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Abstract We propose a network-based model of credit contagion and exam-
ine the effects of idiosyncratic and systemic shocks to individual banks and the
banking system. The banking system is built as a network in which banks are
connected to each other through the interbank market. The microstructure
captures the relation between debtors and creditors, and the macroeconomic
events capture the sensitivity of the banks’ financial strenght to macroeco-
nomic events, such as housing. We have demonstrated that while idiosyncratic
shocks do not have a potential to substantially disturb the banking system,
macroeconomic events of higher magnitudes could be highly harmful, espe-
cially if they also spur contagion. In a concerted default of more banks, the
stability of a banking system tends to decrease disproportionately. In addition,
credit risk analysis is highly sensitive to the network topology and exhibits a
nonlinear characteristic. Capital ratio and recovery rates are two additional
factors that contribute to the stability of the financial system.
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1 Introduction

That information, where information is used in a very broad sense, propagates
from its source to others is a well-known phenomenon that has been highlighted
by many.! Viruses spread from infected individuals to susceptible, ideas spread
among interacting individuals, rumors propagate across the community, peo-
ple are affected by behavior of others etc. Schelling (1971) has demonstrated
that interaction can spontaneously and unintentionally lead to some undesired
outcomes, such as segregation. Similarly, if we link different financial institu-
tions (or banks) through the interbank market of mutual claims into a financial
network, then credit events spread from ”infected” banks across the network,
affecting the banks and the system.? Like many other network structures, not
even the financial system is immune to highly extreme outcomes that are in-
duced by events that seem unimportant at first. Many financial crises have
been initiated by small events such as individual bank failures, drops in the
housing market or sovereign debt etc. Kindleberger and Aliber (2011) provide
a thorough historical overview of financial crises.?

In the paper, we develop an interaction-based model to examine the stabil-
ity of a financial system under different circumstances. The banks are modeled
through their balance sheets. They are represented by the nodes and linked to
each other through the interbank market into a banking network. The model
thus captures interdependency and leverage as the two prime micro-specifics
of the banking system. Interdependency is reflected by the interbank market of
mutual claims. Upper (2011) estimates that the interbank market represents
approximately 20 percent of the banks’ assets in developed countries. As to the
second feature, the Basle Accord requires from the banks to have a minimum
level of 4% of Tier 1 capital and a combined Tier 1 and Tier 2 capital ratio of
at least 8%. A risk-adjusted Tier 1 capital ratio of at least 6% and a combined
Tier 1 and Tier 2 ratio of at least 10% are required.

Banks possess various types of assets, while the liabilities part of the bal-
ance sheet is reduced down to the bank capital. Any loss directly reduces the
level of the bank capital. Banks can incur losses either on the trading part of
their assets or due to a shock or the interbank market. An idiosyncratic shock
is represented as a sudden default of an individual bank, while the systemic
shock is represented as a drop of housing by a certain proportion. A principal

1 Testfatsion and Judd (2006), see Steinbacher et al. (2013) for the latest overview of
interaction-based models in economics and finance.

2 Methodologically, the network-based approach is similar to the epidemiological models in
which the state of a node progresses between different types, from susceptible to infected and
then to either recovered, immune or ceased (Pastor-Satorras and Vespignani, 2001). They
differ in consequences that are induced by connectivity. In a financial network, connectiv-
ity can work either contagiously or as a channel of risk-sharing, while the epidemiological
networks do not have the risk-sharing potential.

3 In recent history, the default of Russian government debt in August 1998 sunk Long-
Term Capital Management (LTCM), while the collapse of the subprime housing market
in 2008 sunk Bear Stearns, Merrill Lynch and Lehman Brothers and many others, and
continued into a sovereign debt crisis in Europe. Systemic events may take various forms,
such as economic downturn, drops in the housing market or in sovereign debt etc.
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characteristic of a systemic event is that it is widespread and not bound to a
single bank. All shocks are one-time events and to banks unexpected events. A
bank defaults when it runs out of capital. After a bank defaults, the counter-
party banks are repaid the recovery rate (RR) proportion of the exposure at
default (EAD). We assume that troubled banks cannot raise additional capi-
tal. An a-criticality index is constructed to evaluate the cost of single credit
events to the banking system. The index measures the proportion of defaulted
assets (capital) of the system caused by the shock.

We demonstrate that while idiosyncratic shocks do not have a potential
to substantially affect the system, macroeconomic events of even moderate
magnitudes can be very severe, especially if shocks become contagious which
is very likely. In addition, credit risk analysis has proved to be sensitive to the
network topology. Capital ratio and recovery rates are two additional factors
that contribute to the stability of the financial system. The latter conclusion
is similar to Furfine (2003), who argues that contagion is possible when RRs
are low. Nier et al. (2007) find a negative and nonlinear relationship between
contagion and the bank capital.

The early credit-risk literature includes structural and reduced-form mod-
els (Bielecki and Rutkowski 2002, Duffie and Singleton 2012). The first employ
an asset value approach, in which the value of assets is assumed to follow a
standard geometric Brownian motion, while the value of debtor’s assets in
relation to the debt determines its distance to default (Merton 1974, Leland
1994, Leland and Toft 1996, Collin-Dufresne et al. 2001, Giesecke and We-
ber 2004). In the reduced-form models, defaults are not linked to the debtor’s
capabilities to fulfill its obligations, but are considered the unexpected events
whose probability follows an exogenously specified process for the migration of
default probabilities which are calibrated either to historical or current market
data (Vasicek 1977, Jarrow and Turnbull 1995). Alternative credit risk models
were developed by Credit Suisse and J.P. Morgan (Boston 1997, Gupton et al.
1997). Some of the latest reduced-form models were proposed by Jorion and
Zhang (2007) and Duffie et al. (2009). Furfine (2003) and van Lelyveld and
Liedorp (2006) investigated the interbank market and contagion risk in the
U.S. and the Dutch markets, respectively. In these models a default risk is as-
sociated with various types of continuous processes in a stochastic environment
for which they fail to properly identify the risk threats which originate from
the microstructure of the banking system (Colander et al., 2009). Hence, they
cannot explain the large-size aggregate outcomes that are initiated by events
of negligible sizes (Albert and Barabdsi 2002, Sornette 2009, Acemoglu et al.
2012). This is the fundamental drawback of these early credit-risk models.

Our paper differs from the existing literature in that we develop a network-
based model in which the distance to default for a single bank is estimated
from the bank’s ability to fulfill its credit obligations. This follows an intu-
ition of the structural models in which a bank defaults when the value of its
assets falls below a certain level. In contrast to the previous structural mod-
els, we apply an interaction-based approach. Our paper thus relates to the
growing field of the simulation-based experiments in economics and finance
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that are run on social networks. Haldane and May (2011) use networks to
study contagion in financial markets. Boss et al. (2004) examine the network
topology and stability of the Austrian interbank market. Degryse and Nguyen
(2007) investigate the evolution and determinants of contagion risk in Bel-
gian financial market. Gai and Kapadia (2010) develop an analytical model of
contagion in financial networks with arbitrary structure and explore how the
probability and potential impact of contagion is influenced by aggregate and
idiosyncratic shocks, changes in network structure and asset market liquidity.
Although the probability of a contagion may be low in their model, the ef-
fects, when problems occur, can be extremely widespread. Nier et al. (2007)
simulate financial stability of an artificial financial system and used a random
network. They find a nonlinear relationship between contagion and interbank
market. In addition, they show that contagion is a non-monotonic function of
the banks’ links to other banks, and also that more concentrated banking sys-
tems tend to be more prone to systemic breakdown. Dasgupta (2004) examines
how crossholding of deposits can be a source of contagious breakdowns. Freixas
et al. (2000) examine the contagion potential of single bank defaults. Battiston
et al. (2012) and Beale et al. (2011) examine financial networks in connection
to the level of homogeneity. Cifuentes et al. (2005) explore liquidity risk in a
networked banking system. Leitner (2005) develops a model in which liquid
banks bail out illiquid ones in order to prevent contagion and the collapse of
the entire banking network. Similar to our work is a model of Egloff et al.
(2007) which includes macro- and microstructural interdependencies among
the debtors within a credit portfolio. Our model was extended by Steinbacher
et al. (2014). See Upper (2011) for the recent overview of the credit contagion
literature.

The remainder of the paper is organized as follows. The model is presented
in Chapter 2 and the simulations design in Chapter 3. The results are presented
in Chapter 4 and discussed in Chapter 5. Chapter 6 concludes.

2 The Model
2.1 The Bank

Individual banks are principal constituents of the banking network. They are
represented through the balance sheet (Table 1).

Table 1 Bank balance sheet

Assets Liabilities
Interbank assets Capital

Mortgage loans Interbank liabilities
Equity Debt

Other non-trading assets
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We use a simplified structure of a balance sheet in which total assets A; ; of
bank 4 in time ¢ consist of mortgage loans H;;, portfolio of marketable assets
B, t, non-trading and other assets N; ; and interbank assets 1B ;.

Aiy=Hiy+Biy+Nig+ Y IB], (1)
JEN(9)

I B{t denotes the values of bank 7 holdings of interbank assets by banks
j in time ¢, and the sum of these represents the entire exposure of bank 17
to the banking sector over time. The value of mortgage loans is randomly
selected for each bank. The banks retain the same values of mortgage loans
throughout the simulation runs and network topologies. The values can change
only by the exogenous mortgage shock. Although the category of loans usually
consists of those given to households and businesses, we did not make any
distinction and simply assumed that it is only mortgage loans. Each bank is
assigned a portfolio of marketable assets which consists of 6 stocks from the
DJIA. Banks retain the same portfolio throughout the simulation runs. For this
category, we apply a mark-to-market principle, which means that its dynamics
is provided by the movements in the corresponding stock prices. We use daily
closing prices. Other non-trading assets are included as a residual category
so as to keep the value of each banks total assets the same and comparable
between different network topologies. Initial values of other non-trading assets
are calculated as the difference between the each bank’s initial total assets
and the sum of initial values of the bank’s other assets. This category of assets
usually includes the cash reserve, claims on banks and on customers, lending
commitments, financial investments not assigned to any other balance sheet
item, holdings in companies not accounted for using the equity method and in
jointly controlled entities are reported as financial investments under equity
holdings etc.

For simplicity we assume that the liabilities side of the balance sheet is
confined to the level of the bank capital C; ;. The capital stands as a cushion
to absorb losses, which directly reduce its level for a full amount. According to
the Basle Accord, capital is constituted of the core capital and retained earn-
ings (Tier 1) and the supplementary capital (Tier 2). Supplementary capital
includes undisclosed reserves, revaluation reserves, general provisions/general
loan-loss reserves, hybrid debt capital instruments, and subordinated term
debt. In the model, C;; indicates the value of the Tier 1 capital of bank ¢ in
time ¢. Its initial value for each bank is calculated from the real data of Tier 1
capital ratio and the bank’s total assets, while its dynamics promptly develops
according to the bank’s payoffs I7; ;

City1=Cip+ 1 (2)
2.2 The Network

Now that the bank has been defined, let the banking system consist of a
number of such banks. Banks are represented with a finite set of nodes N' =
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{1,2...,n} and linked to each other with a finite set of links £ = {l1,l2,...,I1},
where I = (i,7) links node i and j.* Links in the network are directed and
weighted, indicating the exposure of j to ¢ with strength given by the weight
W = {w;,wa, ..., wr}. The links go strictly from the creditor to debtor. Hence,
the banks can not be linked to themselves which means that there are no loops
in the networks. An incoming link from bank ¢ to j reflects the exposure of
bank j to bank ¢ and by definition represents an outgoing link from bank j to
i. Each bank can have at most (n — 1) outgoing or incoming links. Such bank
would be linked to every other bank. An isolated bank has no links and can
not initiate contagion. The number of links terminating at particular node 7 is
called the node’s in-degree, while the number of links originating in particular
node i is called the node’s out-degree.

Distinction between the banks in-degrees and out-degrees is very significant
for the risk propagation and, hence, for the stability of the banking system.
In-degree nodes are potential sources of contagion, while out-degree nodes are
recipients of credit events and potential sources of contagion in the subsequent
stages. Banks with high out-degrees make their financial positions very sensi-
tive to operations of other banks though they diversify the risks. On the other
hand, default of a bank with high in-degree affects larger number of banks
from the system and may provoke contagion if defaulted. However, when a
bank defaults, its outgoing links may entail two opposing effects. They may
work as a channel for the shock propagation or as a channel of risk-sharing.
With low levels of diversification, the banks are very vulnerable to events by
the small number of their counterparties. With such a constellation, the prob-
ability that a bank is affected by a default event of an arbitrary bank is smaller
but if it is affected the cost for the bank is bigger. As the level of diversification
increases, the probability that a single bank is affected by the shock increases,
but the entire loss is distributed among many banks. In a complete network
of four banks, Allen and Gale (2000) show that shock is absorbed by all banks
and there is no contagion. Battiston et al. (2012) and Beale et al. (2011) have
argued that individual banks can reduce the probability of a default by diver-
sifying their exposure.

Some other significant node-related concepts from the network theory in-
clude centrality indices (Wasserman and Faust 1994; see also Ballester et al.
2006). They are related to the nodes positions in relation to other nodes. For
instance, closeness centrality presents how close a node is to other nodes. In
the banking network, the banks with the highest closeness centralities can be
quickly infected by default events of other banks and can also quickly infect
many others. The other measure, the betweenness centrality, relates to the
banks presence on paths between other banks that are not directly linked.
Banks with high betweenness centrality indices control the transmission of
credit events in the financial network. As such they can be used to halt con-
tagion and hence stabilize the banking system.

4 TFor an overview of social networks, see Wasserman and Faust (1994) or Jackson (2010).
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Although the centrality measures are compelling for estimating the node’s
importance in the graph theory, there are several reasons why they are very
poor in determining the importance of single banks. The major critique is
directed towards the fact that centrality measures do not properly assess the
market microstructure, especially the magnitude of the links, the banks’ ca-
pacities to absorb losses and the bank’s ability to provoke contagion. Con-
tagion is a deciesive element that determines the severity of an event. Small
exposures may have a weak contagious potential, while a poorly connected
bank could induce large effects if it is heavily exposed to a small number of
potentially important banks and has the ability to collapse them. Generally,
poorly capitalized small banks are much more vulnerable to defaults than the
big and well-capitalized ones. In some cases, the banking system may face a
too-many-to-fail problem (Acharya and Yorulmazer, 2007). Nier et al. (2007)
demonstrate that the bank connectivity exhibits a nonlinear relation to con-
tagion.

To consider for this, we impose an a-criticality index, which measures the
importance of individual banks through the loss their defaults cause to the
financial system. Analogically, the index could also be defined for events, such
as a drop in housing. We say that a bank or an event is a-critical if its default,
or the occurrence in the case of an event, leads to the collapse of a-part of a
financial system.

The index is defined as

Cot — Ch
Co,t

i

Akt = (3)
Cy and C}, represent the levels of total capital over time in a benchmark model
and in the model with an event k. In the paper, an event refers to the drop
in housing by the magnitude of k£ and default of bank 7. The index measures
the net loss of capital (or assets) over time that is due to a shock in relative
terms. It is defined over [0, 1] with o = 1 indicating a default of the entire
banking system. a-criticality index goes beyond the mere centrality indexes
as it includes the micro specifics of individual banks and complexity of the
banking system. Tori et al. (2008), Schweitzer et al. (2009) and Allen and Babus
(2009) argue that the network of major international financial institutions is
strongly interdependent, exhibiting an increasing scale-free characteristic.?

2.3 The default dynamics

Each simulation run starts from an initially specified system state and the
rules of conduct. Banks’ assets and capital levels then develop according to
the changes on the trading part of the banks’ assets, write-offs of the interbank
exposures due to counterparty defaults or by losses on the mortgage due to
the shock. Any change in the value of bank’s assets is immediately reflected

5 Such networks are resilient to the high rates of random failures, but very vulnerable to
targeted attacks to the few of the most important nodes (Albert et al., 2000).
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as the change of its capital. Banks in the model are not allowed to rebalance
their balance sheets nor raise additional capital or be bailed-out.® If troubled
banks were allowed to raise additional capital, there would be no bank defaults
and, consequently, no contagion. For simplicity we assume that deterioration
of banks balance sheet does not change its credit rating. We also assume that
banks do not have information about the status of their counterparties or the
network topologies.

Further, we assume that a bank defaults when C; < 0 and not, as in reality,
when its capital falls below the required Tier 1 ratio. A defaulted bank repays
each of its creditors the recovery rate (RR) proportion of the exposure at
default (EAD). Each creditor loses the loss given default (LGD) proportion
of EAD.” RRs are not endogenous but are simulated for each bank. For each
bank RR is randomly taken from the uniform distribution on an interval 0.3 to
0.6 and is fixed for all repetitions and network topologies. RRs are applied in
the period after a default, while the amount a bank recovers from a defaulted
bank increases its level of non-trading assets NN, ;. To keep things simple, we
do not dissect the debt according to its seniority, although this defines the
settlement priority in the case of a default. For instance, senior debt would be
repaid before the junior debt, while the interbank money market is unsecured
debt. We also do not consider the correlation between the economic downturn
and the recovery rates, although a highly positive correlation between default
rates and the GDP growth and the negative correlation between default rates
and RR have been observed (Shleifer and Vishny 1992; Altman et al. 2005;
Acharya et al. 2007). Shleifer and Vishny (2011) provide a discussion on fire
sales in the perspective of the latest financial crisis.

After introducing RRs into the model, we can redefine Eq. 2 and provide
the capital dynamics for each bank as

Cipr1=Ci + Iy — Z [(1 — RRy) - Isz,t} (4)
JEN(9)|C;<0

Default of bank 7 deteriorates the balance sheet of an adjacent bank for the
(1 — RR) proportion of EAD and leads to a write-down of (1 — RR) - I B}, of
the bank 4’s exposure at bank j. Implicitly we assume that credit events do
not induce a general loss in confidence nor panics or bank runs, and that they
do not affect the capital markets and the banks’ portfolios.

2.4 A shock

The model is tested against an idiosyncratic and a systemic shock. The idiosyn-
cratic shock is represented as a sudden default of either an individual bank or

6 A government that wants to bail out a defaulted bank can either increase RR or provide
the bank required capital. Governments usually do the latter. Rochet and Tirole (1996)
argue that bailouts might stimulate moral hazard.

7 Possible mutual exposures between the banks do not imply debt reconciliation.
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simultaneous defaults of more banks. Generally, banks may default due to the
failed business decisions, malpractice, fraud or any other bank specific event.
In the paper, default events are exogenous and to banks unexpected events.
The systemic shock is represented by a sudden drop in the value of mort-
gage by a certain percent. Systemic shock is different from the idiosyncratic
in that it affects every bank whose assets includes mortgage loans. In our case
this means every bank. In addition to its direct effects, a systemic shock can
also become contagious if it induces bank defaults. Contagion is much more
likely to occur in the case of a systemic shock because the shock itself reduces
the capital of each bank, by which it reduces capabilities of banks to absorb
additional writedowns due to the market risk and the counterparty risk.

3 Simulations

The banking network consists of n = 40 banks. Banks are numbered from 1
to 40 and retain the same number in all simulation runs. We use real data on
the arbitrarily chosen banks’ capital ratio and total assets as our initial data
in t = 0. The data refers to December 31, 2011 and is acquired from the banks
2011 Annual Reports. This data is then used to compute initial values of the
banks capital values (Table 2).
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Fig. 1 Initial values of the banks’ total assets against the banks’ Tier 1 ratios

It is important to note that the structures of the banks’ balance sheets
from our simulation runs do not reflect the actual balance sheets structures of
corresponding banks but are modified accordingly to meet the requirements
of the network topologies, subject to the initial data on the bank capital and
the total assets constraints.

The banks are heterogeneous in size and structure. The sample includes 13
big banks with total assets exceeding $900 bln each. Total assets of 17 banks
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Table 2 Initial data for the banks

Bank Tier 1 Ratio  Assets Tier 1 capital RR

1 12.40 2129.00 264.00 50.05
2 12.30 2265.80  278.70 55.02
3 11.00 1796.00 197.60 40.37
4 11.60 1965.00  227.90 34.80
5 11.00 1251.50  137.70 40.82
6 15.20 1049.20  159.50 46.01
7 9.32 926.77 86.40 56.69
8 11.10 661.80 73.50 35.82
9 16.40 443.00 72.70 44.24
10 12.30 285.40 35.10 43.85
11 23.30 18.70 4.40 38.08
12 11.40 141.70 16.20 48.66
13 21.80 53.00 11.60 35.25
14 7.20 16.45 1.20 45.46
15 10.50 151.00 15.90 39.13
16 9.40 552.70 52.00 33.10
17 10.20 580.80 59.20 39.79
18 9.10 260.00 23.70 30.36
19 8.50 45.70 3.90 49.60
20 10.20 1247.00 127.20 44.11
21 11.60 66.80 7.70 40.92
22 9.70 1731.00 167.90 51.81
23 7.60 412.80 31.40 51.34
24 12.20 2555.00 311.70 32.31
25 13.80 923.20 127.40 46.92
26 15.00 325.30 48.80 56.03
27 18.80 45.20 8.50 39.29
28 11.30 1313.90 148.50 49.95
29 12.50 174.60 21.80 54.77
30 16.68 13.80 2.30 36.80
31 10.90 135.80 14.80 48.74
32 9.10 1124.00 102.30 41.33
33 9.20 205.94 18.90 46.18
34 8.30 361.80 30.00 39.49
35 7.70 135.20 10.40 59.30
36 7.50 92.60 6.90 53.79
37 7.50 120.90 9.10 46.04
38 7.10 68.70 4.90 34.15
39 8.60 223.10 19.20 38.47
40 6.60 81.00 5.30 57.22

range from $100 bln to $700 bln each, while total assets of 10 small banks do
not reach $100 bln per bank. A cumulative initial value of banks total assets is
$25951.16 bln. The smallest banks from the sample have both the lowest and
the highest capital ratios (Figure 1). On the average, the medium-sized and
the largest banks have Tier 1 ratios above 9%. From the sample, seven banks
have initial Tier 1 ratios below 8%. Bank number 40 has the lowest initial Tier
1 ratio of only 6.6%. Some descriptive statistics are reported in Table 3.

All simulation runs are iterated forward in time, using a synchronous up-
date scheme. Time is discrete and defined over ¢t = 1,2, ...,252, which should
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Table 3 Descriptive statistics of banks’ initial positions

Assets Capital  Tier 1 ratio

Mean 648.78 73.66 11.40
Median 305.35 30.70 10.95
Max 2,555.00 311.70 23.30
Min 13.80 1.20 6.60
Std. Dev  724.06 86.08 3.82
Skewness  1.17 1.30 1.39
Kurtosis 3.19 3.65 4.81
Obs. 40 40 40

resemble one business year. To get the effect of a shock, we first run the model
without a shock to get baseline results and then subtract the baseline results
from the shock runs.
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Fig. 2 The model is simulated on a small world network, complete network and two versions
of a cutpoint network. In the first version of the cutpoint network node 3 is pointed to by
node 1, in the second it is pointed to by node 2, while all other links are the same.

The model is run on two versions of a complex network, small world-alike
network and a complete network. A complex network consists of two islands
that are connected to each other with a cutpoint on each side (Figure 2). A
node is a cutpoint if its elimination splits the network on more unconnected
sub-networks. In a network, cutpoints are important not only because they
retain connectivity, but foremost because of their abilities to transmit shocks
from a distressed island to other islands which they connect. Cutpoints have
the highest betweenness centralities and thus have a potential to become the
most important nodes within the network. Banks number 1 and 20 that are
cutpoints in our experiment. The two cutpoint banks are linked in both direc-
tions and the links are called bridges. In the first version of the model node
3 was pointed to by node 1, in the second it is pointed to by node 2 (Figure
2c). All other links are the same in both versions and are omitted in the two
sub-figures. By using two versions of a cutpoint network we examine the effects
of a negligible change in the network structure to the financial system. In a
small world network each bank is linked to two the nearest banks on each side,
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while each link is rewired with a probability of p = 0.1 and preserved with
probability (1 — p) (Watts and Strogatz, 1998). We depart from the original
small world network structure which is by definition undirected, in that we
build the undirected network first and then transform the undirected links
into directed links in both directions, although the weights are not of equal
size. In a complete network, each bank is linked to all other banks and thus
has a maximum number of (n — 1) links. In a complete network of four banks,
Allen and Gale (2000) demonstrate that a shock is absorbed by all banks and
there is no contagion. The complete network from our paper could be referred
to as a weighted complete network, because banks vary in size and the balance
sheet structures, and hence, have asymmetric exposures to each other.

We first simulate the model against a systemic event and then against an
idiosyncratic. A systemic event is characterized by a drop in the mortgage
values by a specified percent. We start with a drop in the mortgage value of
1%, while the magnitude progresses at an increment of a percentage point
up to the magnitude of 50%. An idiosyncratic event is characterized by a
default of a single bank and of simultaneous defaults of three random banks.
In the latter case, we do 100 independent repetitions, designating 100 different
combinations of three defaulted banks. In each of the network topologies the
same three banks default in a given repetition. All shocks are applied in ¢ = 10.

4 Results

There is no general answer which of the four network topologies is more re-
silient to the systemic event, because the networks respond differently for
different magnitudes (Figure 3).

Shocks of the magnitude below 11% do not induce bank defaults, which
means that the effects to the system are proportional to the shock magnitude
and the level of mortgage loans within the banks. Up to this magnitude, all
networks behave the same.

From the perspective of the minimum magnitude which is needed to col-
lapse the entire network, the small world network performs the worst. It de-
faults from the shock of 35% on and exhibits the largest a-criticality index
from the shock of 26% on (Figure 3c). However, the network is much more
resilient to the shocks of smaller magnitudes and by far outperforms the other
three networks for shocks in the range of 13-19%. For instance, a 19% shock
is considered a 0.62-critical event in terms of the banking capital in the small
world network and 0.78 / 0.78 / 0.80-critical in the cutpoint A / B / and
complete network.

The cutpoint B network defaults from the shock of 44% on, although it
slightly outperforms other networks for the shocks in the range of 30-43%
(Figure 3b). The complete network defaults from a shock of 49% on, while
it outperforms the others for the shocks in the range of 21-29% (Figure 3d).
Cutpoint A network is the only network that did not fully default for any
shock magnitude with the shock of 50% being considered a 0.94-critical event
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Fig. 3 a-criticality indices for different percentage of a mortgage shock in ¢t = 252. Doted
line shows the values in terms of defaulted assets and the solid line in terms of defaulted
capital.

in terms of defaulted assets and 0.98-critical event in terms of defaulted capital
(Figure 3a). The only bank which does not default is bank 3, which is the fifth
largest from the sample with initial assets of $1796 bln and Tier 1 capital ratio
of 11 percent. Interestingly, the network outperforms the other three networks
only for the last two shock magnitudes when they all default. However, for the
shock magnitudes that do not exceed 17%, both cutpoint networks perform
substantially poorer than the rest.

The figures exhibit some substantial discrete jumps in a-criticality values,
indicating a nonlinear nature in the shock consequences. In a complete net-
work, 12% shock sinks only 2 banks and is referred to a 0.05-critical event
in terms of banking assets, while a shock of 13% sinks 19 banks, hence be-
ing referred a 0.23-critical event in terms of banking assets. The small world
network exhibits a similar jump for the shock of 20%, while the two cutpoint
networks for the shock of 21%. In each of the cutpoint networks, a shock by
the additional percent sinks 37 banks, 12 more than the shock of 20%. Clearly,
when the critical point is reached, a small additional increase in the shock level
provokes contagion which may induce extremely large additional consequences.

In Figure 4, we use a heat-map visualization to present the cumulative
number of defaulted banks for different shock magnitudes. In all frameworks,
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Fig. 4 The number of defaulted banks over time for different magnitudes of a mortgage
shock. The color palette propagates from blue to white which signifies a default of all 40
banks. The shock propagates at an increment of a percentage point up to the magnitude of
50%.

bank 40 is the first that defaults due to the combination of a mortgage shock
of 11% that reflects a systemic event and the developments on the markets.
Its default induces contagion in three frameworks. In the small world network,
the bank sinks bank 39, whose default collapses bank 38. In the two cutpoint
networks, the collapse of 40 induces 7 additional bankruptcies. Bank 39 is
the first counterparty bank that collapses, while its default induces additional
defaults of banks 33 and 34, both banks to which it is linked which makes risk-
sharing too weak against the contagion. The contagion propagates to banks
23 and 31 and from these two banks to banks 29 and 35.

Default of the first bank is always induced by the systemic event. The banks
that default first are those with the lowest capital ratio and whose significant
portion of assets is comprised of the types that were hit by the shock. Then,
subsequent defaults are induced by the interplay of many factors. The shock
deteriorates the banks capital levels, which may, together with the additional
writedowns due to the counterparty risk and the unfavorable developments on
the equity markets, initiate defaults of counterparty banks. This increases the
risk of contagion. The contagious dynamics is positively correlated to the shock
magnitude but is nonlinear in nature. In addition, the larger the shock, the less
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time the counterparty banks have to avoid the consequences. A shock of 50%
immediately collapses 24 banks in each of the four network topologies, while
these defaulted banks collapse 36 / 36 / 38 / 37 banks in of the cutpoint A
/ B/ complete / small world network, respectively. Although the subsequent
defaults are highly concentrated within the very short post-default periods,
they can be present over the entire time span. In a small world network, the
last default occurs in ¢ = 195.

Table 4 shows statistical results on a-criticality indices after single bank
defaults. The number of observations denotes the number of banks.

Table 4 «-criticality index after single bank defaults

Cutpoint A Cutpoint B Complete Small World
Capital  Assets Capital Assets Capital Assets Capital Assets
Mean 5.17 3.46 5.16 3.46 4.55 2.73 4.76 3.11
Median 2.73 1.92 2.73 1.92 2.05 1.25 2.11 1.28
Max 20.47 15.77 20.47 15.77 19.85 10.89 20.60 12.74
Min 0.10 0.06 0.10 0.06 0.09 0.08 0.10 0.06
Std. Dev 5.60 3.87 5.58 3.86 5.21 3.04 5.49 3.50
Skewness 1.04 1.34 1.04 1.34 1.27 1.16 1.35 1.19
Kurtosis 2.94 4.25 2.96 4.25 3.71 3.18 3.97 3.06
Obs. 40 40 40 40 40 40 40 40

Single bank defaults are at most 0.2-critical events in terms of defaulted
capital and 0.16-critical events in termsn of defaulted assets.

A complete network is the only network which does not induce contagion
for any of the single bank defaults, even though a default of bank 24 induces
only slightly smaller aggregate loss in terms of defaulted capital than it does in
other three network topologies. Bank 24 is the largest within the system and
has very small RR, though risk-sharing prevails in a complete network. The
rule according to which a defaulted bank sinks a counterparty bank is that
the capital of the latter is lower than the loss it suffers on its exposure at the
first, hence C;; < (RR; - IB},). In a complete network, the entire destructive
potential of each defaulted bank is distributed among all banks, for which even
the smallest ones are capable of absorbing the losses on the exposure to the
biggest banks. In other three network topologies the losses are not wide spread
but are concentrated to the few of the adjacent banks. For instance, in each of
the cutpoint networks, bank 24 is linked to six banks and its default directly
sinks 4 of them. From these, a default of bank 34 substantially reduced capital
of banks 23 and 31, which default on the poor market developments later on.
Default of bank 23 sinks bank 35, while default of bank 31 reduces the capital
of bank 29 which defaults on the poor market development shortly after. These
last four defaulted banks ar<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>