

Dolado - Lütkepohl Causality Tests between Foreign Direct Investment and Economic Growth in Nigeria

Alimi, R. Santos and Ibironke, Adesola

Adekunle Ajasin University, Akungba-Akoko, Ondo State, Nigeria, Adekunle Ajasin University, Akungba-Akoko, Ondo State, Nigeria

June 2012

Online at https://mpra.ub.uni-muenchen.de/49277/ MPRA Paper No. 49277, posted 26 Aug 2013 17:15 UTC

Dolado - Lütkepohl Causality Tests between Foreign Direct Investment and Economic Growth in Nigeria

Santos R. Alimi¹ & Adesola B. Ibironke²

^{1,2}Economics Department, Adekunle Ajasin University, Akungba-Akoko, Ondo State, Nigeria. Email:swtdunn.santos@gmail.com¹. solaibironke2002@yahoo.co.uk²

Abstract

Foreign direct investment (FDI) is often seen as an important catalyst for economic growth in the developing countries. It affects the economic growth by stimulating domestic investment, increasing human capital formation and by facilitating the technology transfer in the host countries. The main purpose of the study is to re-investigate the causation between foreign direct investment and economic growth in Nigeria for the period 1970-2010. This study made use of two different methodologies to test the Granger non-causality: the Dolado–Lu[¬]tkepohl test (Toda-Yamamoto causality tests.) using the VARs in levels, and the standard Granger causality test. The study found that there is a unidirectional causality between the series, running strictly from foreign direct investment to real GDP, which was corroborated at lag length of 4 when we used the standard causality test. We also found that there is a feedback effect on the economic growth arising from FDI inflows after eight years. We conclude that FDI inflows should be encouraged, as it will engender the economy to continue to witness growth in domestic product and subsequently more inflows of FDI.

1.0 INTRODUCTION

The effects of the foreign direct investment on the host economy are normally believed to be increase in the employment, productivity, export and so on. Nigeria as a country, given her natural resource base and large market size, qualifies to be a major recipient of FDI in Africa and indeed is one of the top three leading African countries that consistently received FDI in the past decade. However, the level of FDI attracted by Nigeria is mediocre (Asiedu, 2003) compared with the resource base and potential need. Further, the empirical linkage between FDI and economic growth in Nigeria is yet unclear, despite numerous studies that have examined the influence of FDI on Nigeria's economic growth with (Oseghale and varying outcomes Amonkhienan, 1987; Odozi, 1995; Oyinlola,

1995; Adelegan, 2000; Akinlo, 2004). Most of the previous influential studies on FDI and growth in sub-Saharan Africa are multi country studies. However, recent evidence affirms that the relationship between FDI and growth may be country and period specific. Asiedu (2003) submits that the determinants of FDI in one region may not be the same for other regions. In the same vein, the determinants of FDI in countries within a region may be different from one another, and from one period to another. (Table 1 provides a brief Framework of the related literature on Foreign Direct Investment and Economic Growth).

No	Study/Author	Period of	Number of	Data set	Econometrics	Findings/conclusion
		study	country		techniques	
1	Alfaro (2003)	1980-	47 developing	Cross-	Ordinary Least	FDI in the primary sector tends to have
		1999	countries	section	Square	a negative effect on growth, while
						investment in manufacturing a positive
	T ' 1 1	1000	00 1 1 2 00	0	D 11/	one.
2	Lensink and	1990-	88, including 20	Cross-	Panel data	FDI has a positive effect on growth
	Morrizzey (2001)	1998	developing	section	econometric	whereas volatility of FDI has a negative
		1001	countries		techniques	impact.
3	Djankou and	1994-	1 (one), Czech	Time	Ordinary Least	An industry wide inverse relationship
	Hoekman, (2000)	1998	Republic	series	Square	was detected between the extent of
						foreign investment and the turnover of
		1001				domestics firms.
4	Ayyagari and	1994-	1(one), Czech	Time	Ordinary Least	Foreign investment was found to have a
	Kosova, (2006)	2000		series	Square	positive effect on the entry rates of
						domestics firms at intra and inter-
						industry level.
5	Kumar and	1980-	107, developing	Cross-	Ordinary Least	Their results show that panel data
	Pradhan (2002)	1999	countries	section	Square	estimations in a production function
						framework suggest a positive effect of
						FDI on growth.
6	Agosing and Mayer	1970-	Three	Cross-	Ordinary Least	They reached conclusion that, the
	(2000)	1996	developing	section	Square	effects of FDI on domestic investment
			regions (Africa),			are by no means always favourable and
			asia&latin			that simplistic policies toward FDI are
			America			unlikely to be optimal.
8	Mohey-up din	1975-	1(one), Pakistan	Time	Ordinary Least	Shows positive impact of foreign capital
	(2006)	2004		series	Square	inflows on the GDP growth in Pakistan.
9	De Gregorio,	1950-	12 latin America	Cross-		His results suggest a positive and
1	(1992)	1985	countries	section		Significant impact of FDI on economic
1						growth. In addition, the study shows

A brief Framework of the related literature on Foreign Direct Investment and Economic Growth in Nigeria

						that the productivity of FDI is higher than the productivity of domestic investment
10	Fry (1992)		16 developing countries, including Nig. and 5 pacific basin countries.	Pooled time- series cross- section data	Framework of a macro-model	FDI had a significant negative effect on domestic investment suggesting that is crowds-out domestic investment.
11	Balasubramanyam et al, (1996)	1970- 1985	46 countries	Cross- section		Export – oriented strategy was found to be positive and significant but not significant and sometimes negative for the sub-set of countries pursuing inward-oriented strategy.
12	Shabir and Mahmood, (1992)	1959- 1960 to 1987- 1988	1(one), Pakistan	Time series		The study concluded that net foreign private investment and disbursements of grants and external loans had a positive impact on the rate of growth of real GNP.
13	Irandoust and Ericsson (2005)	1965- 2000	For a panel of Africa countries including Nigeria.	Cross- section	Units root and co-integration tests.	The findings shows that foreign and domestic saving enhance economic growth for all countries in the sample.
14	Gyapong and Karikari (1999)	1960- 1980	2(two) countries, Ghana & Ivory coast	Cross- section	Correlation causality stationary and co-integration tests.	Their results show that the impact higher economic performance on DFI depends crucially on the strategy of the investment.
15	Ayashagba and Abachi (2002)	1980- 1997	1(one), Nigeria	Time- series		The result shows that the foreign direct investment had significant impact on economic growth in Nigeria. They therefore concluded that the presence of FDI in the LDCs particularly in Nigeria is not totally useful.

16	Akinlo (2004)	1970-	1(one), Nigeria	Time-	Error	The results show that both private
		2001		series	correction	capital and lagged foreign capital have
					model (ECM)	small and not a statistically significant
						effect on the economic growth.
17	Khan (2007)	1972-	1(one), Pakistan	Time	Co-integration	The findings suggest that Pakistan will
		2005		series	tests	effectively transform benefits embodied
						in FDI inflows, if the evolution of the
						domestic financial sector has aimed at a
						certain development level.
18	Ariyo (1998)	1970-	1(one), Nigeria	Time-		He found thaht only private domestic
		1995	_	series		investment consistently contributed to
						raising GDP growth rate.
19	Oyinlola (1995)		1(one), Nigeria	Time-	Chenergy and	He concluded thaht FDI has a negative
				series	stout's two-	effect on economic development in
					gap model	Nigeria.
					(1966)	
20	Ekpo (1995)		1 (one), Nigeria	Time-		That the variables used were the key
				series		factors explaining the variability of FDI
						into Nigeria.
21	Ayanwale (2007)	1984-	1(one), Nigeria	Time-	Stationary	The result showed he concluded that
		2003		series	(unit root) test,	FDI contributes positively to Nigeria's
					co-integration.	economic growth, and the not
						significant relationship of human capital
						to overall economic growth suggests
						that there is a shortage of skilled labour
						in the country.
22	Oke (2007)	1984-	1(one), Nigeria	Time-	Ordinary Least	It was found that the partial regression
1		2003		series	Squares	coefficient of all the variables does
1						conform to a priori, expectation and
						fluctuated in different direction.
23	Abu and Obida	1970-	1(one), Nigeria	Time	Stationary	The result showed that the principal
	(2010)	2006		series	(unit root) test,	determinants of FDI are the market size
1					co-integration	of the host country, deregulation,
1						exchange rate depreciation and political
						instability.

24	Uremadu (2009)	1980-	1(one), Nigeria	Time-	Ordinary Least	The negative effect suggests that
		2004		series	Squares	cumulative foreign private investment
						(CFPI) in real terms has crowded out
						gross domestic savings
25	Ehimare (2011)	1980-	1(one), Nigeria	Time	Ordinary	There is no empirical strong evidence to
		2009		series	Least Square	support the notion that FDI has been
						pivotal in economic growth in Nigeria.
						And though, FDI has contributed
						significantly to BOP through the
						nations' current account balance
26	Osinubi and	1970-	1(one), Nigeria	Time	Ordinary Least	FPI was non-stationary while the
	Amaghionyeodiwe	2005		series	Square	variables were jointly co-integrated. The
	(2010)					variables used in this study were
						positively related to the GDP growth
						rate.
27	Falki (2009)	1980-	1(one), Pakistan	Time		The results show a negative and
		2006		series		statistically insignificant relation
						between the GDP and FDI inflows in
						Pakistan.
28	Ogun (2007)	1960-	1(one), Nigeria	Time-	Equilibrium	These findings suggest that policies
		2002		series	model of the	causing misalignment tend to generate
					export market	adverse effects on non-oil export
					and co-	growth.
					integration	
					technique.	

The impact of FDI on economic growth is more contentious in empirical than theoretical studies, hence the need to examine the relationship between FDI and growth in different economic dispensations. There is the further problem of endogeneity, which has not been consciously tackled in previous studies in Nigeria.

This study contributes to the literature by re-examining the relationship between FDI inflows and Nigeria's economic growth using an up-to-date time series data (1970-2010). The study is different from previous studies in scope (number of years considered is longer) and made use two different methodologies to test the Granger non-causality: the Dolado– Lu"tkepohl and Toda-Yamamoto causality tests, using the VARs in levels, and the standard Granger causality test.

2.0 DATA AND METHODS

This section highlights the econometric model used to study cointegration and causality between economic growth and FDI. We use Johansen (2001) cointegration approach and the Toda and Yamamoto (1995) causality testing procedure.

2.1 Data and variables

The paper uses series comprise yearly observations between 1970 and 2010, namely real gross domestic product per capita (GDPC) as a measure for economic growth and the ratio of foreign direct investment (FDI) inflows to GDP (RFDI). Data on real GDP per capita, GDP and FDI are from the CBN Statistical Bulletin, various issues.

2.2 The cointegration approach

Cointegration can be defined simply as the long-term, or equilibrium, relationship between two series. This makes cointegration an ideal analysis technique to ascertain the existence of a long-term relationship between foreign direct investment and economic growth. The cointegration method by Johansen (1991; 1995) is used in this study. The Vector Autoregression (VAR) based cointegration test methodology developed by Johansen is described as follows;

The procedure is based on a VAR of order p:

 $y_t = A_1 y_{t-1} + ... + A_p y_{t-p} + Bz_t + \varepsilon_t$ (1) where y_t is a vector of non-stationary I(1) variables (export and economic growth), z_t is a vector of deterministic variables and ε_t is a vector of innovations. The VAR may therefore be reformulated as:

$$\Delta y_{t} = \Pi \ y_{t-1} + \sum_{i=1}^{p-1} + \Gamma_{i} \ \Delta y_{t-p} + Bz_{t} + \varepsilon_{t} \quad (2)$$

Where
$$\Pi = \sum_{i=1}^{p} A_i - I$$
 (3)

and
$$\Gamma_i = \sum_{j=i+1}^{p} A_j$$
 (4)

Estimates of Γ_i contain information on the short-run adjustments, while estimates of Π information contain on the long-run adjustments, in changes in yt. The number of linearly dependent cointegrating vectors that exist in the system is referred to as the cointegrating rank of the system. This cointegrating rank may range from 1 to n-1 (Greene 2000:791). There are three possible cases in which $\Pi y_{t-1} \sim I(0)$ will hold. Firstly, if all the variables in y_t are I (0), this means that the coefficient matrix Π has r=n linearly independent columns and is referred to as full rank. The rank of Π could alternatively be zero: this would imply that there are no cointegrating relationships. The most common case is that the matrix Π has a reduced rank and there are r < (n-1) cointegrating vectors present in β . This particular case can be represented by:

$$\Pi = \alpha \beta' \tag{5}$$

where α and β are matrices with dimensions n x r and each column of matrix α contains coefficients that represent the speed of adjustment to disequilibrium, while matrix β contains the long-run coefficients of the cointegrating relationships.

In this case, testing for cointegration entails testing how many linearly independent columns there are in Π , effectively testing for the rank of Matrix Π (Harris, 1995:78-79). If we solve the eigenvalue specification of Johansen (1991), we obtain estimates of the eigenvalues $\lambda_1 > ... > \lambda_r > 0$ and the associated eigenvectors $\beta = (v_1, ..., v_r)$. The co-integrating rank, r, can be formally tested with two statistics. The first is the maximum eigenvalue test given as:

 λ - max = -T ln (1- λ_{r+1}), . (6) Where the appropriate null is r = g cointegrating vectors against the alternative that $r \le g+1$. The second statistic is the trace test and is computed as:

 $\lambda \text{-trace} = -T \sum_{i=r+1}^{n} \ln(1 - \lambda i), \quad (7)$

where the null being tested is r = g against the more general alternative $r \le n$. The distribution of these tests is a mixture of functional of Brownian motions that are calculated via numerical simulation by Johansen and Juselius (1990) and Osterwald - Lenum (1992). Cheung and Lai (1993) use Monte Carlo methods to investigate the small sample properties of Johansen's λ -max and λ -trace statistics. In general, they find that both the λ max and- λ trace statistics are sensitive to under parameterization of the lag length although they are not so to over parameterization.

2.3 The causality analysis

The most common way to test the causal relationship between two variables is the Granger-Causality proposed by Granger (1969). The test involves estimating the following simple vector autoregressions (VAR):

$$X_{t} = \sum_{i=1}^{n} \alpha_{i} Y_{t \cdot i} + \sum_{j=1}^{n} \beta_{j} X_{t \cdot j} + \mu_{1t} \quad (8)$$
$$Y_{t} = \sum_{i=1}^{m} \lambda_{i} X_{t \cdot i} + \sum_{j=1}^{m} \delta_{j} Y_{t \cdot j} + \mu_{2t} \quad (9)$$

Where it is assumed that the disturbances μ_{1t} and μ_{2t} are uncorrelated. Equation (8) represents that variable X is decided by lagged variable Y and X, so does equation (9) except that its dependent variable is Y instead of X.

Granger-Causality means the lagged Y influence X significantly in equation (8) and the lagged X influence Y significantly in equation (9). In other words, researchers can jointly test if the estimated lagged coefficient $\Sigma \alpha_i$ and $\Sigma \lambda_j$ are different from zero with Fstatistics. When the jointly test reject the two null hypotheses that $\Sigma \alpha_i$ and $\Sigma \lambda_j$ both are not different from zero, causal relationships between X and Y are confirmed. The Granger-Causality test is easy to carry out and be able to apply in many kinds of empirical studies. However, traditional Granger-Causality has its limitations.

First, a two-variable Granger-Causality test without considering the effect of other variables is subject to possible specification bias. As pointed out by Gujarati (1995), a causality test is sensitive to model specification and the number of lags. It would reveal different results if it was relevant and was not included in the model. Therefore, the empirical evidence of a two-variable Granger-Causality is fragile because of this problem.

Second, time series data are often nonstationary (Maddala, 2001). This situation could exemplify the problem of spurious regression. Gujarati (2006) had also said that when the variables are integrated, the F-test procedure is not valid, as the test statistics do not have a standard distribution. Although researchers can still test the significance of individual coefficients with t-statistic, one may not be able to use F-statistic to jointly test the Granger-Causality. Enders (2004) proved that in some specific cases, using F-statistic to test first differential jointly VAR is permissible, when the two-variable VAR has lagged length of two periods and only one variable is nonstationary. Other shortcomings of these tests have been discussed in Toda and Phillips (1994).

Toda and Yamamoto (1995) propose an interesting yet simple procedure requiring the estimation of an augmented VAR which guarantees the asymptotic distribution of the Wald statistic (an asymptotic χ^2 -distribution), since the testing procedure is robust to the integration and cointegration properties of the process.

We use a bivariate VAR $(m + d_{max})$ comprised of GDP per capita (RGDP) and the ratio of foreign direct investment inflows to GDP (RFDI), following Yamada (1998), and examine the non-causality between FDI and economic growth:

$$X_{t} = \omega + \sum_{i=1}^{m} \theta_{i} X_{t-i} + \sum_{i=m+1}^{m+dmax} \theta_{i} X_{t-i} + + \sum_{i=1}^{m} \delta_{i} Y_{t-i} + \sum_{i=m+1}^{m+dmax} \delta_{i} Y_{t-i} + v_{1t} \quad (10)$$

$$Y_{t} = \Psi + \sum_{i=1}^{m} \phi_{i} Y_{t-i} + \sum_{i=m+1}^{m+dmax} \phi_{i} Y_{t-i} + \sum_{i=1}^{m} \beta_{i} X_{t-i} + \sum_{i=m+1}^{m+dmax} \beta_{i} X_{t-i} + v_{2t} \quad (11)$$

Where X=lnRGDPC and Y=lnRFDI, and ω , θ 's, δ 's, ψ , ϕ 's and β 's are parameters of the model. dmax is the maximum order of integration suspected to occur in the system; $v_{1t} \sim N(0, \Sigma_{v1})$ and $v_{1t} \sim N(0, \Sigma_{v1})$ are the residuals of the model and Σ_{v1} and Σ_{v2} the covariance matrices of v_{1t} and v_{2t} , respectively. The null of non-causality from FDI to growth can be expressed as H_0 : $\delta_i = 0$, \forall i=1, 2, ..., m. Let $\delta = vec(\delta_1, \delta_2, ..., \delta_m)$ be the vector of the first *m* VAR coefficients.

steps Two are involved with implementing the procedure. The first step includes the determination of the lag length (m) and the second one is the selection of the maximum order of integration (dmax) for the variables in the system. Measures such as the Akaike Information Criterion (AIC), Schwarz Information Criterion (SC), Final Prediction Error (FPE) and Hannan-Quinn (HQ) Information Criterion can be used to determine the appropriate lag order of the VAR.

We use the Augmented Dickey-Fuller (ADF) test for which the null hypothesis is non-stationarity as well as Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test for which the null hypothesis is stationarity to determine the maximum order of integration. We choose

KPSS to have a cross-check. Many economists have argued against using the standard unit root tests and proposed using other powerful tests, such as tests that can be used to test the null of stationarity against the alternative of non-stationarity. A number of tests have been developed; the most popular one is the KPSS test developed by Kwiatkowski, Phillips, Schmidt, and Shin (1992). Kwiatkowski et al. (1992) argue that their test is "intended to complement unit root tests, such as the Dickey-Fuller tests. By testing both the unit root hypothesis and the stationarity hypothesis, we can distinguish between series that appear to be stationary, series that appear to have unit root, and series for which the data (or the tests) are not sufficiently informative to be sure whether they are stationary or integrated." Joint testing of both nulls can strengthen inferences made about the stationarity or nonstationarity of a time series especially when the outcomes of the two nulls corroborate each other. This joint testing has been known as "confirmatory analysis." For example, if the null of stationarity is accepted (rejected) and the null of non-stationarity is rejected (accepted), we have confirmation that the series stationary (non-stationary). is Conversely, we cannot have confirmation if both nulls are accepted or both are rejected.

3.0 RESULTS

Our main reason for conducing unit root tests is to determine the extra lags to be added to the vector autoregressive (VAR) model for the Toda and Yamamoto test.

Variables	Constant, No Trend		Constant, with	Order of	
				Integration	
	I(0)	I(1)	I(0)	I(1)	
lnRGDP	-2.329515	-5.829642*	-2.066033	-6.130613*	I(1)
	(-2.936942)	(-2.938987)	(-3.526609)	(-3.529758)	
lnRFDI	-1.285567	-12.27243*	-4.873361*	-	I(0)
	(-2.941145)	(-2.945842)	(-3.658446)		

Table 2: Augmented Dickey-Fuller (ADF) Unit Root Test

Notes: * denotes rejection of the null hypothesis of unit root the at 5% level. Critical values at 0.05 are in parenthesis. RGDP and RFDI are GDP per capita and the ratio of FDI inflows to GDP, respectively.

	1			
Variables	Constant, No	Order of	Constant, with	Order of
	Trend	Integration	Trend	Integration
lnRGDP	0.699131*	I(1)	0.183830*	I(1)
	(0.463000)		(0.146000)	
lnRFDI	0.739238*	I(1)	0.137951	I(0)
	(0.463000)		(0.146000)	

Table 3: Kwiatkowski-Phillips-Schmidt-Shin (KPSS) Unit Root Test

Notes: * denotes rejection of the null hypothesis of stationarity the at 5% level. Critical values at 0.05 are in parenthesis.

Table 2 and 3 show that the GDP and FDI series are integrated of order one at the 5% significance level under both unit root tests, without trend. When we considered the unit root test with trend, ADF and KPSS tests reported I(1) for RGDP and I(0) for RFDI at 5% level. Hence, VAR models will add only one extra lag (i.e dmax=1) for the implementation of the causality test. Following the modelling approach described earlier, we determine the appropriate lag length and conducted the cointegration test.

Table 4: Lag Length Selection

Lag	FPE	AIC	SC	HQ
0	0.547312	5.072977	5.164586	5.103343
1	0.007905	0.834366	1.109191	0.925463
2	0.005770	0.515441	0.973484*	0.667269*
3	0.005493*	0.457014*	1.098273	0.669573
4	0.005977	0.524737	1.349213	0.798027

*indicates lag order selected by the criterion

Table 4 reports the optimal lag length of three (i.e m=3) out of a maximum of 4 lag lengths as selected by Final Prediction Error (FPE) and Akaike Information Criteria (AIC). We employed VAR Residual Serial Correlation LM Tests and inverse roots of the characteristic AR polynomial and found that the VAR is well-specified; there is no autocorrelation problem at the optimal lag, all the inverse roots of the characteristic AR polynomial must lie inside the unit circle and the modulus values are 0.98, 0.85, 076, 0.61, 0.61 and 0.21, thus VAR satisfies the stability condition.

Table 5: Result of Cointegration Te	est
-------------------------------------	-----

	Null Hypothesis	Test	0.05 Critical	Probability
		Statistics	Value	Value
Lags		3		
Trace	r=0	17.41918	15.49471	0.0254
Statistics	r=1	0.163538	3.841466	0.6859
Max-Eigen	r=0	17.25565	14.26460	0.0163
Statistics	r≤1	0.163538	3.841466	0.6859
Trace	No of Vectors	1		
Max-Eigen	No of Vectors	1		
^a Denotes rej	ection of the null h	ypothesis a	t 0.05 level	

Table 5 provides the results from the application of Johansen cointegration test among the data set. Empirical findings show

that both the maximum eigenvalue and the trace tests reject the null hypothesis of no cointegration at the 5 percent significance

level according to critical value estimates. The result show a cointegration rank of one in both trace test and max-eigen value test at 5% significance level. Thus maximum order of integration (dmax) for the variables in the system is one (dmax=1)

The results above are based on the assumptions of linear deterministic trend and lag interval in first difference of 1 to 2. Overall, the Johansen cointegration test suggests that there exists a sustainable cum long-run equilibrium relationship between economic growth proxied by real gross domestic product (RGDP) and foreign direct investment (RFDI). This suggests causality in at least one direction.

T-Y Granger Causality Test

0.0620

The empirical results of Granger Causality test based on Toda and Yamamoto (1995) methodology is estimated through MWALD test and reported in Table: 6. The estimates of MWALD test shows that the test result follows the chi-square distribution with 3 degrees of freedom in accordance with the appropriate lag length along with their associated probability.

Table 6: Toda-Yamamoto Causality (modified WALD) Test Result Null Hypothesis Chi-sq Prob. Granger Causality RGDP does not granger cause RFDI 2.63273 0.4518 Unidirectional Causality RFDI does not granger cause RGDP $RFDI \rightarrow RGDP$

It is clear from Table 6 that there is a unidirectional causality between the series running strictly

7.33202

from foreign direct investment to real GDP. Finally, we employed traditional Granger causality test to compare results of T-Y granger causality test. As presented in table 7, the result supports Toda - Yamamoto causality result of unidirectional causality only at lag length of 4. There is no evidence of causality with 3, 5,6 and 7 lags. However, the result shows a unidirectional causality that run from real GDP to foreign direct investment.

Null Hypothesis	Lag	F-Value	Prob.	Granger Causality
RGDP does not granger cause RFDI	3	0.90324	0.4524	No Causality
RFDI does not granger cause RGDP		1.22584	0.3195	
RGDP does not granger cause RFDI	4	1.15568	0.3559	Unidirectional Causality
RFDI does not granger cause RGDP		2.44256	0.0755	$RFDI \rightarrow RGDP$
RGDP does not granger cause RFDI	5	1.01023	0.4388	No Causality
RFDI does not granger cause RGDP		0.57944	0.7153	
RGDP does not granger cause RFDI	6	1.95150	0.1375	No Causality
RFDI does not granger cause RGDP		0.87721	0.5343	
RGDP does not granger cause RFDI	7	1.44942	0.2793	No Causality
RFDI does not granger cause RGDP		1.00755	0.4752	
RGDP does not granger cause RFDI	8	5.49541	0.0184	Unidirectional Causality
RFDI does not granger cause RGDP		0.80546	0.6190	$RGDP \rightarrow RFDI$

Table 7: Pair-wise Granger Causality Test

5. Summary and Conclusion:

This paper applies unit-root test based on ADF and KPSS and Johansen and Juselius Cointegration test and VAR based Granger Causality Test proposed by Toda-Yamamoto (1995) to investigate the causation between foreign direct investment and economic growth in Nigeria for the period 1970-2010.

This study found that there is a unidirectional causality between the series running strictly from foreign direct investment to real GDP. When we used the standard causality test, the result supports Toda - Yamamoto causality result of unidirectional causality only at lag length of 4. There is no evidence of causality with 3, 5,6 and 7 lags and the result also shows

a unidirectional causality that run from real GDP to foreign direct investment at lag 8. It thus follows that it will take about eight years for there to be significant feedback effect on the economic growth arising from FDI inflows.

In conclusion, the findings of this research are consistent with economic theory that foreign direct investments stimulate economic growth in less developed countries. Therefore, foreign direct investment plays a very important role in the growth of Nigeria economy. As long as its inflow is encouraged, the economy will continue to witness growth in domestic product.

4.0 **REFERENCES**

- Adeleke, S.O. (2000) "The impact of exchange rate on foreign prices and private investments department of Economics, Adekunle Ajasin University.
- Agada, G.O. and I.J. Okpe (2002) "Determinant s of Risk on Foreign Investment in Nigerian (1980-2001). Journal of Economic and social research, 1:123-134.
- Agarwal, J.P. (1980) Determinants of foreign direct investment: a survey, weltwirtscheft-liches Archiv, vol. 117, Pp. 30-64
- Alfaro, L., Chanda, A., Kalemli-Ozcan, S. and Sayek, S. (2006). "How Does Foreign Direct Investment Promote Ecoomic Growth? Exploring the Effects of Financial Markets on Linkages" NBER Working Paper no. 12522, National Bureau of Economic Research, Cambridge, MA.
- Anyanwu, J.C. (1998) "An econometric investigation of determinants of FDI in Nigeria" Nigeria economic society Annual conference publication.
- Aremu, J.A. (1997) "Foreign private investment: Determinants, Performance and promotion. CBN Bulletin, 108-112.
- Ayanwale, A.B. (2007) "FDI and Economic Growth: Evidence from Nigeria" AERC Research Paper 165, African Economic Researchh Consortium, Nairobi

- Ayashagba, G.I., and P.I. Abachi (2002) "The impact of foreign Direct investment (FDI) on Economic Growth of the less Developed Countries (LDCs): A case of Nigeria (1980-1997)". Journal of economic and social research, 1:108-125.
- Balasubramanyan, V., N. M.A. Salisu and D. Sapsford. (1996). "Foreign Direct Investment and Growth in EP and IS Countries", Economic Journal, 106: 92-105.
- Bamgboye, I (2004) "The Impact of Foreign Direct Investment on Economic Growth in Nigeria" Department of Economics, Obafemi Awolowo University, Ile Ife, Nigeria.
- Central Bank of Nigeria Research Department: CBN Statistical Bulletin 2008, 2009 and 2010 Volume. <u>www.cenbank.org</u>.
- Chete, L.M. NI (1998) Determinants of foreign direct investment in Nigeria, SER Monograph Series No. 7, (1998), Pp 239-339
- Ehimare O.A. (2011): "Foreign Direct Investment and its effect on the Nigerian Economic". Department of Banking and Finance, Covenant University, Ota, Ogun State, Nigeria.
- Ekpo, A.H. (1997) Foreign direct investment in Nigeria: Evidence from Time series data, CBN economic and financial Review, vol. 35, No 1.
- Granger, C. W. J. (1969) Investigating causal relations by econometric models and cross spectral methods, *Econometrica*, 37, 424-38
- Greene, J. and D. Villannueva (1991) private investment in developing countries: An Empirical analysis IMF stc f papers Vol. 38, No. 2 (March) Pp. 213-258
- Gujarati, D.N (2006) Essential of Econometrics, 3rd Edition, McGraw Hill
- Khan, M. and C. Reinhart (1990) private investment and economic growth in developing countries, World Development Vol. 18 (January), Pp. 19-27.
- Kwiatkowski, D. *et al.* (1992), "Testing the Null Hypothesis of Stationarity against the Maddala, G.S (2001) *Introduction to*

Econometrics, 3rd Edition, Wiley and Sons, Inc

- Moss, T. and Ramachandran, V. (2005) "Foreign Investment and Economic Development: Evidence from private No. 41, June 2004.
- Nuzhat Falki (2009): "Impact of foreign direct investment on Economic Growth in Pakistan". International Review of Business Research Papers Vol. 5 No. 5. Pp 110-120.
- Obadan, M.L. (1994) Direct investment in Nigeria: An empirical Analysis African Studies Review Vol. XXV, NO. 1, pp. 67-81.
- Obida G.W. and Abu N. (2010) "Determinants of Foreign Direct Investment in Nigeria: An Empirical Analysis" Global Journal of Human Social Science. Vol. 10, Pp 26.
- Obwona, Marios B. (2001). "Determinants of FDI and their impact on Economics Growth in Uganda". African Development Review 2001. Blackwell Publishers Oxford. Uk. 46-80.
- Oke Anthony O. (2007): The Determinant of Foreign Investment in Nigeria.
- Oluremi Ogun (2007): "Purchasing Power Parity Exchange Rate, Misalignment and Export Growth in Nigeria". Department of Economics, University of Ibadan: Ibadan Journal of the Social Sciences Vol. 6. No 1.
- Osinubi T.S. and Amagbionyeodiwe L.A. (2005): "Foreign private investment and economic growth in Nigeria". REBS: Review of Economics and Business Studies, Volume 3, Issue 1, Pp 105-127.
- Toda, H.Y. and P.C.B. Phillips (1994) : "Vector Autoregressions and Causality: A Theoretical Overview and Simulation Study", *Econometric Reviews* 13, 259-285
- Toda, H.Y. and Yamamoto (1995) Statistical inference in Vector Autoregressions with possibly integrated processes. *Journal of Econometrics*, 66, 225-250.
- Uremadu Ofumbia S. (2009): "The impact of Foreign Private investment on capital formation in Nigeria: An empirical analysis". Department of Banking and

Finance Covenant University Ota Km 10, Idi-Iroko Road, Ota, Ogun State, Nigeria.

Yamada, H. (1998). A note on the causality between export and productivity: an empirical re-examination. *Economics Letters*, 61, 111-114.