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Abstract

This paper analyzes the effects of monetary policy shock when there is a non-

negative constraint on the nominal interest rate. I employ two algorithms: the piece-

wise linear solution and Holden and Paetz’s (2012) algolithm (the HP algorithm).

I apply these methods to a dynamic stochastic general equilibrium (DSGE) model

which has sticky prices, sticky wages, and adjustment costs of investment. The main

findings are as follows. First, the impulse responses obtained with the HP algorithm

do not differ much from those obtained with the piecewise linear solution. Second,

the non-negative constraint influences the effects of monetary policy shocks under

the Taylor rule under some parameters. In contrast, the constraint has little effects

on the response to money growth shocks. Third, wage stickiness contributes to the

effects of the non-negative constraint through the marginal cost of the product.

The result of money growth shock suggests that it is important to analyze the

effects of the zero lower bound (ZLB) in a model which generates a significant liq-

uidity effect.
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1 Introduction

After the colossal financial crisis in 2008, the short term nominal interest rates stayed

at zero. This prompts the question of how the zero lower bound (ZLB) influences the

effects of monetary policy shocks. Many papers have derived the impulse responses and

analyzed the economic behaviors in the dynamic stochastic general equilibrium (DSGE)

literature, but most of that research did not include the non-negative constraint on

nominal interest rates. This paper analyzes the effects of monetary policy shocks when

there is a non-negative constraint on nominal interest rates in a typical DSGE framework.

Several authors have described models including a non-negative constraint on nom-

inal interest rates in the optimal monetary policy literature. Their analyses focused

on how to avoid going into the liquidity trap and on the effectiveness of monetary pol-

icy through expected inflation1.(Eggertsson and Woodford 2003 , Kato and Nishiyama

2005, Adam and Billi 2006, 2007, Nakov 2008). More recent analyses used a strand

of occasionally binding constraint to tackle non-linear problem.(Christiano, et al. 2010 ,

Fernández-Villaverde, et al. 2012, Nakata 2012) The studies in both the DSGE literature

and the optimal monetary policy literature did not analyze the effects of monetary policy

shocks when there is a non-negative constraint on the nominal rate of interest.

Holden and Paetz (2012) created an algorithm dealing with the ZLB. Holden and

Paetz’s algorithm (henceforth, the HP algorithm) employs news shocks (Holden and

Paetz called these the “shadow shock”) to deal with the ZLB. They added this algorithm

which generates impulse responses to news shocks to their Dynare code to derive the

extended versions of impulse responses.

The intuition for algorithm is as follows. If there is a ZLB constraint, nominal interest

rates maybe zero for some periods. The boundaries of nominal interest rate affect the

economic behavior. For example, if the nominal interest rate binds, output and inflation

decrease more. These effects are expressed by anticipated components that are created

by news shocks. In other words, if the nominal interest rate binds, the effects which are

created by anticipated shocks are allocated to other macro-variables. Since news shock

is the shcok that agents know when the shock materialize, agents can behave rationally

considering the occurence of shocks. This feature is used for the behavior of an agent

who knows when the nominal rate of interest will reach the lower bound.

The HP algorithm allocates the anticipated component to macro variables by solv-

1Nakajima (2008), Fujiwara, Sudo and Teranishi (2010), and Ida (2013) analyze the optimal monetary
policy with ZLB in an open economy.
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ing the complementary condition with slackness. Impulse responses accommodating

ZLB consist of an unanticipated component and an anticipated component with weight-

parameters. Solving the complementary problem, we obtain optimal weight-parameters.

In the present analysis, I used both the HP algorithm and the piecewise linear so-

lution, which is an algorithm that interpolates impulse responses with other impulse

responses. The picewise linear solution replace the periods during which the nominal in-

terest rate might hit the lower bound with another impulse response that accommodates

the model structure which nominal interest rate binds. The period which is replaced by

another impulse response is determined by guess and verify method.

Here I use these two algorithms and analyze the effects of monetary policy shocks

when there is a non-negative constraint on the nominal interest rate. I employ a DSGE

model which has sticky prices, sticky wages and adjustment costs of investment. First,

I show that strong reductions in the nominal interest rate play a significant role in the

dynamics of the economy after policy shock when there is the ZLB constraint in this

model. The nominal interest rate decreases significantly when the monetary policy rule

is the Taylor type. On the other hand, the nominal interest rate decreases tvery small

when the monetary policy rule is the money growth rule.

Second, I remove the wage stickiness to test how it contributes to the effects of the

ZLB on monetary policy shocks under the Taylor rule. The response of the inflation in

an economy under flexible wages becomes larger than in an economy under sticky wages.

Then, inflation can absorb the relatively large effects of the ZLB on the case without the

wage stickiness. The impulse responses results indicate that effects of the ZLB in the

economy under flexible wages is smaller than in the economy under sticky wages.

Third, I manipulate the persistence of the monetary policy shock under the Taylor

rule. An increase in the persisitece of a monetary policy shock significantly reduces the

effects of the ZLB by reducing the response of the nominal interest rate. The increase in

the persistence of a monetary policy shock gives a long term feature to nominal interest

rates. This decreases the reduction in the nominal rate of interest in response to the

policy shock, and then the absence of significant easings are mitigated more so than in

the case in which the persistence of shocks is low.

In the remainder of the paper, I explain the model in Section 2, and I derive the

impulse responses by the HP algorithm and the piecewise linear solution in Section 3.

My conclusions and directions for future research are presented in Section 4.
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2 The model

I use the medium scale DSGE model, presented by Christiano et al. (2005), Smets and

Wouters (2003), and others, to analyze the effects of the ZLB on monetary policy shocks.

The model economy has the sectors of households, final goods firms, intermediate firms,

and the government . The firms in the intermediate goods sector produce differentiated

goods and set the price following the Calvo (1987) pricing rule. Workers supply a differ-

entiated labor force to the intermediate-goods sector. The firms maximize their profit as

evaluated by marginal utility following the Calvo pricing rule.

Throughout the optimization in each sector, the aggregate demand equation, the

aggregate supply with inflation dynamics, and the labor supply equation with inflation

and wage dynamics are derived.

The fiscal policy is Ricardian and the central bank employs the Taylor (1993) rule

and money growth rule. The disturbance term is the only monetary policy shock in this

economy.

2.1 Households

I assume that the household is a continuum and indexed by h in (0, 1). The households

get the utility from the consumption Ct(h) and real money balances Mt(h)/Pt and gets

disutility from the labor supply Nt(h).

E0

∞
∑

t=0

βt

(

Ct(h)1−σ

1 − σ
+

(Mt(h)/Pt)
1−ς

1 − ς
− ηNt(h)2

)

. (1)

Where, Mt and Pt are nominal money and aggregate price, respectively. The household’s

budget constraint is

PtCt(h) + PtIt(h) + Bt(h) + Mt(h)

≤ Wt(h)Nt(h) + rk
t PtKt−1(h) + Rt−1Bt−1(h) + Mt−1(h) + Dt(h),

(2)

where, It, Kt, Bt, and Dt denote the investment, capital, government bond, and dividend

from the profit, respectively. The investment assumed to follow the accumulative process

with adjustment cost.

Kt(h) = (1 − δ)Kt−1(h) + It(h) − S

(

It(h)

It−1(h)

)

It(h), (3)
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where, S(·) denotes the adjustment function of the investment and satisfies the property

S(1) = S′(1) = 0. The household’s first order conditions are as follows.

Ct(h)−σ = λt(h),

mt(h)−ς = λt(h) − βEt

[

λt+1(h)

Πt+1

]

,

λt(h) = βRtEt

[

λt+1(h)

Πt+1

]

,

λt(h) = ψt(h)

[

1 − S

(

It(h)

It−1(h)

)

− S′

(

It(h)

It−1(h)

)

It(h)

It−1(h)

]

+ βEt

[

ψt+1(h)S′

(

It+1(h)

It(h)

)(

It+1(h)

It(h)

)2
]

,

ψt(h) = βEt

[

λt+1(h)rk
t+1 + ψt+1(h)(1 − δ)

]

.

where, λt and ψt are lagrange multipliers associated with the household’s budget con-

straint and capital accumulation equation, respectively. These conditions are reduced

into

1 = βEt

[

Rt

Πt+1

(

Ct+1(h)

Ct(h)

)−σ
]

, (4)

Rt − 1

Rt
=

mt(h)−ς

Ct(h)−σ
, (5)

qt(h) = Et

{

λt+1

λt

[

rk
t+1 + (1 − δ)qt+1(h)

]

}

, (6)

qt(h)

[

1 − S

(

It(h)

It−1(h)

)

− S′

(

It(h)

It−1(h)

)

It(h)

It−1(h)

]

= 1 − Et

[

qt+1(h)
λt+1(h)

λt(h)
S′

(

It+1(h)

It(h)

)(

It+1(h)

It(h)

)2
]

,

(7)

Eq.(4) is a Euler equation which describes the household’s intertemporal decision rule of

savings. Eq.(5) is money demand equation showing that the opportunity cost of holding

money equals the nominal interest rate. Eq.(6) shows the asset price determination, and

Eq.(7) is the process of the investment associated adjustment costs. The term qt denotes

Tobin’s marginal q, and it is defined as ψt/λt.

Following Erceg et, al. (2000), I focus on the symmetric equilibrium, i.e. Ct(h) =

Ct, Mt(h) = Mt, It(h) = It, Kt(h) = Kt, qt(h) = qt. Then, I log-linearize the first order
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conditions around the steady state. The resulting expressions are as follows.

ct = Etct+1 −
1

σ
(rt − Etπt+1 − ρ), (8)

rt =
σ(1 − β)

β
ct −

ς(1 − β)

β
mt., (9)

qt = Etπt+1 − rt +
rk

1 + rk − δ
rk
t +

1 − δ

1 + rk − δ
Etqt+1 (10)

it =
β

1 + β
Etit+1 +

1

1 + β
it−1 +

κβ

1 + β
qt. (11)

where, I define κ ≡ 1/S′′(1), ρ ≡ ln(β), and all variables are log-deviated from the steady

state. Eq.(11) is the log-linearized version of Eq.(7). It is reduced into the simple form

significantly since I give the property, S(1) = S′(1) = 0, to the adjustment function,

S(·).

2.2 Wage decision

I give the sticky wage into the labor supply. There are infinite continuum labor N(h, j), h, j ∈

(0, 1) and the aggregate labor supply is defined by

Nt(j) =

(
∫ 1

0
Nt(h, j)

θw−1

θw dh

)

θw
θw−1

,

Nt =

∫ 1

0
Nt(j)dj.

(12)

where, N(h, j) denotes the h type of labor supply to the firm j. I define the intratemporal

profit maximization problem as follows.

max
N(h,j)

WtNt(j) −

∫ 1

0
Wt(h)Nt(h, j)dh s.t. Nt(j) =

(
∫ 1

0
Nt(h, j)

θw−1

θw dh

)

θw
θw−1

The first order condition is

N(h, j) =

(

Wt(h)

Wt

)−θw

Nt(j). (13)

Eq.(13) is the demand function for h type of labor by firm j. Substituting Eq.(13) into

the zero-profit condition yields

Wt =

(
∫ 1

0
Wt(h)1−θdh

)

1

1−θw

. (14)
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Next, I define the optimal wage setting for workers. The workers set their wages to

maximize the difference between disutilty from the labor supply and their real wages

evaluated by marginal utility. Each worker has an opportunity to change his wage with

probability ω. Then, the worker’s optimization problem is defined by

max
Wt(h)

Et

∞
∑

s=0

(ωβ)s

[

λt+s(h)
Wt(h)Xt,s

Pt+s
Nt+s(h) − ηNt+s(h)2

]

,

s.t. Nt+s(h) =

(

W̃tXt,s

Wt+s

)−θw

Nt+s.

(15)

where,

Xt,s =

{

Π1 × Π2 × · · · × Πt t ≥ 1

1 t = 0

I assume the indexation of the unchanged wage. Then, unchanged wages are shifted by

past inflation πt−1. The first order condition is

Et

∞
∑

s=0

(ωβ)sλt+s(h)

[

W̃tXt,s

Pt+s
−Mw

Nt+s(h)

λt+s(h)

]

Nt+s(h) = 0, (16)

where Mw ≡ θw/(θw−1). From Eq.(14), the aggregate wage is given by the Dixit-Stigltz

form.

Wt =
[

(1 − ω)W̃ 1−θw
t + ω(πt−1Wt−1)

1−θ
]

1

1−θ (17)

There is πt−1 in the second term of the bracket since I assume the indexation of unchanged

wages. Log-linearinzing Eq.(16) and Eq.(17) around the steady state and combining both

equations yield the wage Philips curve (hereafter, the WPC).

κwwt = βEtwt+1 + wt−1 + βEt(πt+1 − πt) − (πt − πt−1)

+
(1 −Mw)σ

bwω
ct −

1 −Mw

bwω
nt.

(18)

where

κw ≡
bw(1 + βγ2) −Mw

bwω
, bw ≡

2Mw − 1

(1 − ω)(1 − βω)

Since I assume the indexation in the wage setting, there is lagged variable in both wage

and inflation in the WPC. The WPC denotes the relationship between wages and the

labor supply.
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2.3 Final goods sector

There is an infinite continuum of intermediate goods Yt(j), j ∈ (0, 1). The final goods

sector produces its output by combining the intermediate goods.

Y =

(
∫ 1

0
Y (j)

θ−1

θ dj

)

θ
θ−1

, (19)

The optimization of the final goods firm is defined as the intratemporal profit maximiza-

tion.

max
Yt(j)

PtYt −

∫ 1

0
Pt(j)Yt(j)dj s.t. Yt =

(
∫ 1

0
Yt(j)

θ−1

θ dj

)

θ
θ−1

The first order condition is

Yt(j) =

(

Pt(j)

Pt

)−θ

Yt. (20)

Eq.(20) is the demand function for type j intermediate goods for any j ∈ (0, 1). Substi-

tuting Eq.(20) into Eq.(19) yields the aggregate price index.

Pt =

(
∫ 1

0
P (j)1−θdj

)

1

1−θ

. (21)

2.4 Intermediate goods sector

In this subsection, I derive the dynamics of inflation log-linearized around the steady

state. The intermediate firm j has a production technology given by

Yt(j) = Kt−1(j)
αNt(j)

1−α. (22)

By the cost minimization problem, the total cost of firm’s product is

(

1

1 − α

)1−α (

1

α

)α

(rk
t )α(wt)

1−αYt(j),

and the marginal cost is

st =

(

1

1 − α

)1−α (

1

α

)α

(rk
t )α(wt)

1−α. (23)

The real marginal cost st is independent of the index j. The intermediate firm’s profits

at t are replaced into
[

Pt(j)

Pt
− st

]

PtYt(j).
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The intermediate firms dynamically maximize their profits evaluated by the household’s

marginal utility by setting their optimal price considering that they cannot change their

price forever with probability γ. I define P̃t as the price which can be set optimal in the

period t. Then, the intermediate firm’s optimal price setting is

max
P̃t

Et

∞
∑

s=0

(γβ)sλt+s

[

P̃tXt,s

Pt+s
− st+s

]

Pt+sYt+s(j),

s.t. Yt+s(j) =

(

P̃tXt,s

Pt+s

)−θ

Yt+s.

(24)

The first order condition is

Et

∞
∑

s=0

(γβ)svt+s

[

P̃tXt,s

Pt+s
−Mst+s(j)

]

Pt+s

(

P̃tXt,s

Pt+s

)−θ

Yt+s = 0, (25)

where, M ≡ θ/(θ − 1). From Eq.(21), the aggregate price is given by the Dixit-Stiglitz

type CES aggregator and it is divided into the changed price component and the un-

changed price component.

Pt =
[

(1 − γ)P̃ 1−θ
t + γ(πt−1Pt−1)

1−θ
]

1

1−θ (26)

Since I assume price indexation on the unchanged prices, there is the past inflation in

the second term of the bracket. Log-linearizing Eq.(25) and Eq.(26) and combining the

two equation yield the dynamic equation of inflation.

πt =
β

1 + β
Etπt+1 +

1

1 + β
πt−1 +

(1 − γ)(1 − γβ)

γ(1 + β)
st, (27)

Equation (27) is the New Keynesian Philips curve (hereafter, the NKPC), which describes

the supply side of the economy, the terms of inflation appear because of the sticky price

in the intermediate firm sector. There is lagged inflation in Eq. (27) since I assumed

indexiation of the unchanged prices. The effects of stickiness are on st, which is the

marginal cost of intermediate firms. As γ becomes large, the coefficient of st becomes

small. Moreover, the log-linear version of real maginal cost is given by

st = αrk
t + (1 − α)wt. (28)

The inflation dynamics may become small since the sticky wage is present in this economy.

The sticky wage lowers the dynamics of st and then the inflation dynamics becomes

smaller.
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2.5 Monetary policy

I derive the impulse responses to both the money growth rule and the Taylor (1993) rule.

First, when the monetary policy rule is the Taylor type,

rt = ψππt + ψyyt + vr
t ,

vr
t = ρrv

r
t−1 + ǫr

t , ǫr
t ∼ i.i.d (0, σ2

r ).

where, ψπ ≥ 1 is called ‘the Taylor principle’.

Second, the monetary policy is the money growth rule

µt = ρµµt−1 + ǫµ
t , ǫµ

t ∼ i.i.d (0, σ2
µ), (29)

where, µt ≡ Mt − Mt−1 denotes the money growth rate; Eq.(29) is the log-linearized

form. The relationship between money growth and the real money rate can be described

as follows by using the definition of real balances, mt = Mt − pt.

µt = mt − mt−1 + πt.

Finally, I give the ZLB constraint explicitly2 .

rt ≥ − ln(1/β). (30)

2.6 Aggregation

I aggregate the household’s budget constraint and the intermediate firms’ budget con-

straint in h and j.

PtCt + PtIt + Bt + Mt = WtNt + Ptr
k
t Kt−1 + Rt−1Bt−1 + Mt−1 + Dt.

Dt = PtYt − WtNt − Prr
k
t Kt−1.

From the above equations and the government’s budget constraint, the goods market

clearing condition can be obtained.

Yt = Ct + It. (31)

2Since impulse responses indicate percent deviates from the steady state, the lower bound of the
nominal interest rate becomes − ln(1/β) in the Figures.
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2.7 Steady-state conditions

Next, I derive the steady-state conditions. First, from the equler equation,

R =
1

β

The capital rental rate is given by

rk = R + δ − 1.

The optimal price equation at the steady state gives the steady state value of real wage,

w =

(

(1 − α)1−ααα

M(rk)α

)

1

1−α

.

From the intermediate firm’s cost minimization problem, the output-capital ratio at the

steady state is derived as follows.

K

Y
=

(

(1 − α)rk

w

)α−1

.

Then, the output-investment ratio for the steady state is given by capital accumulation.

I

Y
= δ

K

Y

Finally, the steady state value for C/Y is

C

Y
= 1 −

I

Y
,

3 Simulation

In this section, I derive the impulse responses to the monetary policy shock dealing with

the non-negative constraint on the nominal interest rate. First, I show the intuition

of the HP algorithm and the piecewise linear solution. Second, I show that strong

reductions in the nominal interest rate play a significant role in the dynamics of the

economy in response to the policy shock when there is a ZLB constraint in this model.

The nominal interest rate decreases significantly when the monetary policy rule is the

Taylor type under the benchmark parameters. On the other hand, the nominal interest

rate decreases to a very low rate in response to the money growth shock.

Third, I remove the wage stickiness to investigate how it contributes to the effects

of the ZLB in response to monetary policy shocks under the Taylor rule. The response
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of the inflation in the economy under flexible wages becomes larger than that in the

economy under sticky wages. Then, inflation can absorb the relatively large effects of

the ZLB in the case without wage stickiness. The impulse responses results indicate that

the effects of the ZLB in an economy under flexible wages is smaller than that in an

economy under sticky wages.

Fourth, I change the persistence of the monetary policy shock under the Taylor rule.

An increase in the persisitece of monetary policy shock significantly reduces the effects

of the ZLB by reducing the response of the nominal interest rate. The increase in the

persistence of the monetary policy shock gives a long term feature to nominal interest

rates. This decreases the reduction in the nominal rate of interest in response to the

policy shock, and then the absence of significant easings is mitigated more than in the

case which the persistence of shocks is low.

3.1 Algorithms dealing with the ZLB

3.1.1 The HP algorithm

I explain the HP algorithm intuitively in this subsection.3

First, I need to solve the rational expectation model. In this paper I use the ‘Sims

(2002) form’. Then, I derive impulse responses to unanticipated policy shocks. I define

impulse responses as Ul — where, Ul is the T × 1 matrix, T is the period of simulation

and l corresponds to each variables in the model.

Second, I derive the impulse responses to anticipated shocks. I introduce the news

shock to the equation in which I want to set an inequality. If the ZLB constraint is

present, the nominal rates maybe zero for some periods. The HP algorithm introduces

news shocks to accommodate this. Agents know when a neews shock will materialize,

and thus the agents can behave rationally given the information about the time that

shock will occur. This structure is applied to explorations of how an economy behaves

if it knows when the nominal rate of interest binds. In other words, the HP algorithm

replaces ‘future ZLB’ with ‘anticipated shock’. Holden and Paetz (2012) call this ‘shadow

shocks’. Shadow shocks are added into equations which include inequality-constrained

variables because we want to know how the economy behaves in response to the dynamics

of the nominal interest rate.

In this paper, I add the shadow shock term to the Taylor rule and to the money

3See Holden and Paetz (2012) for more details.
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growth rule.

rt = ψππt + ψyyt + vr
t +

T ∗
−1

∑

s=0

vn
t,s (32)

or

rt = σct + ςmt +
T ∗

−1
∑

s=0

vn
t,s (33)

where, vn
t,s denotes news shocks. vn

t,s is a shock which is known at t− s and materializes

at t. For example, vn
t,s is expressed as follows in an AR(1) system when s = 3.

xt = ρxxt−1 + vt + vn
t,3,

vn
t,3 = news3t





news3t

news2t

news1t



 =





news2t−1

news1t−1

ǫ





(34)

Thus
∑T ∗

−1
s=0 vn

t,s means there are T ∗ systems like (34). In other words, we must derive

all impulse responses to shocks ǫ since we need all behavior of an agent when nominal

rates are binding, where, T ∗ ≤ T . Using a news shock algorithm, I derive the extended

version of impulse responses. I define impulse responses to news shock as Al, where l

denotes each variable, and Al are T × T ∗ matrices.

Next, I derive the impulse responses dealing with ZLB. The HP algorithm uses the

idea of complementary conditions employing slack variables. First, it is necessary to

define the impulse responses. The result of the impulse response of the nominal rate

must satisfy

rz
t = max{− ln(1/β), rt}. (35)

Holden and Paetz (2012) converted the form of Eq.(35) into the following parameter

weighted form.

rz
t = Ur,t + ln(1/β) + Ar,tα. (36)

where, Ur is the impulse response of the nominal interest rate to an unanticipated policy

shock and Ar denotes the impulse responses to T ∗ news shocks. α is a T ∗ × 1 vector.

Thus, the impulse responses accommodating the ZLB constraint consist of unanticipated
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and anticipated components. The anticipated component is amplified by α to deal with

rt + ln(1/β) ≥ 0.

Eventually, the problem is replaced to find the optimal value of parameter vector α.

Holden and Paetz (2012) uses the idea of a complmentary slackness type condition,

α⊤(Ur + ln(1/β) + Arα) = 0 (37)

and then define the problem;

α∗ =arg min α⊤(Ur + ln(1/β) + Arα)

s.t. α ≥ 0, Ur + ln(1/β) + Arα ≥ 0.
(38)

If the objective function is close to zero, it regards α∗ as satisfying the complementary

condition. MATLAB has a quadratic optimization function quadprog.m in its opti-

mization toolbox. Since quadprog.m requires the initial value of α and α∗ is obtained

only when the objective function converges to zero, it is necessary to change the initial

value of α or the number of news shocks impulse responses if the objective function does

not converge zero.

Finally, the responses dealing with ZLB for each variables are obtained as follows.

Ul + Alα
∗, (39)

3.1.2 The piecewise linear solution

Here, I explain piecewise linear solution, which was used by Jung, Teranishi and Watan-

abe (2005) analyze the optimal monetary policy with ZLB. Guerierri and Iacoviello (2013)

created the MATLAB codes for the piecewise linear solution. They provide the codes on

the web.4

The piecewise linear solution is an algorithm that replaces periods in which the nom-

inal rate might bind with another impulse responses at which the nominal interest rate

binds. The algorithm needs two regimes as follows:

AEtXt+1 + BXt + CXt−1 + FEt = 0, (40)

A∗EtXt+1 + B∗Xt + C∗Xt−1 + D∗ = 0, (41)

where, Xt is a vertical vector of variables. D∗ is a vertical vector which includes the

deviated threshold value from the steady state at which the nominal interest rate binds.

4See Guerrieri and Iacoviello (2013) for more details. They provide Dynare codes.
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α β γ ω θ θw ψπ ψy ρµ ρr

0.3 0.99 0.7 0.8 6 6 1.5 0.5 0.5 0.5

Table 1: Calibration

A, B,C, F,A∗, B∗ and C∗ are structual matrices that include coefficients. I suppose that

Eq.(40) satisfies the Blanchard-Kahn condition and the inequality constraint does not

bind. The rational expected solution for this regime is

Xt = ΦXt−1 + ΨEt. (42)

I also suppose that regime (41) does not always satisfy the Blanchard-Kahn condition

and the inequality constraint always binds. Now I suppose that an agent guesses that

regime (41) starts from Ts and finishes at Tf . The guessed solution for [Ts, Tf ] is obtained

as follows: Since the agent guessed that regime (41) finishes at Tf , the solution (42) is

applied after Tf . Then, EtXTf+1 = ΨXTf
. Substituting this into Eq.(41) yields

XTf
= ΦTf

XTf−1 + ΓTf
. (43)

where,

ΦTf
≡ −(A∗Ψ + B∗)−1C∗, ΓTf

≡ −(A∗Ψ + B∗)−1D∗ (44)

Iterating this process, we obtain Φt and Γt for all t ∈ [Ts, Tf ]. The path can then be

simulated and verified. If the guessed solution is not verified, another guess can be tried

by changing the value of Ts, Tf or both.

3.2 Benchmark impulse response

I set the deep parameters as the listed in Table 1. First, I simulate the model with the

Taylor rule. I construct the vector of variables as follows.

Xt ≡
[

rt, ct, it, yt, πt, nt, wt, kt−1, rk
t , st, qt,

Etct+1, Etπt+1, Etwt+1, Etr
k
t+1, Etit+1, Etqt+1, vr

t

]⊤
(45)

Figure 1 illustrates the impulse response to the monetary easing shock when the policy

rule is the Taylor type. I set the value of the policy shock so that the nominal interest

rate responds to −1 at minimum. The solid blue line in the figure indicates the impulse

responses without the ZLB constraint. Since the easing policy stimulate the economy,

the decrease in the nominal interest rate raises the labor supply, output, inflation and
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Figure 1: Impulse responses to monetary policy shocks under the Taylor rule. Solid blue
line: the impulse response without the ZLB; Solid purple line: the impulse response with
the ZLB by the piecewise linear solution; Dashed green line: the impulse response with
the ZLB by the HP algorithm.
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investment. The responses of these variables, especially inflation and investment, are

relatively small compared to the response of the nominal interest rate. Even though the

responses of the labor supply and the output are larger than that of the nominal interest

rate, they are not as large as twice the response of the nominal interest rate. Thus,

the response of the nominal interest rate is not greatly different from those of the other

variables.

In Figure 1, the dashed green and solid purple line show the impulse responses ob-

tained by the HP algorithm and the piecewise linear solutions. The result from these two

methods are extremely close. Figure 1 indicates that the nominal interest rate stays at

the lower bound until the 4th quarter and then becomes small positive. This describes

the zero lower bound on the nominal interest rate. The dynamics of the other variables

change dramatically toward the result without the ZLB constraint. The responses of all

of the variables decrease markedly. The interpretation maybe as follows. The central

bank gives the monetary policy shock to stimulate the economy and then the nominal

interest rate decreases. If there is the ZLB constraint, however, the nominal interest rate

can no longer decrease under zero. This means that the nominal interest rate is not able

to ease significantly because of the ZLB. The absence of significant easing affects the

other macro variables delaying the positive response of the nominal interest rate further

and further. The nominal interest rate’s return to a positive status is delayed one quarter

in this model toward the case without the ZLB constraint.

Next, I simulate the model with the money growth rule.

Xt ≡
[

rt, mt, ct, it, yt, πt, nt, wt, kt−1, rk
t , st, qt,

Etct+1, Etπt+1, Etwt+1, Etr
k
t+1, Etit+1, Etqt+1, µt

]⊤
(46)

Figure 2 shows the impulse responses to the positive shock under the money growth

rule. Similar to the result obtained with the Taylor rule, the easing policy in the money

growth rule stimulates the economy and increase all of the variables indicated in Figure

2. The positive money growth shock lowers the nominal interest rate. This is called the

‘liquidity effect’, which is defined as the negative relationship between money growth and

the nominal interest rate. In the theoretical literature, the occurrence of the liquidity

effect depends negatively on the persistence of money growth rate (Christiano et al. 1997).

I set the money growth persistence, ρµ, at 0.5 to generate as strong a liquidity effect

as possible. The response of the nominal interest rate is very small relative to those

of the other macro variables. Both the dashed green line and the solid purple line

in Figure 1 indicate the impulse responses dealing with the non-negative constraint.
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Figure 2: Impulse responses to monetary policy shocks under the money growth rule.
Solid blue line: the impulse response without the ZLB; Solid purple line: the impulse
response with the ZLB by the piecewise linear solution; Dashed green line: the impulse
response with the ZLB by the HP algorithm.
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Table 2:

Variables Taylor rule
max(PW) max(HP) max(IRF)

yt 0.075585 0.081866 0.85686
it 0.12439 0.13501 0.579
nt 0.10742 0.11695 1.2241
πt 0.020795 0.021413 0.082309

max(PW): maximum responses with the ZLB by the piecewise linear solution; max(HP): maxi-

mum responses with the ZLB by the HP algorithm; max(IRF): maximum responses without the

ZLB to monetary policy shocks for each variables.

Table 3:

Variables Money growth rule
max(PW) max(HP) max(IRF)

yt 115.3241 115.8718 117.2244
it 228.1931 233.1472 230.1629
nt 163.5437 164.3163 166.2422
πt 37.4943 36.7371 37.7284

max(PW): maximum responses with the ZLB by the piecewise linear solution; max(HP): maxi-

mum responses with the ZLB by the HP algorithm; max(IRF): maximum responses without the

ZLB to monetary policy shocks for each variables.

The impulse response of the nominal rate binds the zero lower bound for first 1 to

7 quarters and reaches the lower bound again for 17 quarters. The nominal interest

rate could not ease significantly because of the ZLB. The result of this insignificant

easing in the nominal interest rate spills over and then lowers the response of the other

variables. However, the reductions in responses are extremely small. This is reflected by

the extreme closeness of the solid blue line, the solid purple line and the dashed green

line. Next I compare the effect of zero lower bound between the Taylor rule and the

money growth rule. First, I compare the maximum responses of four variables. Tables

2 and 3 indicate the maximum responses of yt, it, nt and πt to each monetary policy

shock. The columns labeled max(PW) and max(HP) indicate the maximum value of

responses to the monetary policy shock in the HP algorithm and the piecewise linear

solution. The colunmns of max(IRF) indicate the maximum value of responses to the

monetary policy shock without constraint. The result from max(PW) and max(HP) are

close to each other. In Table 2, the results from max(PW) and max(HP) are less than
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Table 4: The Effects of ZLB indicate
∑

|IRF−ZIRF|/
∑

|IRF| for each variables.

variables Taylor rule Money growth rule

Effects of ZLB PW HP PW HP

yt 80.4885% 78.2123% 1.6348% 4.2977%
it 74.3258% 71.8679% 1.0829% 4.5272%
nt 82.1438% 80.4424% 1.5695% 3.8598%
πt 70.6225% 69.5775% 1.0385% 3.1222%

those of max(IRF). On the other hand, the results from max(PW) and max(HP) are

close to max(IRF) in Table 3. Thus, the maximum responses to monetary policy shocks

are more greatly affected by the non-negative constraint on the nominal interest rate

under the in Taylor rule than under the money growth rule.

Second, I compare the effect of the zero lower bound in impulse responses for 20

periods.

20
∑

t=0

|IRFt − PWt|/

20
∑

t=0

|IRFt| and

20
∑

t=0

|IRFt − HPt|/

20
∑

t=0

|IRFt|

Table 4 indicates that the effects of constraint are much larger under the Taylor rule

than the money growth rule. The responses with constraint were about 70%-80% of

the size of the responses without constraint under the Taylor rule. The responses with

constraint were about 1%-4% of the size of the responses without constraint under the

money growth rule.

3.3 Flexible wages

Next, I derive the impulse responses without the wage stickiness. Since there is no

stickiness in wage, the version of the Philips curve equation is substituted for the labor

supply equation from which the household’s first order conditions are derived. The log-

linearized version is

nt + σct = wt. (47)

Figure 3 indicates the impulse responses to the negative monetary policy shock under

the Taylor rule. Some standard responses without sticky wages become larger than the

responses with sticky wages and others do not. The response of the nominal interest

rate with a flexible wages rate is smaller than that of the nominal interest rate with
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Figure 3: Impulse responses to monetary policy shocks under the Taylor rule and flexible
wages. Solid blue line: the impulse response without the ZLB; Solid purple line: the
impulse response with the ZLB by the piecewise linear solution; Dashed green line: the
impulse response with the ZLB by the HP algorithm.
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Table 5:

variables Maximum responses Effects of ZLB
max(PW) max(HP) max(IRF) PW HP

yt 0.46998 0.5136 0.99972 42.2759% 38.4409%
it 0.3045 0.32513 0.43061 25.9485% 24.1256%
nt 0.67139 0.73371 1.4282 41.3739% 37.1486%
πt 0.45146 0.47694 0.62137 23.2359% 27.5527%

max(PW): maximum responses with the ZLB by the piecewise linear solution; max(HP): maxi-

mum responses with the ZLB by the HP algorithm; max(IRF): maximum responses without the

ZLB to monetary policy shocks under flexible wages. The columns of Effects of ZLB indicate
∑

|IRF−ZIRF|/
∑

|IRF| for each variable, where, the monetary policy rule is the Taylor type.

sticky wages. Table 5 indicates the maximum responses to the monetary policy shock

in some variables. The standard maximum response of inflation becomes much larger

than that with sticky wages. This feature is consistent with the study by Christiano et

al. (2005) in that the nominal rigidities, especially the wage rigidity, contributes to the

initial dynamics of inflation.

The responses with the ZLB constraint become larger than those with sticky wage.

The intuitive reason for the reduction in the effects of the ZLB is that the inflation

dynamics becomes larger because of the absence of sticky wage. The inflation can abosorb

the effects of the constraint more than before since the dynamics of inflation become

larger. Table 5 provides the sticky wage versions of Tables 2, 3 and 4. First, the

maximum responses of variables with the constraint are more close to max(IRF) than

the case with sticky wages. Second, the effects of the constraint decrease in all variables.

Thus, the effects of monetary policy shock under the Taylor rule with frexible wages are

larger than those with the sticky wages.

3.4 The persistency in policy shock under the Taylor rule

The persistency in policy shock under the Taylor rule, ρr, contributes to the dynamics

of the nominal interest rate. Figure 4 indicates the impulse responses when ρr is 0.9.

The impulse response of the nominal intrerest rate with the ZLB stays zero for initial

periods, but it departs from zero earlier than the case without the ZLB. The responses

of other variables with the ZLB became close to those without the ZLB. An increase

in the persistence of policy shock lowers the negative response of the nominal interest

rate because high persistence of policy shock indicates that monetary easing continues
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Figure 4: Impulse responses to monetary policy shocks under the Taylor rule when
ρr = .9. Solid blue line: the impulse response without the ZLB; Solid purple line: the
impulse response with the ZLB by the piecewise linear solution; Dashed green line: the
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longer and the nominal interest rate takes on a long term aspect in the model. These

results indicate that an increase in the persistence of policy shock under the Taylor rule

dramatically mitigates the effects of ZLB through the reduction of the response of the

nominal interest rate.

4 Conclusion and Future Task

The main finding of this paper is that the influence of the ZLB on the effects of monetary

policy shock under the Taylor rule is larger than under the money growth rule in a typical

DSGE model. The reduction in the nominal interest rate is small compared to the money

growth shock. The ZLB constraint on the nominal interest rate has little effect on the

other variables because of the insignificant negative responses of the nominal interest

rate to money growth shocks. In other words, the ZLB does not affect the economy so

much because of the weak liquidity effect. However, this result is unrealistic because

there might be a strong liquidity effect in the actual economy. It is thus important to

use models that can generate a strong liquidity effect. This implication is related to the

third analysis described herein, which assessed the effects of ZLB in high persistence of

shocks to Taylor rule. The ZLB might have a significant effect on the impact of monetary

policy shocks under the Taylor rule in models that generate strong liquidity effects even

though shock persistence is high.

Second, flexible wages reduce the effects of the ZLB and increase some variables’

responses. Wage stickiness affects the dynamics of inflation through the marginal costs

of the intermediate goods sector. A reduction in the stickiness of wages raises inflation

and then reduces the response of the nominal interest rate. A decrease in the response of

nominal rate of interest mitigates the amplification of the effects of anticipated bindings in

the HP algorithm, but this result does not necessally indicate that reduce wage stickiness

is good method of decreasing the effects of the ZLB. This issue should be explored further

in the field of optimal monetary policy.

Third, the results obtained with the HP algorithm and those obtained with the

piecewise linear solution are close to each other in all analyses in this model.

Finally, these results are not necessarily consistent with the traditional IS-LM liter-

ature since monetary policy shocks affect the economy under some cases. This result

may indicate that the model cannot explain the real economy or that monetary policy

is effective even though the nominal interest rate cannot decrease further than zero. It
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is, however, difficult to suggest the latter implication. As noted in above, it is important

to search for a way to greatly reduce response of of the nominal interest rate to the

money growth shocks. The effects of monetary policy employing the Taylor rule might

become close to completely ineffective in such models. The liquidity effect might be more

important, because of the ZLB.
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