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1 Introduction

Heveas ApS is a small Danish company with a range of innovative products for the home

and office. Company webpage: www.heveas.com.

1.1 Problem description

Heveas asked the study group to explore the operating and design characteristics for a

small (cm scale) device that, when inserted into the vertical (often turbulent) flow from a

water mains faucet, can generate a smaller, vertical jet (as in a drinking fountain). See the

figure:

Figure 2: The basic principle of the device. The photo is a still from a movie supplied to
us by Heveas.

1.2 Design requirements

Several things are crucial to make this device function in a satisfactory manner:

• The exit jet should ideally be a smooth laminar jet for easy drinking. Enough flux

must come through so that one can drink quickly (annoying when you have to wait

10 seconds to fill in your mouth with water).

• Robustness: Operating the device should not require delicate ‘tuning’ of directions

and positions when inserted into the faucet stream. Also, the entry flow should not

create a huge amount of splashing.
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1.3 Questions:

Specific questions for the group to consider are:

• What is the basic fluid mechanical principles governing this device?

• Does the height and flux of the output fountain depend in a simple way the properties

of the incoming water flux?

• Is there an optimal duct shape? (what should be the purpose of the duct)?

• What is the optimal material? one that is rough, so that we lose energy from friction

(if theory is go from turbulent to laminar), or rather one that is very smooth and

almost no energy losses?

• What would be the effect of adding baffles into the internal chamber? reduction of

the effective lengthscale (from increase of wetted perimeter), i.e. making flow have

lower Reynolds number, or actually helping pressure chamber stay ‘pressurised’?

1.4 Background physics

Here we assemble a few key relations, formulae, and definitions regarding fluids, drawn from

a number of sources, e.g., Cimbala and Cengel [1] (book with online sample chapter, with

e.g. the garden hose example) or White [18], Turbulent to laminar transition: [13], Friction

effects: classic paper [11], and [9, 13].

Hydrostatic pressure. A fluid of density ρ at rest in a vessel in a gravitational field g

has a (hydrostatic) pressure phyd which varies with depth z as

phyd(z) = ρgz

Bernouilli’s Principle.Along each streamline in a flow with no free boundaries, the fol-

lowing quantity is constant (Bernouilli’s Principle):

p

ρg
+ z +

v2

2g
= constant

Reynolds number. For a flow of a liquid of density ρ, viscosity µ, flowing in a duct with

characteristic spatial dimension L and flowing with characteristic velocity U , the dimen-

sionless Reynolds number is:

R =
ρUL

µ
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The Reynolds number measures in some sense for the flow the ratio between inertial forces

and viscious forces. If the Reynolds number is high (≈ 4 × 103), the fluid flow becomes

turbulent. If the Reynolds flow is much lower, the flow will be laminar.

Froude Number. The Froude number F is a dimensionless measure of the free surface

flow fluid velocity U , relative to the surface wave velocity
√
gh:

F =
U√
gh

where g is the acceleration of gravity, and h is the flow depth.

Supercritical, Subcritical. When the fluid has a Froude number which is high (>> 1),

the flow is laminar, whereas a small Froude number indicates turbulent free surface flow.

A famous example of this is the so-called hydraulic jump, where a fast laminar flow slows

down and suddenly makes a transition to a slower, deeper, turbulent flow.[reference!]

2 Mathematical models

During the study group we have considered two different approaches to the problem and

studied two models, the kinetic model (Section 3) and the pressure model (Section 4).

The former assumes a steady-state flow at nearly atmospheric pressure, so that the device

essentially redirects the flow from flowing downwards to upwards. The second model, the

pressure model, assumes that the incoming water through the inlet creates a water-jet

effect, impacting the reservoir of water already inside the fountain and pressurising it (like

a piston). In the next sections we describe each of these two models in detail, and conclude

that the second model may provide a better solution to match our design requirements for

the device.

3 Kinematic model

One possible design for the fountain is to consider a “curved pipe” such that it takes a

continuous (steady) flow from the water source (e.g. the tap) and changes its direction

and modifies its properties such that “it is easier to drink from it”. Recalling the design

requirements, two important properties of the outlet flow are that: (i) it is a stable non-

turbulent stream (that is, constant flux laminar flow), and (ii) it is high enough so that we

do not have to bend in excess. Regarding the entry point, we would like it to be “splash-free”

even thought it is likely that the inlet flow is turbulent.
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It is clear from such requirements that there must be a compromise between turning the

flow from turbulent to laminar (thus making it diminish its energy) and making the fountain

jet as high as possible. In this section we examine this trade-off with a kinematic model.

One mode of kinematic operation is to have a free-surface flow throughout; thus the flow

never fills the duct completely (even at the end). The analysis of this mode is simple:

The velocity of the flow is simply turned around, with the forces from the duct nearly

perpendicular to the streamlines (thus doing no work), and the conditions at the exit with

respect to pressure and height z are the same. Thus, with a small deduction due to frictional

losses in the duct, we expect the jet to go approximatly to the height of the faucet head

(certainly no higher). This may be sufficient. But this mode will waste a lot of water, since

the intake must be so small as not to fill the smaller outlet, and the mode is not robust,

since a small displacement of the inlet will fill the duct completely, and there is a transition

to filled-duct kinematic flow.

TransitionEntry Acceleration

Figure 3: Three kinematic zones.

In the filled-duct kinematic flow we assume that a slight overpressure is generated by the

freely falling water being decelerated. By Bernoulli’s principle, if the velocity decreases by

∆v, the pressure goes up by ∆p ≈ ρ∆v. This pressure will then drive a flow through the

channel. If the flow remains turbulent, the conditions at exit are as those at the entry, but

again with frictional losses, thus the turbulent filled-duct flow is not a good device operation

either. This is the mode seen in figure ??.
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Finally, one may ask: what if the device manages a transition from turbulent flow at the

entry to laminar flow at the exit. This is the most interesting case. To explore this, we define

three zones as the water travels from inlet to outlet: an entry or funnel, a transition zone

(where the flow is laminarised), and an acceleration zone (where the goal is to accelerate

the flow by reducing the pipe cross-section). In Figure 3 we show a sketch of a possible

design indicating these three zones.

3.1 Entry or funnel

The purpose of the entry zone or funnel is to collect as much water as possible for the inlet

jet, and turn it into the pipe region. This must be done in an efficient way (careful design

of the entry geometry) so that the least amount of energy is lost in this transition. Typical

values of flux from a tap can range between 3 to 18 litres per minute (50-100 ml per second)

[16, 17].

The typical Reynolds number at entry is

Re =
dU

ν
(1)

with ν ≈ 10−6 m2/s as the kinematic viscosity of water. The Reynolds number of the tap

water jet flow can vary widely, taking values from 200 to order 105 [4, 5, 15]. Thus the must

take turbulent flow at entry as a possibility (this is in accordance with experience; one can

turn the faucet to low, and get laminar flow, and to high, and get turbulent flow).

3.2 Transition zone

The goal of the transition zone is to laminarise the flow, that is, turn it from turbulent

to laminar, so that we can have a clean splash-free fountain at the outlet. The premise

here is to turn turn the flow laminar but only just, so that it preserves as much kinetic

energy as possible. A possible way to do this is to work out the desired Reynolds number

for the laminar flow, compare it with the Reynolds number of the turbulent flow at the

entry point, and work out how much kinetic energy must be dissipated. Obviously, it is not

possible to know with certainty the critical Reynolds number for the transition to occur,

and experiments with the specific set-up should be carried out.

In order to make some progress, let’s be conservative and suppose that when Re = 1200 our

flow is laminar, that is, this is our target Reynolds number. The Reynolds number depends

on the flow velocity and the characteristic lengthscale. For a perfectly circular and smooth
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pipe, the latter is identical to the pipe diameter d. A generalised definition of the Reynolds

number to non-circular pipes is

Re =
dHU

ν
, with dH =

4A

C
, (2)

where A is the cross-sectional area and C is the wetted perimeter. The quantity dH is known

as the hydraulic diameter, and can be thought of as an effective diameter. For a circular

smooth pipe, 4A/C ≡ d, so that Re reduces to the conventional Reynolds number.

From (2) we see an easy way to reduce the Reynolds number (thus laminarising the flow)

while keeping the velocity U as high as possible: to reduce the hydraulic diameter dH .

There are two obvious ways to do so:

• Introduce baffles in the pipe, thus increasing the wetted perimeter with a negligible

reduction in the cross-section.

• Increase the roughness of the pipe surface.

Both of these increase the wetted perimeter while keeping essentially the area the same as

for a smooth pipe of the same diameter (see Figure 4).

Figure 4: Two design alternatives to reduce the Reynolds number of the flow: baffles (left)
and surface roughness (right).

Now we would like to find out the friction losses of the flow in a pipe given a surface

roughness and a Reynolds number. For that there exists an experimental chart known as

the Moody diagram [11], which gives us the Darcy-Weisback friction factor λ given a relative

roughness (defined as the ration of the mean height of roughness of the pipe to the pipe

diameter) and Reynolds number [? ]. For laminar flows (roughly Re < 2000), the roughness

is negligible and the friction factor can be calculated using λ = 64/Re [6]. For example,
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in [15] they presnet experimental results of the friction factor λ as a function of Re in the

whole range of possible tap water Reynolds numbers (and a highly water-repellent wall, so

that surface roughness can be neglected). The transition from laminar to turbulent flow is

clear in their results (see Figure 5(a) in [15]).

3.3 Accelerator

The accelerator at the exit of the device should speed up the flux whilst preserving as much

kinetic energy as possible. Therefore, we suppose the walls of the device are very smooth

and that no energy is lost by friction. Then the acceleration of the flow is achieved by a

gradual reduction of the cross-sectional area of the pipe, so that by conservation of mass,

V1 =
VtAt

A1
,

where Vt and At are the velocity and the cross area at the end of the transition zone, and

V1 and A1 are the velocity and area at the exit point, with A1 < At.

If we set the design fountain height to be h = 10 cm, then ignoring any friction with air the

velocity at the exit point should be

V1 =
√

2gh ≈ 1.4 m/s.

Now, the standard theory tells us that in general the critical Reynolds number based on

the tube diameter above which the flow is turbulent and below which the flow is laminar is

Recrit = 2300 [10]. Say that to be conservative we would like a Reynolds number of 2000

for a clean water jet at the exit. This implies that the pipe diameter at the end of the

accelerator should be d1 = 1.4 mm, which is not a very reasonable number...

4 Pressure model

In this section, we examine an alternative model based on the “water-ballon effect”. That

is, can we build a device capable of sustaining a pressurised compartment due to the impact

from the water jet? If so, is this strategy better at achieving a higher fountain height? A

sketch of such device is shown in Figure 5.

First of all, suppose that we had a ballon filled with incompressible flow. Then if pressure

is applied over some area of this ballon, because of incompressibility, the pressure will be

communicated to the entire chamber. Next imagine that we do a very small hole on the
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Figure 5: Pressure model geometry. The cavity is filled with water, and the incoming jet pushes
on this cavity, creating a pressure, which in turn causes the fountain out of the small exit hole.

ballon’s surface, open to the outside, and assume it is small enough so that it only alters the

pressure distribution locally. If we ignore the surface tension effects as well as the friction

near the exit, and assume a steady flow leaving the ballon, we can use the Bernoulli equation

to estimate the height of the water fountain. We know that

P

ρg
+
V 2

2g
+ z = constant. (3)

We apply it between the point inside the ballon next to the hole, z = 0, and the point at

which the water reaches its maximum height, z = h. Using that the velocity inside the

ballon is relatively low (ignore local effects near hole), we find that

h =
P

ρg
, (4)

where P is the pressure (above atmospheric) inside the chamber.

Add something about the Dimensional analysis? That is, compromise in size: larger devise

(less splashing?) but then hydrostatic pressure and viscous forces/friction may overcome

jet effect.

4.1 Input flux

Critical to the effective functioning of the device is the input flux and the input velocity,

noting that there will be substantial loss of volume at the entry point. Practical experiments
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show that if the input flux is too low then the device simply will not operate. There are a

number of reasons for this. They include: turbulent dissipation, friction loss, air entrainment

and the resistance of surface tension [8]. All of these losses are typically associated with

sub-critical flow. If the input velocity is V1 and the device diameter is D1, then an estimate

for the Froude Number Fr is given by

Fr =
V1√
gD1

.

Sub-critical flow occurs if Fr < 1 so that V1 <
√
gD1. If we take D1 = 1 cm then this gives

V1 < 0.31 m/s. This gives an estimate for the lowest speed at which the device is likely to

function, although this may be a lower estimate as we have not considered the effects of

surface tension or air entrainment fully.

A typical flow rate from a tap (and which we have used in experiment) is 1 m/s.1 We

denote the velocity from the tap by V0. Then if the device is positioned at a distance h0

from the tap, the water velocity at the pocket entry is V1 =
√

V 2
0 + 2gh0. Taking h0 = 5

cm and V0 =, we then have V1 = 1.4 m/s, which gives a value of Fr = 4.5. Interestingly

this value is on the transition between steady and oscillating flows, so an input velocity of

V0 > 1 m/s or a larger distance h0 might be best for smooth operation of the device.

4.2 Effect of water jet in the chamber

The water jet will generate a pressure in the liquid on impact, an effect known as the water-

hammer effect [2]. This effect has been investigated widely in the context of pressure waves

propagating in pipes, which can be a cause of major problems from noise and vibration to

pipe collapse. In the first moments after impact, there appears the so-called water-hammer

pressure, which only lasts for the short period that it takes for the release wave to be

generated [12]. The relevant pressure for us here is the stagnation pressure

Pjet =
1

2
ρv2jet. (5)

This can be understood as follows: when the moving column of water is suddenly arrested by

a fixed water surface, its kinetic energy (due to a velocity vjet) is transferred into potential

energy. (This is assuming that the static fluid is purely incompressible. If compressibility

was taken into account, there would be an extra factor in (5)).

1This number came from the value of 12 l/minute found on the internet and assuming that the tap has
area 2 cm2. Reference [17] provides a U.S. specification of flow rate of lavatory faucets between 0.8 and 1.5
gallons per minute (gpm), that is, between 3.0 and 5.7 l/min. In Australia, typical taps discharge 15 to 18
litres per minute [16].
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4.3 Size of the exit hole

The effectiveness of the device, in particular the shape and size of the fountain, depends

upon the size of the exit hole. We assume that the hole is on the top of the device and it

has a radius r2 and an area A2. In this section we will consider the optimal size of the exit

hole.

If the device was flux driven then by flux conservation the exit velocity of the fountain is

inversely proportional to A2 and hence by energy considerations, the fountain height should

be proportional to A−2
2 . This is certainly not what is observed in practice. In contrast, the

model described earlier assumes that the fountain is pressure driven with a pressure P close

to the exit hole. In this case, the height h and exit velocity u of the fountain are given by

h =
P

ρg
, V2 =

√

2P

ρ
. (6)

Observe that both h and V2 are independent of the hole size. In practice this is not quite

what is observed. If the size of the hole is too small then the effects of the back pressure

constricting the flow, combined with surface tension and viscosity effects act to reduce the

exit flow to a negligible amount. In contrast, if the exit hole is too large then the pressure

in the device reduces, and friction and turbulent dissipation effects also become important.

Our intuition is that both h and u will gradually reduce as A2 increases (see Figure 12

for the numerical results of h versus exit hole size in a cartoon model). This is in good

agreement with our lab experiment. From experiments conducted during the Study Group

this would seem to be given when r2 ≈ 1mm.

There are various other considerations that will affect the choice of the size of the exit hole:

• Regularity of the fountain: Smaller values of r2 lead to laminar flow and a more regular

(and higher) fountain. As r2 is increased the fountain becomes more turbulent and is

more likely to break up in the air. This makes it harder to rinse your mouth.

• Exit flux: Larger values of r2 give a greater exit flux. This may be desirable for the

optimum rinse (see Figure 12 in the next subsection).

• Splashing: The larger the exit flux, the smaller the back flux at the entry of the device.

Thus devices with smaller holes will lead to much greater splashing and may be less

pleasant to use.

These considerations indicate that it is worth experimenting with the exit hole size.
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4.4 Comsol analysis of the pressure model

In order to test the validity of the pressure model, in this section we consider a much

simpler two-dimensional toy model consisting of a circle with two openings. The disk

is filled with water (assumed to be purely incompressible) whose motion is described

by the Navier-Stokes equations. On the closed walls of the circle, we impose a slip

condition (that is, there are no viscous effects at the walls so that no boundary layer

develops. Otherwise could also impose a no-slip boundary condition, so that the

fluid doesn’t move at the wall). At the inlet, the boundary condition must represent

the effect the water jet has to the bulk fluid already in the device. We consider

two alternative conditions, either prescribing the pressure at the entry (pressure from

the jet impact), or a normal velocity condition (assuming that at the boundary the

velocity is such of the jet - before the slowing down due to the impact with “still”

fluid). At the outlet, we prescribe the open boundary imposing atmospheric pressure

and no viscous stress. The geometry of the toy model is shown in Figure 6.

V2, h?
Vjet, Pjet

θout
θin

Figure 6: Geometry of the two-dimensional model of the pressure fountain. The inlet has
an angle of θin and the outlet of θout.

Figure 7: Solution for θin = and θout =. (a) Velocity, (b) Velocity field streamlines, (c)
Pressure.
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We use the Fluid Mechanics package in Comsol Multiphysics to solve the steady-state

problem. In Figure 8 we show results with θin = and θout = with a pressure condition

at the inlet, Pin = Pjet. The plots show the distribution of velocities in the disk,

the streamlines of the velocity field (which start at the inlet), and the distribution of

pressures.

Figure 8: Solution for θin = and θout = with a pressure condition at the inlet, Pin = Pjet.
(a) Velocity, (b) Velocity field streamlines, (c) Pressure.

In Figure 9 we show the same results as in Figure 8 but for the outlet half the arc

length, θout =.

Figure 9: Solution for θin = and θout = with a pressure condition at the inlet, Pin = Pjet (the
outlet is half the size of that shown in Figure 8). (a) Velocity, (b) Velocity field streamlines,
(c) Pressure.

In Figure 10 we show the velocity distribution in the case where instead of prescribing

the pressure at the inlet, we impose a value for the normal velocity.

In the next two figures we examine the effect of changing the outlet hole size on the

fountain height and flux. For the simulations we choose a ball of radius 1 (nondimen-

sional) fixed and inlet hole size θin = 15◦. We vary the outlet hole size r2 = θoutπ/180

for θout = 1, 2, . . . 11◦ and measure the normal outlet flow speed V2, the outlet flux

q2 = V2r2 and the fountain height h. We find that the outlet velocity is maximal for

r2 ≈ 0.15 (corresponding to θout = 7◦ ≈ θin/2), see figure 11. It is also for this ratio

on outlet to inlet hole sizes that the maximal flux and fountain height are achieved,
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Figure 10: Solution for θin = and θout = with a normal velocity condition at the inlet,
u · n = Ujet. Velocity distribution.

see Figure 12. Therefore, there is an “optimal” value of r2 giving the largest fountain

exit height.

Figure 11: Numerical results for a device with θin = 15◦ and θout = 1, 2, . . . , 11◦ and
nondimensional ball radius 1. Outlet normal velocity v2 as a function of the exit hole size
r2 = θoutπ/180.

5 Experiments

5.1 Lab experiments

Laboratory experiments have been carried out continuously throughout the work with

the fountain in order to increase our intuition of the different phenomena at work and

to test the various model predictions.

The typical experiments took a flexible plastic tube, with a hole cut at one end to

allow for entry of water from the tap. The end of the tube was then constricted to

give a smaller exit hole. A flux of water from the tap was directed into the tube and
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Figure 12: Numerical results for a device with θin = 15◦ and θout = 1, 2, . . . , 11◦ and
nondimensional ball radius 1. Left: Output flux qout = v2r2, where v2 is the average
normal flow velocity on the outlet. Right: fountain height h as a function of exit hole size
r2 = θoutπ/180.

we observed both the fountain height at exit and also the degree of splashing at the

exit. Experimental variables that we could control were (i) the rate of flow of water

from the tap, (ii) the distance of the device from the tap, (iii) the size of the exit hole,

(iv) the size and shape of the entrance hole, (v) the length of the device. The flow

rate from the tap could be increased from zero to about 1 m/s.

First experiments confirmed that the distance from the faucet to the device has a

substantial impact on the height of the water jet produced. This is consistent with

the pressure impulse model. A reasonable estimate of the normal height from faucet

to device was determined to be 10 cm, which - combined with looking up standard flow

out of modern water faucets - gave us the entry velocities into the device of 1.5 − 2.5

m/s.

We have experimented with a basic shape of the device as being a straight piece of

pipe. In this case where entry and exit hole are the same size, there is a low amount of

splash from the entry, but no significant vertical jet can be produced. Here, splash is

to be understood as water exiting from the entry point or not entering at all, spreading

out from the entry at high velocities. This led us to investigate the impact of reducing

the exit hole. Our experiments showed that a small exit produces a laminar jet but

more splashing at the entry, whereas larger exit holes produce the opposite, that

is, a turbulent exit jet but lower amounts of splash. Furthermore, these experiments

suggest that splashing is a significant issue to consider when using the pressure model,

since in this case there is always more water coming from the faucet, than can exit the

device. Also, if the size of the exit hole is not too big it does not have a big impact
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on the height of the water jet.

The basic shapes we tested also seemed to indicate that making the entry walls as

sharp as possible might reduce splashing. The basic tube device was tested under a

number of different entry flow conditions, showing that it can be fairly easy to produce

a reasonable jet when using a steady laminar flow. When the flow from the tap is

more turbulent, the water jets produced are unsteady, changing height and direction

and splashing also gets worse. This only goes to confirm that robustness of the device

is a big issue.

Do we have any photos/movies of experiments we can put in the report?

5.2 Comsol simulations

Adnan Balci and Grzegorz Krzyzanowski.

Three dimensional model of flow through a pipe. Include plots of results, as well as

model solved, assumptions on boundary conditions, etc.

5.3 Device prototype

The project of the fountain was based on a torus. It is easy to make some modifications

of the shape of a model. The first function describes the radius of cross-section. The

second function presents the radius of curvature. It is a function of angle. Two

examples are shown in Figure 13. It is available to adjust input and output e.g. from

circular to ellipsis. All cross-sections perpendicular to the curve are circulars. It is

also possible to modify the coarseness of material which is used to make the fountain.

The MATLAB code is included in B. The function surf2stl.m was downloaded from

Matlab Central. The .stl format is crucial to 3D printing.

3D printing relies on putting a special material (for instant Acrylonitrile Butadiene

Styrene) layer after layer. It is a plastic which has a lot of applications in industry

e.g. to make the Lego blocks. Printing of this model (about 5cm long) lasts around

two hours. After the whole process, the product must be brought under pickling. A

picture of the 3D printer we have used in shown in Figure 14.

6 Conclusions and Future work/directions

– Need to be careful when designing a device under the assumption of flux conser-

vation, since as we have seen in experiments there is a lot splashing at the entry

point.
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Figure 13: Design examples: linear (first), parabolic (second) and cubic (third).

– The height is less affected by small changes in the size of the exit hole in the

pressure model.

– Overall a more stable jet in the pressure model.

– Assumptions in the pressure model seems reasonable.

– The angle of the incoming flow can lead to a significant energy loss.

A Optimal pipe shape

Adnan Balci and Grzegorz Krzyzanowski

In this project, the steady and incompressible newtonian fluid has been considered.

With the density ρ and viscosity µ, we have the N.S.E.

ρu.∇u = −∇p+ µ∇2u + ρg (7)
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Figure 14: Picture of the 3D printer in the Mads Clausen Institute in Sønderborg.
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Figure 15: Shape of the project

with the continiuity equation

div(u) = 0 (8)

where g is the gravity, u = (u, v) is the fluid velocity and p is pressure. Assume that

the interface is smooth, we can write f(x) = kx2 and g(x) = mk(x− x0−s
2 )2 + t where

a is the parameter and m, t > 0 are constants in the region [−x0, x0].
A stream function ψ exists from the continuity equation such that the streamlines are

found from

ẋ = u =
∂ψ

∂y
, ẏ = v = −∂ψ

∂x
(9)

To obtain local information of the flow closed to a given point that is taken as the

origin, ψ is expanded in a Taylor series

ψ =

∞
∑

i+j=0

ai,jx
iyj (10)

We need to the following three conditions:

(a) the kinematic boundary condition at the interface is that the velocity field must

be parallel to the interface,that is, u.n = 0. Since n = (−f(x)
′

,1)√
(f(x)′ )2+1

we can say

−f ′

(x)
∂ψ

∂y
=
∂ψ

∂x
(11)
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insert the expansion (3) and (4) into (5) yields

a1,0 = 0, a2,0 = ka0,1, a2,1 = 2ka0,2,

a3,0 =
2ka1,1

3
, a2,2 = 3ka0,3, a3,1 =

4ka1,2
3

,

a4,0 =
ka2,1

2
, a2,3 = 4ka0,4, a3,2 = 2ka1,3, a4,1 = ka2,2,

a5,0 =
2ka3,1

5

(12)

and our stream function looks like

ψ = a0,1y − ka0,1x
2 + a1,1xy + a0,2y

2 − 2/3 ka1,1x
3 − 2 ka0,2x

2y

+ a1,2xy
2 + a0,3y

3 + k2a0,2x
4 − 4/3 ka1,2x

3y − 3 ka0,3x
2y2

+ a1,3xy
3 + a0,4y

4 +
8

15
k2a1,2x

5 + 3 k2a0,3x
4y − 2 ka1,3x

3y2

− 4 ka0,4x
2y3 + a1,4xy

4 + a0,5y
5

(13)

(b) At the interface, surface tension contributes to the stress by, that is,

(n.σ).t = 0 (14)

now the boundary condition can be expressed in terms of ψ as

−2µf
′

(x)(
∂2ψ

∂x∂y
+ µ

(

∂2ψ

∂y2
− ∂2ψ

∂x2

)

(1 − f
′

(x)2) = 0 (15)

where σ = −pI+[∇u+(∇u)T ] is the stress tensor of the liquid, n is the normal vector

and t is the tangent vector to the free surface. Insert the interface into (7) and (9)

we have again some relations between the coefficients therefore the stream function

reads

ψ = a0,1y + ka0,1x
2 + a1,1xy + ka0,1y

2 +
2

3
ka1,1x

3 + 2 k2a0,1x
2y

+ 4 ka1,1xy
2 + 2/3 k2a0,1y

3 + k3x4a0,1 +
16

3
k2a1,1x

3y

+ 2 k3a0,1x
2y2 +

32

3
k2a1,1xy

3 +
1

3
k3a0,1y

4

+
32

15
k3x5a1,1 + 2 k4a0,1x

4y +
64

3
k3a1,1x

3y2

+
4

3
k4a0,1x

2y3 +
64

3
k3a1,1xy

4 +
2

15
k4a0,1y

5

(16)

and the last boundary condition is

(c) the normal stress condition

(n.σ).n =
T

R
(17)
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where R = (1+f
′

(x))
3

2

f
′′
(x)

is the radius of curvature of the interface at (x, f(x)) and T is

the surface tension, constant over the entire free surface. We can write the equation

(11) as the following:

− p(1 + f
′

(x)2) + 2µf
′

(x)2
∂2ψ

∂x∂y
− 2µ

∂2ψ

∂x∂y

− 2µf
′

(x)

(

∂2ψ

∂y2
− ∂2ψ

∂x2

)

=
f

′′

(x)T
√

1 + f ′(x)2
.

(18)

now the pressure coefficients must be determined. Let

p(x) =
∞
∑

i+j=0

pi,jx
iyj . (19)

by applying the N.S.E. we can obtain the pressure series

p = c0,0 +
(

8 k2µa0,1 − ρ a0,1a1,1
)

x+
(

2 ρ a0,1
2k − 12µka1,1

)

y

+
(

48µk2a1,1 − 1/2 ρ a1,1
2
)

x2 +
(

16 k3µa0,1 − 8 kρ a0,1a1,1
)

xy

+
(

4 k2ρ a0,1
2 − 48µk2a1,1 − 1/2 ρ a1,1

2
)

y2

+

(

32

3
µk4a0,1 − 2/3 ρ k2a0,1a1,1

)

x3 +
(

384 k3µa1,1 − 4 kρ a1,1
2
)

x2y

+
(

16µk4a0,1 − 38 ρ k2a0,1a1,1
)

xy2 +
(

16/3 k3ρ a0,1
2 − 128 k3µa1,1 − 4 kρ a1,1

2
)

y3

(20)

if we insert this equation and (10) into (12) we can easily see that,

a1,1 = −p0,0 + 2kT

2µ
,

a2,1 =
1

64

608 k3Tµ2 + 4 k2ρ T 2 + 256 k2c0,0µ
2 + 192 a3,0µ

3k + 4 ρ Tc0,0k + ρ c0,0
2

µ3k
(21)

As you can see these two coefficients depend on the first pressure, k, T and µ. The

interface will be transform to the straight line after a coordinate change x = ξ and

y = η + f(x) and substitute into stream function we get

ψ = a0,1η + ka0,1η
2 + 2 ka0,1ξ

2 + a1,1ξ η +
5

3
ka1,1ξ

3

+ a2,1η ξ
2 + 4 ka1,1ξ η

2 + a0,3η
3

+ 4 k3ξ4a0,1 +
40

3
k2a1,1ξ

3η + 4 k3a0,1η
2ξ2

+
32

3
k2a1,1ξ η

3 +
1

3
k3a0,1η

4

+
172

15
k3ξ5a1,1 + 8 k4a0,1η ξ

4

+
160

3
k3a1,1ξ

3η2 +
2

15
k4a0,1η

5

+
8

3
k4a0,1η

3ξ2 +
64

3
k3a1,1ξ η

4

(22)
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if we write the velocities,

ξ̇ = a0,1 + 2 ka0,1η + a1,1ξ + 4 k2a0,1ξ
2 + 8 ka1,1ξ η + 2 k2a0,1η

2

+
40

3
k2a1,1ξ

3 + 8 k3a0,1η ξ
2 + 32 k2a1,1ξ η

2

+ 4/3 k3a0,1η
3 + 8 k4a0,1ξ

4 +
320

3
k3a1,1ξ

3η

+ 2/3 k4a0,1η
4 + 8 k4a0,1η

2ξ2 +
256

3
k3a1,1ξ η

3

η̇ = −4 ka0,1ξ − a1,1η − 5 ka1,1ξ
2 − 8 k2a0,1η ξ − 4 ka1,1η

2

− 16 k3ξ3a0,1 − 40 k2a1,1ξ
2η − 8 k3a0,1η

2ξ − 32

3
k2a1,1η

3

− 172

3
k3ξ4a1,1 − 32 k4a0,1η ξ

3 − 160 k3a1,1ξ
2η2

− 16/3 k4a0,1η
3ξ − 64

3
k3a1,1η

4

(23)

The linear approximation of the equations for the streamlines is

(

ξ̇
η̇

)

=

(

a0,1
0

)

+

(

a1,1 2ka0,1
−4ka0,1 −a1,1

)(

ξ
η

)

(24)

with the Jacobian

J =

(

a1,1 2ka0,1
−4ka0,1 −a1,1

)

(25)

If a0,1 = 0, the origin is critical point. Substitute a0,1 = 0 into Jacobian we can say the

origin is a saddle with eigenvalues a1,1 and −a1,1. The separatrix corresponding to a1,1

is the interface, while the other seperatrix is dividing streamline which is orthogonal

the interface given by ξ = 0.

Figure 16: Non-degenerate critical point

In figure (2)−a, shows the moving of the velocity to us when a1,1 6= 0. In figure (2)−b
we consider the inlet diameter is x0

2 , then the flow turn back. So the first experiments

to us, the inlet diameter must be smaller than x0

2 when a1,1 6= 0. In figure (2) − c
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we consider the inlet diameter is smaller than x0

2 , then we need to find the velocity

behaviour under the upper-wall. And we know that if the flow hit the upper-wall,

the velocity of the flow will decrease and the performance of the machine also will

decrease. So our question is which condition is the best for us? Firstly we will see

that when a1,1 6= 0, it is not very useful for us, so we need to take a1,1 = 0 then we can

look at the new non-degeneracy condition. If a0,1 = a1, 1 = 0 which means physically

that p0,0 = 2kT from the normal stress condition, the origin is a degenerate critical

point, since zero is a double eigenvalue of J. The corresponding streamfunction are

given by

ψ = a2,1ξ
2η + a0,3η

3 +O(ξ4, η4) (26)

For a2,1/a0,3 < 0 there are two seperatrix and a2,1/a0,3 > 0 we have no seperatrix

they are shown in the figure (3), respectively.

Figure 17: simple degenerate critical point

As we can see, the figure (3) implies to us when a2,1/a0,3 > 0 flow motion is useful.

But we are looking for the best way and with using the flow velocity we can create a

pressure and we can create the narrow region. The question is can we success or not?

Yes. Remember that we use the simple degeneracy condition. If we unfold the double

degeneracy condition we can get best result.

B Matlab code for the 3D prototype

%constant s
N = 200 ; %r e s o l u t i o n ( the b igge r the b e t t e r )
S = 1 . 6 ; %the b i g g e s t va lue o f parameter s
A = 3 ; %the b i g g e s t va lue o f parameter a
t = . 1 ; %t h i c k n e s s
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bubble

Figure 18: The interface with bubble

d = 5 ; %s c a l e ( to s t l format )
l = 5 ; %d i s t an ce between c e n t e r s o f input ho l e and output ho le )

%parameters
alpha = ( l i n s p a c e (0 ,2∗ pi ,N) ) ; %f i r s t to rus ang le
beta = ( l i n s p a c e (0 , pi ,N) ) ; %second torus ang le
s = repmat ( l i n s p a c e (0 , S ,N) ,N, 1 ) ; %to rad iu s func t i on
a = repmat ( l i n s p a c e (0 ,A,N) ,N, 1 ) ; %to curve func t i on
[ alpha , beta ] = meshgrid ( alpha , beta ) ; %alpha , beta −> matr i ce s

%func t i on f o r rad iu s o f c ros s−s e c t i o n
r = (1 − 1/2 .∗ s ) ’ ; %inner pipe
r1 = r + t ; %outer pipe

%func t i on f o r curve f o r both s u r f a c e s
R = (4 + 1/2 .∗ a ) ’ ;

%coo rd ina t e s o f inne r s u r f a c e based on torus paramet r i za t i on
x = (R + r .∗ cos ( alpha ) ) .∗ cos ( beta ) ;
y = (R + r .∗ cos ( alpha ) ) .∗ s i n ( beta ) ;
z = r .∗ s i n ( alpha ) ;

%coo rd ina t e s o f outer s u r f a c e based on torus paramet r i za t i on
x1 = (R + r1 .∗ cos ( alpha ) ) .∗ cos ( beta ) ;
y1 = (R + r1 .∗ cos ( alpha ) ) .∗ s i n ( beta ) ;
z1 = r1 .∗ s i n ( alpha ) ;

%whole model
X = [ x ; f l i p u d ( x1 ) ; x ( 1 , : ) ] .∗ l . / 10 ;
Y = [ y ; f l i p u d ( y1 ) ; y ( 1 , : ) ] .∗ l . / 10 ;
Z = [ z ; f l i p u d ( z1 ) ; z ( 1 , : ) ] .∗ l . / 10 ;

%p l o t t i n g
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f i g u r e ; g r i d on ;
mesh (X,Y, Z ) ; a x i s equal ;

%s c a l i n g
X = X . / d ;
Y = Y . / d ;
Z = Z . / d ;

%converse to s t l
s u r f 2 s t l ( ’ de s ign . s t l ’ ,X,Y, Z ) ;
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