MPRA

Munich Personal RePEc Archive

NLINLS: a Differential Evolution based
nonlinear least squares Fortran 77
program

Mishra, SK

North-Eastern Hill University, Shillong (India)

25 August 2007

Online at https://mpra.ub.uni-muenchen.de/4949/
MPRA Paper No. 4949, posted 18 Sep 2007 UTC

NLINLS: A Differential Evolution based
Nonlinear Least Squares Fortran 77 Program

SK Mishra
Dept. of Economics
NEHU, Shillong

Introduction: Curve fitting or estimation by nonlinear least squares is a difficult task.
There are two types of algorithm that are often used for this purpose: those that need
evaluation of derivatives and the others that do not. In the first category we have Gauss-
Newton, Levenberg-Marquardt and Fletcher-Powell, Fletcher-Reeves, Rosen, Quasi-
Newton, etc while in the second category we have Powell, Rosenbrock, Hooke-Jeeves,
Nelder-Mead and Box, etc (see Kuester and Mize, 1973). All of them are very prone to
be caught into local minimum trap. Recently, some methods of global optimization have
been developed that are based on some sort of stochastic process. The method of
Differential Evolution (Storn and Price, 1995) is perhaps the most promising among
them. In developing this program we have used DE as an optimizer of the nonlinear least
square function. The DE is an evolutionary, population-based, algorithm; a development
on the Genetic Algorithm. The DE as a method of optimization has been well tested on
many extremely difficult multi-modal problems of nonlinear optimization (see at
http://www1.webng.com/economics or http://www.freewebs.com/nehu_economics for its
applications including estimation of Sato’s nested CES production function (Mishra,
2006), Zellner-Revankar production function (Mishra, 2007-a) and joint production
functions (Mishra, 2007-b), etc).

Fortran Compiler, NLINLS and User’s Data: The program is written in Fortran 77
(http://www1.webng.com/economics or http://www.freewebs.com/nehu_economics for
nlinls.txt version to directly copy-paste in a Fortran editor). To run the program one has
to use a Fortran 77 compiler. FORCE-2.0 is a powerful compiler that may be downloaded
from http://www.guilherme.tk/ (there going to Downloads and clicking on UK against
Force208.exe) free and installed on the user’s computer. Any other Fortran compiler may
also be used.

. Hougen Model Data Then the program NLINLS may be copy-pasted from the
No X; Xo Xg Y source file (that may be in the text file such as
1 470 300 10 855 NLINLS.txt) to the FORCE editor and saved as

285 80 10 3.79 NLINLS.f. However, if you have obtained this program as
470 300 120 4.82 NLINLS.f then after installing the Fortran compiler you
470 80 120 0.02 15y directly double click it. It will be taken up by FORCE

BN R 200 automaticall
100 190 10 14.39 ¥

2
3
4
5
6
7 100 80 65 2.54

8 470 190 65 4.35 The first step in using the program is to make a text file
190 100 300 54 13.00 (for example, HOUGEN.TXT in which data, note - only
11

12

13

100 300 120 8.50 data, the colored portion - are to be stored in the scheme

100 80 120 0.05 e 1 .
285 300 10 1132 exemplified in the left panel). The sequence of columns is

285 190 120 343 SIno.xp X ...y

Please note that the data file and the NLINLS.f should be saved in the same folder
(directory) to avoid typing long paths afterwards. However, this is only a suggestion.

The user of NLINLS program has to specify the parameters, bounds (limits) on
them as well as the function to be fitted to data. This is done in the last subroutine of the
program: REGFUNC. It has been specifically mentioned in the REGFUNC as to what is
to be modified in the program and what is not be altered. Only three sets of changes are
needed: (1) defining the set of parameters; pl = p(1), p2 = p(2), etc depending on the
problem; (2) defining the set of variables, x1 = datum(i, 1), x2 = datum(i, 2), ..., y =
datum(i, last), for example, in the Hougen problem x1 = datum(i, 1), x2 = datum(j, 2), x3
= datum(i,3), y = datum(i, 4); and finally, (3) defining yx in terms of p and x, such that in
the Hougen problem the function is defined as yx = (pl * x2 - x3 / p5)/(1.d0 + p2 * x1 +
p3 * x2 4+ p4 * x3). Almost never one would require changing FORMAT(S, 2F25.12),
but one may change it if (at all) needed.

Once the changes in the program are made, it may be saved and compiled or even
run directly. If no error has been committed in changing/redefining as advised above, the
program will run. While it runs, the program asks for several inputs from the user. The
program issues clear instructions to be (normally) followed.

1. “If help is needed” : The user (who has read this help document) will not
possibly gain anything by feeding a non-zero number. So he/she should type 0
and strike the Enter key.

2. “Feed the name of input file ...” : As has been advised above, the user is ready

with the input data file, for example, in mydata.txt named file. He/she may type it
and strike the Enter key.

3. “Number of observations and variables ...”: The user should type the number of
variables (e.g. 13 in the Hougen problem above) and the number of variables
(including y) in the problem (e.g. 4 in the Hougen problem above). Then strike
the Enter key. His/her input from the keyboard will be 13, 4 Enter.

4. “No. of parameters to be estimated” : It is the number m in pl, p2, ... , Pm. For
the Hougen problem it is 5. Input 5 and Enter.
5. “Would you specify any limits ... “: If the user has to specify some bounds

(limits) on the values of parameter, he/she should type an integer number other
than zero (0), e.g. 2, 3 or 4, etc and Enter. But if he/she has not to specify any
bounds, he/she should type 0 and Enter.

6. If the user has chosen to provide bounds on the parameter, then he/she will be
asked to provide those (lower and upper limits).

7. Specify the [lower upper, lower upper ...” : The user may specify them. For
example, the lower upper bound on the parameters of the Hougen problem above
may be given as

-10 10, -1010, -1010, -1010, -10 10 Enter

8. “Option: Would you minimize ...” : If the user wants to minimize sum of

squares, he/she should type O and Enter. If he/she wants to maximize R? then

type any non-zero integer and strike the Enter key. Both amount to the same, but
display different results.

Once these inputs are accepted by the computer, the program enters into DE

optimization. The DE algorithm needs a number of inputs. These are:

1.

3.
4.
5

“Population size and number of iterations ...” : Population size should not be less
than ten times the number of parameters to be estimated. For example, in the
Hougen problem above, 5 parameters are there. So population size should not be
less than 50. Unless the number of parameters is more than 10, population size =
100 is good enough. In the main program the parameter IPRES may be 0 or 1. If
IPRES=0 then population size should be at least 10 times M (no. of parameters)
else it should be 20 times M or more. Number of Iterations = 10000 is enough for
moderately sized problems.

“Cross-over probability ... and two scale parameters” : It depends on the
complexity of the problem. If the problem appears to be simple, (0.9, 0.5, 0) is
alright and very effective. In some cases (0.9, 0.9 0.01) performs better. In some
other cases (0.5, 0.9, 0.1) has worked. In case of complicated problems one may
run the program several times with these alternatives 0.9, 0.5, 0 Enter.
“Accuracy for convergence” : For most problems 0.0001 would be all right.
“Random number seed.” : any 4-digit odd integer such as 5781 Enter.

“Name of output file” : Such as myresults.txt Enter.

And the program goes in for computation. All intermediate results pop up on the
screen. All intermediate and final results including expected values of y are stored in the
output file specified by the user (e.g. myresults.txt). Note that it is automatically saved in
the same folder (directory) where NLINLS.f and data file are already saved. Then one

may enter into that folder and double click the output file (e.g. myresults.txt) to view the
results. One may also open it by any other text editor.

In case of any difficulty or further help, the user is most welcome to contact me at

mishrsknehu@vyahoo.com.

References

Kuester, JL and Mize, JH (1973) Optimization Techniques with Fortran, McGraw-Hill
Book Co., New York.

Mishra, SK (2006) “A Note on Numerical Estimation of Sato’s Two-Level CES
Production Function” , SSRN at http://www.ssrn.com/author=353253

Mishra, SK (2007-a) "Estimation of Zellner-Revankar Production Function Revisited."
Economics Bulletin, 3 (14), pp. 1-7.

Mishra, SK (2007-b) “Least Squares Estimation of Joint Production Functions by the
Differential Evolution method of Global Optimization™ Social Science Research Network
(SSRN) at http://www.ssrn.com/author=353253

Storn, R and Price, K (1995) "Differential Evolution - A Simple and Efficient Adaptive
Scheme for Global Optimization over Continuous Spaces": Technical Report,
International Computer Science Institute, Berkley.

NnNOonNnONOONONONNNN

@]

[aXe!

NnNnnNnNnnNnnNNnNN

99

NLINLS

PROGRAM NLINLS
PARAMETER (MAXN=1000, MAXM=50) ! MAX NUMBER OF OBSERVATIONS =1000
AND MAX NUMBER OF INDEPENDENT VARIABLES=50. THIS MAY BE INCREASED
OR DECREADED IF NEEDED. USUALLY ONE DOES NOT NEED CHANGING THEM.
THE LEAST SQUARES OBJECTIVE FUNCTION IN THIS PROGRAM IS OPTIMIZED
BY THE "DIFFERENTIAL EVOLUTION ALGORITHM" OF GLOBAL OPTIMIZATION
THIS METHOD WAS PROPOSED BY R. STORN AND K. PRICE IN 1995. REF --
"DIFFERENTIAL EVOLUTION - A SIMPLE AND EFFICIENT ADAPTIVE SCHEME
FOR GLOBAL OPTIMIZATION OVER CONTINUOUS SPACES" : TECHNICAL REPORT
INTERNATIONAL COMPUTER SCIENCE INSTITUTE, BERKLEY, 1995.
[I11177777777777777777777777777777777777777/7/77////7////7//////7(/
PROGRAM BY SK MISHRA, DEPT. OF ECONOMICS, NEHU, SHILLONG (INDIA)
PARAMETER (NMAX=500,MMAX=50) ! MAXIMUM DIMENSION PARAMETERS FOR DE
PARAMETER(IPRES=1)! THIS SPECIFICATION IS FOR DIFFICULT FUNCTIONS
PARAMETER(IPRES=0)! THIS SPECIFICATION IS FORE GENERAL FUNCTIONS
PARAMETER(IPRINT=500) ! FOR WATCHING INTERMEDIATE RESULTS
IT PRINTS THE INTERMEDIATE RESULTS AFTER EACH IPRINT ITERATION.
IMPLICIT DOUBLE PRECISION (A-H, 0-Z) ! TYPE DECLARATION
COMMON /RNDM/IU,IV ! RANDOM NUMBER GENERATION (IU = 4-DIGIT SEED)
COMMON /REGDAT/DATUM(MAXN ,MAXM) , PARLIM,NDP,NDV,MINOPT,NLIMITS, FOUT
NDP = NO. OF DATA POINTS, NDV = NO. OF VARIABLES (INCLUDING Y)
FOUT IS THE NAME OF OUTPUT FILE TO STORE FINAL RESULTS
COMMON /KFF/KF,NFCALL,FTIT ! FUNCTION CODE, NO. OF CALLS, TITLE
CHARACTER *80 FTIT ! TITLE: NONLINEAR LEAST SQUARES PROBLEM
CHARACTER *80 FOUT ! THE OUTPUT FILE NAME
THE PROGRAM REQUIRES INPUTS FROM THE USER ON THE FOLLOWING ------
(1) FTIT= TITLE; (2) NO. OF VARIABLES IN THE FUNCTION (M);
(3) N=POPULATION SIZE (SUGGESTED 10 TIMES OF NO. OF VARIABLES, M,

FOR SMALLER PROBLEMS N=100 WORKS VERY WELL);
(4) PCROS = PROB. OF CROSS-OVER (SUGGESTED : ABOUT 0.85 TO .99);
(5) FACT = SCALE (SUGGESTED 0.5 TO .95 OR 1, ETQC);
(6) ITER = MAXIMUM NUMBER OF ITERATIONS PERMITTED (5000 OR MORE)
(7) RANDOM NUMBER SEED (4 DIGITS INTEGER)
DIMENSION PARLIM(MAXM,2)! LOWER AND UPEER LIMITS OF PARAMETERS
DIMENSION X(NMAX,MMAX) ,Y (NMAX,MMAX) , FV(NMAX) ,A(MMAX) ,IR(4)
HELP=99.D
WRITE(*,*
WRITE(*,* NONLINEAR LEAST SQUARES PROGRAM'
WRITE(*,
WRITE(*,*
WRITE(*,
WRITE(*,*
WRITE(*,*

|l

1

' WRITTEN BY PROF. SK MISHRA'

! DEPT. OF ECONOMICS, NEHU, SHILLONG'
|l

1

FTIT='NONLINEAR REGRESSION PROBLEM'
————————————— PROVISION OF HELP —==-=====—————mmmmmm oo

IF (HELP.EQ.99.D0) THEN
WRITE(*,*)"IF ANY HELP IS NEEDED FEED 1 (ONE) OR ANY OTHER NUMBER'
READ(*,*) HELP
ELSE
GO TO 999
ENDIF
IF(HELP.EQ.1.D0) THEN
CALL HELPFILEQ)
STOP
ENDIF
Page 1

NnNN

999

NLINLS

KF=1 ! THIS PROGRAM WILL SOLVE ONE PROBLEM AT A TIME
NRD=0 ! NRD = O DATA FROM INPUT FILE WILL BE READ
NQ=0

CALL REGFUNC(A,F,M,NQ,NRD)

RO RO RO RORCORORCORCROROOROROROROSOFORORORORORORON |
R L L R L e R R e e R R L e L L R L

T
|l
'NOW SPECIFY THE PARAMETERS OF DIFFERENTIAL EVOLUATION
ON'
WRITE(*,*)'P
WRITE(*,* !
WRITE(*, POPULATION SIZE [NPOP] AND NO. OF ITERATIONS [ITER] ?'
WRITE(*,*) 'SUGGESTED : NPOP => 100 OR => 10 TIMES M (THE NUMBER OF
& PARAMETERS) IF IPRES=0 ELSE 20 TIMES M;'
WRITE(*,*)"ITER 10000 OR LARGER'
READ(*,*) NPOP,ITER ! POPULATION SIZE AND NO. OF ITERATIONS
N=NPOP ! RENAMED FOR CONVERIENCE
(PLEA%E D? NOT CONFUSE IT TO BE AS NO. OF OBSERVATIONS IN DATA)
WRITE
WRITE(*,*)'CROSSOVER PROBABILITY [PCROS], AND TWO SCALE PARAMETERS
& [FACT AND FACT1] ?'
WRITE(;z*)'SUGGESTED: PCROS BETWEEN [0.5 - 0.9]; FACT BETWEEN [0.5
& - 0.9
WRITE(*,*)'AND FACT1 BETWEEN [0.0 - 0.01] - LIMITS ARE INCLUSIVE'
READ(*) PCROS FACT, FACT1
WRITE(*)
EPS DETERMINES ACCURACY FOR TERMINATION. IF EPS= 0, ALL ITERATIONS
WOULD BE UNDERGONE EVEN IF NO IMPROVEMENT IN RESULTS IS THERE.
ULTIMATELY "DID NOT CONVERGE" IS REOPORTED.
WRITE(*,*)'ACCURACY FOR CONVERGENCE - DEPENDS ON THE PROBLEM'
WRITE(,*)"'0.0001 IS OK; 0.0000001 IS OFTEN MORE THAN ENOUGH'
READ(*,) EPS

)
)
)
)
I
% LEASE CONSIDER THE SUGGESTIONS, ALSO READ HELP FILE'
*)!

WRITE(‘

WRITE(*,*)'RANDOM NUMBER SEED 7'

WRITE(‘ *)! A 4-DIGIT POSITIVE ODD (NOTE, ODD) INTEGER [E.G. 5471]'
READ(*,*) I 'SEED OF RANDOM NUMBER (4-DIGIT ODD NATURAL NUMBER)
WRITE(‘ J) '

WRITE(*,*) 'NAME OF OUTPUT FILE IN WHICH RESULTS WILL BE STORED'
READ(*) FOUT ! (IT IS THE THE GENERAL NAME OF THE OUTPUT FILE)
WRITE(*,*)' !

OPENgll, FILE=FOUT) ! OPENS THE OUTPUT FILE TO STORE RESULTS'

ICQ=

NFCALL=0 ! INITIALIZE COUNTER FOR FUNCTION CALLS
GBEST=1.D30 ! TO BE USED FOR TERMINATION CRITERION
INITIALIZATION : GENERATE X(N,M) RANDOMLY

DO I=1,N

DO J=1,M

CALL RANDOM(RAND) ! GENERATES INITION X WITHIN
X(I,3)=(RAND-0.5D0)*2000 ! GENERATES INITION X WITHIN
X(I,3)=(RAND-0.5D0)*10 ! GENERATES INITION X WITHIN
RANDOM NUMBERS BETWEEN -10 AND 10 (BOTH EXCLUSIVE)
ENDDO

]
'COMPUTING PLEASE WAIT LARGER PROBLEMS TAKE MORE TIME
LI
|l

R R R R R R R R R R R

UUU\.}U

'"PROBLEM=",KF,"' ',FTIT
Page 2

N NNnN

NLINLS

WRITE(*,*) ' '
WRITE(11,*)"** %% TINTERMEDIATE RESULTS *¥%:
WRITE(*,*)"* * INTERMEDIATE RESULTS *%%*%

IPCOUNT=0
DO 100 ITR=1,ITER ! ITERATION BEGINS

CALL RANDOM(RAND)
RX1=RAND
CALL RANDOM(RAND)
RX2=RAND
EVALUATE ALL X FOR THE GIVEN FUNCTION
DO I=1,N
DO J=1,M
A(3)=x(1,3)
ENDDO
CALL SETFUNC(A,M,F)
STORE FUNCTION VALUES IN FV VECTOR
FV(I)=F
ENDDO
FIND THE FITTEST (BEST) INDIVIDUAL AT THIS ITERATION
FBEST=FV(1)
KB=1
DO IB=2,N
IF(FV(IB).LT.FBEST) THEN
FBEST=FV(IB)
KB=IB
ENDIF
ENDDO
BEST FITNESS VALUE = FBEST : INDIVIDUAL X(KB)
GENERATE OFFSPRINGS
CALL RANDOM(RAND)
NL=N
IF(IPRES.GT.0) THEN
IF(RAND.GT.0.9D0) THEN
NL=N
ELSE
NL=INT(O0.5%N)
ENDIF
ENDIF
ICQ=ICQ+1
IF(ICQ.GE.50) ICQ=0
IF(ICQ.EQ.0.AND.NL.LT.N) THEN
DO IN=NL+1,N
DO J=1,M
CALL RANDOM(RAND)
X(I,3)=(RAND-0.5D0)*10.D0

ENDDO

ENDDO

ENDIF

DO I=1,N ! I LOOP BEGINS

INITTIALIZE CHILDREN IDENTICAL TO PARENTS; THEY WILL CHANGE LATER
DO J=1,M
Y(I,3)=x(1,3)
ENDDO

Page 3

NnNNOnNnnN

NLINLS
SELECT RANDOMLY THREE OTHER INDIVIDUALS
DO IRI=1,4 | IRI LOOP BEGINS
IR(IRI)=0

CALL RANDOM(RAND)
NL=N
IF(IPRES.GT.0) THEN
IF(RAND.GT.0.10D0) THEN
NL=N
ELSE
NL=INT(0.5%N)
ENDIF
ENDIF
IF(IRI.LT.4) THEN
TRI=INT(RAND*NL)+1
ELSE
IF(NL.LT.N) THEN
IRJI=INT(RAND* (N-NL))+NL
ELSE
IRJ=INT(RAND*NL)+1
ENDIF
ENDIF
CHECK THAT THESE THREE INDIVIDUALS ARE DISTICT AND OTHER THAN I
IF(IRI.EQ.1.AND.IRJ.NE.I) THEN
IR(IRI)=IRJ
ENDIF
IF(IRI.EQ.2.AND.IRJ.NE.I.AND.IRJ.NE.IR(1)) THEN
IR(IRI)=IRJ
ENDIF
IF(IRI.EQ.3.AND.IRJ.NE.I.AND.IRJ.NE.IR(1).AND.IRJ.NE.IR(2)) THEN
IR(IRI)=IRJ
ENDIF
IF(IRI.EQ.4.AND.IRJ.NE.I.AND.IRJ.NE.IR(1).AND.IRJ.NE.IR(2).AND.
* IRJ.NE.IR(3)) THEN
IR(IRI)=IRJ

ENDIF
ENDDO ! IRI LOOP ENDS
CHECK IF ALL THE THREE IR ARE POSITIVE (INTEGERS)
DO IX=1,4

IF(IR(IX).LE.O) THEN

GOTO 20 ! IF NOT THEN REGENERATE

ENDIF

ENDDO
THREE RANDOMLY CHOSEN INDIVIDUALS DIFFERENT FROM I AND DIFFERENT
FROM EACH OTHER ARE IR(1),IR(2) AND IR(3)
RANDOMIZATION OF NCROSS

RANDOMIZES NCROSS

NCROSS=0

CALL RANDOM(RAND)
TF(RAND.GT.RX1.AND.RAND.LT.RX2) NCROSS=1
! IF RX1=>1, SCHEME 2 NEVER IMPLEMENTED
IF(RAND.GT.RX1.AND.RAND.GT.RX2) NCROSS=2
! IF RX2=>1, SCHEME 3 NEVER IMPLEMENTED

—————————————————————— SCHEME 1 ------=-——— oo~
NO CROSS OVER, ONLY REPLACEMENT THAT IS PROBABILISTIC
IF(NCROSS.LE.Q) THEN
DO J=1,M 1 J LOOP BEGINS
CALL RANDOM(RAND)
IF(RAND.LE.PCROS) THEN ! REPLACE IF RAND < PCROS
Page 4

NnNNOnNnnN

NnNNOnNnN

=

QWO NOY Uuiph w NR

NLINLS
A(3)=X(IR(1),I)+(X(IR(2),I)-X(IR(3),I))*FACT +
* (X(IR(3),3)-0.5D0*X(IR(4),3)-.5DO*X(IR(1),I))*FACTL! CANDIDATE CHILD
ENDIF
ENDDO ! J LOOP ENDS
ENDIF

——————————————————————— SCHEME 2 —===—====——————mmmmm oo
THE STANDARD CROSSOVER SCHEME
CROSSOVER SCHEME (EXPONENTIAL) SUGGESTED BY KENNETH PRICE IN HIS
PERSONAL LETTER TO THE AUTHOR (DATED SEPTEMBER 29, 2006)
IF(NCROSS.EQ.1) THEN

CALL RANDOM(RAND)

JR=INT(RAND*M)+1

J=JR

A(3)=X(IR(1),I)+FACT*(X(IR(2),1)-X(IR(3),1D)+
% (X(IR£3),J)—O.SDO*X(IR(4),J)—.5D0*X(IR(1),J))*FACTl

J=J+

IF(J.GT.M) J=1

IF(J.EQ.JR) GOTO 10

CALL RANDOM(RAND)

IF(PCROS.LE.RAND) GOTO 2

A(3)=X(1,3)

J=J+1

IF(J.GT.M) J=1

IF (J.EQ.JR) GOTO 10

GOTO 6

CONTINUE
ENDIF

———————————————————————— SCHEME 3 ------——————— oo~
ESPECIALLY SUITABLE TO NON-DECOMPOSABLE (NON-SEPERABLE) FUNCTIONS
CROSSOVER SCHEME (NEW) SUGGESTED BY KENNETH PRICE IN HIS
PERSONAL LETTER TO THE AUTHOR (DATED OCTOBER 18, 2006)
IF(NCROSS.GE.2) THEN
CALL RANDOM(RAND)
IF(RAND.LE.PCROS) THEN
CALL NORMAL (RN)
DO J=1,M
A(3)=X(T,3)+(X(IR(1D),I)+ X(IR(2),1)-2*X(T1,3))*(RN-0.5D0)*2
A(3)=X(I,3)+(X(IR(L),I)+ X(IR(2),3)-2*X(I,I))*RN*FACT1+
* (X(IR(3),3)-0.5D0*X(IR(4),]1)-.5D0*X(IR(1),I))*FACT1
ENDDO
ELSE
DO J=1,M
A(3)=X(T,3)+(X(IR(1),1)- X(IR(2),I))+
* (X(IR(3),3)-0.5D0*X(IR(4),3)-.5D0*X(IR(1),I))*FACT1! FACT ASSUMED TO BE 1
ENDDO
ENDIF
ENDIF
CALL SETFUNC(A,M,F) ! EVALUATE THE OFFSPRING
IF(F.LT.FV(I)) THEN ! IF BETTER, REPLACE PARENTS BY THE CHILD
FV(I)=F
DO J=1,M
Y(1,3)=AC3)
ENDDO
ENDIF
ENDDO ! I LOOP ENDS
DO I=1,N
DO J=1,M
X(I,3)=Y(I,]) ! NEW GENERATION IS A MIX OF BETTER PARENTS AND
BETTER CHILDREN
ENDDO
ENDDO
Page 5

NN nNn N

101
102

100

NLINLS
IPCOUNT=IPCOUNT+1
IF(IPCOUNT.EQ.IPRINT) THEN
DO J=1,M
A(3)=X(KB,J)
ENDDO
WRITE(*,*) 'ESTIMATED PARAMETERS UP TO NOW'
WRITE(*,*) (X(KB,3]1),I=1,M)
WRITE(11l,*) 'ESTIMATED PARAMETERS UP TO NOW'
WRITE(11,*) (X(KB,3),3=1,M)
IF(MINOPT.EQ.O0) THEN
WRITE(*,101) FBEST
WRITE(11,101) FBEST
ELSE
WRITE(*,102) -FBEST
WRITE(11,102) -FBEST

ENDIF
WRITE (¥, %) oo '
WRITE (LD, ®) " —— '
FORMAT (1X, 'SUM OF SQUARED ERRORS UP TO NOW = ',F25.16)
FORMAT (1X, "R_SQUARE UP TO NOW = ',F25.16)

WRITE(*,*)'TOTAL NUMBER OF FUNCTION CALLS =',6NFCALL
IF(DABS(FBEST-GBEST).LT.EPS) THEN

WRITE(*,*)"'COMPUTATION OVER. RESULTS STORED IN THE FOLLOWING FILE'
WRITE(*,*) FOUT

WRITE(*,*) ' '

WRITE(11l,*)" '

WRITE(ll’*)'********** FINAL RESULTS
WRITE(LL,*) m—mmmmm oo oo '
WRITE(11,*)" '

NQ=1

NRD=1

CALL REGFUNC (A,F,M,NQ,NRD)

R R R L R UR RS R R ORUN |
LR e T A e T A e

CLOSE(11) ! CLOSES THE OUTPUT FILE
WRITE(*,*) '"THANK YOU'
STOP
ELSE
GBEST=FBEST
ENDIF
IPCOUNT=0
ENDIF

ENDDO | ITERATION ENDS : GO FOR NEXT ITERATION, IF APPLICABLE
WRITE(*,*) 'DID NOT CONVERGE. REDUCE EPS OR RAISE ITER OR DO BOTH'
WRITE(*,*) "'INCREASE POPULATION SIZE, PCROS, OR SCALE FACTOR(FACT)'
CLOSE(11) ! CLOSES THE OUTPUT FILE

END

SUBROUTINE NORMAL(R)

PROGRAM TO GENERATE N(0,1) FROM RECTANGULAR RANDOM NUMBERS

IT USES BOX-MULLER VARIATE TRANSFORMATION FOR THIS PURPOSE.

————— BOX-MULLER METHOD BY GEP BOX AND ME MULLER (1958) -------—-—-
BOX, G. E. P. AND MULLER, M. E. "A NOTE ON THE GENERATION OF
RANDOM NORMAL DEVIATES." ANN. MATH. STAT. 29, 610-611, 1958.

IF Ul AND U2 ARE UNIFORMLY DISTRIBUTED RANDOM NUMBERS (0,1),

THEN X=[(-2*LN(U1l))**.5]*(cos(2*PI*u2) IS N(0,1)

ALSO, X=[(-2*LNQU1))**.5]*(SIN(2*PI*U2) IS N(O0,1)

PI = 4*ARCTAN(1.0)= 3.1415926535897932384626433832795

2*PI = 6.283185307179586476925286766559

NLINLS

IMPLICIT DOUBLE PRECISION (A-H,0-2)
COMMON /RNDM/IU,IV
CALL RANDOM(RAND) ! INVOKES RANDOM TO GENERATE UNIFORM RAND [0, 1]
Ul=RAND ! Ul IS UNIFORMLY DISTRIBUTED [0, 1]
CALL RANDOM(RAND) ! INVOKES RANDOM TO GENERATE UNIFORM RAND [0, 1]
U2=RAND ! Ul IS UNIFORMLY DISTRIBUTED [0, 1]
R=DSQRT(-2.D0*DLOG(UL))
R=R*DCOS(U2%6.283185307179586476925286766559D00)
R=R*DCOS(U2%6.28318530718D00)

RETURN

END

RANDOM NUMBER GENERATOR (UNIFORM BETWEEN O AND 1 - BOTH EXCLUSIVE)
SUBROUTINE RANDOM(RAND)

DOUBLE PRECISION RAND

COMMON /RNDM/IU,IV

IV=IU*65539

IF(IV.LT.0) THEN

IV=IV+2147483647+1

ENDIF

RAND=IV

IU=1V

RAND=RAND*0.4656613D-09

RETURN

END

SUBROUTINE SETFUNC(A,M,F)

SET THE FUNCTION FOR GLOBAL OPTIMIZATION PROGRAM
IMPLICIT DOUBLE PRECISION (A-H,0-Z)

COMMON /RNDM/IU,IV

COMMON /KFF/KF,NFCALL,FTIT

CHARACTER *80 FTIT

DIMENSION A(*)

NFCALL=NFCALL+1 ! INCREMENT TO NUMBER OF FUNCTION CALLS
KF IS THE CODE OF THE TEST FUNCTION

CALL REGFUNC(A,F,M,NQ,NRD)

RETURN

END

SUBROUTINE HELPFILE()

WRITE(*,*) 'HERE IS SOME HELP INFORMATION FOR YOU !'

WRITE(*,*) - —mmm oo oo '
WRITE(*,*)'FIRST FEED YOUR DATA AS FOLLOWS IN SOME TEXT FILE, FOR
& EXAMPLE HOUGEN.TXT'

WRITE(*,*)" '

WRITE(*,*) ''1 470.0 300.0 10.0 8.55"

WRITE(*,*) ' 2 285.0 80.0 10.0 3.79'

WRITE(* ,‘) '3 470.0 300.0 120.0 4.82'

WRITE(*,*) ' 4 470.0 80.0 120.0 0.02'

WRITE(* ,‘) L e e e eeed!

WRITE(*,*) '13 285.0 190.0 120.0 3.13"'

WRITE(* ,‘) !

WRITE(*,*) "NOTE THAT SL NO. IS THE FIRST COLUMN AND Y IS THE LAST'
WRITE(*,*) "THEN IN SUBROUTINE REGFUNC (THE LAST SUBROUTINE OF THIS
& PROGRAM'

WRITE(*,*) 'DEFINE PARAMETER NAMES (P1, P2, P3, ETC), AND VARIABLE
& NAMES (x1 X2, Y);

WRITE(C*,*)"' CHANGE THE FUNCTION (YX=AS PER YOUR SPECIFICATION),E.G.
& HOUGEN FUNCTION IS'
Page 7

NnNnN

NLINLS

WRITE(*,*) 'SPECIFIED AS:YX=(P1*X2-X3/P5)/(1.D0+P2*X1+P3*X2+P4*X3)"
WRITE(*,*) '"MODIFY FORMAT SPECIFICATION (ALMOST NEVER NEEDED)'
WRITE(*,*)'SAVE THE PROGRAM AND RUN. FOLLOW THE INSTRUCTIONS. IF
& YOU ARE DONE RUN THE PROGRAM AGAIN. THANK YOU'

RETURN

END

SUBROUTINE REGFUNC(P,F,M,NQ,NRD)

PARAMETER (MAXN=1000, MAXM=50)

MAXN=MAX NUMBER OF OBSRVATIONS, MMAX= MAX NUMBER OF PARAMETERS
MAXN=MAX NO. OF VARIABLES. UNLESS YOUR OBSERVATIONS EXCEED 1000 OR
NUMBER OF EXPLANATORY VARIABLES EXCEED 50 DO NOT CHANGE IT.
IMPLICIT DOUBLE PRECISION (A-H, 0-2)

COMMON /REGDAT/DATUM(MAXN ,MAXM) , PARLIM,NDP,NDV,MINOPT,NLIMITS, FOUT
CHARACTER *80 FIN, FOUT ! NAME OF INPUT AND OUTPUT FILES

NAME OF INPUT AND OUTPUT FILES MAXIMUM 80 CHARACTERS LONG
DIMENSION PARLIM(MAXM,2)! LOWER AND UPPER LIMITS OF PARAMETERS
DIMENSION P(*)! PARAMETERS

NOW READ DATA FROM THE FILE ONLY ONCE (IN THE BEGINNING)
IF(NRD.EQ.0) THEN
WRITE(*,*)'FEED THE NAME OF INPUT FILE IN WHICH DATA ARE STORED'
READ(*,*) FIN ! (IT IS THE THE GENERAL NAME OF THE INPUT FILE)
WRITE(*,*)"' '
&WR%TE(*,*);NUMBER OF OBSERVATIONS AND VARIABLES (INCLUDING Y): X1,
X2,...,Y ¢
WRITE(*,*) 'SUPPOSE Y=F(X1,X2,X3),THEN WE HAVE 4 VARIABLES IN ALL'
READ(?,*) ND?,NDV!NO. OF OBSERVATIONS AND VARIABLES INCLUDING Y
WRITE(*,*
WRITE(*,*)'NO. OF PARAMETERS TO BE ESTIMATED ?'
READ(*,*) M ! (NO. OF PARAMETERS TO BE ESTIMATED)
WRITE(*,*) ' '
WRITE(*,*) "WOULD YOU SPECIFY ANY LIMITS TO THE PARAMETERS ? IF NO
& THEN FEED O (ZERO) ELSE FEED A NONZERO INTEGER'
READ(*,*) NLIMITS
WRITE(*,*)"' '
IF(NLIMITS.NE.O) THEN
WRITE(*,*)'SPECIFY THE [LOWER UPPER, LOWER UPPER, LOWER UPPER,...]
& LIMITS OF PARAMETERS FROM THE FIRST TO THE LAST'
READ(*,*) (PARLIM(J,1),PARLIM(J,2),I=1,M)
WRITE(*,*) ' '
ENDIF
OPEN({, FILE=FIN) !OPENS INPUT DATA FILE TO READ DATA (SL_NO.,X,Y)
DO I=1,NDP
READ(7,*) NSL, (DATUM(I,J]),J=1,NDV) ! READS SL NUMBER, X AND Y
ENDDO
CLOSE(7) ! CLOSES THE INPUT FILE
IF(NSL.NE.NDP) WRITE(*,*)'MISMATCH IN NUMBER OF OBSERVATIONS'
WRITE(*,*)"OPTION: WOULD YOU MINIMIZE THE SUM OF SQUARED ERRORS
&(FEED 0)'
WRITE(*,*)"'OR MAXIMIZE R_SQUARE (FEED ANY NON-ZERO INTEGER)'
READ(*,*) MINOPT
WRITE(C*,*) ' '
NRD=1 ! ONCE NRD = 1 DATA FROM INPUT FILE WOULD NOT BE READ AGAIN
ENDIF

N=NDP ! RENAMING THE PARAMETER JUST FOR CONVENIENCE

SY=0.D0 ! INITIALIZE SUM OF Y

SSY=0.D0 ! INITIALIZE SUM OF SQUARED Y

SSE=0.D0 ! INITIALIZE SUM OF SQUARED ERRORS

CHECKING THE LIMITS OF PARAMETERS AND BRINGING WITHIN LIMITS IF

ANY OF THEM CROSS THE LIMITS - IT IS REQUIRED IN SOME CASES
Page 8

N N0NnNnN

NnNnN

N 00NN NN

NLINLS
IF(NLIMITS.NE.O) THEN
DO J=1,M
IF(P(J).LT.PARLIM(J,1) .OR. P(J).GT.PARLIM(J,2)) THEN
CALL RANDOM(RAND)
P(3)=PARLIM(J,1)+ (PARLIM(J,2)-PARLIM(J,1))*RAND
ENDIF
ENDDO
ENDIF
[11777//7[/////77//7//
————————— HERE ONWARDS (UNLESS OTHERWISE INSTRUCTED) THE USER IS
————————— PERMITTED TO SPECIFY THE REGRESSION PROBLEM ----------

LI1177
PLEASE REDEFINE PARAMETERS P1=P(1), P2=P(2), ..., PM=P(M)

P1=P(1)
P2=P(2)
P3=P(3)
P4=P(4)
P5=P(5)

REDEFINE VARIABLES X1=DATUM(I,1l), X2=DATUM(I,2), X3=DATUM(I,3)...,
FINALLY Y=DATUM(I, NDV). REMEMBER THAT Y IS THE LAST COLUMN DATA
DO I=1,N

X1=DATUM(I,1)

X2=DATUM(I,2)

X3=DATUM(I, 3)

Y=DATUM(I,4)

NOW DEFINE YOUR REGRESSTION FUNCTION YX IN TERMS OF X AND P
YX IS THE EXPECTED VALUE OF Y IN TERMS OF X AND P. FOR EXAMPLE
WE DEFINE THE HOUGEN FUNCTION AS GIVEN BELOW

YX=(P1*X2-X3/P5)/(1.D0+P2*%X1+P3*X2+P4*X3) ! HOUGEN FUNCTION

FORMAT(I5, 2F25.12) ! THIS IS THE FORMAT OF OUTPUT. IF THE INTEGER
PART OF Y DOES NOT EXCEED 11 DIGITS AND THE FRACTION PART DOES NOT
EXCEED 12 DIGITS THEN THIS FORMAT NEED NOT BE CHANGED AT ALL.

—————————— JURISDICTION OF THE USER ENDS HERE ——-—-——--—————————
[I177777777777777777777777/77777777777/7/777777777/7777/77/77/777
————————— PLEASE DO NOT CHANGE ANYTHING BELOW THIS -----———-----
L1111 17777177777777777[77777777777/7/7/777777/77/77/77777/77/77//777
IF(NQ.NE.O) WRITE(11,1)I,Y,YX !STORE IN OUTPUT
WRITES SL NO. Y AND EXPECTED Y (THAT IS YX) IN THE OUTPUT FILE
ER=(Y-YX) ! ESTIMATED ERROR
SSE=SSE+ER**2 | SUM UP THE SQUARED ERROR
SY=SY+Y | SUM OF Y
SSY=SSY+Y**2 | SUM OF SQUARED Y
ENDDO
RMS2=SSE/N! MEAN SQUARED ERROR (SQUARED 'ROOT MEAN SQUARE' OR RMS)
V=SSY/N-(SY/N)**2 | VARIANCE OF Y
RSQ=1.D0-RMS2/V
IF(MINOPT.EQ.0) THEN
F=SSE ! THE MINIMAND FUNCTION IS THE SUM OF SQUARED ERRORS
ELSE
F = -RSQ ! MINIMAND FUNCTION IS THE NEGATIVE OF R_SQUARE
MINIMIZATION OF NEGATIVE OF R_SQUARE MAXIMIZES THE R_SQUARE
ENDIF
IF(NQ.NE.O) THEN
WRITE(11l,*)'[THE ORDER OF ABOVE OUTPUT IS: SL NO., Y, EXPECTED Y]'
WRITE(11,*)" '
WRITE(11l,*) "ESTIMATED PARAMETER ARE AS FOLLOWS'

Page 9

NLINLS
WRITE(11,*)(P(3),3=1,Mm) ! THESE ARE M PARAMETERS

WRITE(11,*) 'SUM OF SQUARED ERRORS = ', SSE
WRITE(11l,*) 'R-SQUARE = ', RSQ

WRITE(11,*) 'RMS = ', DSQRT(RMS2)

ENDIF

RETURN

END

Page 10

