residuals is written as  
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 

 

 
    

 
 (3) 

3.2  Bivariate GARCH(1,1) with regime switch 

It is not straight forward to express the conditional volatility by GARCH(1,1) with regime switch 

because the conditional volatility depends on the unobservable past latent state series. Some articles have 

proposed different methods to solve the conditional volatility switching under latent state series such as 

Gray (1996), Klaassen (2002), and Lee and Yoder (2006). In reference to them, the conditional volatility 

process under latent state series is solved by integrating out the latent state variables i.e. taking the 

expectation of conditional volatility under current or previous states. Unfortunately, the result formulus of 

conditional volatility are not quite explicit compared to typical GARCH model. Hence, to keep GARCH 

meaningful and handle path dependence as well, the regime switch is assumed changing concurrently in 

two sets of GARCH(1,1) with their own state outcome and probability.  

Furthermore, the dynamic latent state variable is assumed to have two specific state outcomes and 

probabilities embedded with parameters of transition probabilities. Fortunately, the dynamic state variable 

can be solved iteratedly forward based on Bayes’ theorem as described in following section. Hence the sum 

of log likelihood function can be constructed by GARCH estimated conditional volatilities.  

To simplify the estimation process, the bivariate GARCH(1,1) model is applied here to estimate the 

conditional volatilities using the residual series as in Equation (1). On the other hand, it is complicated to 

solve the multivariate GARCH model due to the positive definitive requirement of multivariate variance 

covariance matrix and the large amount estimation of parameters. To make model parsimonious, the 
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conditional constant correlation (CCC) MGARCH proposed by Bollerslev (1990) is adopted here. 

Actually, the switch between different state correlations would be able to describe the change of correlation 

structures as suggested by Pelletier (2006) and the dynamic process of volatility could result from different 

state correlations 

The regime change of CCC is specified as follows. Assume the time invariant correlation between 

series i and j under state tS  at time t is tS

ij and its time varying variance covariance is ,
tS

ij th  so that 

 , , , ,t ttt S

ij t

S S

ij i t t

S

jh h h  (4) 

where ,i th and ,j th are the dynamic variances. In our case, i and j represents either MXTW or STW denoted 

by 1 or 2 respectively so that the dynamic conditional variances and covariances are written as   
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The conditional variances and covariances in matrix tS

tH are path dependent on the dynamic process 

of unknown latent random variable St. However, it is formed by two concurrent sets of GARCH with their 

own state outcome and probability. As a result, the regime switch conditional volatility is just the aggregate 

of two GARCH conditional volatilities weighted by their own state probability.   

3.3 The maximum likelihood estimation (MLE) 

Given the estimation of trend of returns and conditional volatilities, it follows that the quasi log 

likelihood function is written as  
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where tS

tH is the matrix of the dynamic variances and covariances as above equation, tS

tε is the residual 

vector in Equation (1), and 1( | )t tP S   is the state probability. 

If the random state variable St is observable, it is straightforward to solve parameters by MLE. 

However, St is a latent random variable. The plausible way to solve likelihood function under latent state 

series is to adopt Bay’s theorem to describe the density of εt conditioned on past information 1t  i.e. the 

likelihood function of 1( | , )t tt tsf S ε as the integration of joint probability of εt and St with st=u, d. The 

joint probability is formed by the multiplication of conditional probability of εt under latent state variable 
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and the probability of latent state variable. Typically, the series of state random variable have the property 

of Markov chains: the current state estimation depends on the previous state information only. Thus, the 

probability of latent state variable is assumed to be the multiplication of conditional probability of latent 

state variable and probability of previous latent state variable.  

Iteratedly one step forward from the initial condition, the likelihood functions are then constructed 

jointly with two concurrent state outcomes and probabilities. The details are described as follows.  

To integrate out the state variable in Equation (7), the state probability must be solved accordingly. 

Hence, Equation (7) is rewritten as 

 
1 1 1 -1

1 -1 1 -1

( |  ) ( , |  )  ( | ,  ) ( | )
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          (8) 

It is ought to use the joint probability of St-1 and St in order to obtain the probability of 

 1(S | )tt tP s  that can be written as 
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Yet  1( | )tt tsP S    must filter for time t+1 as tε  is observed and is rewritten as   
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To illustrate the MLE in more detail, an illustration at time t=0 to t=1 is described in the following 

steps:   

(1) Given the information 0 representing known ε0, P(S0 =u| 0 )=u, and P(S0 = d| 0 )=d, the 

density of log likelihood function conditional on regime 1s  at t= 1 is 
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(2) The initial state probability of regime when 11S s i.e. 11 0( )|sP S  is 
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Specifically, 11 0( )|sP S  is written further for 1s u or d respectively as 

 1 0( = | ) (1  )uu u dd dP s p pu       and 1 0(  ,(1| ) )  uu u dd dpP ps d       (13)  

Formally, the conditional transition probability is denoted by
1 1 1( , | )

t ts s t t t t tp P S s S s
      and the 

conditional state probability is denoted by , (S | )
ts t t t tP s    . 

(3) The likelihood function of 1ε  is  
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(4) The state probabilities 1 0|( )uP s  and 1 0|( )uP s  is updated with known 1ε so that 
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 (15) 

Repeatedly iterating through steps (1)~(4) from t=2 to t=T, all sample data likelihood functions as 

Equation (14) and all state probabilities as Equation (15) are acquired. Due to information update, Equation 

(15) is also called a filter probability. As a result, the sum of log likelihood equation for the bivariate vector 

tε  in our case with t=1 to T is written as  
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
 (16) 

Once the path dependence of recursive conditional volatility is handled well, the 

Brendt-Hall-Hall-Hausman(BHHH) or Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm can be 

applied to solve the above optimization problem to maximize the log likelihood of Equation (16) and find 

the optimal parameters including VAR parameters ts

iθ , the GARCH parameters ( , , )tt tS

i

S

i

S

iw   , the 

constant correlations tS

ij , and the transition parameters for the transition probabilities uup and ddp . Note 

that the cumulative probabilities of standard normal distribution of the transition parameters are equal to the 

transition probabilities uup and ddp . 
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3.4  Review of Markov chains  

The transition from one state to another state is controlled by the transition matrix of conditional 

probabilities
1

 
1

uu uu

dd dd

p p
P

p p

 
   

, where1 uup represents the conditional probability of a transition from u 

state to d state, and 1 ddp represents the conditional probability of a transition from down d state to u state.  

According to Markov chains, the conditional probability would convergence to a constant matrix in 

the end. For example, assume P is a k k transition matrix.  If   is a real number and ( 0)X  is a 1k   

column vector, the eigenvalue decomposition of P is obtained as 'P X X . If the Markov process moves 

forward infinitely, the transition matrix becomes ( )lim n

n
P R


  so that R is the limit of the series 

(1) (2) ( ),  ,   , ,  nP P P  i.e. the unconditional state probability. The relationship of the unconditional state 

probabilities and conditional transition probability according to Hamilton (1989) is written as  

 
1 1

and .
2 2

dd uu
u d

uu dd uu dd

p p

p p p p
  

 
   

  (17) 

3.5  Hedging ratio and measurement 

To calculate hedging ratio and measure hedge effectiveness as considering hedge cost, the 

mean-variance utility and optimization must be adopted here.  

Suppose that a hedged portfolio is constructed by long one unit of spot equal to the index points of 

MXTW and short FQ units (i.e. contracts) of STW futures. The hedger’s expected utility at time t is 

constructed by the wealth expectation and variance of hedged portfolio using information set 1t . 

Accordingly the hedging ratios are obtained by maximizing the hedger’s utility as  

 1 1

1
( | ) ( | ),

2Ft

t t t t t
Q

Max U E W Var W      (18) 

where tW is the wealth of hedged portfolio, ( )E   and ( )Var   represent respectively the operators of 

expectation and variance, and is the risk aversion coefficient. According to Gagnon et al. (1988), the  is 

set to 1 here for a mild risk averse hedger.  

The portfolio is created by lone one spot and short
tFQ futures, the wealth change of hedged portfolio at 

time t as considering the cost of hedging is written as  

 1( ) ,
t tt t F t t F hW S Q F F Q c                           (19) 

where S and F denote spot and futures price respectively. The transaction cost of STW charging only 

commission fee is equal to US$2.85 per contract per side as aforementioned. Thus for trading STW, hc is 

set to US$ 5.7 i.e. 5.7/100 index points for offset of futures position.  
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The spot and futures prices are known at time t-1 and thus the expectation and variance of Equation 

(19) are written respectively as 

 1( ) ( ) ( )
t t tt t F t F t F nE W E S Q E F Q F Q c                    (20) 

 2 2 2

,( ) ( ) ( ) 2 ( ),
t tt t F t F t tVar W S Q F Q S F      (21) 

where 2 ( )   and ( , )    denote respectively the operators of variance and covariance. Because returns are 

the first order difference of prices, it is appropriate to use returns instead of prices to express the expectation 

and variance so that
1 tt t sS S r  and

1 tt t fF F r  . Hence, Equations (21) is rewritten as 

 

2 2 2

1 1 1 1

2 2 2 2 2

1 1

( ) ( ) ( ) 2 ( , )

( ) ( ) 2 ( , ).

t t t t t t

t t t t t t

t t S F t F F t S t F

t S t F F t t F S F

Var W S r Q F r Q S r F r

S r F Q r S FQ r r

  

  
   

 

  

  
 (22) 

To simplify expression, 2 ( )
tSr is replayed by 2

St
r and similarly for the others. Then above equation 

becomes  

 2 2 2 2 2

1 1 1 1 ,( ) 2 .
S t F t S Ft t t t

t t r t F r t t F r rVar W S F Q S F Q         (23)
 
 

Substituting Equation (20) and (23) into Equation (18) gives  

 

 2 2 2 2 2

1 1 1 1 1 ,

 

1
( ) ( ) 2 .

2

Ft

t t t S t F t S Ft t t t

t
Q

t F t F t F n t r t F r t t F r r

Max U

E S Q E F Q F Q c S F Q S F Q       



     
 (24) 

To maximize Equation (24) and solve for
tFQ , the first order derivative of Equation (24) with respect 

to
tFQ is derived as 

 2 2

1 1 1 1 ,

1
( ) (2 2 ).

2 t F S Ft t t

t

t
t t n F t r t t r r

F

dU
E F F c Q F S F

dQ
            (25)  

Let Equation (25) equal to zero and the solution is the optimal hedging ratio as  

 
1 1 ,*

12 2

1

and ( ) .
S Ft t

t

Ft

t t t r r

F t t t n

t r

R S F
Q R F E F c

F

 

 
 





              (26)           

At current time t-1 the spot and futures prices are known in Equation (26), but the expectation of 

futures price at time t is not. Thus, the futures price should be predicted by the VAR model as expressed in 

Equation (1). The covariance ,S Ft t
r r and variance 2

Ft
r  are supposed to be estimated by the GARCH(1,1) to 

acquire the optimal hedging ratio *

tFQ .  

To compare the performance of our models, the variance of wealth in Equation (23) is assumed 

changing with the variable of hedging ratio only so that the variance and covariance of MXTW and STW is 

deemed as respectively the h-day realized variance(RV) or quadratic variation proposed by Anderson et 
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al.(2003) and approximately realized covariance (RC) or cross variation in reference to Hayashi, T. and N. 

Yoshida (2005) as   

  
/

'

1

=
h

t t h i t h i

i

RV


     

r r   (27) 

 
/

, , ,

1

,
S Ft t

h

r r S t h i F t h j

j

RC r r


     


   (28) 

where for MXTW and STW, t h i  r  denotes a 2ä1 vector of logarithmic returns in one 1/Δ 

period, tRV denotes a 2ä1 vector of return variances in h period, and ,S Ft t
r rRC  denotes logarithmic return 

covariance in h period. In our case with weekly data, h is equal to 5 and Δ is equal to 1. 

In fact, Equation (26) consists of two components: one is the position of return and the other is the 

position of variance. The position of the return increases as the futures prices and transaction cost decrease. 

On the other hand, the position of the variance increases as the correlation or relative volatility between spot 

and futures increases. The increase of the position of variance should be accompanied by the decrease of 

position of retunes and vice the versa until the optimal solution of hedging position is reached. The risk 

aversion also reveals the tradeoff amount between the two position. It implies one unit of risk deduction for 

a half   unit of return compensation.       

The hedge effectiveness is measured by the three methods: incremental wealth increase (IWI), reduced 

variance decrease (RVD), and incremental utility increase (IUI) that are written as follows: 

       1
t

Hg UHg Hg

t t t
V UHg UHg

t t

V V V
HE

V V


    (29) 

 1
t

Hg UHg Hg

t t t
W UHg UHg

t t

W W W
HE

W W


    (30) 

 1,
t

Hg UHg Hg

t t t
U UHg UHg

t t

U U U
HE

U U


          (31)   

where W, V,U, Hg, and UHg denote respectively wealth, variance, utility, hedge, and unhedged so that Hg

tV  

means the variance of the hedged portfolio and the other notations are denoted similarly. 

4. Empirical Results 

In fact, the correlation of spots and nearby month futures is the largest compared to the distant month 

futures. Hence, to hedge MXTW well, the STW maturity selected is the nearby month. Both MXTW index 

and nearby STW futures price data are collected from the database of Taiwan Economic Journal (TEJ). The 

data of STW in TEJ are continued by the method of interpolation between consecutive months while the 
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futures prices rollover between nearby and expired months.  

Due to transaction cost considered in hedge position, it is not clever to hedge the spot position daily. 

Therefore, the hedge horizon is set as a week. The period of in-sample is set from 08/09/2001 to 05/31/2007 

yielding total 288 weekly observations to estimate trend and volatility using regime switch models. The 

period of out-of-sample is set from 06/07/2007 to 06/26/2013 yielding total 302 weekly observations. The 

rolling window technique is used to analyze the model estimations and forecasts for out-of-sample period. 

The size of windows is fixed the same as that of in-sample period. The fixed size window then rolls one step 

forward ( i.e. a week in our case) repeatedly through whole out-of-sample period and thus creates 302 

forecasts.  

Furthermore, to determine and compare the hedging ratios and performances during large risk events 

such as subprime, Greek debt crises. The out-of-sample data are separated into three data sets: the subprime 

data spanning from 06/07/2007 to 03/05/2009, the Greek debt data spanning from  12/08/2009 to 

03/03/2011, and the post risk data spanning from 11/11/2011 to 05/23/2013. 

4.1 Data description 

Table 1 reports the basic statistical properties of weekly logarithmic returns of MXTW and STW data 

sets for in-sample and out-of-sample periods. The values of standard deviation of STW futures are higher 

than those of MXTW spots in either in-sample or out-of-sample period. It appears that the futures have 

higher volatility than the spots. For both datasets and periods, the excess kurtosis testes and the 

non-normally distributed Jarque-Bera tests are founded strong significantly with nearly zero p value. The 

skewness tests are significant at negative value as both spots and futures are in out-of-sample period though 

not significant at positive value in in-sample period. It indicates that both data sets are fat tailed with higher 

peakedness. The means of returns in both in-sample and out-of-sample periods are negative but the tests of 

mean equal to zero are insignificant to zero with large p values more than 0.4. Accordingly the trend of 

returns is not stable but swift and uneasy to predict.  

However, the minimum, maximum, and standard deviation of logarithmic returns show that the returns 

are too volatile to be unaware. Thus the regime switch is used to catch the trend and volatility changes 

between different states. The correlation between MXTW and STW is higher enough to reach over 0.97 so 

that the hedge of risk position is reasonable.  

Figure 1 shows the movements of indices and basis risk between MXTW and STW. The basis risk is 

MXTW index minus STW index and it is found frustrating between -10.64 and 17.39. This range of basis 

risk is equal to 28.03x$100/point=$2,803 for a futures contract so that the profit or loss might reach to 

$2,803*the number of futures contracts. If the futures position is large enough, the basis risk would become 

quite appalling. That’s why the hedging ratios should be optimized cautiously. 
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Table 1 Data Description 

In-Sample Data 

 Min Max Mean Stdev Skewness Kurtosis 
Jarque-Bera 

Test 
MXTW -0.1407 0.1617 1.475E-03 0.0360 0.0516 5.7153 93.146 
p value   0.4869  0.7205 0.000 0.000 
STW -0.1503 0.1797 1.475E-03 0.0400 0.1399 5.6533 89.797 
p value   0.5323  0.3325 0.000 0.000 

Correlation 0.9782       

Out-Sample Data 

 Min Max Mean Stdev Skewness Kurtosis 
Jarque-Bera 

Test 
MXTW -0.1274 0.1327 -5.173E-04 0.0331 -0.3508 4.7474 46.880 
p value   0.7858  0.0128 0.000 0.000 
STW -0.1298 0.1376 -5.479E-04 0.0346 -0.4648 4.9424 61.071 
p value   0.7836  0.0009 0.000 0.000 

Correlation 0.9745       
Note: The in-sample (08/09/2001~ 05/31/2007) and out-of-sample (06/07/2007~06/26/2013) have respectively 288 and 302 
weekly observations.  
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Figure 1 MXTW and STW Prices and Spreads 
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Table 2 reports the properties of logarithm returns of MXTW and STW series. Both return series have 

no significant autocorrelation nor unit root while both return series do have significant ARCH effect. Also, 

both price series are tested for the unit root. The result shows that both price series have significant unit root 

and hence should be differenced once to turn into return series for model use.  

Table 2 The Tests of MXTW and STW Return Series 

Autocorrelation Test Unit Root Test ARCH Test 

 MXTW STW MXTW STW MXTW STW 

Lag AC Q-Stat p value AC Q-Stat p value ADF(Return) ADF(Return) F test F test 

1 -0.003 0.0045 0.947 -0.045 1.1984 0.274 -25.336 -24.292 21.233 22.824 

2 0.008 0.040 0.980 -0.029 1.7007 0.427 Critical Level Critical Level p value p value 

3 0.037 0.8707 0.832 0.038 2.5389 0.468 1% 5% 10% 1% 5% 10% 0.000 0.000 

4 0.073 4.0262 0.402 0.065 5.0409 0.283 -3.441 -2.866 -2.569 -3.441 -2.866 -2.569 LM LM 

5 -0.015 4.1561 0.527 -0.033 5.6838 0.338 ADF(Price) ADF(Price) 20.56226 22.04214 

6 0.025 4.5381 0.604 0.006 5.7055 0.457 -1.630 -1.850 p value p value 

7 0.037 5.3464 0.618 0.057 7.6389 0.366 Critical Level Critical Level 0.000 0.000 

8 0.043 6.4556 0.596 0.052 9.288 0.319 1% 5% 10% 1% 5% 10%   

9 -0.046 7.7175 0.563 -0.059 11.405 0.249 -3.453 -2.871 -2.572 -3.453 -2.871 -2.572   

Note: The tests are performed using all 590 observations including in-sample and out-of-sample data.  

 

4.2 Model estimation and prediction 

Four models are established for trend of returns and volatility estimations, The basic regime switch 

model is Model 1 that can switch for both trend of returns and volatility, the other three models are the 

restricted forms of Model 1 with Model 2 for trend of returns or VAR switch only, Model 3 for volatility 

or GARCH switch only and Model 4 without switch.  

Table 3 reports the estimations of regime switch models using in-sample data from  08/09/2001 to 

05/31/2007. As shown overall, the correlation between MXTW and STW is large and significant up to 

0.98 plus. The level of trend of returns is significant except Model 2 in state 1 and Model 3 in both states. 

The coefficients of ARCH and GARCH are significant in state 1. The parameters of transition probability 

is significant in state 1 as well. In fact, the volatility switch between high and low volatility states is 

mostly demonstrated but the trend switch is yet to investigate further.  

According to the parameter setup, the probability of stay in state 1 i.e. p11 or stay in state 2 i.e. p22 as 

in Equation (13) is equal to the cumulated probability of standard normal distribution. Hence, in Model 1 

the conditional transition probabilities of p11 and p22 are equal to 0.9579 and 0.4396 respectively while the 

unconditional state probabilities 1 and 2  as in Equation (17) are equal to 0.9301 and 0.0699 respectively.  
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Table 3 The Estimations of Regime Switch Models 

Model 1 Model 2 Model 3 Model 4 

 State 1 State 2 State 1 State 2 State 1 State 2   

MXTW STW MXTW STW MXTW STW MXTW STW MXTW STW MXTW STW MXTW STW 

  0.9883 0.9901 0.9914 0.9914 0.9882 0.9878 0.9886 
Stderr 0.0016 0.0045 0.0012 0.0012 0.0012 0.0084 0.0018 
p value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

θ0 0.0058 0.0065 -0.0337 -0.0406 -0.0008 -0.0006 0.0441 0.0330 0.0049 0.0055   0.0049 0.0052 

Stderr 0.0017 0.0017 0.0101 0.0104 0.0020 0.0021 0.0065 0.0066 0.0035 0.0037   0.0017 0.0019 

p value 0.0006 0.0002 0.0009 0.0001 0.6798 0.7679 0.0000 0.0000 0.1615 0.1436   0.0047 0.0060 

θ1 0.5307 1.1837 0.2525 1.2881 0.1943 0.8730 -1.2424 -1.5367 0.2218 0.8640   -0.1573 0.3470 

Stderr 0.2897 0.3007 0.4366 0.5900 0.2513 0.2858 0.6999 0.7291 0.2977 0.3305   0.2138 0.2493 

p value 0.0682 0.0001 0.5636 0.0300 0.4401 0.0025 0.0771 0.0361 0.4569 0.0095   0.4624 0.1652 

θ2 0.8557 1.4133 -0.0426 0.3404 0.4077 0.9964 0.3547 1.5132 0.5183 1.0763   0.2340 0.6891 

Stderr 0.2727 0.2897 0.2644 0.2880 0.2346 0.2698 0.6483 0.8403 0.3530 0.3862   0.1417 0.1463 

p value 0.0019 0.0000 0.8721 0.2383 0.0835 0.0003 0.5848 0.0729 0.1432 0.0057   0.1000 0.0000 

θ3 0.1771 0.3368 1.5200 1.5200 0.2328 0.4412 -1.1702 -1.1337 0.0526 0.2520   0.1085 0.2442 

Stderr 0.2381 0.2571 0.4199 0.5831 0.1988 0.2343 0.2299 0.2251 0.3335 0.3663   0.2627 0.2938 

p value 0.4577 0.1914 0.0004 0.0097 0.2426 0.0608 0.0000 0.0000 0.8747 0.4920   0.6800 0.4067 

θ4 -0.5808 -1.2461 -0.1087 -0.9373 -0.1163 -0.7887 0.5158 0.8631 -0.2626 -0.9132   0.0491 -0.4659 

Stderr 0.2619 0.2725 0.3582 0.4972 0.2191 0.2520 0.5360 0.5725 0.2640 0.2975   0.1853 0.2221 

p value 0.0275 0.0000 0.7619 0.0606 0.5962 0.0020 0.3368 0.1329 0.3208 0.0024   0.7913 0.0369 

θ5 -0.9086 -1.4706 -0.4441 -0.9472 -0.4252 -1.0151 0.1608 -0.9287 -0.5389 -1.0988   -0.2413 -0.6954 

Stderr 0.2478 0.2631 0.1598 0.1955 0.2010 0.2373 0.6003 0.7350 0.3340 0.3603   0.1355 0.1461 

p value 0.0003 0.0000 0.0059 0.0000 0.0354 0.0000 0.7890 0.2075 0.1079 0.0025   0.0760 0.0000 

θ6 -0.3152 -0.5027 -1.1166 -1.3663 -0.2109 -0.4455 1.0636 0.8208 -0.1498 -0.3757   -0.1162 -0.2751 

Stderr 0.2166 0.2345 0.1461 0.3288 0.1590 0.1964 0.2659 0.2486 0.3066 0.3359   0.2235 0.2524 

p value 0.1469 0.0330 0.0000 0.0000 0.1859 0.0241 0.0001 0.0011 0.6255 0.2644   0.6035 0.2767 

w 0.0000 0.0000 0.0014 0.0013 0.0002 0.0802   0.0000 0.0000 0.0037 0.0046 0.0005 0.0005 

Stderr 0.0000 0.0000 0.0008 0.0008 0.0001 0.0146   0.0000 0.0000 0.0055 0.0068 0.0001 0.0001 

p value 0.3694 0.5508 0.0783 0.1040 0.0416 0.0000   0.2608 0.3176 0.2508 0.2513 0.0001 0.0001 

α 0.0224 0.0190 0.6691 0.1272 0.5718 0.0003   0.0201 0.0174 0.7070 1.0000 0.3521 0.4035 

Stderr 0.0074 0.0051 0.3409 0.2070 0.1183 0.0001   0.0070 0.0052 1.1795 1.3501 0.0799 0.0809 

p value 0.0027 0.0003 0.0508 0.5394 0.0000 0.0115   0.0022 0.0005 0.2747 0.2298 0.0799 0.0809 

β 0.9582 0.9642 0.3627 0.7280 0.1235 0.5333   0.9633 0.9672 0.0000 0.0275 0.3498 0.3527 

Stderr 0.0164 0.0124 0.1134 0.0954 0.0234 0.1093   0.0176 0.0134 1.3373 1.2278 0.0929 0.0746 

p value 0.0000 0.0000 0.0016 0.0000 0.0000 0.0000   0.0000 0.0000 0.5000 0.4911 0.0929 0.0746 

Pm 1.7275 -0.1521 2.2176 0.6136 1.6721 -0.3276 
Stder 0.1782 0.3200 0.2988 0.8637 0.2143 0.4388 

p value 0.0000 0.6350 0.0000 0.4781 0.0000 0.4560 

LogL 1689.32  1663.71  -1678.01  1616.62 
AIC 3466.64  3401.42  3416.03  3275.24 
BIC 3627.81  3536.95  3525.92  3352.16 

p 0.9579 0.4396 0.9867 0.7303 0.9527 0.3716   

  0.9301 0.0699 0.9531 0.0469 0.9301 0.0699   
Notes: 1. Model 1 is switch for trend and volatility, Model 2 is switch for trend only, Model 3 is switch for volatility only, and 
Model 4 is no switch. 2. The estimated parameters are the coefficient of correlation  in Equation (4), the coefficients of VAR 

θ in Equation (1), and the coefficients of GARCH (w, α, β) in Equation (5). 3.Pm is the parameters of transition probability and 
the cumulative probability of standard normal distribution of Pm is the transition probability p that is p11 for stay in state 1 or 

p22 for stay in state 2. 4.  is the unconditional state probability as in Equation (17). 5. In Model 2 the GARCH estimates are 
the same for State 1 and 2, and in Model 3 the VAR estimates are the same for State 1 and 2. The estimates are listed in state 1 
but not in state 2. 
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Similarly, Table 3 lists the results of transition and state probabilities for Model 2 and 3. As the 

conditional transition and unconditional state probabilities reveal, state 1 is more likely to stay in than 

state 2 and the transition to state 1 is more possible than state 2. Observing stock prices for a long time, 

trends are more likely to go up than go down and volatilities are more likely to stay tranquil as usual than 

turbulent. 

Besides, for all models, state 2 appears to have higher level of trend and volatility. It means to stay in 

state 2 is not as usual. On the other hand, state 1 with less trend and volatility levels is more significant 

and possible than state 2. Consequently, state 1 with higher p11 is assumed to be the usual (u) state and 

state 2 is the down (d) state. 

The one-week ahead prediction is obtained, once the model parameters are estimated. Then using 

technique of rolling over out-of-sample period step by step is able to obtain 302 one-week ahead 

predictions. Figure 2 exhibits the predictions of indices, volatility, covariance, and hedge ratios for 

out-of-sample period. Obviously, the volatilities and covariances are found much higher during subprime 

period around the second part of 2008 and the hedge ratios are noticed more volatile as well. The 

extracted index predicitions for all models show higher than the actual index from 08/2008 to 12/2008 

within subprime period.        
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Figure 2 The Estimated Indices, Volatilities, Covariances, and Hedged Ratios  
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4.3 Hedge performance 

Table 4 reports the hedge performances using the 302 one-week ahead predictions over 

out-of-sample period. In comparison of three periods: subprime, Greek debt, and post risk, surprisingly 

the hedge performances over the subprime period have much the best advantages for all four models with 

IWI over 0.81%, RVD below 83%, and IUI reaching up to 59% far above the average that has IWI above 

0.10%, RVD below 82.66%, and IUI above 26.41% calculated through the whole out-of-sample period. 

The subprime period is found very crucial to acquire better hedge performance. 

Table 4 Hedge Performance Comparison of Models 

Panel A. Whole out-of-sample period 

Mean(W0) Mean(Var0) Mean(U0) Mean(HR1) Std(HR1) IWI RVD IUI 
Model 1 278.06 79.31 238.40 94.543% 4.601% 0.112% -84.038% 26.397% 
Model 2 278.06 79.31 238.40 92.916% 4.287% 0.119% -84.279% 26.443% 
Model 3 278.06 79.31 238.40 98.402% 8.048% 0.114% -82.654% 26.417% 
Model 4 278.06 79.31 238.40 93.061% 4.788% 0.108% -84.473% 26.832% 

Panel B. Subprime period 

Mean(W0) Mean(Var0) Mean(U0) Mean(HR1) Std(HR1) IWI RVD IUI 
Model 1 287.36 146.71 214.00 93.794% 5.578% 0.815% -84.348% 60.310% 
Model 2 287.36 146.71 214.00 92.911% 5.571% 0.841% -84.178% 59.814% 
Model 3 287.36 146.71 214.00 95.393% 4.715% 0.837% -83.287% 59.613% 
Model 4 287.36 146.71 214.00 93.430% 5.264% 0.818% -84.629% 60.890% 

Panel C Greek debt period 

Mean(W0) Mean(Var0) Mean(U0) Mean(HR1) Std(HR1) IWI RVD IUI 
Model 1 287.48 93.49 265.76 94.075% 3.673% -0.096% -95.502% 7.891% 
Model 2 287.48 93.49 265.76 91.294% 3.283% -0.077% -95.268% 7.864% 
Model 3 287.48 93.49 265.76 96.574% 6.997% -0.080% -94.982% 7.805% 
Model 4 287.48 93.49 265.76 90.649% 3.961% -0.079% -95.450% 7.895% 

Panel D Post risk period 

Mean(W0) Mean(Var0) Mean(U0) Mean(HR1) Std(HR1) IWI RVD IUI 
Model 1 271.26 38.81 251.85 95.101% 3.263% -0.053% -85.711% 7.604% 
Model 2 271.26 38.81 251.85 93.560% 3.323% -0.048% -85.756% 7.594% 
Model 3 271.26 38.81 251.85 102.155% 4.235% -0.043% -83.813% 7.508% 
Model 4 271.26 38.81 251.85 92.338% 3.648% -0.048% -85.692% 7.589% 

Notes: 1.W0, Var0, and U0 represent respectively no hedge wealth, variance of wealth, and utility. HR1, W1, Var1, and U1 
represent respectively hedging ratio, wealth, variance of wealth, and utility. 2. IWI, RVD, and IUI are defined in 
Equations( 29), (30), and (31) respectively.  

 

The hedge performances over Greek or post risk periods are far below the average except RVD. The 

whole out-of-sample period shows that the regime switch models including Model 1 to 3 have better 

performance in IWI while no regime switch i.e. Model 4 is desirable in RVD and IUI. Generally for 

out-of-sample period, Model 2 is superior to Models 1 and 3 in IWI, RVD, and IUI. Besides, for the 

subprime period, it turns to favor Model 2 with trend switch. Thus, using trend switch alone expresses 

more appropriate than using both trend and volatility switches or volatility switch alone. The Greek debt 
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and post risk periods appears to prefer Model 4 with no regime switch; however, all models perform far 

below the average.  

4.4 Hedge measurements in different states 

One essential advantage to use regime switch model is to classify the hedge context into different 

hedge states to measure hedge effectiveness. For a univariate series, the hedge states can be classified into 

usual (u) i.e. state 1 and down(d) i.e. state 2. If the state probabilities are greater than 0.5, they are deemed 

as state d otherwise state u. Thus, for the case of two univariate  MXTW or STW, it turns out to have 

four hedge states: uu, ud, du, or dd. The hedge performances are evaluated in the four hedge states to 

explore which hedge state performs the best. 

The state probabilities for univariate  MXTW or STW are estimated similar to bivariate series 

except that the matrix ε  in Equation (1) is reviewed as a number. Again using rolling over technique, the 

dynamic process of total 302 state probabilities is found for out-of-sample period.  

Figure 3 exhibits the dynamic process of state probabilities for both MXTW and STW. Clearly, the 

state probabilities switch very often for both series during 06/2007 to 11/2009 covering the period of 

subprime. After that, both of them become very calm from 07/2010 to 03/2011.    
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Figure 3 The Dynamic Process of State Probabilities  
 

Table 5 reports the hedge performances evaluated in four different hedge states. Evidently for all 

models, the hedges in dd states have the most astonishing performance having IWI above +1.4%, RVD 

below -86%, and IUI above +40% compared to the average of whole out-of-sample period having IWI 

above 0.10%, RVD below 82.66%, and IUI above 26.41%. 
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The uu states are the most frequently observed incidents 246/302 during out-of-sample period. 

However, all models perform below the average in uu state having IWI, RVD, and IUI respectively 

below+0.009%, above -84%, and below+23%. All models in du state have the largest IUI above 50% but 

lower negative IWI below -0.078%. All models in ud state perform the worst having the lowest IWI 

below -2.10% and IUI lower than +12% though having the most reduced RVD below -96%. 

Undoubtedly, hedgers have to avoid the ud states and pursue much more important hedge opportunities in 

dd and du hedge states.  

Table 6 reports the number of hedge states in a certain hedge period over total 302 occurrences. The 

no regime switch model appears to perform better in most seen uu state as occupying 93.67% in post risk 

period and 90.63% in Greek debt period but the results are below average like the other models. However, 

Figure 2 has showed that the volatilities and covariances are frustrated the most extensively in subprime 

period. Thus the most required hedge moment is not in uu state but in subprime period as occupying up to 

19.54% in dd state. The hedgers have to catch this decisive 19.54% opportunity to establish appealing 

hedge results.  

Table 5 Hedge Measurements in Different Hedge States 

Panel A. Model 1 with trend and volatility switches  

State Nos. Mean(W0) Mean(Var0) Mean(U0) Mean(HR1) Std(HR1) IWI RVD IUI 

all 302 278.06 79.31 238.40 94.543% 4.601% 0.112% -84.038% 26.397% 
uu 246 282.20 247.94 68.52 94.785% 3.638% 0.008% -83.172% 22.660% 
ud 5 286.79 251.72 70.15 94.647% 3.110% -2.357% -96.652% 11.269% 
du 19 234.45 172.77 123.37 89.975% 9.459% -0.092% -84.668% 50.712% 
dd 32 270.76 202.00 137.52 95.377% 5.812% 1.420% -88.349% 43.053% 

Panel B. Model 2 with trend switch 

State Nos. Mean(W0) Mean(Var0) Mean(U0) Mean(HR1) Std(HR1) IWI RVD IUI 

all 302 278.06 79.31 238.40 92.916% 4.287% 0.119% -84.279% 26.443% 
uu 246 282.20 247.94 68.52 93.324% 4.025% 0.008% -83.543% 22.538% 
ud 5 286.79 251.72 70.15 89.963% 3.711% -2.189% -96.381% 11.365% 
du 19 234.45 172.77 123.37 90.490% 4.849% -0.078% -84.163% 53.474% 
dd 32 270.76 202.00 137.52 91.688% 5.204% 1.454% -88.116% 42.770% 

Panel C. Model 3 with volatility switch 

State Nos. Mean(W0) Mean(Var0) Mean(U0) Mean(HR1) Std(HR1) IWI RVD IUI 

all 302 278.06 79.31 238.40 98.402% 8.048% 0.114% -82.654% 26.417% 
uu 246 282.20 247.94 68.52 98.672% 7.340% 0.008% -81.871% 22.455% 
ud 5 286.79 251.72 70.15 96.462% 5.170% -2.350% -96.381% 11.259% 
du 19 234.45 172.77 123.37 93.499% 6.134% -0.102% -83.221% 57.716% 
dd 32 270.76 202.00 137.52 99.536% 12.672% 1.441% -86.200% 40.658% 

Panel D. Model 4 with no switch 

State Nos. Mean(W0) Mean(Var0) Mean(U0) Mean(HR1) Std(HR1) IWI RVD IUI 

all 302 278.06 79.31 238.40 93.061% 4.788% 0.108% -84.473% 26.832% 
uu 246 282.20 247.94 68.52 93.433% 4.404% 0.009% -83.727% 22.862% 
ud 5 286.79 251.72 70.15 88.496% 4.041% -2.346% -96.173% 11.175% 
du 19 234.45 172.77 123.37 91.131% 7.613% -0.156% -84.950% 54.877% 
dd 32 270.76 202.00 137.52 92.068% 5.075% 1.412% -88.102% 43.150% 

Note: “all” is the all out-of-sample data covering all hedge states. 
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Table 6 The Number of Hedge States in Different Hedge Periods 

uu ud du dd 

Period Nos. Percentage Nos. Percentage Nos. Percentage Nos. Percentage 

Subprime 62 71.26% 0 0.00% 8 9.20% 17 19.54% 

Greek Debt 58 90.63% 1 1.56% 1 1.56% 4 6.25% 

Post Risk 74 93.67% 2 2.53% 0 0.00% 3 3.80% 

Other 52 72.22% 2 2.78% 10 13.89% 8 11.11% 

Total Nos.=302 246 81.46% 5 1.66% 19 6.29% 32 10.60% 

 

Remarkably, the regime switch models such as Models 1 and 2 appear to perform better than no 

switch model under dd state in terms of IWI and RVD according to Table 5. After all, the most important 

hedge is to acquire hedging wealth or reduce variations in dd state as the results are indeed far above 

average.  

5. Conclusions 

The logarithm returns of MXTW and STW are demonstrated having the higher perakness and 

correlation and the Jarque-Bera test indicates the nonlinear property in series. The regime switch models 

are proposed to better predict the nonlinear expected returns and volatilities of MXTW and STW.  

The higher volatility and covariance of returns, and frustration of hedge ratios are found intensively 

occurring in subprime period. In fact, the most demanded hedging period is the subprime period. At this 

moment, all four models would have surprising far above average hedge performance in terms of wealth 

or utility increase while they perform far below average except risk decreasing in Greek debt or post risk 

period.  

As the hedge context are classified into different states, it is found that all four models in du and dd 

states have the most advantageous performance in terms of IWI and IUI while the ud state is not 

desirable. In fact, the subprime period is found consisted of 19.54% dd states occupying much the most 

amount in all periods. Thus, the hedgers must catch this crucial opportunity as found recurrently in 

subprime period to perform the hedge. 

The hedge ratios are constructed by two components: the position of expected return and the position 

of variance. As a matter of fact, the stock markets are found having the property of tradeoff between 

return and variance. It seems hard to increase the return and reduce the variance at the same time. The 

four hedge models are either effective in IWI, RVD, or IUI but not all of them. The regime switch models 

are found very outstanding at the IWI or RVD but not IUI especially when both series are in down state as 

occurring very often in subprime period. The use of trend switch to catch the wealth increase appears 

more appropriate than the volatility switch to reduce the risk. 
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Noticeably, the no switch model appears to perform the best when both MXTW and STW are in 

usual state as most observed in both Greek debt and post risk periods but the results are found below the 

average calculated through out-of-sample period. Consequently, it is found advantageous to use trend 

switch model to catch the wealth increase and use no switch model to acquire the utility increase.  
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