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Abstract. In many statistical problems there is the need to analyze the structure 

of an unknown n-dimensional array given its marginal distributions. The usual 

method utilized to solve the problem is linear programming, which involves a 

large amount of computational time when the original array is large. Alternative 

solutions have been proposed in the literature, especially to find less time 

consuming algorithms. One of these is the shuttle algorithm introduced by 

Buzzigoli and Giusti [1] to calculate lower and upper bounds of the elements of 

an n-way array, starting from the complete set of its (n-1)-way marginals. The 

proposed algorithm, very easy to implement with a matrix language, shows 

interesting properties and possibilities of application. The paper presents the 

algorithm, analyses its properties and describes its disadvantages. It also 

suggests possible applications in some statistical fields and, in particular, in 

Symbolic Data Analysis and, finally, shows the results of some simulations on 

randomly generated arrays. 

Key-words: shuttle algorithm, linear programming, statistical disclosure 

control, linked tables, zero restrictions. 

1 Introduction 

Many different kinds of statistical data analyses aim to investigate the structure of an 

unknown multidimensional array, starting from a limited amount of information about 

it. In Symbolic Data Analysis (SDA in the following) this issue is connected with the 

relationship between first order and second order objects (Billard and Diday [2]).  

When the dimensions of the multidimensional array are considerable, methods of 

complex data analysis can be of help in investigating the original data structure.  

Traditionally, a first step for solving this problem could be that of calculating the 

range of the array elements, given the known data. In this context, a useful instrument 

is linear programming (LP in the following). In fact, LP and integer LP are widely 

used to solve minimization/maximization problems that satisfy linear constraints. 

Nevertheless, in statistical applications which involve large datasets the use of LP is 

often difficult because the computational effort becomes considerable. Secondly, 
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integer LP doesn’t always produce integer results, even if the original data are integer 

and the problem is surely feasible. 

When it is not possible to decompose the initial optimisation problem in smaller 

pieces, the only possible alternative is the search of computational more efficient 

algorithms. A number of methods based on networks, graph and combinatorial theory 

have been proposed in the literature in order to find computational efficient solutions, 

but a general theory is not available, yet. 

The shuttle algorithm (SA in the following), which deals with datasets of non-

negative integers, received great attention in this field of studies since the initial 

proposal by Buzzigoli and Giusti [1]. Although the algorithm doesn’t always produce 
exact LP solutions, its computational advantages are so significant that more deepen 

analyses are needed, especially from an empirical point of view. 

The structure of the paper is the following. In section 2 we introduce the problem, the 

notation used to represent it and we mention LP method as the ‘classic’ method to 
calculate lower and upper bounds of an array. Section 3 presents the SA, its properties 

and its disadvantages. Section 4 discusses some possible applications of the algorithm 

to statistical problems. Section 5 shows the results of some simulations in order to 

investigate its performance in particular situations. Some concluding remarks will end 

the paper. 

2 The starting problem 

Let’s consider an n-way array of non negative integer values with generic element 

 

niiix ,...,, 21
 

 

Its marginals represent the projections of the original points on the sub-space defined 

by the n-m variables (with mn) which are not included in the marginal. 

Let’s indicate  
- the (n-1)-dimensional marginals as: 

 

 ,...,,,...,,,...,, 2112
,...,, iiiiii xxx

nn  
 

where, for instance 

 


1

32132 ,...,,,,...,,,
i

iiiiiii nn
xx  

 

- the (n-2)-dimensional marginals as: 

 

          
,...,,...,, ,...,,,...,,,,...,,, 123 nnn iiiiii xxx   ,,...,,,,...,,, 32131

,..., iiiii xx  

 

where, for instance 
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21

3213
,

,...,,,,...,,,
ii

iiiiii nn
xx

 
 

- … 

- the uni-dimensional marginals as: 

 

 ,...,,,...,,,,...,,, 21
,...,, iii xxx

n
 

 

- and the scalar representing the general total as: 

 

 ,...,,,x
 

 

The problem we want to solve is to determine the lower and the upper bound of every 

element of the original array knowing all its n (n-1)-way marginal arrays. 

The solution of the system for a generic lmn array is usually found with integer 

linear programming. Given a vector y containing the elements of the n-way array 

arranged in lexicographical order (clearly the lexicographical order is an extension of 

the vec operator for n-way arrays (n>2)), LP operates on each element of the array 

separately, minimising and maximising yk (k=1,2,...,q), subject to a finite number of 

linear constraints of the form 

Ay=b 

and 

Cy0 

where: 

• A is a (0-1) rq matrix 
• r is the total number of elements in the given marginal tables (lm+mn+ln); 

• q is equal to the product of the array dimensions (lmn); 

• y is a q-dimensional non-negative column vector; 

• C is the qq identity matrix; 

• b  is an r-dimensional column vector containing the marginal values. 

This kind of problem is solved by the simplex algorithm [3], as it is common practice for 

LP problems. 

Nevertheless, using LP and the simplex algorithm in our context is very time 

consuming, especially when the dimensions of the array increase, since the algorithm 

must be applied 2q times. Actually, the array structure produces some obvious and 

some less obvious links among the marginals and among the upper/lower bounds and 

the marginals, that could be exploited to solve the problem. On the contrary, in the LP 

setting these links are considered only to build the constraints. As a consequence, in 

this particular field of application, LP and simplex algorithm seem to be particularly 

burdensome from a computational point of view, because they do not take into 

account that the 2q minimisations/maximisations are linked to each other. 

Alternative solutions are therefore necessary, in order to find more computational 

efficient algorithms. Various proposals have been made in the literature. An 

interesting method, which can be useful to partly overcome the computational 

problems of LP, is that relating to the graph theory, which has been extensively used 
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in statistical disclosure control literature (see §4), especially for applications involving 

cell suppression in two-dimensional tables ([4]; [5] and [6]). Chowdhury et al. [7] and 

Roehrig et al. [8] propose a method based on network models that can be applied only 

to 3-way tables, taking advantages “of the structure that results from the interlocked 
nature of the three-dimensional disclosure problem" ([8]; sect. 5). Therefore, even if 

the procedure seems promising, for the time being it can be applied in a limited 

number of real situations. 

Moreover, in three- and higher-dimensional tables the property of integrality of LP 

doesn’t hold anymore. Therefore, starting from integer marginals, LP can result in 

some non integer upper or lower bounds [9]. 

Our proposal is based on a completely different and very simple principle, generating 

an iterative procedure which surely produces integer results. 

3 The Shuttle Algorithm 

Given the n-way array X and the complete set of the n (n-1)-way marginal 

distributions: 

 

 ,...,,,...,,,...,, 2112
,...,, iiiiii xxx

nn
 . 

 

the SA is an iterative procedure which finds the lower (or upper) bounds of each cell 

of X using the marginal distributions and the array formed by the upper (or lower) 

bounds computed in the previous step. 

The logic underlying our procedure is the following: 

 the upper bound of the generic element cannot be greater than the lowest 

difference between each of its marginals and the sum of the lower bounds of the 

other elements along the same dimension (row, column, etc.); to start the 

procedure the lower bounds are all set to zero; 

 the lower bound of the generic element cannot be less than the highest positive 

difference between each of its marginals and the sum of the upper bounds of the 

other elements along the same dimension (row, column, etc.); if no difference is 

positive the lower bound remains zero; 

 if some of the lower bounds are greater than zero the previously computed upper 

bounds could obviously change; revised upper bounds imply the revision of the 

previously computed lower bounds and so on.  

In order to formalize this logic, we consider two n-way arrays X
Ui

 and X
Li

, which are 

the arrays containing, respectively, the upper and the lower bounds of the elements of 

X computed at the i-th iteration. Their generic elements are: 

 

i

niii

U
x

, . . . ,2,1

   and    i

niii

L
x

, . . . ,2,1

. 

 

The algorithm is based on two steps which are repeated alternatively: each step uses 

the matrix X and either of the matrices X
Li

 or X
Ui

, to calculate, respectively, the upper 

or the lower bound of each element of the original array. The lower bounds can be 
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used to revise upper bounds (repetition of first step) and the revised upper bounds to 

recalculate new lower bounds (repetition of the second step), and so on.  

We named it "shuttle" because it alternatively jumps from one array to the other 

calculating X
Ui

 at every odd step and X
Li

 at every even step.  

In summary, the algorithm can be described as follows. 

1
st
 step: 

 

,...,,(min= 1

,...,,1
2

1

1

,...,2,
1

2

1

2,...,2,1
,...,,,...,,,...,,

 





  s

niiin

s

niiin

s

n

s

niii

L

ii
ii

L

ii
ii

U

iii

U
xxxxxx  

)1

,...,2,121 ,...,,



  s

iii
n

L

ii
ii xx  

 

2nd step: 
 

,...,,(max=
,...,,1

2

1,...,2,
1

2

1

,...,2,1,...,2,1
,...,,,...,,

s

niiin

s

niiin

s

niii

s

niii

U

ii
ii

U

ii
ii

LL
xxxxxx 





   

)...,
, . . . ,2,121 ,...,,

s

iii
n

U

ii
ii xx 


   . 

 

where 00

21 ,...,,
L

iii n
x  and   ...,...,,

0

21
xx

U

iii n
=N . 

It obviously stops when 1 ss UU
XX  or 1 ss LL

XX  . 

Differently from LP, it is obvious that the SA always produces integer bounds. It can 

be shown that it always converges in a finite number of steps and that, for specific 

cases of relevance, the dimensions of the original array bound the number of steps 

needed to reach a stop (Buzzigoli and Giusti [10] and [11]): for an mn array the SA 

needs at most two steps to get to the solution; for 3-way arrays the algorithm surely 

reaches the stop after 3 steps in the 222 case only; moreover, in this case the SA 

finds the LP solution. For a general lmn array this is not the case.  

Therefore, we proved that shuttle solutions surely coincide with LP solutions only for 

particular cases, but Roehrig [12] showed that the SA is related to the dual of the LP 

approach. Therefore, it seems that the methods may have some general connections 

although they solve the problem of finding bounds with very different foundations. 

Dobra and Fienberg [13] and Dobra [14] have proposed an extension of the SA 

(called generalized shuttle algorithm), but the bounds are sharp only for specific kinds 

of arrays and to generalize the procedure the authors still need to apply a variant of 

LP. A final solution is therefore still not available. The same conclusion is given in a 

recent paper dealing with the approximation of exact conditional inference on 

contingency tables (Chen et al. [15]), where the authors apply both LP and the SA on 

some real multiway tables to compare their performances. 

Another shortcoming of SA has been pointed out by Cox [16], who shows with some 

examples that the SA is insensitive to whether a feasible table exists, once a set of 
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marginals is given: actually this is not a real problem, because, as we will se in the 

next paragraph, the main field of application of the algorithm is in situations where 

the original n-way array is available and the marginals are derived from it; so they are 

surely compatible with a table. 

The main advantages of the SA are the computational ones. First of all, it is very easy 

to implement with a matrix language that allows the definition of n-way arrays, even 

if the use of a traditional compiled programming language is more effective. 

Secondly, it is very fast (see §5). Thirdly, it has limited storage and memory 

requirements: the storage occupation for data, results and working data, is mostly 

represented by the marginal distributions (given data) and by n+3 arrays of the same 

dimensions of the unknown array (where n is the number of the dimensions of the 

original array, two arrays represent the results, the other n+1 arrays are working data). 

Finally, from a statistical point of view, as we will see in the next paragraph, the 

algorithm has interesting links with Fréchet bounds, Bonferroni bounds and log-linear 

models as well (for an interesting review on these topics, see [17]). 

4 Some links to statistical aspects 

The SA is a computational tool that can be useful in several fields of statistical theory 

and applications. In this section we mention four of them: statistical disclosure 

control, database management, probability theory, symbolic data analysis. 

Its main advantages are in practical situations, where the LP approach is 

computationally too burdensome, but it has also interesting theoretic properties, as we 

will see later. 

Originally, the algorithm was proposed by Buzzigoli and Giusti [1] as an alternative 

solution to LP in statistical disclosure control (SDC). 

It is well known that National Statistical Institutes are required by law to protect the 

confidentiality of the individual information they collect by means of surveys or 

censuses: this means that the data which are released to the public must be compiled 

in such a way that the identification of respondents is no longer possible. Data are 

protected by means of particular statistical and mathematical procedures, which are 

traditionally labelled as SDC methods. Statistical agencies usually release cross-

classified tables and microdata files. Although the difference between microdata and 

tabular data is not so great as it seems (individual files can be seen as a huge table 

deriving from n crossings, where n is the number of variables surveyed on each 

individual), traditionally the treatment of SDC methods for these two data products is 

different. During the past ten years the research on these topics has been extensive: a 

relevant literature was produced by official statisticians and academic researchers. 

Interesting reviews on this subject can be found in [18], [19] and [20]. More recent 

contributions are contained in [21].  

In our work we focussed on a particular aspect of SDC for frequency count tabular 

data: tables containing cells with low frequencies are generally considered at risk, 

because individuals with rare characteristics are usually more recognisable than 

others. Therefore, most SDC methods for tables of counts have the purpose to avoid 

the release of tables with low frequency cells ('sensitive' cells). 
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All the tables released by a statistical agency can be seen as a set of sub-tables 

deriving from an original complete table. These tables are obviously linked - and 

therefore called ‘linked tables’ [22] - among each other, because they represent 

different aggregations of the same data, and they often share some variables. If the 

original complete table contains sensitive cells, the agencies have to find out how 

much information on the original table can be derived from the partial tables before 

publishing them. 

Thanks to LP techniques the lower and upper bound of the original frequency of each 

cell can be found. The original value of a cell can be recalculated exactly when the 

lower and the upper bound for that cell are the same. 

The problem of disclosure auditing in a set of tables linked over some variables is not 

yet completely solved. The various proposals in the literature are not satisfactory, as 

they usually refer to limited dimension cases, which are not of great interest for 

official producers of statistics, or to specific tabular structures. On one hand LP may 

be computationally burdensome when the dimensions of the released tables become 

large. On the other, the National Statistical Institutes work with large tables and 

arrays: efficient heuristics are therefore needed, which can determine the lower and 

upper bounds of the unknown original array starting from the released tables within a 

reasonable time and with a reasonable computational effort. The SA can be one of 

these heuristics. For instance, it has been adopted in the Neighborhood Statistics 

project of the Office of National Statistics (UK) to audit random rounding procedures 

(Armitage et al. [23]). 

Another field of application, which is connected to the previous one, is the auditing of 

web-based query systems for statistical databases. If an original n-dimensional table is 

made available on web for the users, who can make queries to get only its margins, 

each time the generic user makes a new query the system must examine the query 

combining the new requested table with the previously released tables. The new table 

can be released only if the risk of disclosure is reasonably low. To audit dynamically 

the sequence of queries computationally efficient algorithms are particularly 

necessary, also because statistical databases are often very large and in this case the 

response time becomes critical. The generalized version of SA is implemented in a 

table server used by the National Institute of Statistical Science to check tabular 

summaries of confidential microdata (Dobra et al. [24], Karr et al. [25]). 

In other fields of statistical application we face the problem of finding the probability 

distribution corresponding to some given marginal distributions (Frechet [26]). In the 

last century the Italian school gave interesting contributions on this subject 

(Bonferroni [27], Rizzi [28], Dall’Aglio [29] and [30]) and, more recently, the 
literature on probability theory produced new results regarding the case of 

multidimensional marginals (Dall’Aglio [31], [32] and [33]). Nevertheless, we would 
like to stress that many of these contributions face the problem of the existence of the 

multi-dimensional probability distribution, given a certain number of marginal 

distributions, while in our context this is not a problem: the various marginals are 

surely compatible with an n-dimensional array, because they are obtained from it 

collapsing the various dimensions. In this sense our problem is simpler and focuses 

mainly on computational issues. 

Fienberg [17] proposes an original statistical reading of linked tables disclosure 

problems, presenting m-dimensional Fréchet and Bonferroni bounds for k-way tables 
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(recently analyzed by Rüschendorf [34] and Galambos and Simonelli [35]). The 

author reinterprets the Fréchet and Bonferroni equations in terms of counts instead of 

probabilities, and shows some interesting results that are connected to our analysis. 

In particular, he uses a 'combined' solution mixing Fréchet and Bonferroni equations. 

In the case of a 3-way table, given all the 2-way marginals, this combination leads to 

the following solution: 

 

),,,min( ijkijkjkkiij
U
ijk xxxxxx    

 

)0),,,min(max( ][2][1 jkkiijijkijk
L
ijk xxxSSxx    

 

where: 

 

kjiijk xxxS  ][1  , 

 

jkkiijijk xxxS  ][2  , 

 

ijkx  is the diagonally complementary count opposite ijkx  in the 2
3
 table formed by 

collapsing all the remaining categories for each of the three variables in the table into 

a single complementary category, jkkiij xxx  ,,  are the 2-way marginals of the 

diagonal complementary element. 

It is very easy to find the same result with the SA (Buzzigoli and Giusti [10]; sect. 

4.4) and it can be shown that applying it to collapsed tables of higher dimensions it is 

possible to reproduce the alternating sequence of signs implied by the Bonferroni 

inequalities (Fienberg [17]; sect.5). Therefore the SA gets a simple iterative procedure 

to find the bounds, and can also be seen as a useful tool to implement the automated 

calculus of the combined Fréchet-Bonferroni bounds in a rapid and efficient way. 

Another interesting field of analysis is the link between contingency tables with fixed 

marginals and the theory of log-linear models [36]. Dobra [37] using the graphical 

version of log-linear models exploits this connection to take advantage of cell 

relationships inherent the tabular structure and to generalize the SA. 

Finally, the algorithm has promising links with symbolic data analysis. It is well 

known that the input of SDA is a symbolic data table: according to Diday’s definition 
(Diday [38]) the columns of this table are “symbolic variables” while the rows are 
“symbolic descriptions” of second order objects.  
In this context the unknown n-way array of counts X can be easily interpreted as the 

original data matrix containing a row of information for each statistical unit (first 

order objects) and a column for each surveyed variable, while the marginals of the 

array X can be seen as different symbolic tables (second order objects): in each table 

the columns are the variables included in the corresponding marginal and the rows are 

descriptions of classes of individuals made of conditional distributions.  

The SA often gets a partial information on the unknown content of the array cells. In 

such a situation for some cells we get an interval like 
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[ i

niii

U
x

, . . . ,2,1

, i

niii

L
x

, . . . ,2,1

] 

 

which includes the real count for the cell.  

The SA output is a number of first order objects which represent an approximation of 

the original data. This number is the amount of the statistical units (extent) which 

satisfy the characteristic properties (intent) specified by particular combination of 

modalities corresponding to the cell. 

This aspect deserves further research, because it opens new possible developments in 

data preparation activities for SDA.  

5 Some simulation results 

Some simulations were carried out to test the performance of the SA from a 

computational point of view (Buzzigoli and Giusti [39] and [40]). Here we update the 

oldest experiments and summarize the results.  

An interesting problem is the application of the SA in monitoring cell suppressions 

for SDC purposes [19]. Cell suppression is one of the most popular methods to avoid 

disclosure of confidential data: the cells of the table which are at risk of identification 

are obscured together with all the cells that can be used to re-calculate their values. 

In this case the original n-way array is partly known and the algorithm can be used to 

check whether it is possible to identify the suppressed cells using the known cells and 

the marginals of the table.  

This situation is known in SDC literature as “zero-restrictions” [41], because when 
some entries in the table are given, we can subtract their values from the 

corresponding marginals, fixing the original values to zero. For instance, if we 

suppose that the element 
321 ,, iiix

 
of a three-dimensional table is known, the shuttle 

can be applied to three sets of marginals (layer totals, row totals and column totals) 

where 
32 ,, iix  is replaced by 

32132 ,,,, iiiii xx  , 
31 ,, iix   by 

32131 ,,,, iiiii xx   and 

,, 21 iix
 
by 

32121 ,,,, iiiii xx  ; therefore 
321 ,, iiix

 
is set to zero (i.e. 

U

iii
x

3,2,1
=

L

iii
x

3,2,1
=0). 

The same condition arises when one of the marginals is zero, because in count tables 

this means that all the cells contributing to that marginal are identically zero. 

In presence of zero restrictions, the SA is not always able to find LP solutions. This is 

obvious, because the sequence of iterations cannot detect the particular links among 

the various dimensions of the array originated by the null entries. Some discussion on 

this aspect can be found in [37]. 

Nevertheless, it could be interesting to make some simulations to find out the 

percentage of success of the SA in comparison to the simplex method in presence and 

in absence of zero-restrictions and to compare the computational time between the 

algorithms. 

For all the simulations we used an APL2 interpreter running on a personal computer 

powered by a 3.21Ghz Pentium IV with 2Gb of central memory. We used the APL2 
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language, despite the lower performances of an interpreter with respect to a compiler, 

because the translation of the algorithm in this kind of “matrix” language is easier and 

the resulting functions are more general and flexible. As is well known, APL2 permits 

the utilisation of nested generalised arrays; this fact contributes to reduce the use of 

iterative structures inside the code and allows for the reduction of the execution time. 

Table 1 presents the results of the application of LP and SA on four groups of three-

dimensional 244 simulated arrays. Each group is composed by 21,000 arrays with 

different value ranges: 0-1 and 0-2 (zero-restrictions), 1-2 and 1-3. 

The column labelled “# of errors” shows how many times SA and LP results differ. In 
other words, it quantifies the cases where SA doesn’t find the sharpest bounds. 
 

Table 1. Simulation results on groups of 21,000 244 arrays 

Arrays # of errors % of errors LP/SA comp. time 

0-1 arrays 208 0.99 173,577 

0-2 arrays 550 2.62 162,478 

1-2 arrays 0 0.00 263,450 

1-3 arrays 0 0.00 288,873 

 

In 0-1 arrays the percentage of ‘errors’ is less than 1% and the LP computational time 
is almost 174,000 times the SA computational time; in 0-2 arrays the percentage of 

‘errors’ is more than doubled (around 2.6%). In 1-2 and 1-3 arrays there are no 

‘errors’: it means that there are no differences between LP and SA results. The ratio 
between LP and SA computational time raises to over 263,000. 

Although these results are surely influenced by the fact that the APL2 functions we 

used for LP applications are not optimised, the difference is so great that it cannot be 

only due to this.  

Starting from this last observation, another issue worth exploring relates to the 

comparison of the SA performance in solving arrays of different structure. To this end 

we ran a second set of simulations on randomly generated arrays in order to assess the 

computing time and the stability of the algorithm across the experiments. 

The simulation was conducted again on three dimensional arrays with two layers: the 

various experiments differ by the number of rows and columns (3 sets: 244, 255, 

266) and by the range of values of cell counts (4 sets: 0-1, 0-10, 0-100, 0-1000). 

The results are in Table 2. 

In the first part of the table we have the results for 244 arrays: each row identifies 

the range of the values contained in the arrays. For each different kind of array 

structure 100 groups of 10000 arrays were simulated and the SA computing time was 

calculated; finally, the average (Mean) and the coefficient of variation (CV) of the 

computing time were estimated over each sample of 100 experiments and reported in 

the table. 

Analogously for 255 and 266 arrays. Therefore we simulated 12,000,000 arrays 

in all. 
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Table 2. Simulation results on 244, 255 and 266 arrays: mean and coefficient of 

variation of computing time (in milliseconds) for each group of 100 experiments with 10,000 

arrays. 

244 arrays 

Value limits Mean CV % change in comp.time 

0-1  2895.11 0.0078 … 

0-10 2407.17 0.0073 - 16.9 

0-100 2328.94 0.0060 - 3.2 

0-1000 2322.80 0.0041 - 0.3 

 

255 arrays 

Value limits Mean CV % change in comp.time 

0-1  2898.71 0.0105 … 

0-10 2322.51 0.0109 - 19.9 

0-100 2225.00 0.0104 - 4.2 

0-1000 2210.80 0.0092 - 0.6 

 

266 arrays 

Value limits Mean CV % change in comp.time 

0-1  2876.57 0.0037 … 

0-10 2264.53 0.0101 - 21.3 

0-100 2184.69 0.0109 -3.5 

0-1000 2173.44 0.0104 - 0.5 

 

Comparing the results for the arrays of the same size we see that the mean computing 

time decreases as the values range increases. Therefore, in this experiment the mean is 

inversely related to the width of the values range; the CV stresses how little the 

variation in mean computing time is, signalizing the stability of the algorithm. 

Comparing the results for the same values range we see that the mean computing time 

decreases as the size of the arrays increases. 

In conclusion, the table shows that, for these dimensions, the SA converges faster and 

faster as the structure of the arrays becomes more ‘complex’, in terms of dimensions 
or of values range. This derives from the two steps which constitute the algorithm: as 

the number of layers/rows/columns increases, the probability that the first term in the 

min/max expressions will be enhanced decreases. This is clearly a remarkable 

characteristic of the algorithm, especially when we compare it with the simplex 

method in LP: when we apply the simplex method the computational effort increases 

with the number of layers/rows/columns of the table because the constraints that must 

be satisfied in each minimization/maximization step increase as well. 

Another interesting result is reported in the last column of Tab.2, which contains the 

percentage change in computing time when we increase the values range, given the 

array structure. For instance, in the 244 section: ((2407.17/2895.11)-1)x100=-16.9, 

((2328.94/2407.17)-1)x100=-3.2, etc.. The decrease in computing time when we pass 

from 0-1 arrays to 0-10 arrays is evident, whatever the structure of the array is (from 

16.9% to 21.3%), while the decrease is much smaller passing from 0-10 to 0-100 
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(from a minimum of 3.2 to a maximum of 4.2) and from 0-100 to 0-1000 (from a 

minimum of 0.3 to a maximum of 0.6). Moreover, the percentage decrease is quite 

stable for all the array structures considered in the experiment.. 

These results confirm that the 0-1 case is the most problematic for the SA, due to the 

high probability to have zero-restrictions. 

Finally, we would like to stress again that storage and memory requirements of the 

SA remain very limited. 

6 Concluding remarks 

The SA seems to have interesting properties that could be exploited in various fields 

of statistical application that involve the computation of lower and upper bounds of an 

array of integer values given its marginals. Various problems, currently solved with 

different methodologies, could be brought back to this algebraic definition. 

The algorithm is very easy to implement on a personal computer, has a low 

requirement of memory space and gives always integer results. It is very efficient and 

in our experiment its speed increases with the increasing of array dimensions and of 

values range. 

The main advantage of the algorithm is in practical situations, especially in what the 

disclosure control of linked tables is concerned. Such a problem is felt at National 

Statistical Institutes in a particular way since the institutional duties related to 

disclosure may find it computationally burdensome to use a LP approach when 

released tables are large. In this respect the SA with its limited computing time and 

convergence properties appears to be a promising solution. 

Moreover, the SA shows also interesting theoretical developments, because it seems 

to have relevant links with some probabilistic and statistical issues, such as statistical 

disclosure control, log-linear models, graph theory, database query auditing, etc.. 

Finally, the behavior of the algorithm in simulated conditions shows that its links with 

LP still need to be explored, in order to exploit its computational properties at the 

most. 
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