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Non-Technical Summary 
 

 
One of the remarkable consequences of the recent financial crisis has been the 
shift in emphasis, in economic analysis as well as policy practice, from the micro-
prudential to the macro-prudential approach to banking regulation and 
supervision (Hanson et al. (2011)). The micro-prudential approach focuses on 
controlling the risk of individual banks, taking the rest of the system as given. Since 
banks are funded largely by deposits, an instrument protected in most countries by 
a collectively funded safety net, the micro-prudential regulator/supervisor needs to 
control that bank managers do not take advantage of such protection to assume 
an unduly high level of risk (moral hazard). However, in the presence of risk 
externalities, i.e. when risk-taking behavior of individual institutions affects other 
institutions and the system as a whole, another source of social inefficiency arises, 
requiring the prudential regulator/supervisor to take a macro-prudential approach. 
Banks need to be controlled not only in relation to their propensity to undertake 
high risk due to the protection they enjoy on their liability side, but also in relation 
to the risk they transmit to other banks with which they are connected by a 
reciprocal web of exposures. To guide policy it becomes necessary, in this context, 
to measure the systemic importance of individual banks, i.e. the degree to which 
they propagate systemic risk by exerting influence on the rest of the system.  
 
A large body of literature has developed to define and measure systemic risk and to 
analyze its implication for the conduct of prudential regulation and supervision (for 
a comprehensive overview see Bisias et al. (2012)). Broadly speaking, there are two 
classes of indicators of systemic importance proposed in the recent literature. The 
first and more widely used class of indicators relies, directly or indirectly, on asset 
prices distributions and correlations across institutions, assets and time. The 
second approach, with a rapidly rising literature is that of network analysis 
 
Our contribution here consists in proposing an alternative method for measuring 
the transmission of risk within banking systems, which logically belongs to the 
second class mentioned in the preceding paragraph, namely that based on balance 
sheet measures of interconnection. Our approach is new and old at the same time. 
It is new because, as such, it has never been used in the analysis of banking. It is old 
because it draws on a well-established and time-honored strand of literature, that 
of input-output analysis. 
 

Taking the balance sheet of the banking system as a point of departure, we derive 
expressions that closely resemble the traditional Leontief (1941) input-output 



model. The input-output model makes evident the fact that the production of any 
sector has two distinct effects on the remaining sectors: on the one hand by 
increasing production it will demand more inputs from other sectors (“upstream”), 
on the other it will be able to provide more output to the sectors that depend its 
production as input to their own production process (“downstream”). The analogy 
with the problem of interconnected banks is quite obvious. If an individual bank is 
subject to a negative liquidity shock, it will transmit effects to the rest of the 
system via a contraction of lending to other banks, hence amplifying the effect on 
the entire system. The way the shock is transmitted depends on the matrix of 
interbank linkages 
 
With this benchmark at hand and making use of the literature on linkages in input-
output analysis and the transmission of risk in infrastructural systems, we present 
six measures of systemic importance, which rely heavily on the matrix of lending 
and borrowing positions in the interbank market. Each of these measures has an 
intuitive economic story behind, which is itself derived from the very structure of 
the model. The measures presented here aim at capturing different aspects of 
systemic importance, namely: (i) how does a shock to the funding side of one bank 
disperse through the rest of the system? (ii) how sensitive is a bank to a shock 
hitting simultaneously all other banks? (iii) what happens when the shock comes 
from interbank flows themselves? In particular, what happens if a bank sees its 
sources of interbank funding reduced? (iv) what if it is the bank itself who decides 
to cut financing to all other banks?, (v) what if the last two events happen 
simultaneously?, and finally, (vi) what if a bank is being completely cut off the 
interbank system? 
 
The measures are illustrated by means of a simple numerical example which 
highlighted how the indicators operate and in which way they capture different 
aspects of risk stemming from the balance sheet of banks. We also draw some 
parallels to network centrality measures, both at a formal level as well as by means 
of a simulated network designed to resemble real-world characteristics. 
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1 Introduction

One of the remarkable consequences of the recent financial crisis has been the shift in emphasis,

in economic analysis as well as policy practice, from the micro-prudential to the macro-prudential

approach to banking regulation and supervision (see Hanson et al. (2011) and references therein).

The micro-prudential approach focuses on controlling the risk of individual banks, taking the rest of

the system as given. Since banks are funded largely by deposits, an instrument protected in most

countries by a collectively funded safety net, the micro-prudential regulator/supervisor needs to

control that bank managers do not take advantage of such protection to assume an unduly high level

of risk (moral hazard). However, in the presence of risk externalities, i.e. when risk-taking behavior

of individual institutions affects other institutions and the system as a whole, another source of

social inefficiency arises, requiring the prudential regulator/supervisor to take a macro-prudential

approach. Banks need to be controlled not only in relation to their propensity to undertake high risk

due to the protection they enjoy on their liability side, but also in relation to the risk they transmit

to other banks with which they are connected by a reciprocal web of exposures. To guide policy

it becomes necessary, in this context, to measure the systemic importance of individual banks, i.e.

the degree to which they propagate systemic risk by exerting influence on the rest of the system.

Following the seminal work of Allen and Gale (2000) and especially in the aftermath of the

crisis, there has been a growing interest in understanding, from a theoretical standpoint, which

configuration of the interbank market might deliver more stability and render the system resilient

to shocks (see also Freixas et al. (2000) or more recently Acemoglu et al. (2013) among others).

While highly relevant and insightful, this type of inquiry need not concern us here, since our

focus is on the assessment of systemic importance in order to pinpoint those banks that are more

systemically relevant, for a given configuration of the banking system. In that respect, even when

the measures proposed here are grounded on economic theory, the ultimate motivation is practical

in nature.

A large body of literature has developed to define and measure systemic risk and to analyse its

implication for the conduct of prudential regulation and supervision – we survey the most relevant

part of this literature below. Our contribution here consists in proposing an alternative method

for measuring the transmission of risk within banking systems. Our approach is new and old at

the same time. It is new because, as such, it has never been used in the analysis of banking1. It

is old because it draws on a well-established and time-honored strand of literature, that of input-

1 Input-Output style algebra has been used for the analysis of cross-holdings in business groups in general.
Brioschi et al. (1989), for instance, use matrix algebra quite close to ours in order to determine the value of member
firms of a group (see also Fedenia et al. (1994)). More recently, Elliott et al. (2013) note that the critical matrix
for their analysis of financial contagion (what they call “dependency matrix”) has a Leontief flavour. As we will see
below, we start with an explicit balance sheet representation of the banking sector and then perform transformations
analogous to those done in traditional input-output analysis. Furthermore, we use this structure to propose measures
of systemic importance with an economic interpretation derived from the construction itself.
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output analysis. Since it was originally developed by Leontief in the interwar period to analyse

the structure of the US economy (see Leontief (1941)), input-output analysis has enjoyed a broad

popularity and has been applied to a variety of problems, ranging from energy and environmental

analyses to computable general equilibrium models. Hirschman (1958) used this approach to identify

key industrial sectors capable of sparking economy-wide growth in developing economies. In his

analysis, key sectors are those characterised by strong linkages with others, because they use output

of other sectors as intermediate inputs and/or their own output is used as intermediate input by

other sectors. For this reason, their production can "activate" a large number of other sectors2. In

recent years, input-output techniques have moved beyond economics, being increasingly used in the

engineering literature to study the transmission of risk in interrelated infrastructural systems. This

extension is close in spirit to our approach, because its focus shifts from the activation of sectoral

production – the central focus of classic input-output analysis – to the transmission of risk.

The remainder of the paper is organized as follows: in Section 2 we briefly go over the concept

of systemic risk and sketch the main research avenues on systemic risk measures which put our

contribution into context; Section 3 presents the framework used to construct the measures, which

are then presented and illustrated with a simple numerical example; Section 4 draws parallels to

measures of systemic importance derived from network theory and illustrates the connection with

simulated data; finally, Section 5 concludes.

2 Systemic risk: concepts and measures

The notion of systemic risk is closely linked to that of externalities; systemic is a risk whose

consequences are not confined to an individual financial institution but extend beyond it: to other

financial institutions, to the real domestic economy, or to the global economy, etc.. The transmission

can take place through a variety of channels, balance sheet exposures, asset market bubbles and

can include feedbacks as well as second (or multiple) round effects. The presence of systemic risk

calls for enhanced regulatory and supervisory vigilance, on the system as a whole as well as on

individual banks that are deemed to have systemic importance. A significant part of the effort

to reform international financial architecture after the crisis, conducted by the Financial Stability

2While in classic input-output analysis the combination of inputs to achieve an output has a clear-cut (even
physical) interpreation, when applied to banking the logic might not be so straightforward, since the inputs/outputs
are homogenous (i.e. “money is money”), the heterogeneity being given by the identity of the sender/receiver of
funds. Think for example of a car producer who suddenly suffers a drop (or even a complete cut) in its supply of tires;
unless he is able to find another supplier, he might see his own production severely impaired. In a banking context
there are obviously more potential sources for substitution, in theory actually as many possibilities as counterparties
in the system. This calls for a degree of caution when translating one-to-one the insights from input-output analysis
into a banking setting. Yet we believe that even when substitution might be perfect (something which in fact does
not seem to be supported by the literature on relationship lending in the interbank market, see Footnote 9 below),
a reduced supply of (or demand for) funds provided puts a strain in counterparties and the measures presented here
provide a good way of capturing this.
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Board and the Basel Committee on Banking Supervision under the aegis of the G20, has been

aimed precisely at establishing a framework for controlling systemic risks in the financial sector

(see Angeloni (2008)).

Recently, many indicators of systemic risk have been proposed. Among them, one variety that

is of high importance in the context of the current debate on reforming the financial system is that

of indicators of systemic influence, that is, indicators of the effects single financial institutions can

have on the system as a whole. More systemically important institutions, so the argument goes,

should be subject to stricter prudential requirements.

Doing full justice to the literature on systemic risk assessment would require an additional

paper altogether. For this reason we refer to the contribution by Bisias et al. (2012), which to our

knowledge is the most comprehensive review of systemic risk measures attempted thus far. We

limit ourselves instead to a broad cathegorization that helps to put our contribution into context.

Generally speaking, there are two classes of indicators of systemic importance proposed in the

recent literature. The first and more widely used class of indicators relies, directly or indirectly,

on asset prices distributions and correlations across institutions, assets and time. Probability dis-

tributions of asset prices are used to calculate probabilities of default. Historical correlations are

used, in various ways, to estimate contagion effects. This group of measures essentially tries to

capture, in some way or the other, co-dependence at the tails of the distribution of returns, and is

hence intimately related to the Value at Risk (VaR). The main advantage of this approach is data

availability; the main drawback is that using asset market data to quantify default probabilities

assumes market efficiency, and estimating contagion effects with historical correlations assumes, at

least, constancy of some structural parameters over time. It is well known that these assumptions

cease to hold under market stress, hence invalidating previous inferences precisely at the time when

accurate risk measures are most needed3.

The second approach, with a rapidly rising literature, is that of network analysis (see ECB

(2010))4. Network analysis estimates systemic importance from interlinkages maps among financial

institutions, using techniques that were developed in other disciplines ranging from sociology to

epidemiology. Links are typically estimated by aggregating reciprocal exposures, whose overall size

determines the intensity of the links. This approach does not rely on strong hypotheses regarding

the functioning of asset markets, but it comes at the cost of being more data demanding (bilateral

exposure data do not normally exist or are not published)5.

3Danielsson et al. (2011) and Löffler and Raupach (2013) emphazise this line of criticism for the first group of
systemic risk measures, in particular for CoV aR and Marginal Expected Shortfall (MES), the two most popular
measures from this class of indicators proposed by Adrian and Brunnermeier (2011) and Acharya et al. (2012)
respectively.

4In Section 4, when comparing our measures to network centrality measures, we shortly review the main contri-
butions in this literature.

5Some recent contributions have tried to bridge the gap between the two broad categories just outlined, see
for example Diebold and Yilmaz (2011), Dungey et al. (2012), Billio et al. (2012) or Barigozzi and Brownlees
(2013), among others. Diebold and Yilmaz (2011) discuss briefly the connection between their measures and network
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3 The Input-Output approach to measuring systemic impor-

tance

Our approach to measuring systemic influence logically belongs to the second class mentioned in the

previous section, namely that based on balance sheet measures of interconnection. It improves upon

traditional network analysis, however, because it avoids a major criticism raised against it, that

of lumping together different types of exposures including borrowing and lending. Furthermore, it

builds on a well-established tradition in economics and therefore provides more economic intuition

than several network-based measures, which may seem of a rather mechanical nature.

At the heart of our analysis is the matrix of lending and borrowing positions in the interbank

market. Though this is also the center of network analyses of interbank markets, the measures

presented here go beyond this matrix through different transformations that allow for a richer eco-

nomic interpretation. The measures obtained by this approach therefore exclude other potentially

important channels of transmission, and as such they should be seen as complementary to other

measures incorporating alternative sources of information.

3.1 General set-up

Consider a banking system composed of n banks6. Each bank collects deposits and equity, lends

to non bank customers and lends to and borrows from other banks. The balance sheet of bank j is

given by7:

ej + dj + a1j + ... + anj = aj1 + ... + ajn + lj (1)

where ej , dj , lj are, respectively, equity, deposits and total non-interbank lending (composed of

loans, net securities holdings and lending to (reserves at) the central bank) and aij is net interbank

lending from bank i to bank j. All magnitudes are expressed in monetary terms, say euros. By

construction, ajj = 0 for all j. Reserves at the central bank are assumed riskless, whereas all other

forms of assets (including interbank) normally carry some degree of default risk.

We can aggregate the balance sheets of the n banks and write it in matrix form as follows:

e + d + A′
M i = AM i + l (2)

centrality measures, resembling at times the comparison we present in Section 4.
6We assume a closed economy, so that there is neither lending abroad nor borrowing from abroad.
7Unless otherwise specified, throughout the paper we use standard notation from matrix algebra. Hence, the

identity matrix is indicated by I, the unit (column) vector is indicated by i, ij denotes a vector with a 1 in its jth

position and zeros elsewhere (or alternatively the jth column of I), and a matrix that is full of ones is indicated by
J. By capital bold fonts (e.g. X) we denote an n × n matrix with generic elements xij , whereas lower case bold
fonts (e.g. x) represent n × 1 column vectors with generic elements xi. xj denotes de jth column of matrix X. The
transpose of a matrix or vector is indicated with a prime. Finally, a lower case bold letter with a "hat" on it (e.g. x̂)
denotes an n × n diagonal matrix with the vector x on its main diagonal, such that x̂i = x.
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where e, d, l are appropriate column vectors, i is a unit vector of appropriate size, and AM is

the matrix of interbank bilateral positions, still expressed in money terms. Let q be a vector with

total bank assets, q = e + d + A′
M i = AM i + l, and q̂ be a corresponding diagonal matrix, such

that q̂i = q.

The right hand side of Equation 2 can be written in the following form:

q = AM q̂−1q̂i + l = Aq + l (3)

where A = AM q̂−1 is the matrix of interbank positions in which each column is divided by the

total assets of the borrowing bank. Hence, the columns of A are fractions of unity and express,

for each bank, the share of funding from other banks as a ratio to total funding. Hence we have

A′i = a, where a is the vector of total interbank borrowings divided by total assets.

Equation 3 is similar in form and interpretation to the familiar input-output model8. In the

Leontief system, each firm or productive sector j uses aij units of output of sector i (i = 1, ..., n),

plus labor and other primary inputs, to produce a unit of final output. In our case, bank j “uses”

(borrows) funds from other banks, in an amount equal to a fraction aij of its assets, as well as

funding from other non-bank sources (deposits and equity), to lend lj to its final (non-interbank)

borrowers. If all aij are constant (though interbank borrowing and lending relations tend to be

rather stable through time9, these ratios are of course not literally constant; we will discuss below

the consequences of changes in these parameters), then the relation between loans and total assets

is fixed and given by the well-known Leontief inverse B = (I − A)−1:

q = (I − A)−1l = Bl (4)

Since it was originally proposed by Leontief in the 1930s, input-output analysis has enjoyed a

broad popularity and has been applied to a variety of problems, ranging from energy and environ-

mental analyses to computable general equilibrium models. Hirschman (1958) aimed at identifying

key industrial sectors capable of sparking economy-wide growth in developing economies. In his

analysis, key sectors are those characterised by many linkages with others. These sectors use the

output of a large number of other industries as intermediate inputs, hence their production can

“activate” a large number of other sectors.

In recent years, input-output techniques have trespassed the boundary of economics and have

been increasingly used in the engineering literature to study the transmission of risk in interrelated

infrastructural systems. The basic idea (see Haimes (2009), chapter 18) is that of inoperability;

a given sector or infrastructure may be partially inoperable, i.e. operate below full capacity, for

8For a complete treatment of input-output analysis including several different applications of the model see Miller
and Blair (2009).

9See for example Furfine (1999) for the case of the U.S., Cocco et al. (2009) for Portugal, Affinito (2012) for Italy
and Bräuning and Fecht (2012) for Germany.
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example due to a natural accident, a technical failure, a terrorist attack or other reasons. An

interdependence matrix expresses the way in which the inoperability of each sector or infrastructure

affects others. Through an analogue of the Leontief inverse one can calculate the total knock-down

effect on each sector, and on the system as a whole, of a given initial shock.

The analogy with the problem of interconnected banks is quite obvious. If an individual bank

is subject to a negative liquidity shock, it will transmit effects to the rest of the system via a

contraction of lending to other banks, hence amplifying the effect on the entire system10. The way

the shock is transmitted depends on the matrix of interbank linkages. To see how this can happen,

write Equation 2 as

l = (A′
M − AM )i + e + d (5)

Note that (A′
M − AM )i is the vector of net interbank borrowing (for each bank, the difference

between the total amount it borrows and the total amount it lends in the interbank market). Hence,

the right hand side of Equation 5 shows the sum of the three funding sources used by banks to

finance their loans, i.e. net interbank borrowing, equity and deposits (net of liquidity). Let this

sum be s. Then we can write Equation 4 as q = Bs; any shock to the bank sources of funding is

transmitted to the total size of their balance sheets q in a way that depends on the matrix of bank

interconnections B = (I−A)−1. In addition, the shock can originate from the matrix A itself, that

is, from a credit squeeze within the interbank market. This happens if one or several elements of

A change.

3.1.1 Reformulation as a supply-side model

The traditional Leontief input-output model is usually considered a demand-driven model, since

it describes the relationship between final demand and output (in our setting total non-interbank

lending and total assets respectively), by means of the Leontief inverse B. For reasons that will

become clear in the next section, we note that with the same set of data it is possible to construct

a supply-side model.11 As opposed to the demand-driven standard input-output model, the Ghosh

model is supply-driven and focuses on the relationship between the gross assets of the different

banks and the primary inputs entering the system, in our setting represented by equity and deposits

(e + d). The starting point is again the balance sheet of the different banks expressed in matrix

form, namely Equation 2, reproduced here for convenience:

10This assumes that the funding shortfall cannot be absorbed by equity. If it can, the shock will be mitigated in
relation to the size of the bank’s equity buffer.

11This version is usually referred to also as “Ghosh” model after its proponent (see Ghosh (1958) and Miller and
Blair (2009)). This implicit duality inherent to the Input-Output model is also exploited in the analysis of Brioschi
et al. (1989) mentioned in Footnote 1.
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e + d + A′
M i = AM i + l (6)

Using q as before to indicate the vector of assets/liabilities, we can write:

q = e + d
︸ ︷︷ ︸

≡v

+ A′
M i = v + A′

M i (7)

By transposing and operating we get:

q′ = v′ + i′q̂q̂−1AM (8)

Define q̂−1AM = O as the matrix of output coefficients. This is the matrix of interbank

positions in which each row is divided by the total assets of the lending bank (recall that our

“input” matrix A represented the matrix of interbank positions in which each column is divided by

the total assets of the borrowing bank). Hence the rows of O are fractions of unity that express,

for each bank, the share of funding provided to other banks as a share of total funding provided.

It is then straightforward to see that Equation 8 yields the following:

q′ = v′G (9)

where G = (I − O)
−1

Equation 9 represents the supply-side input-output model.

Note that A and O are similar matrices (i.e. O = q̂−1Aq̂) and therefore they share the

dominant eigenvalue. Furthermore, if we denote by x and y the right Perron eigenvectors of A

and O respectively, then it holds that x = q̂y. This has a bearing on the discussion at the end

of Section 4, since the right eigenvector of A is a scaled version of the right eigenvector of O.

Further interpretations based on this alternative model are possible, though we do not pursue them

here.

3.2 Input-Output measures of systemic importance

The input-output model makes evident the fact that the production of any sector j has two distinct

effects on the remaining sectors: on the one hand by increasing production it will demand more

inputs from other sectors (“upstream”), on the other it will be able to provide more output to the

sectors that depend on j’s production as input to their own production process (“downstream”).

Early on in the history of input-output analysis, this inherent structure of interdependence was

used as the basis for the identification of key sectors in the economy, which are taken to be those

that by increasing their production activate several other sectors both as purchaser of inputs and

seller of outputs to be further used as inputs. The pioneering analyses of Rasmussen (1958) and

9



Hirschman (1958) provide a framework that can be readily adapted and interpreted in terms of the

set-up described above and used as a starting point in the study of systemic importance in banking

systems.

It is useful, at this stage, to discuss a few specific cases with intuitive appeal.

Case A. Suppose first for example that the banking system undergoes a shock originating from

the deposit side of one bank, say bank 1. The shock will result, at first impact, in a balance sheet

loss for bank 1 itself. Subsequently, however, other banks may be affected: bank 1 may curtail

credit to other banks, spreading the effect through the system12. In our model, q = Aq + s, the

first impact would be on the first element of s and of q. The second round effects to each bank

in the system would occur depending on the elements of the first column of A. And so on, until

the overall effects are expressed by the Leontief inverse (Equation 4). In the end, a unitary deposit

drawdown in bank 1 would affect the system to an extent given by the first column of B. The

effects on each bank are given by Bi1, and the total system effect by i′Bi1, the sum of all elements

in the first column of B (i1 denotes a column vector with 1 in the first element and 0 elsewhere,

see footnote 7). In the literature, the so-called Rasmussen-Hirschman “backward” index has been

used (see Sonis et al. (1995), Sonis and Hewings (2009), Miller and Blair (2009)), which we denote

by h(b)
13 and can be defined for each bank j as follows:

hbj
= i′Bij (10)

For ease of interpretation and comparison across j, one can normalize h(b). Here we follow the

standard in the literature and perform such normalization using the “intensity” of B (the sum of

all elements of B) and multiplied by n, so that the sum of hbj
for all j is equal to n. We indicate

the normalized version of indices by an overbar:

h̄bj
= n

i′Bij

i′Bi
(11)

This is what Rasmussen (1958) labeled a “power of dispersion” index, because it measures the

strength with which the initial shock is dispersed through the system, measured relative to the

balance sheet size of the bank in which the shock originates (recall that matrix A expresses, by

column, interbank borrowing as a share of total assets of the borrowing bank). A value of h̄bj
greater

than one means that a funding shock in bank j affects the system more than the same shock in the

average of all banks.

A similar “forward” index is also used in the literature, but an important remark is in order.

12A further set of second round effects would occur if the credit squeeze from bank 1 is large enough to affect
the real sector of the economy, hence affecting other banks also via the real sector, rather than only via interbank
linkages. In this paper we do not consider this case, which would require combining the interbank linkage matrix
with a macroeconomic model, but leave it to future developments of this line of research.

13We use the parenthesis notation to distinguish the vector x(j) from xj , which as noted in footnote 7 would be

used for the jth column of matrix X.
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For the computation of these Rasmussen-Hirschman forward indices, it has been argued in the

input-output literature14 that the output matrix of the so-called “Ghosh” model introduced in Sec-

tion 3.1.1 is more appropriate. The reason for this is that contrary to backward measures, which

imply summations along the column dimension of the Leontief inverse, forward measures are based

on summations along the row dimension. If one were to sum along the row dimension of the Leon-

tief inverse B, which is based on the input matrix A, then one would be summing elements with

different denominators, which is not ideal. With this in mind, the forward Rasmussen-Hirschman

index is constructed in its un-normalized and normalized versions respectively as follows:

hfj
= i′

jGi (12)

h̄fj
= n

i′
jGi

i′Gi
(13)

This index can be interpreted as the effect of a systemic shock on bank j. In other words, if a

funding shock hits simultaneously all banks, h̄fj
measures how sensitive bank j is; for this reason

it is usually referred to as a “sensitivity of dispersion” index. Since this indicator builds on matrix

O instead of A, the sensitivity of bank j to a shock to all other banks simultaneously is measured

relative to the balance sheet size of the same bank15.

Putting together the information provided by the backward and forward linkage indicators it

is possible to classify banks into four different categories in order to identify key players as shown

in Table 1:

Table 1: Classification based on backward and forward linkages

h̄fj

< 1 > 1

h̄bj

< 1 Generally independent Important provider of funds

> 1 Dependent on funds from others Key bank

This taxonomy tries to combine the different dimensions implied by the Rasmussen-Hirchsman

indices. A systemically important bank according to such a classification would be a bank that

is both an important provider of funds to other banks in the system (h̄fj
> 1) and that is also a

relatively heavy user of funds from other banks (h̄bj
> 1). This could correspond for instance to

a core bank in a standard “core-periphery” structure; such banks typically have significant cross

borrowing and lending with other core banks and they also intermediate between periphery banks

14See for example Beyers (1976), Jones (1976) or Dietzenbacher (1992).
15Recall that matrix O expresses, by row, interbank lending as a share of total assets of the lending bank.
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that are not directly tied through borrowing/lending.

Case B. A second case that is intuitively interesting occurs when the initial shock originates not

in the bank deposit funding, but in the interbank flows themselves. For example, the shock could

derive from a crisis of confidence by the market in a particular bank, that induces some or all other

banks to cut credit to it. Or alternatively, a bank can curtail funding to all other banks, due to

an idiosyncratic increase in (perceived) counterparty risk. Several combinations can be examined.

For simplicity, we restrict ourselves here to three cases that seem of particular interest: in the first,

all banks cut financing to a given bank; in the second, a given bank cuts financing to all others;

in the third, both events happen, so the bank in question both sees its sources of interbank funds

restricted, and (perhaps as a consequence) cuts its own supply to other banks.

The notion of “fields of influence” used in the input-output and engineering literature is of help

here (see Sonis et al. (1995) and the references therein16). What is of interest is how the matrix B

(G) changes when one or more elements of the bank interconnection matrix A (O) change. The

“field of influence” measures the change of each element of B (G) in response to a small change in

A (O). Suppose only one element of matrix A changes, say aij . Then it can be shown that the

change in B is given by the following n × n matrix:

F(i, j) = (Bii)
(
i′
jB

)
= bib

′
j (14)

where bi = Bii and b′
j = i′

jB are respectively the ith column and the jth row of B. This

matrix is called the first order field of influence of a given element aij of A, and is simply the

first derivative of B with respect to aij . Higher order fields of influence can be calculated using

appropriate formulas (see Sonis and Hewings (2009)). A similar logic and formulae applies for the

effect on matrix G of a change in one element of matrix O17.

The first sub-case we want to examine is that of a bank, say bank j, which is cut financing by

all others. This is represented by a unit decline in all elements of column j of A (except ajj , which

is equal to zero by definition). The effect on the system’s total assets is given by

fcj
= i′




∑

i 6=j

F(i, j)



 i (15)

that is, the intensity of the matrix obtained by summing all first order fields of influence be-

16The notion of fields of influence was originally developed in the input-output framework by Sonis and Hewings
(1989, 1991). For a comprehensive review with further references see Sonis and Hewings (2009). A nice summary is
provided by Percoco (2006).

17Note that if one defines Bi = h̃(f), then the intensity of F(i, j) (i.e. the sum of all its elements) can be expressed

as i′F(i, j)i = i′Biii
′

j
Bi = h′

(b)
iii

′

j
h̃(f) = hbi

h̃fj
. An analogous expression can be derived when the field of influence

is defined over matrix G.
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longing to column j, with the exception of that of row j.

Since we are interested in comparing relative values across firms, the index can be normalized

by the sum of all individual bank effects and multiplied by n, to yield

f̄cj
= n

i′
(

∑

i 6=j F(i, j)
)

i

i′
(

∑n

j=1

∑

i 6=j F(i, j)
)

i
(16)

where 1
n

∑n

j=1 f̄cj
= 1. In short, this “column field of influence index” expresses the strength of

the systemic effects of bank j being cut credit by all other banks, by a unit amount. The strength

is measured relative to the mean of the system, set equal to 1. A value of the index higher than

unity then means that the systemic effect of bank j being cut credit is higher than average, by an

extent given by the distance of the index value from unity.

Analogously, and with a slight abuse of notation, we can construct a “row” field of influence

index, defined over matrices O and G instead of A and B, following the discussion for the forward

Rasmussen-Hirschman index. The row field of influence is given in un-normalized and normalized

form respectively:

frj
= i′




∑

j 6=i

F(i, j)



 i (17)

f̄ri
= n

i′
(

∑

j 6=i F(i, j)
)

i

i′
(

∑n

i=1

∑

j 6=i F(i, j))
)

i
(18)

This index expresses the strength of the systemic effects of bank i cutting credit to all other

banks, by a unit amount. The strength is again measured relative to the mean of the system, set

equal to 1.

Finally we can define a “total” index, expressing the systemic effect of a joint cut of credit, from

and to bank j:

f̄tj
=

f̄cj
+ f̄rj

2
(19)

Case C. Note that all measures defined so far are relative, i.e. they measure differences across

banks of effects stemming from unitary changes in one or more balance sheet items, without taking

into account the size of the banks in question.Yet, size is obviously an important factor behind

the systemic relevance of a bank. In order to account for this, we can define another index that

measures the total systemic effect of a complete “cut-off” of bank j from the interbank system. We

calculate, in other words, the systemic effect of bank j ceasing to borrow or lend from the rest of
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the system. Note that bank j does not disappear, but continues to operate on a more limited scale

as an autarkic bank, financing its (non-bank) lending only by deposits and equity.

To express this idea, the notions of “total linkage effect” (Cella (1984)) can be used18.The total

systemic effect of bank j being cut out from interbank markets is:

tj = i′q − i′q−j

= i′Bl − i′B−jl

= i′(B − B−j)l (20)

where B−j = (I − A−j)−1 and A−j is the matrix obtained from A by setting all elements of

the jth row and jth column to zero19. Instead of normalization by means of the average, a more

instructive normalization in this case is through division by total assets of the system:

t̄j =
i′q − i′q−j

i′q
(21)

t̄j measures how much the banking system will suffer, in terms of total assets lost, if bank j is

completely cut-off from the interbank market20.

Table 2 summarizes the six indicators we have defined and their interpretation.

Table 2: Indicators of systemic influence

Index Description Interpretation

hbj
Backward Ras.-Hirschman System effect of a unitary liquidity shock in bank j

hfj
Forward Ras.-Hirschman Effect on bank j of a unitary system-wide liquidity shock

fcj
Column field of influence System effect of a unitary cut of interbank lending by bank j

frj
Row field of influence Systemic effect of a unitary cut of interbank lending to bank j

ftj
Total field of influence System effect of a unitary cut of all int. transactions by bank j

tj Total linkage effect System effect of a cut of total interbank lending by and to bank j

18This is part of an approach labelled the “hypothetical extraction method”, which tries to assess how much the
total output of an economy would be reduced if a sector is eliminated.

19It is implicitly assumed that bank j can substitute its interbank liabilities by either equity or deposits (or both).
It is possible to construct an alternative total linkage index for which this is not the case. Such index would be given
by tj = i′Bl − i′B−j l⋆j , where l⋆j denotes the vector l with element j consisting only of ej + dj (i.e. no interbank
borrowing for bank j).

20Recently, Denbee et al. (2013) proposed to identify what they refer to as the “level key player” as that which
causes the maximum expected reduction in the overall level of bilateral liquidity in an interbank payment system.
This is very close in spirit to the total linkage effect. One may also argue that their “risk key player” measure
resembles the idea behind the Rasmussen-Hirschman backward measure presented above.
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3.3 A simple numerical example

As an illustration of the measures proposed, we construct a simple hypothetical banking system

composed of five banks. Their balance sheets reflect certain characteristics observed in real life

banks. More precisely (see numerical values in Table 321):

Bank 1. This bank is a large retailer, its assets accounting for over 30 percent of the entire

banking system. It has a large client base for both deposits and loans. Its interbank activities are

limited in size, but broadly distributed across all other banks.

Bank 2. Bank 2 is as large as Bank 1 but its business is more concentrated on the interbank

market. Its direct customer base is small: deposits and loans relative to assets are limited. It

borrows more than 50 percent of its funds from other banks, and lends to other banks almost 60

percent of its assets.

Bank 3. This bank is smaller than the previous banks (20 percent of the market). It has virtually

no deposit base and borrows most of its funds short term from other banks. Its funding is very

concentrated: most of it comes from Bank 2. Its loan portfolio is large but not predominant (40

percent of assets).

Bank 4. Bank 4 is a small local bank specialized in deposit collection. Its assets account for 8

percent of the total banking system. Its loan portfolio is small (20 percent of assets), the rest being

lent in the interbank market.

Bank 5. Finally, Bank 5 is another small bank but with a different business profile: its deposits

are still relative large (64 percent of total liabilities), but loans are also large (80 percent of assets).

Its interbank business is small and concentrated in a limited number of counterparties. In essence,

Bank 5 has the features of a small, local retail bank.

Table 3: Numerical values

Bank εj δj aj1 aj2 aj3 aj4 aj5 λj qj

Bank 1 0.10 0.5125 0 0.1500 0.1600 0.1200 0.0800 0.70 8
Bank 2 0.10 0.3875 0.2000 0 0.5600 0.0400 0.0800 0.42 8
Bank 3 0.10 0.1000 0.1250 0.2500 0 0 0 0.40 5
Bank 4 0.10 0.7400 0.0375 0.0875 0.0800 0 0.1000 0.20 2
Bank 5 0.10 0.6400 0.0250 0.0250 0 0 0 0.80 2

∑
- - 0.3875 0.5125 0.8000 0.1600 0.2600 - 25

where εj stands for the equity to asset ratio and for simplicity is set to 0.10 (i.e. leverage is

assumed to be equal to 10), δj denotes deposits as percentage of liabilities, ajk are the entries of

21 Table 3 presents matrix A. For space considerations we do not present matrix O, though it is straightforward
to construct it from the data given in Table 3.
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the matrix A, λj is the loan portfolio as a percentage of assets, and qj indicates the value of assets

for bank j (i.e.
qj∑

n

j=1
qj

is the market share of bank j).

The values of the six indicators for these banks are reported in Table 4. Some remarks are in

order. First, based on the criteria of using the Rasmussen-Hirschman backward and forward indices

jointly (see Table 1), only Banks 2 and 3 are identified as key players, even when the Rasmussen-

Hirschman forward index ranks bank 2 in the third place. With the exception of the forward

Rasmussen-Hirschman indicator, all indices of systemic importance rank the first three banks as

more systemically important. Interestingly, Bank 3, a midsize institution, is more systemically

important than Bank 1, the large retailer, based on three indicators (h̄(b), h̄(f), f̄(t)) out of six.

Bank 3 is the most active on the interbank market in terms of its own balance sheet (60% and

80% of its assets and liabilities respectively are destined to or come from the interbank market).

Third, once size is taken into account (indicator t̄), interconnection still matters: Banks 1, 2, 3,

the most interconnected ones, still have the highest values. Note that no ranking is repeated for

the six indicators proposed. It is clear that the indicators complement each other and help reveal

different aspects of the balance sheet structure and different types of underlying risk.

By comparing the last indicator with the others one may conclude that size is the key factor in

determining the systemic importance of a financial institution22. However, the degree and the pat-

tern of interconnections, as measured by the bilateral exposures matrix A (and O), also contributes

to determine the systemic importance of financial institutions in a relevant way. A clear example

of this is the fact that Bank 1 is never ranked in the first position despite having a considerable

market share: Bank 3 has a smaller balance sheet but it is a bigger player on the interbank market.

Our measures suggest that size, type of business and nature of the links with the rest of the system

interact with each other and should be taken into account jointly.

Table 4: Measures of systemic importance

h̄(b) h̄(f) f̄(c) f̄(r) f̄(t) t̄

Bank Index # Index # Index # Index # Index # Index #
Bank 1 0.9906 3 0.8282 4 1.0895 2 1.2302 2 1.1598 2 0.3023 3
Bank 2 1.1237 2 1.0811 3 1.3937 1 1.3990 1 1.3963 1 0.3899 1
Bank 3 1.3903 1 1.1012 2 0.9444 3 1.2007 3 1.0725 3 0.3329 2
Bank 4 0.7096 5 1.2954 1 0.9254 4 0.5123 5 0.7189 4 0.0862 4
Bank 5 0.7859 4 0.6941 5 0.6471 5 0.6577 4 0.6524 5 0.0504 5

Mean/Suma 1 - 1 - 1 - 1 - 1 - 1.1617 -

a Mean for all indicators except tj , for which the sum is displayed.

22This echoes the conclusions of a recent study by the BIS; see Drehmann and Tarashev (2011b). However, these
authors proxy size as total liabilities vs. non banks, while here size is proxied by all liabilities (or assets), including
with banks.
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4 Relation to network centrality measures

More than 60 years ago, Robert Solow (see Solow (1952), page 29) wrote: “It is by no means

an infrequent occurrence in economics that theories which are “about” different things turn out

to be formally similar or even identical”23. As emphasized at the beginning of Section 3, the

measures proposed here belong to that class of indicators that are based on balance sheet measures

of interconnection, in which network/graph-theoretic indicators feature prominently24. The latter

measures typically build on the adjacency matrix defining the links that connect the different nodes

in a network. As noted by McNerney (2009), the input-output network is a special kind of directed

and weighted network that must obey some boundary flow conditions. Indeed, the link between

input-output and network measures is not surprising when one notes that the former uses a matrix

representation of the economy that allows for a complete picture of inter-sectoral relationships. We

leave the relation to approaches other than network theory to Appendix B, given that at this stage

the connection to other types of measures is of a rather intuitive nature.

While we don’t claim to perform a comparison as concise and authoritative as that of Solow

(1952), it is clear that several parallels can be drawn between the input-output and network lit-

eratures25. In the particular case that concerns us, the comparison is to be made with respect to

network centrality measures, which attempt to capture the importance of nodes in an interrelated

system using the matrix of interconnections as primitive datum. For the sake of brevity, we focus

on some key measures from network theory, largely following ECB (2012).

The centrality measures considered are indicated by the vector c(i), i = in, out, cl-in, cl-out, bw,

lev, rev:

• c(in), c(out): these first two measures are the most basic and intuitive centrality measures and

attempt to capture network activity. In-strength26 centrality (c(in)) measures for node i the

number of ties directed to it, using the value of the links as weights. It is basically calculated

as the column sum of the matrix representing the network. Out-strength centrality (c(out))

measures, for node i, the number of ties going from i to all other nodes, again using the value

of the links as weights. From a computational perspective, it involves the row sum of the

23Interestingly enough, Solow was specifically referring to the relationship between linear economic models as
represented by the input-output framework and the finite Markov chains studied in probability theory, which have
been recently used to identify systemically important banks in payment systems (see Soramäki and Cook (2012)).

24For papers studying the interbank markets through the lens of network theory see Boss et al. (2004), Soramäki
et al. (2007) or Iori et al. (2008) among others.

25This link has been under-researched in the literature since network theory applied to economic phenomena is
a relatively recent development. An early attempt taking input-output as the starting point can be found in Olsen
(1992). More recently McNerney (2009) studies the network properties of input-output models, while Blöchl et al.
(2011) use centrality measures and clustering techniques to uncover salient structural features of economies based
on an interpretation of input-output tables as weighted, directed graphs. Acemoglu et al. (2012) combine network
theory with input-output data to study to what extent idiosyncratic sectoral shocks can affect aggregate business
cycle fluctuations.

26Strength measures are the weighted graph counterpart to standard degree centrality indicators for unweighted
graphs, which measure the number of incoming and outgoing connections of any given node.
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matrix representing the network. One could also combine the two to form an in-out strength

centrality (c(in-out)) measure27.

• c(cl-in), c(cl-out): closeness centrality measures, for node i, the shortest path between i and all

other nodes reachable from it, averaged across all other nodes. It is a centrality indicator that

aims to assess independence of nodes and assigns a high score to those nodes that are "close"

to all other nodes, i.e. a node is central according to this measure if it is relatively easy to go

from it to many other nodes. For a directed network it possible to distinguish between c(cl-in)

and c(cl-out), the distinction following a similar logic to that of strength centrality.

• c(bw): betweenness centrality gauges how often a given node lies in the shortest path between

all other pairs of nodes and therefore attempts to quantify the importance of the node in

terms of its role in the flow of activity in the network.

• c(lev), c(rev): eigenvector centrality identifies the importance of nodes by the Perron eigen-

vector (the eigenvector associated with the highest eigenvalue) and it is based on the idea

that a node is central to the extent that it is connected to other nodes which are themselves

central28. In particular, we have considered both right eigenvector centrality (c(rev)) and left

eigenvector centrality (c(lev))
29.

The basic degree/strength centrality measures are derived from the links coming to and from

each node, something that can be inspected by direct observation of the matrix defining the network,

which can be taken to be A, O or AM
30, just as the basic linkage measures are derived from the

same procedure but looking at the information contained in either the Leontief inverse B or the

Ghosh inverse G. The following simple propositions summarize their relationship.

Proposition 1. Consider the n × n matrix A, which when read by column expresses for each bank

the share of funding from other banks as a ratio to total funding. By definition, A is a non-negative

matrix, i.e. A ≥ 0. If
∑n

i=1 aij < 1 for j = 1, ..., n, or in matrix form, i′A < i31; then there is

a direct relationship between the Rasmussen-Hirschman backward index, h(b), and the in-strength

centrality measure, c(in) (computed from matrix A)

27Due to space considerations we do not present results on this measure, though they are available upon request.
28Several other measures are in fact variations on eigenvector centrality and we therefore restrict our inquiry

to this measure as representative. Some popular examples of eigenvector-related centrality measures are Bonacich
centrality (Bonacich (1987)) and Google’s PageRank.

29Left eigenvector centrality is essentially the same as right eigenvector centrality but using the original matrix
transposed.

30In the context of input-output analysis, the basic strength centrality measures are equivalent to the direct linkage
measures of Chenery and Watanabe (1958).

31The stated condition is commonly found in the input-output literature and in our context is equivalent to
requiring that banks do not obtain their funding entirely from the interbank market.
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Proof. Consider the Leontief inverse as defined before: B = (I − A)
−1

. Given that A is nonnegative

(A ≥ 0), the condition that i′A < i guarantees that the Leontief inverse fulfills B ≥ 0.Then we can

write the following:

B = (I − A)
−1

= I + A (I − A)
−1

= I + AB

Then, premultiplying by i′ and noting that h′
(b) = i′B and c′

(in) = i′A, we have that

h′
(b) = i′ + c′

(in)B (22)

As i > 0 and B ≥ 0, from Equation 22 the claim of the proposition follows32.

Proposition 2. Consider the n × n matrix O, which by row expresses for each bank the share

of lending to other banks as a ratio to total lending. By definition, O is a non-negative matrix.

If
∑n

j=1 oij < 1 for i = 1, ..., n, or in matrix form, Oi < i33, then there is a direct relationship

between the Rasmussen-Hirschman forward index, h(f), and the out-strength centrality measure,

c(out) (computed from matrix O)

Proof. Starting from the Ghosh inverse: G = (I − O)
−1

and given that O is nonnegative, the

condition that Oi < i guarantees that the Ghosh inverse fulfills G ≥ 0. Then we can write the

following:

G = (I − O)
−1

= I + (I − O)
−1

O = I + GO

Post-multiplying by i and using h(f) = Gi and c(out) = Oi

h(f) = i + Bc(out) (23)

Hence, as i > 0 and G ≥ 0, from Equation 23 the claim of the proposition follows3435.

Note that an element j of vectors h(b) and h(f) can be written respectively as hbj
= 1 +

∑n

i=1 bijcin,i and hfj
= 1 +

∑n

i=1 gjicout,i. Then, given that as a general rule for Leontief (Ghosh)

inverses the elements bjj (gjj) are bigger than one and the bij (gij), i 6= j, are smaller than one,

the backward (forward) indicator for bank j will be relatively strongly linked to the in-strength

(out-strength) centrality measure of the same bank.

32Note that if the in-strength centrality were to be computed based on the matrix AM instead (say, c̃′

(in)
= i′AM ),

the positive relationship would still hold, though it would be slightly tempered: h′

(b)
= i′ + c̃′

(in)
q̂−1B.

33Similar to the condition for matrix A, this requires that banks do not concentrate their asset side entirely on
interbank lending. This condition comes from Equation (9), by transposing it we get: q = G′v = (I − O′)−1v.

34Again, if we were to define the out-strength centrality based on matrix AM instead (c̃(out) = AM i), the positive

relationship would still hold as: h(f) = i + Gq̂−1c̃(out).
35Note that both proofs are done for the un-normalized version of the h(b) and h(f) indices, but they go through

also for the normalized versions since the normalization implies dividing Equation 22 and Equation 23 by i
′
Bi

n
and

i
′
Gi

n
respectively, which are positive scalars.
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Eigenvector centrality and some of its variants are widely used in several applications of the

networks literature. Though such literature is rarely specific about it, to the best of our knowledge

normally right eigenvector centrality is computed. It seems that the remark from Solow quoted

above applies here in full force, since Dietzenbacher (1992) proposed linkage measures in the input-

output framework that are based on left and right Perron eigenvectors.

In fact, it can be shown that a generalized version of the Rasmussen-Hirschman backward

and forward measures outlined above converge to the left and right eigenvectors of the input and

output matrices A and O respectively. Following Dietzenbacher (1992, 1993), consider first the

case of weighted backward linkages of the Rasmussen-Hirschman type, where B = (I − A)
−1

is the

Leontief inverse and A is the input matrix:

m′
1 = n

r′B

(r′Bi)
(24)

where r′ > 0 denotes the vector of row weights (note that if r′ is set equal to i′ we get the

standard definition of the backward Rasmussen-Hirschman index presented in Equation 11). It

makes sense to assume that the inputs from a sector with high backward linkages receive a larger

weight than those from a low backward linkages sector36. As a logical consequence of this reasoning,

the vector m′
1 can be used as a weighting vector to yield:

m′
2 = n

m′
1B

m′
1Bi

= n
nr′

nr′

B2/ (r′Bi)

B2i/ (r′Bi)
= n

r′B2

(r′B2i)
(25)

Following this train of thought, we could further use m′
2 as weights and so on to get, after k

iterations:

m′
k = n

m′
k−1B

m′
k−1Bi

= n
r′Bk

(r′Bki)
(26)

Now assume that the input-output model is solvable, that is, B = (I − A)
−1

exists. This

is equivalent to having the Perron eigenvalue of A, which we denote by λ, smaller than 1, and

also equivalent to having B ≫ 0. Hence, if λ < 1, the Leontief inverse B is a primitive matrix

with Perron eigenvalue given by 1
1−λ

. Denoting by x′ and y its left and right Perron eigenvectors

respectively37, we can use a well known property of primitive matrices (see Meyer (2000), p.674):

lim
k→∞

(
B

1/(1 − λ)

)k

=
yx′

x′y
(27)

Now we can use Equation 27 to compute the limit of Equation 26 as k approaches infinity:

36Note that this is precisely the logic behind the eigenvector centrality (and related measures) in the network
literature.

37Note that the Perron eigenvectors of A and B are the same.
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lim
k→∞

m′
k = lim

k→∞
n

r′Bk

(r′Bki)

= lim
k→∞

n
r′ (B(1 − λ))

k

(

r′ (B(1 − λ))
k

i
)

=
limk→∞ nr′ (B(1 − λ))

k

limk→∞

(

r′ (B(1 − λ))
k

i
)

=
nr′ limk→∞ (B(1 − λ))

k

r′ limk→∞ (B(1 − λ))
k

i

=
nr′ yx′

x′y

r′ yx′

x′y
i

=
n (r′y) x′ 1

x′y

(r′y) x′i 1
x′y

=
nx′

x′i

We see then that the backward Rasmussen-Hirschman index converges to the normalized left

Perron eigenvector of matrix B38, in a final expression that is independent from the original weight-

ing vector. Furthermore, if we choose the weighting vector as r′ = nx′

x′i
, the Rasmussen-Hirschman

backward indicator is the same as the left Perron eigenvector and as noted by Dietzenbacher (1992)

is also the same as the weighted direct backward linkage indicator of Chenery and Watanabe

(1958)39.

Similarly, we can start from the weighted forward linkage as p1 = n Gc
(i′Gc) , where c is a vector

of column weights. Following the same procedure as above, it can be shown that this indicator

converges to the normalized right Perron eigenvector (denoted by z) of the output matrix O, that

is:

lim
k→∞

pk =
nz

i′z
(28)

Network centrality measures are typically computed using the matrix of positions in the inter-

bank market in monetary terms (what we have labelled AM ). Input-output measures, on the other

hand, provide an economic rationale for using different matrices depending on the issue that one

aims to tackle (for example, whether one tries to assess the dispersion of a shock to a given bank to

38We have assumed that the limit in the denominator exists.
39And we should add, also the same as the in-strength centrality defined over the input matrix A.
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the rest of the system or whether one is trying instead to see how sensible a bank is to a shock in the

rest of the system). Furthermore, by the way in which the model is built, these matrices actually

link balance sheet characteristics of the different banks to the vector of total assets of the system,

providing further economic intuition for the measures. That said, in practice one can expect some

relation between the rankings given by the different measures.

Table 5 presents the ranking suggested by the network centrality measures for the simple

example of Section 3.3, computed over the matrix AM
40. The only input-output indicators which

establish the same ranking as any network measure are the total linkage effect t̄, which ranks banks

in the same order as the out-strength (c(out)) and right eigenvector (c(rev)) centrality indicators, and

our backward indicator (h̄(b)) which gives the same ranking as left eigenvector (c(lev)) centrality.

Given the discussion above, this link is not particularly surprising.

Table 5: Ranking by network measures (matrix AM ) - Five bank example

c(in) c(out) c(cl-in) c(cl-out) c(bw) c(lev) c(rev)

Bank 1 3 3 3 3 2 3 3
Bank 2 1 1 4 1 3 2 1
Bank 3 2 2 5 5 4 1 2
Bank 4 5 4 1 4 2 5 4
Bank 5 4 5 2 2 1 4 5

4.1 A second numerical example

To give evidence of the link between the input-output-based measures of systemic importance

and those stemming from the network literature, a graphical analysis based on a more complex

example seems more illustrative. As is well known, a significant hurdle when it comes to analyzing

systemic risk on the basis of balance sheet interconnectedness is the availability of data, since

detailed information on cross exposures is rarely available. Previous studies that could not use

detailed data on bilateral exposures via lending/borrowing typically went around this obstacle by

using maximum entropy methods, where the total exposure to the interbank market (both on the

lending and borrowing side, which are publicly available) is used to reconstruct the whole matrix

of interbank exposures41. A problem with the maximum entropy method is that it tends, by

40The same can of course be computed for the matrices A and O, though network theory does not provide
any economic rationale for computing centrality measures based on these matrices, as is the case for input-output
measures. For this reason, plus space considerations we do not report this results here, though as can be expected
from the propositions discussed above, there are some similarities in ranking. For example h̄(b) (h̄(f)) will typically
give the same ranking as c(in) (c(out)), when the latter is computed based on matrix A (O) instead of AM.

41Examples of this approach include among others the above cited papers from the BIS, Upper and Worms
(2004), van Lelyveld and Liedorp (2006), Degryse and Nguyen (2007) and Wells (2004). Castrén and Kavonius
(2009) apply the same methodology to flow of funds data in order to build a network based on institutional sectors
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construction, to generate matrices that are less sparse than real-world interbank matrices42.

Here we follow Soramäki and Cook (2012) and simulate a network using the Barabási and Albert

(1999) model for generating random scale-free networks with preferential attachment. The network

is generated so as to resemble the topological properties of the Fedwire payment network analyzed

in Soramäki et al. (2007)43. It is composed of a hundred banks and it features a few large and highly

connected banks acting as a hub. Appendix A presents charts comparing the measures introduced

here with the set of network measures considered. Figure 1a shows a circle representation of the

network. The size of the nodes and the density in the lower part of this chart points to the crucial

role played by a relatively small subset of banks, which transact a considerable amount of funds

between themselves and are highly connected to smaller nodes in the rest of the system. Figure 1b

provides a close-up picture of this group of core banks, showing how densely connected they are.

Table 6 and Table 7 present a comparison between input-output measures and the network

measures presented in the previous subsection. In particular, Table 6 compares our measures (x-

axis) to network measures (y-axis) where the latter are computed based on matrix AM . One can

see positive relationships almost everywhere, though the intensity of this relationship varies. The

total linkage effect, in particular, seems to be strongly related to in and out strength centrality

and to the two eigenvector measures. Something similar applies to the fields of influence measures,

though the relationship is not as strong. The Rasmussen-Hirschman indices do not seem to present

a strong relationship with any of the network measures, and a simple inspection of the charts seems

to suggest that the identification of the most systemically important banks will differ between these

measures. This points to the importance of considering the assets of the borrowing or lending bank

when analysing the effects of shocks going form one bank to the system or coming from the system

to a given bank, respectively. The fact that the field of influence measures rank many banks together

(see the vertical cloud of points in several charts) is a special feature of the network considered; it

is to be expected that the less the network resembles a core-periphery structure, the more these

measures will generate a dispersed cloud of points44. In this respect it is interesting to see that the

closeness measures will give a high ranking of systemic importance to many banks that are actually

not in the core.

for the Euro Area, while Castrén and Rancan (2013) extend this approach by considering Euro Area country-specific
networks based on institutional sectors that are linked via cross-border linkages from the Monetary and Financial

Institutions sector. Furthermore, the latter paper shows how the imposition of additional constraints helps improving
the reliability of maximum entropy methods.

42Mistrulli (2011) explicitly compares an interbank matrix based on real data for Italy with matrices obtained by
the maximum entropy method and concludes that the latter approach underestimates contagion risk.

43The network was generated using the software FNA. The payment data for a whole day was aggregated to
obtain the interbank matrix. A snapshot of total assets/liabilities was generated for the hundred banks by randomly
drawing from a uniform distribution such that total interbank lending/borrowing represents between 10% and 45%
of total assets/liabilities respectively. For details on the topological characteristics of the generated network, see
Soramäki and Cook (2012).

44This is confirmed for ongoing research on a real interbank network for large european banks, which doesn’t
feature a core-periphery structure as prominent as the network generated here.
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Table 7 presents another type of comparison. Input-output measures are calculated as usual,

while network measures are calculated either on matrix A or O, depending on which is the input-

output measure they are being compared to. For instance, in the first column, corresponding to the

backward Rasmussen-Hirschman index (h̄(b)), which is based on matrix A, all network centrality

measures are computed based also on matrix A. The relationships from the propositions become

visually obvious in the corresponding charts.

5 Concluding remarks

Systemic risk, though it is a concept that pre-dated the recent financial crisis, seems to be intimately

associated to the latter. A likely reason behind this is that the financial turmoil that emerged in

2007 brought to the forefront the importance of interconnectedness and risk externalities. As a

consequence, we have witnessed a shift in emphasis from a micro- to a macro- prudential approach

to banking regulation and supervision, both in economic analysis as well as in policy practice. It is

now acknowledged that banks need to be controlled not only because of misincentives arising from

the protection they enjoy on their liability side (e.g. deposit insurance), but also due to the risk

they transmit to other banks through the web of exposures that ties the system together. With

this transformed paradigm for policy a crucial practical issue arises, since it becomes necessary to

measure the systemic importance of individual banks.

Taking the balance sheet of the banking system as a point of departure, we have derived expres-

sions that closely resemble the traditional Leontief (1941) input-output model. With this benchmark

at hand and making use of the literature on linkages in input-output analysis and the transmission

of risk in infrastructural systems, we have presented six measures of systemic importance. Each of

these measures has an intuitive economic story behind, story which is itself derived from the very

structure of the model. The measures presented here aim at capturing differents aspects of systemic

importance, namely: (i) how does a shock to the funding side of one bank disperse through the rest

of the system?, (ii) how sensitive is a bank to a shock hitting simultaneously all other banks?, (iii)

what happens when the shock comes from interbank flows themselves? in particular, what happens

if a bank sees its sources of interbank funding reduced?, (iv) what if it is the bank itself who decides

to cut financing to all other banks?, (v) what if the last two events happen simultaneously?, and

finally, (vi) what if a bank is being completely cut off the interbank system?

The measures were illustrated by means of a simple numerical example which highlighted how

the measures operate and in which way they capture different aspects of the balance sheet. Some

parallels to network centrality measures were drawn, both at a formal level as well as by means of

a simulated network designed to resemble real-world characteristics.

The present paper sets up a benchmark and there is much that can be done along these lines. For

example, more connections could be established at the formal level with existing measures and with
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other branches of theory like for example finite Markov chains. The framework could also be readily

adapted to compute rankings of systemic importance in models which generate the balance sheet

items needed to compute our measures (endogenous banking network models, agent-based models,

etc.). In ongoing research, we aim to apply these measures to a dataset of exposures between large

european banks, with the idea of establishing a ranking of systemically important banks and with

the goal of establishing an extended comparison with existing measures.
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A Figures and tables

All figures are based on the second example presented in Section 4.1. Figure 1 presents a visualization

of the network where the size of nodes is given by total assets of the corresponding banks and the

width of the arrows connecting the different nodes represent the lending/borrowing between the

banks (i.e. "thicker" arrows represent bigger positions).

(a) Circle representation (b) Core

Figure 1: Simulated network visualization
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Table 6: Comparison of IO measures and network centrality measures based on matrix AM

Note: IO measures calculated as usual, network measures based on matrix AM .
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Table 7: Comparison of IO and network centrality measures
Note: When compared to h̄(f) and f̄(r), the centrality measures were computed based on the output matrix O, otherwise they were computed based on the input matrix A.
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B ANNEX: Relation to other approaches

B.1 Asset price distributions and correlations

Within that class of indicators that relies on asset prices distributions and correlations, the two most

prominent measures are CoV aR proposed by Adrian and Brunnermeier (2011) and the Marginal

Expected Shortfall (MES) by Acharya et al. (2012)45. Both are essentially measures of codepen-

dence at the tails of the distribution of returns and are hence intimately related to the V alue-at-Risk

(V aR).

Adrian and Brunnermeier (2011) have proposed CoV aR as a measure of the contribution of each

individual financial institution to systemic risk. CoV aRj⋆,S of financial insitution j is the value-

at-risk (V aR) of the entire financial system S conditional on j being in distress. ∆CoV aRj,S =

CoV aRj⋆,S − CoV aRj,S , the difference between the system’s V aR when j is distressed (denoted

by CoV aRj⋆,S) and the same V aR when j is in a normal state (denoted by CoV aRj,S), is the

contribution of j to systemic risk.

It is possible to establish some links at the intuitive level between CoV aR and the measures of

systemic influence discussed in this paper, though the precise relation depends on the origin of the

shock and the measure considered. Consider first the simple case already examined, where bank

1 is subject to a unitary deposit drawdown. To fix ideas, assume this is followed, on impact, by

a squeeze of that bank’s liquidity held at the central bank, d1 = l1 = −1. On impact, bank 1’s

V aR increases by the same amount46. In a second round of effects, bank 1 starts withdrawing

deposits held with other banks, spreading the effect through the system; one can think of this as

bank 1 trying to mitigate the increase in its own V aR by scaling down interbank loans (risky) and

replacing them with central bank liquidity (riskless). The squeeze to other banks reduces interbank

lending further. The final result is measured by B = (I − A)−1 = I + A + A2 + A3 + ... . The

total system effect is i′Bi1, the numerator of h̄b1
. If the covariance of cross-bank asset returns does

not change, as we have assumed in this simple example, the system’s V aR increases exactly by the

same amount, so i′Bi1 is in effect identical to the CoV aR of bank 1. Our Rasmussen-Hirschman

“backward” index simply scales all individual CoV aR changes by the total change, so that the

measures sum up to unity. In more complex examples, the distribution of asset returns may change

through the process.

Adrian and Brunnermeier (2011) also introduce the “exposure CoV aR” (i.e. ∆CoV aR
i|system
q ),

which basically reverses the conditioning and hence measures the extent to which an individual in-

stitution is affected by systemic financial events. The MES of Acharya et al. (2012) uses essentially

the same conditioning, as do others like Huang et al. (2012). The “sensitivity of dispersion” index

45Several such measures can be found in the literature, see Bisias et al. (2012).
46We have assumed that bank reserves are riskless while other assets, including interbank loans, are risky, so the

reduction of bank reserves amounts to a leftward shift of the distribution of asset returns. For a given confidence
level, the VaR shifts by the same amount.
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h̄fj
is in spirit analogue to these measures, since it is to be interpreted as the effect of a systemic

shock on bank j (i.e. how sensitive bank j is to a funding shock hitting all banks simultaneously).

The measures proposed here are more leaned towards the measurement of interconnectedness and

are based on the matrix of interbank linkages, whereas indicators such as CoV aR and MES are

measures of codependence at the tails of the distribution of asset returns and are hence of a different

nature altogether. We hope that future research will shed light on this connection (or lack thereof).

B.2 The BIS approach

Research economists at the Bank of International Settlements (Drehmann and Tarashev (2011a,b),

Borio et al. (2010)) have taken another approach, focusing on how total systemic risk in a given

financial sector may be decomposed into contributions by individual banks. They distinguish be-

tween “top-down” measures, which start with the risk of the system and allocate it to individual

institutions, and “bottom-up” measures, which make distress at a particular institution the point

of departure in order to then compute the associated level of system-wide distress47. The former

group is further subdivided into two approaches. The first consists in measuring how much each

institutions’s non-bank creditors would suffer (i.e., incur losses) as a result of a systemic event and

thereby measures systemic importance as the participation of each institution in such events (the

so called “participation approach”48). But, as they note, participation of individual institutions in

systemic events is not necessarily the same as their contribution to such events. Hence, the second

top-down measure consists in measuring how much each institution contributes to the risk of a

systemic event ocurring (the so called “contribution approach”). Drehmann and Tarashev (2011a)

modify the contribution approach in order to account for the fact that a bank not only contributes

to systemic risk through its exposure to exogenous shocks but also by being a channel of propaga-

tion of such shocks through the system and by being itself vulnerable to propagated shocks. This

“generalized contribution approach” basically aims to include in the assessment of systemic risk the

role that the interbank network plays. As noted above, the network of interbank connections is at

the heart of our analysis.

There is some analogy between this reasoning and our measures. The “participation approach”

is analogous to what we have called “row” measure, that gauges the effect on a given bank of a

simultaneous unitary squeeze of interbank lending by all banks. By attributing the risk associated

with an interbank transaction entirely to the lending counterparty, this approach emphasizes what

happens “downstream” in the network of interconnections, i.e. what happens to the borrowers of

47As noted by Drehmann and Tarashev (2011a), CoV aR can be subsumed into the bottom-up approach: instead
of the V aR just use the "expected shortfall" (ES) and they become in essence identical.

48The participation approach is closely linked to other contributions by Huang et al. (2012), Acharya et al. (2012)
and Brownlees and Engle (2011). As emphasized by Drehmann and Tarashev (2011a), these measures do not consider
explicitly the interbank network as a driver of systemic risk. There is a growing literature on the influence of linkages
in interbank networks on systemic risk assessment (see Upper (2011) and Allen and Babus (2009) for an overview).
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the funds lent by this counterparty to which the risk is attributed. The “contribution approach”

is instead akin to our “backward” indices, that measure the system effects of a unitary shock in

one bank. Note that in all cases, it is possible to construct measures that sum to unity, thereby

decomposing any given degree of systemic distress into individual contributions.

These series of papers by Drehmann and co-authors implement the contribution approach by a

method borrowed from cooperative game theory called “Shapley value” after Shapley (1953).In the

context of a coalitional game in which different players cooperate to obtain a certain aggregate value,

Shapley (1953) provided a way for decomposing this value into the contributions of the different

players49. Individual contributions to systemic risk are obtained by averaging all contributions that

institutions make to all possible subsets (coalitions) of other institutions. The resulting measures

satisfy, note the authors, four desirable axioms50:

1. Efficiency: the grand total of value to be distributed is exactly distributed among all players.

2. Symmetry: if two institutions i and j make the same marginal contribution to any coalition

that contains neither i nor j, then their Shapley values are equal.

3. Dummy (zero player): an institution with zero marginal contribution to every coalition is

assigned a Shapley value of zero.

4. Additivity: for any two games g1 and g2, the Shapley value of the game composed of g1 and

g2 together equals the sum of the Shapley values of g1 and g2 taken separately (i.e. the value

is an additive operator in the space of all games, see Temurshoev (2009))

Coming back to linkage measures in input-output analysis, note that the problem of identifying

a key player under the hypothetical extraction method can be formulated as finding the bank j

that solves the following problem:

max{i′q − i′q−j ≡ i′(B − B−j)l|i = 1, ..., n} (29)

One can define the vector of factor (asset) multipliers as: m′ = i′B51. Given this one can

further define the asset worth and adjusted asset worth of bank j respectively as ωj(A, l) =
mjqj

bjj

and ω̃j(A, l) = ωj − lj .

After some matrix manipulations it is possible to see that the following holds: B − B−j =
1

bjj
Biji′

jB − iji′
j . With this at hand, problem 29 can be re-written in two ways. First, recall

from Equation 14 that Biji′
jB = F(j, j), hence the objective function can be stated as: 1

bjj
i′F(j, j)l−

49The "value" generated by the game could be quantified by means of measures such as a system-wide V aR or
ES; then the Shapley value indicates how much of this V aR or ES is generated by each player/institution.

50Indeed, the unique value that satisfies these four axioms is the Shapley value.
51In this part we follow Temurshoev (2009), who performs this analysis at a more general level in order to provide

a more compact and efficient way of identifying key sectors and key groups of sectors in an input-output framework.
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lj ; this representation highlights the fact that the fields of influence and the hypothetical extraction

method are closely related, which should not come as a big surprise since the two are variants of

the problem of coefficient change. Second, using the definitions form the previous paragraph, the

objective function of problem 29 can shown to be equivalent to ω̃j ; then the key bank j⋆ that solves

problem 29 will be the one with the highest adjusted asset worth ω̃j .

Temurshoev (2009) shows that the asset worth defined in above satisfies all except the first of

these axioms, and the same applies to the adjusted asset worth just defined. Hence, even when the

Shapley value and input-output analysis operate under quite different frameworks, it is nonetheless

possible to establish some points of contact. Again, we hope to tackle this relationship in further

research.
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