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Optimal Carbon Taxes with

Non-Constant Time Preference

By Terrence Iverson⇤

Declining time preference rates have a large effect on opti-

mal climate policy, but efforts to surmount time consistency

concerns have forced modelers either to employ very simple

models or to adopt quasi-hyperbolic rates. Using the integrated

assessment model from Golosov et al. (2013), we derive an

explicit formula for the optimal carbon tax when time prefer-

ence rates are non-constant in an arbitrary way. Concerns

about time inconsistency, concerns about multiple equilibria,

and concerns about the sensitivity of results to assumptions

about future time preferences are all resolved in a straightfor-

ward way. Quantitative results show a large effect on optimal

policy.
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[Declining discount rates] “solve one problem by creating another. Unless the
discount rate is constant, the policy path is subject to ‘time inconsistency’.
Suppose an intelligent decision-maker plans a strategy for the long future,
beginning today. Five years from now, she reconsiders the strategy, having
followed it so far. She will want to change to a different strategy for no
other reason than the passage of time.
. . .This sounds like a poor way to run a railroad.”

Robert Solow in forward to Portney and Weyant (1999)

Climate change is the quintessential long-term problem. Carbon dioxide decays

slowly, with a nontrivial fraction of emissions remaining in the atmosphere for thou-

sands of years. Meanwhile, projected damages include irreversible effects, such as

species extinctions and the potential collapse of the Greenland and West Antarctic

ice sheets (IPCC 2007). When valuing future damages with a constant discount

rate, the importance of the chosen rate grows exponentially in the time horizon:1

for example, over 10 years, lowering the rate from 5.5% (as in Nordhaus 2008) to

1.4% (as in Stern 2007) increases the present value by a factor of 1.5; over 100 years,

the present value increases by a factor of 60 (1.510); and over 200 years, it increases

by a factor of 3600 (60 × 60). For events in the distant future—hundreds or even

thousands of years ahead—the choice of discount rate is overwhelmingly important.

A key determinant of the discount rate in dynamic models is the rate of time pref-

erence. While typically assumed constant, there is no deep reason for this (Frederick

et al. 2002). A constant rate ensures time consistency with conventional methods of

dynamic optimization, but time consistency is possible with non-constant time pref-

erence also—this just requires a more sophisticated solution strategy that ensures

1To see this in general, consider two discount rates: r1 > r2. The relative valuation of a payoff

C in t periods is C·e−r2t

C·e−r1t = e(r1−r2)t, which grows exponentially in t.
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subgame perfection (Strotz 1955). Nevertheless, solving for subgame perfect equi-

libria can be difficult, especially for quantitatively plausible climate policy models,

which typically have several state variables and nonstationary forcing variables.

To make progress, all time consistent applications of non-constant time preference

in the climate policy literature either assume that discounting is quasi-hyperbolic2

(Karp 2005, Gerlagh and Liski 2012) or consider very simple models that abstract

from the process of economic growth (Karp 2007, Fujii and Karp 2008). The quasi-

hyperbolic assumption is useful for generating qualitative insights, but unsatisfactory

for quantitative policy analysis. Most justifications for non-constant time preference

suggest rates that decline continuously in time; approximating a continuous path

with a simple step function introduces approximation error that becomes large when

the long run path of discount rates matters a lot.

The current paper is the first to solve for time consistent optimal carbon taxes in

a quantitatively plausible climate-economy model while allowing for arbitrary non-

constant time preference rates. This is done in an analytically tractable setting in

which the subgame perfect equilibrium to the planner’s problem without commitment

is decentralized using a tax on fossil energy firms and an explicit formula is provided

for the optimal tax.3 We further show that the most important obstacles to adopting

non-constant time preference rates in practice are overcome in a straightforward way.

The most immediate obstacle is time inconsistency. This arises in typical models

because the optimal policy changes—often substantially—depending on whether or

not a commitment device is assumed. But for the considered model, this concern

2This applies a higher rate of time preference between the first and second periods, followed by
a constant lower rate thereafter (Phelps and Pollak 1968, Laibson 1997). The assumption makes
it possible to recover a highly tractable recursive structure when solving for symmetric Markov
perfect equilibria (Harris and Laibson 2001).

3To our knowledge, this is the first application in the literature to explicitly decentralize the
optimal carbon tax under non-constant time preference.
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falls away in a rather stark way. Starting from a given initial period, the optimal

first period tax derived by assuming a commitment device is exactly the same as

the optimal tax in the subgame perfect equilibrium without commitment. It follows

that the optimal tax formula can be applied to evaluate current climate investments

without having to worry about time inconsistency.

A further obstacle is due to the way in which time consistency concerns are typ-

ically resolved in the recent literature on non-constant time preference: mainly, by

solving for Markov perfect equilibria in stationary, infinite-horizon models (Harris

and Laibson 2001, Krusell and Smith 2003, Karp 2005, Karp 2007, Fujii and Karp

2008, Gerlagh and Liski 2012). Multiple equilibria arise generically in this case be-

cause the derivative of the equilibrium response function is itself an unknown and

there are not enough equations to solve uniquely for all the unknowns (Tsutsui and

Mino 1990). In contrast, the subgame perfect equilibrium is unique for the model

in this paper when we consider a finite horizon version of the model. Because an

arbitrarily long finite horizon provides a reasonable description of the intended pol-

icy problem, we argue that this provides a reasonable resolution of this important

concern.4

Finally, in typical models with non-constant time preference, equilibrium policies

are highly sensitive to assumptions about future time preference rates. This is un-

settling because assumptions about time preferences five or ten generations removed

are essentially arbitrary. A specific example of the concern arises when applying the

preference aggregation argument for DRTP.5 Most applications of this approach as-

sume that the current distribution of time preference views remains fixed over time.

4Uniqueness does not obtain generally when solving for subgame perfect equilibria in finite
horizon models with non-constant time preference (Peleg and Yaari 1973, Goldman 1980). It
should therefore be viewed as a special feature of the considered model.

5This argument is discussed below.
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Thus, there is no opportunity for views in society to shift over time; an implausible

assumption over long horizons. But for the considered model, the optimal tax in the

initial period is invariant to assumptions about the path of time preference rates to

be adopted by subsequent generations. Thus, the above concerns do not apply.

Over long horizons, declining rates of time preference (DRTP) are intuitive. The

plausible requirement that the equilibrium return on capital in the model economy

be historically consistent implies a rate of time preference of about 3% if utility is

logarithmic. A constant 3% rate weights utility for agents in 200 years—independent

of consumption levels—20 times more than for agents in 300 years6. But since it is

already hard to imagine our relationship to people in 200 years, it is not clear why

we would distinguish so severely across these horizons (Heal 2000, Rubinstein 2003,

and Karp and Tsur 2011).7 When the constant rate assumption is relaxed, observed

returns in financial markets do not reveal information about time preference rates

beyond the horizon for which savings instruments exist (40 years at most). It is then

possible to calibrate the model so returns in general equilibrium are consistent with

market interest rates over the short to medium term even as rates become low in the

long run (Gerlagh and Liski 2012).

An alternative argument for DRTP applies when time preference rates differ in so-

ciety. A social planner who aggregates preferences will act as if maximizing utility for

a representative agent with DRTP. The argument is simplest when agents consume

a public good—a constant fraction of an endogenous consumption sequence (Li and

Löfgren 2000, Jackson and Yariv 2012). The rationale in this case is formally equiv-

alent to Weitzman’s uncertainty-based argument for declining consumption discount

6The difference is 7-fold when the rate of time preference is 2%.
7A variety of behavioral studies from economics and psychology also support the conclusion

that time preference rates decline (Thaler 1981; Loewenstein 1987; Ainslee 1991; Cropper et al.
1994; Kirby and Herrenstein 1995).
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rates (Weitzman 1998, Weitzman 2001).8

The model is a slightly simplified version of the model in Golosov, Hassler, Krusell,

and Tsyvinski (2013) (hereafter, “GHKT”).9 The one simplification is to assume that

fossil resource constraints are non-binding. Finite resource stocks are allowed in the

full GHKT model, though they do not effect the optimal carbon price under constant

discounting:10 profit maximizing firms internalize the scarcity rent, so their is no need

for policy to correct the market outcome. Intuition suggests that an analogous result

might apply in the model with non-constant discounting, though we are not able

to prove this. A possible justification for the assumption is that coal is the most

important source of carbon emissions in the long run (van der Ploeg et al. 2012)

and coal deposits are not used up along the optimal path under plausible parameter

values in most integrated assessment models.

The GHKT model does a reasonable job replicating the essential quantitative fea-

tures of DICE (Nordhaus 2008).11 Unlike DICE, it allows for an arbitrary number

of micro-founded energy sectors and so does a better job simulating the effect of a

8Gollier and Zeckhauser (2005) consider the preference aggregation problem in which consump-
tion shares are endogenous while income is exogenous, and Heal and Millner (2013) consider the
problem in which consumption shares and income are both endogenous. “As if” DRTP is also
implied when Knightian Uncertainty applies across time preference rates and the decision maker
adopts minimax regret (Iverson 2013).

9We have in mind the version of the GHKT model adopted in the quantitative section of their
paper. This is the version for which their central result, a tractable formula for the optimal carbon
tax, arises as a consequence of explicit optimizing behavior by all agents. The GHKT optimal
carbon tax formula is also presented for a model that allows for more general functional form
assumptions, but the result requires the accompanying assumption that savings rates are constant.
This ad hoc assumption would be inappropriate in the current context since a primary goal is to
ensure that time consistency concerns are adequately addressed. To do this, it is important that
the decision problems for all agents are specified explicitly.

10As a result, the optimal tax formula derived here reduces to that in Golosov et al. (2013) when
discounting is constant.

11One limitation of the GHKTmodel is that it abstracts from temperature inertia, so the dynamic
link between emissions and damages is not fully realistic. This can be remedied using an alternative
set of linear coefficients in the damage function as suggested in Gerlagh and Liski (2012). It would
be straightforward to incorporate these coefficients in our analysis, though we maintain the GHKT
specification to keep the presentation more closely in line with the results in Golosov et al. (2013).
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carbon tax in a decentralized equilibrium. It also allows damages to be stochastic.

Analytic tractability is attained by imposing judicious functional form assumptions:

in particular, log utility, Cobb-Douglass production, full depreciation of physical

capital each period, and “linear-exponential” climate damages. Strengths and weak-

nesses of these assumptions are discussed in section 3.

The paper also solves for the “imputed” Pigouvian tax—the marginal externality

cost computed using discount rates derived from observations about savings rates

in the capital market of the model economy. A key insight in Gerlagh and Liski

(2012) is that non-constant time preference leads to distortions in the capital market

that make observed returns an incorrect basis for social cost benefit analysis. As in

their paper, the optimal carbon tax in our model exceeds the imputed Pigouvian tax

in the equilibrium without commitment provided the delay between emissions and

damages is sufficiently long. We also compute the Pigouvian tax for the equilibrium

with commitment. In this case, the optimal and Pigouvian taxes are equal.

The quantitative section calibrates declining time preference rates using the pref-

erence aggregation argument of Li and Löfgren (2000). Preference heterogeneity is

consistent with the discounting debate between Nordhaus (2008) and Stern (2007).

We find that even a small weight on the Stern (2007) discounting model dramatically

increases the optimal tax. For example, a 20% weight on Stern increases the optimal

tax four-fold relative to the Nordhaus (2008) calibration. We also simulate the full

dynamic trajectory of the model for the equilibria with and without commitment.

As expected, the optimal taxes are the same in the initial period, though they differ

substantially in later periods. It follows that a commitment device, were it available,

would have considerable value for the initial generation.

The paper is closely related to the earlier work by Gerlagh and Liski (2012). They

solve for the linear symmetric Markov Perfect Equilibrium in a simplified version of
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the GHKT model with quasi-hyperbolic discounting. In addition to accommodating

arbitrary non-constant time preference, we allow for uncertainty about future dam-

ages and for multiple energy sectors. We also solve for the decentralized equilibrium,

and we demonstrate several features of the GHKT model that make it a highly con-

venient setting in which to incorporate non-constant discounting into climate policy

decision making.12 Despite the differences across models, the optimal carbon tax

formula derived here reduces to that in Gerlagh and Liski (2012) in the deterministic

case with quasi-hyperbolic discounting.

Our finding that time consistency concerns are functionally “irrelevant” is closely

related to a result in Phelps and Pollak (1968). They consider a finite horizon growth

model with linear production and quasi-hyperbolic discounting. They refer to savings

in the full commitment equilibrium as first best and savings in the no commitment

equilibrium as second best. With log utility, first and second-best savings are the

same. Indeed, no matter what savings rate is adopted by subsequent generations,

optimal savings in the initial period are unchanged. They conclude, “This loga-

rithmic case must be added to the curious list of examples in which first-best and

second-best decisions do not differ.”

The result does not carry over to the more general Ramsey model. Barro (1999)

solves for the unique Cournot-Nash equilibrium in a Ramsey model with logarithmic

preferences and continuously declining time preference rates. He also solves the model

by assuming a commitment device for a planner in the initial period. In both cases,

the marginal propensity to consume out of wealth is a constant, but the amount of

savings in the initial period differs.

12The main emphasis of their paper is to demonstrate that hyperbolic preferences, embedded
in a general equilibrium setting, provide a compelling resolution of the “puzzle” that evidence on
historical savings behavior from financial markets would seem to rule out the possibility of putting
nontrivial weight on climate damages that occur beyond a couple hundred years.
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I. Model

The paper extends the GHKT model by allowing each generation to employ an

arbitrary path of non-constant time preference rates. We simplify by assuming the

finite resource constraint on fossil fuel reserves is non-binding in all fossil sectors.

A. Preferences, Technology, and Climate

Time runs from 0 to T . The horizon is initially finite, but we also consider the

infinite horizon limit. A representative household derives utility from the time path

of consumption. Utility is discounted with a sequence of potentially non-constant

discount factors {�j}. For each j, 0 < �j < 1. We are typically interested in the

case in which the rate of time preference declines in time, thus where {�j} increases,

though it is not necessary to assume this for our results. For each time horizon k

periods ahead, we define a cumulative discount factor Rk =
Qk

j=1 �j. By assumption,

R0 = 1.

The utility function of the representative household in generation t is

Et

T
X

τ=t

R
(t)
τ�t ln(Cτ ).

Thus, utility is logarithmic. The superscript on the discount factor each period

indicates that time preferences are those of generation t; this allows for the possibility

that time preferences differ across generations.

The economy has I + 1 sectors. Sector i = 0 produces final goods; sectors i =

1, . . . , Ig − 1 are polluting (fossil) energy sectors; and sectors i = Ig, . . . , I are non-

polluting energy sectors. Production in the energy sectors depends on labor only:

(1) Eiτ = Fi,τ (Ni,τ ), i = 1, . . . , I.



10 AUGUST 2013

The time subscript allows for technological change. Labor input to each sector is

indicated by Nτ = (N0,τ , N1,τ , . . . , NI,τ ), and energy input to final goods production

from each energy sector is indicated by Eτ = (E1,τ , . . . , EI,τ ).

Carbon emissions arise as an externality from energy production. Units are cho-

sen so Ei,τ for each fossil energy sector denotes energy output and CO2 emissions.

Atmospheric carbon beyond its preindustrial level accumulates according to

(2) Sτ − S̄ =
τ+t+H
X

j=0

(1− dj)E
f
τ�j,

where

(3) Ef
τ =

Ig�1
X

i=1

Ei,τ

is total CO2 emissions (from fossil sectors) in period ⌧ . 1−dk is the fraction of a unit

of emissions that remains in the atmosphere k periods after it is emitted. H is the

number of periods between period zero in the model and the start of the industrial

revolution.

Cumulative emissions lead to climate damages that impact economic output through

a multiplicative damage function that takes the following “exponential–linear” form:

(4) !(Sτ ) = exp
�

−�τ (Sτ − S̄)
�

.

�τ is an elasticity that denotes the percent output loss associated with an extra unit

of atmospheric carbon in period ⌧ . It is stochastic.
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Net output in the final-goods sector is determined by

(5) Yτ = Kα
τ Aτ (Eτ , N0,τ )!(Sτ ).

At(·, ·) is an unspecified energy-labor composite function. The time subscript allows

for technological change. Labor is mobile across sectors with

(6)
I

X

j=0

Nj,τ = Nτ .

Finally, the aggregate resource constraint is13

(7) Yτ = Cτ +Kτ+1.

B. Planning Problem Without Commitment

For global climate policy, a commitment device that would enable policy-makers to

force the hand of later generations is almost certainly infeasible.14 This is important

when time preference rates are non-constant because the optimal control solution for

the initial generation is not time consistent. The (second-best) optimal allocation

for the planning problem without commitment is therefore appropriately viewed as

a subgame perfect equilibrium among a sequence of planners, each of whom controls

the endogenous variables for one period only.

13This assumes 100% depreciation of physical capital each period. A strong assumption partly
offset by the assumed period length of a decade in the calibrated model.

14It may be sensible to talk about a long-term commitment device for national tax policy, but
the notion is far less compelling in a global public good provision problem. In this case, there are
no viable institutions to overturn the actions of sovereign nations in the present—especially for
large CO2 emitters—more less to commit their actions in the future. In our calibration, the period
length is a decade, so the no commitment assumption means decision-makers in the model cannot
commit action beyond a decade.
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The planner at t anticipates how {Cτ , Kτ+1,Nτ ,Eτ}
T
τ=t+1 will be chosen by subse-

quent planners, then chooses Ct, Kt+1, Nt, and Et to maximize

Et

T
X

τ=t

R
(t)
τ�t ln(Cτ )

subject to (1) through (7) and non-negativity constraints on consumption and capi-

tal.

To solve for the subgame perfect equilibrium, we exploit two characteristics of

optimal decisions. First, agents optimally save a stock-invariant fraction of income.15

Second, optimal energy inputs each period (Et) are independent of the inherited stock

variables (Kt and St). The proof is inductive.

The hypothesis is easy to confirm for the last period. Suppose, in arbitrary period

t, it holds for all later periods. Then capital accumulates according to

(8) Kτ+1 = sτK
α
τ Aτ (N0,τ , Eτ ) exp (−�τSτ ) , ⌧ = t+ 1, . . . , T ,

where the savings rate sτ is independent of the inherited state variables.

Taking logs gives a first-order linear difference equation in the log of capital.16

Iterating, while ignoring variables that are exogenous from the perspective of the

period t decision, the log of capital in ⌧ > t+ 1 can be written

ln(Kτ ) = ↵τ�(t+1) ln(Kt+1)−
τ�t�2
X

j=0

↵τ�t�2�j�t+1+j(1− d1+j)E
f
t + . . .(9)

15As recognized at least since Brock and Mirman (1972), growth models with log utility, Cobb
Douglass production and 100% depreciation imply a constant (thus stock-invariant) savings rate
(Ljungqvist and Sargent 2004).

16I am grateful to Larry Karp for suggesting this method of proof. An earlier version of the paper
solved the model using a modified version of finite horizon dynamic programming (see Iverson 2012).
The approach here more cleanly exposes the intuition behind the paper’s results.
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The flow payoff in ⌧ then becomes

ln(Cτ ) = ln[(1− sτ )K
α
τ Aτ (Eτ , N0,τ ) exp (−�τSτ )]

= ↵ ln(Kτ )− �τSτ + . . .

= ↵[↵τ�(t+1) ln(Kt+1)−
τ�t�2
X

j=0

↵τ�t�2�j�t+1+j(1− d1+j)E
f
t + . . .]− �τSτ + . . .

Combining terms gives

(10) ln(Cτ ) = ↵τ�t ln(Kt+1)−
τ�t�1
X

j=0

↵τ�t�1�j�t+1+j(1− d1+j)E
f
t + . . .

This is used to rewrite the planner’s problem at date t. For reference, we refer to

this problem as PP(t).

max
Ct,Kt+1,Nt,Et,St

ln(Ct)+Et

T
X

τ=t+1

R
(t)
τ�t

"

↵τ�t ln(Kt+1)−
τ�t�1
X

j=0

↵τ�t�1�j�t+1+j(1− d1+j)E
f
t + . . .

#

s.t.

(11) Ct +Kt+1 = Kα
t Ẽt(N0,t, Et) exp

�

−�t(St − S̄)
�

(12) Eit = Fi,t(Ni,t), i = 1, . . . , I,

(13)
I

X

j=0

Nj,t = Nt,
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(14) St − S̄ =
t+T
X

j=0

(1− dj)E
f
t�j.

Let �0,t, �i,t, for i = 1, . . . , I, ⇣t, and  t be the corresponding Lagrange multipliers

on the period t constraints. Using the first-order conditions for Ct and Kt+1, it is

easy to verify that agents optimally save a stock-invariant fraction of income. For

each dirty energy sector i, the first-order condition with respect to Ei,t implies

@F0t

@Ei,t

=
�i,t

�0,t
+

Λ̃
s
i,t

�0,t
.(15)

The left-hand side gives the marginal value of an extra unit of energy from sector i

denominated in units of the final good. The right-hand side gives the marginal cost of

producing an extra unit of energy in sector i plus the associated marginal externality

cost, all denominated in units of the final good. Λ̃s
i,t is the marginal externality cost

denominated in period t utility units, while

Λ
s
i,t =

Λ̃
s
i,t

�0,t

is the marginal externality cost in units of the period t consumption good. An

expression for Λs
i,t is given in the following proposition.17

PROPOSITION 1: In the infinite horizon limit, the marginal externality cost asso-

ciated with an extra unit of carbon emissions in t, as viewed by an agent in t who

17It remains to show that Ei,t is stock invariant. This is shown in the appendix. The remaining
first-order conditions from PP(t) are employed in subsequent analysis.
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takes the optimal decision rules of subsequent generations as outside its control, is18

(16) Λ
s
i,t =

Et

h

P

1

τ=t R
(t)
τ�t

Pτ�t
j=0 ↵

τ�t�j�t+j(1− dj)
i

P

1

j=0 ↵
jR

(t)
j /Yt

, for i = 1, . . . , Ig − 1.

It is the same for all fossil energy firms and it is zero for all clean energy firms.

The numerator gives the marginal externality cost in utility units, while the de-

nominator gives the shadow value of an extra unit of consumption in t. The quotient

translates the marginal externality cost into period t consumption units.

The expression in the numerator reflects two mechanisms at work in the model.

Emissions affect future utility directly by raising the pollution stock in subsequent

periods; this lowers net output and thus consumption. In addition, lower net output

from climate damages lowers the base from which subsequent savings are drawn.

This has a cumulative effect on capital accumulation that lowers consumption in

later periods.19

In principle, two other mechanisms are possible: emissions could affect the emission

decisions of later agents, and they could affect the savings rule of later agents. The

former channel does not arise because flow payoffs are linear in prior emissions. The

second channel does not arise because the dependence on future output cancels as

future damages are multiplied by future marginal utility when evaluating policy.

18A simpler expression for the marginal externality cost is given in proposition 3.
19(1 − dj)γt+j is the utility cost of damages in t + j attributable to emissions in t (damages

times marginal utility), while α
k(1− dj)γt+j is the period t+ j + k utility cost associated with the

lower capital stock in t + j + k that results from the portion of climate damages in t + j that are
attributable to emissions in t. Summing all such effects or each future τ gives the expression in the
numerator of 16
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C. Conditions for a Unique Equilibrium

In the existing climate policy literature with non-constant time preference (Karp

2005, Karp 2007, Fujii and Karp 2008, Gerlagh and Liski 2012) multiplicity is a

significant concern. Multiple equilibria arise generically when solving for symmetric

Markov Perfect Equilibria (MPE) in stationary models because there are not enough

equations to determine the derivative of the equilibrium response function in the

steady state; this derivative is itself an unknown when solving for the MPE (Tsutsui

and Mino 1990).

For the problem considered above, the subgame perfect equilibrium is unique—as

seen by construction. Uniqueness is pinned down, in part, by the assumption that

the time horizon is finite, though a unique equilibrium remains in the infinite horizon

limit of a sequence of such finite-horizon equilibria. The latter equilibrium concept

has been referred to as the Strotz-Pollak equilibrium (Peleg and Yaari 1973). It was

employed in the original literature on non-constant time preference (Strotz 1955,

Pollak 1968, Phelps and Pollak 1968). In our example, the limiting Strotz-Pollak

equilibrium is a symmetric MPE but a continuum of additional symmetric MPE

exist for the stationary, infinite horizon model. It follows that a great deal hinges on

the choice between a finite horizon model and an infinite horizon model.

Because an arbitrarily long finite horizon includes one that surpasses the time

at which physicists expect the sun to burn out, it is hard to argue on a priori

grounds that the finite horizon game is a less appropriate description of the relevant

policy problem.20 A more compelling argument for multiplicity is that the additional

equilibria can alternatively be motivated as ✏-equilibria to a finite horizon game

20Note, moreover, that the difference between a finite horizon game and an infinite horizon
one hinges on the specification of preferences and the specification of the climate-economy system
that lie beyond the designated horizon. If this is sufficiently long, the difference between the two
specifications hinges on assumptions that are completely arbitrary.
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(Fudenberg and Levine 1983).21 But, if one needs to consider perturbed games in

order to generate multiplicity, then it is natural to regard the equilibrium to the

unperturbed game, when it is unique, as the obvious focal point for discussion.

Uniqueness of the finite horizon equilibrium does not obtain in general models with

non-constant time preference and should be viewed as a special feature of the cur-

rent model—a counterexample is presented in Peleg and Yaari (1973) and Goldman

(1980). Another instance in the literature in which the backward induction solution

is shown to be unique is the linear-quadratic climate policy game considered at the

end of Karp (2005).

An alternative motivation for a unique equilibrium can also be made. For the sub-

game perfect equilibrium in our model to be unique, it is enough to ensure that the

last generation saves a stock invariant fraction of income and chooses an emission

level that is independent of the inherited stock variables. If the problem is posed

as an infinite horizon game, but technology evolves exogenously in such a way that

emissions eventually go to zero—eventually a clean backstop technology is invented

that is cheaper than remaining coal deposits—then a unique equilibrium will obtain.

In effect, a non-stationarity in the model forces the policy response to a boundary of

the feasible set within finite time; once this happens, the emission decision of subse-

quent generations is independent of the inherited state variables for all subsequent

periods.

II. Decentralized Equilibrium

This section describes the corresponding private ownership economy. We show

that the optimal allocation can be decentralized in a competitive equilibrium using

a carbon tax on fossil energy firms.

21This argument is noted in Karp (2013).
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A. Households

Households are atomistic: they take prices as given and ignore the external ef-

fects of their actions. Households earn income renting the factors of production,

collecting firm profits,22 and collecting government transfers. Without commitment,

they choose consumption and savings for the current period only, while correctly

anticipating the decisions of future generations. The period t household problem is

max
Ct,Kt+1

Et

T
X

τ=t

R
(t)
τ�t ln(Cτ ),

s.t.

(17) Et

T
X

τ=t

qτ (Cτ +Kτ+1) = Et

T
X

τ=t

qτ (rτKτ + wτNτ + Tτ ).

Here, Tτ is a government transfer, and the {qτ} denote state-contingent Arrow-

Debreu prices.

B. Firms

Firms are also atomistic. Final-goods firms solve the following profit maximization

problem at each date t:

max
Kt,N0,t,Et

Kα
t At(Et, N0,t)!(St)− rtKt − wtN0,t −

I
X

i=1

pi,tEi,t.

Here, rt is the rental rate of capital, wt is the wage rate, and pi,t is the price per

unit of output from energy sector i. All prices are denominated in units of the final

output good.

22Though profits for all firms are zero in equilibrium.
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In addition, firms in energy sector i solve23

max
Nit

(pi,t − ⌧i,t)Fi,t(Ni,t)− wtNi,t.

⌧i,t is a sector-specific tax. Energy units are chosen so a unit of energy for fossil

sectors equals a unit of emissions. The tax is therefore applied to the carbon content

of emissions. The efficiency of energy production per unit of emissions is embedded

in the production function for each sector.

C. Optimal Carbon Taxes

For a given set of taxes {⌧i,t}
I
i=1, the decentralized allocation can be characterized

by combining the optimality conditions from the firm and household problems with

the market clearing conditions.24 Comparing this with the optimal allocation, the

solution to the planning problem without commitment, we show that the optimal

allocation can be decentralized with an appropriate carbon tax. For the remainder

of the paper, proposition proofs are in the appendix.

PROPOSITION 2: The subgame perfect allocation from the planner’s problem with-

out commitment can be decentralized with a carbon tax on fossil-energy firms. The

optimal tax on fossil energy firms (i = 1, . . . , Ig − 1) is

(18) ⌧i,t = Λ
s
i,t.

The optimal tax on clean-energy firms (i = Ig, . . . , I) is zero.

23The profit maximization problem for energy firms is static under the assumption that resource
stocks are infinite. With finite resource stocks, the profit problem would be dynamic (see Golosov
et al. 2012 for details).

24The definition of a competitive equilibrium is standard, and we omit it.
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The formula for Λ
s
i,t in (16) shows that the optimal carbon tax as a fraction of

output is a constant that depends only on the path of time preference rates, the

expected value of the future damage elasticities, the carbon cycle parameters, and

the Cobb Douglass coefficient on capital in final-goods production. Notably, the

formula does not depend on the endogenous paths for carbon stocks, output, or

consumption.25 The formula also demonstrates a form of certainty equivalence that

is noted also in Golosov et al. (2013). In particular, the only feature of uncertainty

about future damages that affects the current decision is the expected value of the

future elasticity parameter conditional on the information set today. It follows that

fat-tailed damages affect the optimal carbon tax in this model only so far as they

affect the expected value of future realizations of the damage parameter.

An alternative formula

To compare with the optimal tax under constant discounting—as in Golosov et al.

(2013)—it is useful to write the expression in a different way. With non-constant

discounting, the cumulative discount factor between future periods depends on how

far out the periods occur. To account for this, define R
(t)
l,m as the price at t + l of a

unit of utility received at t+m, viewed by an agent in t. For m ≥ l,

(19) R
(t)
l,m =

(

Qm
j=l+1 �

(t)
j , m > l

1 , m = l .

To motivate the alternative expression, recall the explanation for Λ̃s
t that followed

proposition 1. There, the formula was said to arise from two effects: the direct effect

25The same features hold for the optimal tax formula in Golosov et al. (2013) with the exception
that their formula does not depend on the Cobb Douglass coefficient on capital. The source of this
difference is explained in the next subsection.
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of climate damages on future output, and the repercussions of each such damage

event on subsequent capital accumulation. The formula in (16) adds up the effect of

these two mechanisms by looking at the combined effect of all prior damage events

on equilibrium utility in each future ⌧ , but we could just as easily arrange terms

by multiplying each direct damage event by a subsequent repercussion term. This

gives26

(20) Λ̃
s
t = Et

"

1
X

τ=t

R
(t)
τ�t�τ (1− dτ�t) ·

1
X

m=0

R
(t)
τ�t,τ�t+m↵

m

#

.

The leading “1” in the second sum (when m = 0) captures the direct effect; the

remaining terms capture the (infinite horizon) repercussions of this initial damage

event for future capital accumulation. Note that

R
(t)
τ�t ·R

(t)
τ�t,τ�t+m = R

(t)
τ+m�t,

so all outcomes are discounted in a way that is consistent with the preference struc-

ture of an agent in t.

Combining (20) with the expression for the shadow value of capital at date t gives

the following expression for the optimal tax.

PROPOSITION 3: The optimal tax in fossil sector i can be written

(21) ⌧i,t = Et

"

1
X

k=0

R
(t)
k �t+k(1− dk) · Γ

(t)
k

#

Yt,

26A rigorous proof is in the appendix.
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where

Γ
(t)
k =

P

1

m=0 ↵
mR

(t)
k,k+m

P

1

n=0 ↵
nR

(t)
n

.

Under constant discounting, the numerator and denominator in Γ
(t)
k are equal, so

the term drops out of the expression. The optimal tax then reduces to the formula in

Golosov et al. (2013). The numerator and denominator of Γ
(t)
k value the opportunity

cost of a unit of the consumption good received in different periods. The numerator

gives the discounted payoff to holding an extra unit of capital starting in period

t + k, while the denominator gives the discounted value of holding an extra unit of

capital starting in period t. With constant discounting, these values are the same,

but they differ with non-constant discounting. This explains why ↵ drops out of the

tax formula with constant discounting, but not when discounting is non-constant.

When time preference rates decline, the Γ
(t)
k terms are strictly greater than one27.

This makes the optimal tax bigger than if these terms were ignored.

The formula reduces to the optimal tax in Gerlagh and Liski (2012) when dis-

counting is quasi-hyperbolic.28 Because Gerlagh and Liski (2012) solve for the linear

symmetric MPE, it follows that the linear MPE in this model is also the (unique)

Strotz-Pollak equilibrium. This is interesting because there is not a compelling rea-

son for choosing the linear MPE from the set of MPE. In contrast, the Strotz-Pollak

equilibrium is the unique MPE that can be viewed as the equilibrium of an arbitrarily

long finite horizon game.

27This can be seen by comparing terms in the numerator and denominator.
28This is true provided the damage elasticity parameter is fixed at the period t expected value,

and the carbon cycle coefficients are set to coincide.



OPTIMAL CARBON TAXES 23

III. A Case of Time Inconsistency “Irrelevance”

Time consistency concerns arise under non-constant time preference when the prob-

lem is solved in a way that incorrectly assumes a commitment device. Without com-

mitment, the decisions of future decision-makers in general differ from what earlier

generations would have chosen if commitment were possible. Thus, moving from an

equilibrium with commitment to one without typically changes the effective marginal

payoffs associated with actions in the initial period, and so also the optimal initial

period action. But not in the current model.

PROPOSITION 4: Starting from a given period t with the same initial conditions,

the optimal carbon tax in t is the same when the planner’s problem assumes a com-

mitment device for the period t planner as it is in the equilibrium of the planner’s

problem without commitment.

The intuition for the result can be seen in equation (10). This shows that the

equilibrium flow payoff is linear in prior emissions. As a result, future generations

emitting more (or less) does not change the optimal emission decision of earlier

generations. Because of this, the change in future emission decisions that occurs when

moving from the problem with commitment to the equilibrium without commitment

does not affect the optimal emission level.

The result suggests a sense in which time consistency concerns are “irrelevant”

when applying the optimal carbon tax in any given period. Provided the possibility

of commitment is off the table, the optimal tax can be applied without having to

worry about the future trajectory of the system. Thus, whether a commitment device

is assumed or not, the optimal tax today is unchanged. Moreover, without commit-

ment, the current carbon price summarizes everything current decision-makers need
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to know to evaluate current climate investments.29 The proposition does not imply

that the full dynamic path of carbon taxes in the two equilibria are the same. Indeed,

the application shows that they typically differ in subsequent periods.

The result can be strengthened. In addressing time consistency concerns, the most

straightforward solution is to look for a subgame perfect equilibrium in which decision

makers in different periods are identical. But as hard as it is for the current generation

to “know” its own time preference structure, they presumably know significantly less

about the preference structure of subsequent generations (Beltratti, Chichilnisky

and Heal 1998). Given this, one could be led to entertain a wide range of possible

assumptions about the path of time preference rates likely to be applied by future

generations. In a typical model, this would make the initial carbon price highly

sensitive to these assumptions. But for the model here, the optimal tax is unchanged

no matter what path of time preference rates we assume for future generations.

PROPOSITION 5: Starting from a given period t, the optimal period t carbon tax,

derived as the subgame perfect equilibrium to the planner’s problem without commit-

ment, is unchanged no matter what one assumes for the path of time preference rates

to be applied by subsequent generations.

A convenient implication arises when applying the preference aggregation argument

for DRTP. A criticism of most applications is that they require the accompanying

assumption that the current distribution of time preferences is frozen in time. Thus,

there is no room for the distribution of views in society to evolve. This is implausible

over a long horizon. But the expectation that the distribution of time preferences

will change over time merely implies that the path of time preference rates to be

29It clearly provides enough information to evaluate projects to be implemented within the
period; meanwhile, plans that require coordination across multiple periods are infeasible without
commitment.
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used by subsequent decision-makers will change, but due to proposition 4 this does

not change the optimal tax today.

The strong features of the model arise because the equilibrium flow payoff is linear

in prior emissions. This is naturally a product of the assumed functional forms. One

view, discussed in Karp (2013), is that this feature should be viewed as a weakness

since it rules out meaningful strategic interactions across generations. But a model

in which strategic interactions across generations are important suffers from the

alternative problem that the current carbon tax will be highly sensitive to the main-

tained time preference assumptions of future generations. Since these assumptions

are largely arbitrary—especially for agents ten or twenty generations removed—one

ends up trading one form of arbitrariness for another. For out purpose, it is at least

comforting that the maintained functional form assumptions are close to those in

most of the prior literature on climate policy (Golosov et al. 2013).

IV. “Imputed” Pigouvian Taxes

The Pigouvian prescription taxes externalities at the full social cost of damages. To

appropriately capture intertemporal trade-offs in the economy, the relevant discount

rates are typically estimated using data from capital markets. But as Gerlagh and

Liski (2012) demonstrate, when time preference rates are non-constant, equilibrium

returns in financial markets do not reflect actual trade-offs over long horizons. To

quantify the effect the effect of this distortion on computed carbon prices, they

construct an imputed Pigouvian tax that uses data on savings behavior in the model

equilibrium to infer the relevant trade-offs and thus the implied marginal externality

cost.

We do the same thing, showing for a model with arbitrary non-constant time

preference—as Gerlagh and Liski (2012) show with quasi-hyperbolic rates—that the
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optimal carbon tax exceeds the imputed Pigouvian tax in the equilibrium without

commitment provided the delay between emissions and damages is sufficiently long.

Gerlagh and Liski (2012) emphasize the key role of the delay between emissions and

damages in generating a wedge between the optimal and imputed Pigouvian taxes.

This wedge reflects the “commitment value” of climate policy, analogous to the value

of commitment devices in self-control problems. The model with arbitrary DRTP

makes it possible to see a further cause: mainly, the faster the rate of decline of time

preference rates, the bigger the wedge.30

We also compute the imputed Pigouvian tax for the equilibrium with commitment.

Because the path of endogenous variables differ over time under the two equilibria,

the imputed Pigouvian tax in the initial period also differ across equilibria. For the

optimal solution with commitment, the optimal and Pigouvian taxes are equal. It

follows that the optimal initial period tax—for both equilibria—can be interpreted

as the marginal externality cost with future damages discounted in a way that is con-

sistent equilibrium savings behavior for a model in which all future savings decisions

are chosen to maximize welfare for agents in the initial period.

To compute the relevant subjective discount factor for use in computing the im-

puted Pigouvian tax, we follow Gerlagh and Liski (2012) in noting that an agent

who uses capital markets to transfer wealth across periods would discount future

outcomes using the utility discount factor, �t, from the following consumption Euler

equation:

u0(Cτ ) = �tEτu
0(Cτ+1)rτ .

Here, rt is the gross interest rate in the decentralized equilibrium—or the real return

on capital. For the case with log utility and Cobb Douglass final-goods production,

30This is shown in the quantitative section below.
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this implies

(22) �τ =
1

↵
· Eτ



Cτ+1

Yτ+1

·
Kτ+1

Cτ

�

.

This equation is combined with the equilibrium conditions from PP(t) to de-

termine the subjective discount factor �τ for each future period ⌧ . This is done

separately for each equilibrium. The following results can then be shown.

PROPOSITION 6: In the equilibrium without commitment, the optimal tax in the

initial period is greater than the imputed Pigouvian tax provided the delay between

emissions and damages is sufficiently long. With no delay, the imputed tax is bigger.

In the application, we find that the optimal tax is always bigger than the imputed

Pigouvian tax for the equilibrium without commitment. We also show that the wedge

between the optimal and Pigouvian taxes increases with the rate of decline of the

path of time preference rates.

PROPOSITION 7: In the equilibrium with commitment, the optimal tax in the ini-

tial period equals the imputed Pigouvian tax.

With commitment, the initial-period decision maker sets consumption–savings de-

cisions to ensure the marginal rate of substitution between adjacent periods, viewed

from the initial period, equals the marginal rate of transformation in equilibrium.

Since this is the same subjective discount factor that is applied when solving the

full commitment equilibrium, it follows that the period one Pigouvian tax and the

period one optimal carbon tax in the equilibrium with commitment are the same.
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V. Application

A. Calibration of Declining Time Preference Rates

Our calibration of time preference employs the preference aggregation argument

of Li and Löfgren (2000). As noted, the GHKT model is a highly convenient setting

in which to consider this approach, since one does not need to assume that the cur-

rent distribution of views is static. Our calibration builds on the discounting debate

between Nordhaus (2008) and Stern (2007). Nordhaus (2008) argues that time pref-

erence and the elasticity of marginal utility should be jointly calibrated to ensure

that the savings decisions of households in the model are consistent with the real

return on capital—about 5.5% in Nordhaus (2008). Under log utility, this implies

a time preference rate of 3.0% in DICE. Stern (2007) argues that the intergenera-

tional distributional consequences of this assumption are too extreme when applied

to climate change. He then argues on ethical grounds that the time preference rate

under log utility should be 0.1%. Our goal is not to resolve this debate. Rather, we

consider a variety of scenarios for the relative weight that a global decision-maker

might assign to the competing approaches.

Figure 1 compares the implied discounting paths for a representative household

when respectively 1%, 5%, 10% and 20% of the relevant population maintains the

Stern time preference rate, while the remaining portion agrees with Nordhaus. We do

not offer a deep reason for viewing the Stern rate as less probable then the Nordhaus

rate, though we suspect that a review of general-interest economics journals would

reveal a strong preference for the Nordhaus view. More importantly, our scenarios

show that the effect of putting even a small weight on those members of society who

maintain the lower rate is large.
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Figure 1. Comparison of alternative hyperbolic discounting paths.

B. Calibration of the Carbon Cycle and Damages

Our calibration of the carbon cycle follows Golosov et al. (2013) with a small

adjustment. Those authors calibrate the decay structure of atmospheric carbon

dioxide to be consistent with recent evidence that the geometric decay structure

in most climate policy models is incorrect. The revised scientific understanding of

atmospheric carbon decay is described in the following quote from the IPCC (IPCC

2007): “About half of a CO2 pulse to the atmosphere is removed over a timescale of

30 years; a further 30% is removed within a few centuries; and the remaining 20%

will typically stay in the atmosphere for many thousands of years”. To replicate this,

Golosov et al. (2013) assume that fraction �0 of emissions fall out of the atmosphere

immediately. A further fraction �L remain forever. And the remaining carbon decays

at a constant geometric rate. This implies the following formula for decay:

1− ds = �L + (1− �L)�0(1− �)s.
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They calibrate this model by assuming �L = 0.2, �0 = 0.393, and � = 0.0228.

We adopt the same parameter values, but we alter the assumption that some

fraction of the carbon stock remains in the atmosphere literally “forever”. The

assumption is innocuous when the discount rate is moderately high, since nothing

beyond a couple hundred years matters in determining the carbon price. But the

assumption becomes important when the subjective discount rate is very low (as in

Stern 2007) or if it declines over time to near zero. Indeed, if the subjective discount

rate declines to zero in finite time and a portion of emissions remains forever, the

carbon price implied by our formula is infinite. To avoid this possibility, we take the

IPCC description literally and assume instead that fraction �0 of emissions remains

in the atmosphere for 2000 years.

Our calibration of the damage function follows Golosov et al. (2013). They assume

that the expected value of the future damage elasticity parameter, conditional on

information today, is the same for all future periods, and they calibrate this to

match two data points from a meta analysis of damages in Nordhaus (2000). The

first calibration point estimates that a 2.5 degree Celsius increase in mean global

temperature would lead to a 0.48% loss of GWP. In addition, they allow for a 6.8%

chance that damages from a 6 degree rise in temperatures would be catastrophic,

leading to a 30% loss of GWP. These considerations imply an expected damage

elasticity of 2.379× 10�5.

C. Optimal Taxes

In table 1, the optimal carbon tax and the imputed Pigouvian tax are shown for

the discounting scenarios in figure 1. All values are computed for the equilibrium

without commitment. Three characteristics stand out. First, even a small weight

on the Stern model increases the optimal tax a lot. For example, a 20% weight on
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the Stern model increases the optimal tax 4-fold relative to what it is under the

Nordhaus calibration. Second, the optimal tax and the Pigouvian tax are the same

when discounting is constant. This is expected since the preferences of agents in

different periods align. Third, the imputed Pigouvian tax is roughly constant across

scenarios. Because of this, the wedge between the optimal tax and the Pigouvian

tax increases with the rate of decline in the path of discount rates.

Table 1—Dollars per ton carbon. Hyperbolic paths from figure 1. Nordhaus (2008)

assumes time preference rate of 3.0%; Stern (2007) assumes 0.1%.

Pigouvian tax Optimal tax

Nordhaus (2008) 31 31

1% Stern 32 36

5% Stern 33 54

10% Stern 35 77

20% Stern 39 122

Stern (2007) 450 450

The latter observation reflects the fact that without commitment, the equilibrium

interest rate is determined predominantly by the subjective discount rates of agents

in the short run. Because the Nordhaus (2008) calibration—zero weight on Stern—

is calibrated to be consistent with historical returns in financial markets, it follows

that savings in the model remains consistent with observed returns for the range

of time preference rate paths considered in the table, even as the optimal carbon

tax increases 8-fold over the range. Because the effects of climate change play out

with long delay, climate policy provides a mechanism in the model for committing

resources to future generations in a way that sidesteps the intermediate handling of
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subsequent generations who are more impatient then the initial generation would

have wanted.

D. Equilibrium Trajectories

The optimal tax in the initial period can be computed without specifying func-

tional forms for the energy composite or the energy sector production functions. But

additional assumptions are needed to solve for the full dynamic path of the model.

With a couple modifications indicated below, we draw the needed assumptions from

Golosov et al. (2013).

First, output in each energy sector i is linear in labor:

Ei,t = Ai,tNi,t.

Golosov et al. (2013) have three energy sectors: oil, coal, and wind. “Oil” in their

model is viewed as a composite between oil and natural gas, and it differs from coal

in that the resource stock is finite, while it is infinite for coal. In our model, the

resource constraints are assumed to be non-binding in all fossil sectors. We therefore

assume a single composite fossil energy sector that we call “coal”. The second sector,

“wind”, is a composite of carbon-free energy sources, including solar, biomass, hydro,

and nuclear.

Energy outputs are aggregated into a composite input to final production as fol-

lows31:

(23) Et = (1E
ρ
1,t + 2E

ρ
2,t)

1/ρ.

31Sector 1 is coal, and sector 2 is wind.
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Finally, net output in the final-goods sector is given by

Yt = e�γt(St�S̄)A0,tK
α
t N

1�α�v
0,t Eν

t .

The calibrated parameters are summarized in table 2.32 Our calibration of the

energy composite differs from Golosov et al. (2013) only because the number of

energy sectors differs. We make the same assumption on the relative price between

coal and wind, together with the assumption that 1 + 2 = 1. This implies 1 = .2

and 2 = .8. In contrast, Golosov et al. (2013) have 1 = 0.54 (oil), 2 = 0.10 (coal),

and 3 = 0.36 (wind). In the appendix, we repeat the analysis with 1 = 2 = 0.5.

This is consistent with a fossil sector more closely in line with oil. Carbon taxes

are somewhat lower, but the paths are qualitatively similar. The damage elasticity

is calibrated as before. We assume that current uncertainty persists over the time

horizon of the simulation. The path of discount rates is fixed at the “10% Stern”

scenario, and we assume that generations are identical.

Table 2—Calibration summary

� �L �0 ↵ ⌫ 1 2 ⇢

0.0228 0.2 0.393 0.3 0.04 0.2 0.8 −0.058

104�H 104�L p S0(S1,0) K0 A1,0 A2,0
A1,t+1

A1,t
= A2,t+1

A2,t

2.046 0.106 0.068 802(684) 128, 920 7, 693 1, 311 1.0210

To simulate the equilibrium path without commitment, we derive the first-order

conditions from problem PP(t). For each period t, there are nine first-order condi-

32The capital stock, K0, is denominated in billions of dollars US. The calibration assumes that
the initial capital stock is below the steady state capital stock. As in Barrage (2013), the initial
level of TFP is set equal to 17, 887 to ensure the endogenous energy choice replicates current GWP.
TFP is assumed to be constant in the baseline calibration. See Golosov et al. (2013) and Barrage
(2013) for further details.
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Figure 2. Carbon tax trajectories for alternative equilibria.

tions plus the original constraints. Simulating the model turns out to be relatively

easy because the savings decision and the marginal externality cost do not depend

on the response behavior of subsequent generations. As a result, the corresponding

system of equations can be solved “forwards” even though the equilibrium condi-

tions are derived backwards. This greatly simplifies the analysis relative to typical

models with non-constant time preferences. The relevant equations are presented in

the appendix.

The same steps can be used to simulate the equilibrium with commitment pro-

vided the cumulative discount factors in the period t planner’s problem are suitably

changed. In particular, replacing {R
(t)
τ�t} with {R

(0)
t,τ } imposes the initial generation’s

time preferences on each subsequent generation and thus solves for the equilibrium

with commitment.

Figure 2 compares the time path of optimal taxes across scenarios. As expected,

the optimal tax in the initial period is the same in the equilibria with and without
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commitment. But the figure also shows that a commitment device, were it feasible,

would have enormous value for the initial generation. Without commitment, the path

of carbon prices is roughly constant over time. This follows because the optimal tax

is a constant fraction of GWP, and GWP is roughly constant under the calibration

assumption of zero TFP growth.33 In contrast, in the equilibrium with commitment,

the optimal tax increases sharply. This is intuitive since the initial generation imposes

lower and lower discount rates on later generations.

In addition, savings rates rise over time for the same reason in the equilibrium

with “full commitment”. Because our primary interest is in the effect of a commit-

ment device for climate policy, it is useful to solve also for a third equilibrium in

which the initial planner has a commitment device for climate policy only. Mean-

while, consumption-savings decisions are made each period by the contemporaneous

generation—thus, in the same way as in the equilibrium without commitment. The

results show that the effect of this further capital accumulation channel is small

relative to the direct effect that lower discount rates have on the optimal tax.

VI. Conclusion

The paper solves for the optimal climate policy under non-constant time prefer-

ence using a version of the integrated assessment model suggested in Golosov et al.

(2013). The Golosov et al. (2013) model is modified by assuming that resource

constraints are non-binding in all fossil energy sectors. The paper shows that the

model provides a highly tractable and convenient setting in which to incorporate

non-constant time preference rates. The full dynamic path of the subgame perfect

equilibrium to the planner’s problem without commitment and the corresponding

33Economic growth does arise in the model due to capital accumulation. This happens because
the initial capital stock is assumed to start below the steady state level. Nevertheless, higher gross
GWP is partly offset by rising climate damages over time.
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decentralized equilibrium can be simulated in a straightforward way, and an intu-

itive formula can be derived for the optimal carbon tax. In addition, concerns about

time inconsistency, concerns about multiplicity, and concerns about the sensitivity of

results to assumptions about future time preferences—such as arise when applying

the preference aggregation argument for declining rates—all fall away in a simple

way.

These convenient features of the model come at a cost. While the assumed func-

tional forms are close to those in most of the prior climate economics literature, they

still comprise a subset of the plausible parameter space. When interpreting the re-

sults, it would be useful to understand how the results change as the functional form

assumptions are relaxed. In particular, we would like to understand how the (time

consistent) path of optimal taxes and the relationship between taxes across equilib-

rium scenarios (with and without commitment) change with the core assumptions—

mainly, the elasticity of marginal utility, the depreciation rate, the final-goods pro-

duction function, and the damage function. To accomplish this broader sensitivity

analysis, it would be possible to proceed numerically using the algorithm suggested

in the original version of this paper34 (Iverson 2012). While feasible, this will be a

nontrivial undertaking because the associated dynamic problem has four state vari-

ables35 (three without uncertainty). We leave it for future research.
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Mathematical Appendix For Online Publication

A1. Proposition 1: Proof that Ei,t is stock invariant

For each dirty sector i, the first-order conditions for Ei,t can be combined with the

first-order conditions for Ni,t to give

@F0t

@Ei,t

=
�i,t

�0,t
+

Λ
s
t

�0,t

=
@F0t/@N0t

dFit/dNit

+
Λ

s
t

�0,t

=
@F0t/@N0t

dFit/dNit

+ (1− st)Λ
s
tYt.

Dividing through by Yt and making use of the assumed form of the final goods

production function gives

@At(N0t,Et)/@Ei,t

At(N0t, Et)
=
@At(N0t,Et)/@N0t

At(N0t, Et)
·

1

dFit(Nit)/dNit

+ (1− st)Λ
s
t .

This is a stock-invariant equation in N0t, Nit, and Et. We have one such equation

for each dirty energy sector. We also have an analogous stock invariant equation for

each clean energy sector (these just drop the externality term). These equations can

be combined with

Eit = Fi,t(Ni,t), all i

and
I

X

j=0

Nj,t = Nt

to give 2I + 1 stock invariant equations in 2I + 1 variables. It follows that Ei,t is

stock invariant for each i.
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A2. Proof of proposition 2

From the planner’s problem, the first-order condition for Ei,t implies

@F0t

@Ei,t

=
�i,t

�0,t
+ Λ

s
i,t.(A1)

Λ
s
i,t is given by (16) for dirty energy firms, and it is zero for clean energy firms. In

addition, the first-order conditions for labor imply

�i,t

�0,t
=
@F0t/@N0,t

@Fit/@Ni,t

.

So,

(A2)
Λ

s
t

�0,t
=
@F0t

@Ei,t

−
@F0t/@N0,t

@Fit/@Ni,t

.

From the decentralized equilibrium, we have

@F0t

@N0,t

= wt = (pi,t − ⌧i,t)
@Fit

@Ni,t

and

pi,t =
@F0t

@Ei,t

.

This implies

⌧i,t =
@F0t

@Ei,t

−
@F0t/@N0,t

@Fit/@Ni,t

.

It follows that the outcome in the decentralized competitive market allocation will
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equal the optimal allocation provided:

⌧i,t = Λ
s
i,t, i = 1, . . . , Ig − 1.

It remains to show that the consumption-savings decisions in the two problems are

the same.

The period t household problem is

max
Ct,Kt+1

Et

T
X

τ=t

R
(t)
τ�t ln(Cτ ),

s.t.

(A3) Cτ +Kτ+1 = (1 + rτ )Kτ + wτNτ + Πτ , for ⌧ = t, . . . , T.

The last generation trivially saves a constant fraction of income. Suppose each

remaining generation ⌧ saves fraction ŝτ of income. Then the time t generation

solves

max
Kt+1

⇢

ln[(1+rt)Kt+wtNt+Πt−Kt+1]+Et

T
X

τ=t+1

R(⌧−t) ln[(1−ŝτ )((1+rτ )Kτ+wτNτ+Πτ )]

�

s.t.

Kτ+1 = ŝτ [(1 + rτ )Kτ + wτNτ + Πτ ] ⌧ = t+ 1, . . . , T

The constraint is a linear difference equation in Kτ . Iterating on this, we can write

Kτ = Kt+1

τ�1
Y

j=t+1

ŝj(1 + rj) + b̃τ .
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Throughout, let

Iτ = (1 + rτ )Kτ + wτNτ + Πτ

Substituting back into the problem, we have

max
Kt+1

⇢

ln[(1 + rt)Kt + wtNt + Πt −Kt+1]

+
T
X

τ=t+1

R(⌧ − t) ln

"

(1 + rτ )[Kt+1

τ�1
Y

j=t+1

ŝj(1 + rj) + b̃τ ] + wτNτ + Πτ )

#

+ . . .

�

FOC(Kt+1):

−1

It −Kt+1

+
T
X

τ=t+1

R(⌧ − t)
(1 + rτ )

Qτ�1
j=t+1 ŝj(1 + rj)

Iτ
= 0

First, note that

sjFj =
KjFj

F

Kj+1

Kj

= ↵
Kj+1

Kj

It follows that, for each ⌧ ,

(1 + rτ )
Qτ�1

j=t+1 ŝj(1 + rj)

Iτ
=

FK(⌧)

Yτ

τ�1
Y

j=t+1

↵
Kj+1

Kj

=
FK(⌧)

Yτ

↵τ�t�1 Kτ

Kt+1

= ↵τ�tK�1
t+1
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Substituting back in the FOC, while noting that It = Yt, gives

1

Yt −Kt+1

=
1

Kt+1

T
X

τ=t+1

R(⌧ − t)↵τ�t

Kt+1 =

PT
τ=t+1 R(⌧ − t)↵τ�t

1 +
PT

τ=t+1 R(⌧ − t)↵τ�t
Yt

It follows that

1− st =
1

1 +
PT

τ=t+1 R(⌧ − t)↵τ�t

=
1

PT
j=0 ↵

jR(j)
,

which is identical to the savings rater obtained along the optimal allocation.

A3. Proof of proposition 3

Consider the following double sum identity:

1
X

p=0

p
X

q=0

aq,p�q =
1
X

m=0

1
X

n=0

an,m.

The identify can be proved by listing the terms in a two by two grid, where the index

of the first sum comprise the rows and the index of the second sum comprise the

columns. The left-hand side is obtained by summing the rows of the grid, while the

right-hand side is obtained by summing the same set of terms diagonally.
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When t = 0 and T = ∞,

T
X

τ=t+1

R(⌧ − 1)
τ�t
X

j=1

↵τ�t�j�t+j(1− dj)

=
1
X

p=0

R(p)

p+1
X

j=1

↵p+1�j�j(1− dj)

=
1
X

p=0

R(p)

p
X

q=0

↵p�q�1+q(1− d1+q)

=
1
X

p=0

p
X

q=0

R(p− q + q)↵p�q�1+q(1− d1+q)

Letting n = q and m = p− q,

=
1
X

m=0

1
X

n=0

R(m+ n)↵m�1+n(1− d1+n)

=
1
X

m=0

1
X

n=0

R(n)R(n+ 1, n+m)↵m�1+n(1− d1+n)

=
1
X

n=0

1
X

m=0

R(n)R(n+ 1, n+m)↵m�1+n(1− d1+n)

=
1
X

n=0

R(n)�1+n(1− d1+n)
1
X

m=0

↵mR(n+ 1, n+m)

=
1
X

n=0

R(n)�1+n(1− d1+n)Γ(n),

where

Γ(n) =
1
X

m=0

↵mR(n+ 1, n+m).
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A4. Proof of proposition 4

The proof follows from the proof of propostition 1. In solving for the subgame

perfect allocation in period t, that proof employed backward induction in a way

that allowed the time preference rate paths of each generation to be distinct (i.e.,

the cumulative discount factors were indexed by t). Nevertheless, the conditions for

the subgame perfect allocation in t are independent of the time preference rates of

future generations (thus, for example, the optimal carbon tax in t only depends on

the discount factors for generation t). To compare the solutions with and without

commitment, we can view the optimal allocation with commitment as the solution

to the backward induction problem in which each future generation adopts the con-

tinuation path of time preference rates that the generation in t would have wanted

them to. Because the period t allocation under backward induction does not depend

on the time preference rates adopted by subsequent generations, the solution to this

problem must be the same.

A5. Proof of proposition 5

The proof falls out from the proof of proposition 1. There, in solving for the optimal

allocation in period t, the proof employed backward induction in a way that allowed

the time preference rate paths of each generation to be distinct (i.e., the cumulative

discount factors were indexed by t). Nevertheless, the conditions for the optimal

allocation in t were independent of the time preference rates of future generations.

It follows that the optimal carbon tax is unchanged when the backward induction

problem is solved instead under alternative assumptions about the time preference

rates to be adopted by subsequent generations.
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A6. Proof of proposition 6

Again, consider the equilibrium path between t and T . The difference is that now

the planner in each future period ⌧ employs their own path of cumulative discount

factors. From section I.B, the savings rule in t ≤ ⌧ ≤ T − 1 is

(A4) Kτ+1 = sτYτ ,

where

sτ =
Γτ

1 + Γτ

and

Γτ =
T
X

s=τ+1

Rs�τ↵
s�τ .

By the same steps as above, it follows that

�τ =
Γτ

↵(1 + Γτ+1)
.

In the last period, this implies

�T�1 = �1.

Moreover, for ⌧ = t, . . . , T − 2, we have

�τ = �1 ·
1 + ↵�2 + ↵�2↵�3 + . . .+ ↵�2 · · ·↵�T�t

1 + ↵�1 + ↵�1↵�2 + . . .+ ↵�1 · · ·↵�T�t�1

> �1.(A5)

Without commitment, the agent in control in period ⌧ discounts utility between ⌧

and ⌧ +1 using the subjective discount factor �1. Provided the preferences of subse-

quent agents aligned with their own, they would ensure that the expected marginal

rate of transformation equaled u0(Cτ )
β1u0(Cτ+1)

. This is the case in T − 1 since the prefer-
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ences of the generation in the very last period align with those of agents in earlier

periods (they consume everything, as prior generations would have wanted). But for

⌧ < T − 1, it is not the case. The decision maker in ⌧ saves more to account for the

fact that subsequent decision-makers are going to save less then they would have if

the hyperbolic agent in ⌧ could force their hand with a commitment device.

The more interesting question is to compare the Pigouvian discount factors, {�τ},

with the discount factors applied in the full commitment equilibrium, {�τ}. Since

the optimal carbon tax under commitment equals the optimal carbon tax without

commitment (from Proposition 4) this comparison makes it possible to compare the

optimal tax without commitment with the Pigouvian tax without commitment.

LEMMA 8: In the equilibrium without commitment, the relevant subjective discount

factor for use in constructing the Pigouvian tax starts out above the corresponding

discount factor that would be applied under commitment, then declines monotonically.

For large t, it is below the subjective discount factor under commitment. In particular,

φt

βt
> 1, φT�1

βT�1
< 1, and φτ+1

βτ+1
≤

φτ

βτ
for t ≤ ⌧ ≤ T − 1.

PROOF:

That φ1

β1
> 1 and φT�1

βT�1
< 1 follows from inspection. To prove that φt+1

βt+1
≤

φt

βt
,

suppose instead that φt+1

βt+1
> φt

βt
. In particular, suppose

(A6)
ΩT�t�1

↵�t+1(1 + ΩT�t�2)
>

ΩT�t

↵�t(1 + ΩT�t�1)
.

Defining Ψn =
Qn

m=1 ↵�m, (A6) can be rewritten as

ΩT�t�1

↵�t+1(1 + ΩT�t�2)
>

ΩT�t�1 +ΨT�t

↵�t(1 + ΩT�t�2 +ΨT�t�1)
.
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Cross-multiplying, this is equivalent to

↵�tΩT�t�1 + ↵�tΩT�t�1ΩT�t�2 + ↵�tΨT�t�1ΩT�t�1 >

↵�t+1ΩT�t�1 + ↵�t+1ΩT�t�1ΩT�t�2 + ↵�t+1ΨT�t(1 + ΩT�t�2).

But ↵�t+1ΩT�t�1 ≥ ↵�tΩT�t�1, ↵�t+1ΩT�t�1ΩT�t�2 ≥ ↵�tΩT�t�1ΩT�t�2 and ↵�t+1ΨT�t(1+

ΩT�t�2) > ↵�tΨT�t�1ΩT�t�1, which gives a contradiction.

It follows that the relationship between the optimal first-period carbon tax and

the first-period Pigouvian tax in the equilibrium without commitment is in principle

ambiguous. If climate damages were to all happen immediately, the Pigouvian tax

would be bigger. But if climate damages occur with sufficient delay, the optimal tax

is bigger.

A7. Proof of proposition 7

The equilibrium consumption path corresponding to the equilibrium with commit-

ment can be determined by replacing {R
(t)
τ�t} with {R

(0)
t,τ } in problem PP(t) from

section I.B. This imposes the initial generation’s time preferences on subsequent

generations, and therefore mimics the equilibrium with commitment. We assume

that the preferences of all generations are identical.

To derive the period t Pigouvian tax, we combine equation (22) with the equilib-

rium savings rule for each subsequent period. For t ≤ ⌧ ≤ T − 1, the savings rule

is

Kτ+1 = sτYτ ,

where

sτ =
Ωτ

1 + Ωτ+1
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and

Ωτ =
T
X

s=τ+1

R
(t)
τ�t,s�t↵

s�τ .

It follows that

Kτ+1

Cτ

=
sτ

1− sτ
= Ωτ

and

Cτ+1

Yτ+1

= 1− sτ+1 =
1

1 + Ωτ+1

.

Substituting into equation (22) gives

�τ =
Ωτ

↵(1 + Ωτ+1)
.

Substituting and simplifying yields

�t = �t,

which holds for all t.

The result follows.

A8. System of equations to simulate the full dynamic path of the model

The following steps impose the additional functional form assumptions into prob-

lem PP(t) for each t.

To generate the modified savings rate, we combine the first-order conditions for Ct
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and Kt+1 with the aggregate resource constraint. This implies

Kt+1 =

PT
τ=t+1 Rτ�t↵

τ�t

1 +
PT

τ=t+1 Rτ�t↵τ�t
Yt.

The fractional savings rate here reduces to ↵� when discounting is constant and the

time horizon is infinite—a familiar expression from the Brock-Mirman growth model

(and Golosov et al. 2013). The marginal externality cost falls out from the first-order

condition for E1,t:

Λ̃
s
t + �1,t = �t(1E

ρ
1,t + 2E

ρ
2,t)

1/ρ�11E
ρ�1
1,t

where

Λ̃s
t = Et

"

T
X

τ=t

R
(t)
τ�t

τ�t
X

j=0

↵τ�t�j�t+j(1− dj)

#

.

The remaining equations can be combined as in the model with constant discount-

ing. This gives

(A7) E1,t = E
�ρ/1�ρ
t ✏1,t,

where

✏1,t =

✓

A1tN0tv1
1− ↵− v + A1tN0tΛ

s
t

◆1/1�ρ

,

and

(A8) E2,t = E
�ρ/1�ρ
t ✏2,t,

where

✏2,t =

✓

A2tN0tv2
1− ↵− v

◆1/1�ρ

.
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These can be combined with

N0,t +
E1t

A1t

+
E2t

A2t

= Nt

and

Et = (1E
ρ
1,t + 2E

ρ
2,t)

1/ρ

to give two equations in two unknowns: N0,t and Et. E1,t and E2,t are then derived

from (A7) and (A8).

The steps here are shown for the equilibrium without commitment, but the sub-

stitutions indicated in the text can be used to simulate the equilibrium with com-

mitment.

A9. Model simulation with 1 = 2 = 0.5
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