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In derivatives modelling, it has often been necessary to make assumptions about
the volatility of the underlying variable over the life of the contract. This can involve
specifying an exact trajectory, as in the Black and Scholes (1973), Merton (1973) or
Black (1976) models; one that depends on the level of the underlying variable as in the
local volatility models of Dupire (1994), Derman and Kani (1994) and Rubinstein (1994);
or fixing the parameters of a more general stochastic volatility process as in Hull and
White (1987) or Heston (1993). These forward-looking assumptions are by their very
nature destined to be disproved, and what is more are at odds with the frequent model
recalibration that (rightly) takes place in practice.

In Carey (2005), the Black-Scholes analytical framework is extended, via the
definition of higher-order volatilities and the derivation of moment formulae for the case
where they are deterministic. In this paper, we show that the same formulae can be
obtained under markedly weaker assumptions, which leave the future volatilities
unspecified. Instead, we impose constraints on new, related quantities, which we term

“path-conditional forward volatilities”. Under this scheme, the model inputs are no longer
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the future spot volatilities, but rather their forward counterparts. One consequence, we
show, is that contrary to conventional wisdom, the Black-Scholes formula can in principle

be used without any reference to future volatility.

1. 5-TH ORDER PATH-CONDITIONAL FORWARD VOLATILITY

We begin with some preliminary definitions and notation. Let (X;) be a positive-
valued adapted stochastic process on a filtered probability space (Q,F,(F;),Q@). Let
0t > 0 denote a finite period of time, and define 6X; = X, 5 — X;, so that the relative
change of the process over the interval ¢ to t + 6t reads 6Xt/Xt. Let &, denote the
o -algebra generated by the process over the interval (t,t'] , and write F, V Xt,t’ for the
o -algebra generated by the union of F;, and X, ,. E, - denotes expectation conditional
on %, E,, - denotes expectation conditional on F V &, ,, and j is a generic positive
integer.

Consider an agreement by which two parties undertake to exchange the amount
<6Xt//Xt/ )j, as yet unknown but to be revealed imminently, and a predetermined
amount which we tentatively write in the form (Emt’ )j x 6t, t <t'. We suppose that
the parties are in possession of the information F,, and that given this information, the

agreement is a fair gamble under the probability measure ), by which we mean:
El(6x,/x,) —x1 st|=o0
t ( t// t/> - Gt =U.

This leads us to formally define the quantity ij/ via the identity:

S, = 5 (6X0/X, ) [t
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with the convention that X, equals the nonnegative root when j is even. We shall
refer to 3, as j-th order finite-period forward volatility. Of particular interest will be

the limit of vanishingly small 6¢, for which we define the quantity Oj Via:

o’

=1 j
j,t,t/ = llmgt\o 2]

!

again with o;,, nonnegative when j is even. Equivalently, o;,, = limg o3;, . We
shall refer to o;,, as j-th order instantaneous forward volatility. When t' =1t the
qualification “forward” will be replaced by “spot”, and for this case a prior definition, as
well as a rationale for using j as an exponent, can be found in Carey (2005).

Consider next a variation on this scenario under which the exposure (6Xt//Xt/ )j
is again to be exchanged for a pre-agreed premium, but the information available to the
parties is no longer F,, but F V Xt,t“ Heuristically, in addition to the information 7%,
the parties know the path followed by the process in the interim between times ¢ and t’.
Writing the new premium as (ZA]NJ/ )j X 6t , we again suppose that the agreement is a

fair gamble under @), that is:
E (X%, Y =50 6t| =0
t7tl ( t,/ t,> o jvtvt, - '
We thus define the quantity i)jﬁ/ via the identity:

i?,t,y = Lyy <5Xt//Xt/ )j/(?t ,

with the convention that ZA]NJ/ equals the nonnegative root when j is even. We shall

~

refer to X, as j-th order finite-period path-conditional forward volatility. As above,

we define the quantity ¢;, , via:

S &)
ey = Mg 025, 4
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again with ¢;,  nonnegative when j is even. Equivalently, &,,, = limg ﬁ)j7t7t/. We
shall refer to 7, as j-th order instantaneous path-conditional forward volatility.

For future reference, we make note of the following relationships between the
spot volatilities and their forward and path-dependent forward counterparts. Noting that

Fi C Fypand F V A,y C Fy, by the law of iterated expectations we have:

O

it

- Etzj

‘ Wi — J
j,t/ﬂf/ and Ejﬂfﬂf, —_— Et,t’2j7t’7t” (1)

t' >t and 6t > 0. Analogous results hold for the corresponding instantaneous

volatilities, subject to broad technical conditions.

2. MOMENTS

We now specialise to the case where finite-period path-conditional forward

volatility equals forward volatility, that is:

~

Yo =X (2)

t'>t. Heuristically, path-conditional forward volatility is the same for every interim
path (more on this later). As shown in the appendix, the n -th moment of the process
conditional on ¥, can then be obtained as:

E Xl = X']] : (3)

for 7 a positive multiple of 6t, where the product is over u = t,t + 6t,...,t + 7 — 6t. If
we next suppose that there exists an € > 0 such that (2) holds for every period size

0t < e, then clearly the instantaneous path-conditional forward volatilities, when they
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exist, also equal their forward counterparts, that is:
Tjut = Ojntl s (4)

t' > t. Further, fixing 7 > 0 and taking the limit 6t \, 0 in (3) yields:

n .
j}"5

which are assumed to exist, are defined via:

EXPy, = X[ exp , (5)

n
>
J=1

where the T

j 1 t+1 j d
o = —f o U
J rJi Jitu

again with the convention that o, is nonnegative when ; is even. We shall refer to o;
as j -th order average forward volatility. We note here that these moment formulae are
the same as those derived in Carey (2005), but with the average volatilities replaced with
their forward counterparts. Notably, their derivation has not required any assumption
with respect to future spot volatilities Eﬂ/,t/ or 0y, t' > t. Also as in Carey (2005),

we note that we have not shown that (4) implies (5), if indeed this holds true.

3. OPTION PRICING

We now consider a general option pricing implementation. Suppose that () is an
equivalent martingale measure, (F,) is the market information structure and (X,) is a
positive-valued adapted market process. For the sake of both simplicity and generality
we suppose that (X;) is a martingale under () — for example, the forward price of an
asset under the forward measure — although this is not mandatory. In this case, first-

order finite-period spot volatility is identically zero, and so by (1) we have
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il,t,t’ =Yy =Xy =0, t' > t. That is, first-order finite-period forward and path-
conditional forward volatilities are also zero, and condition (2) is satisfied for any interval
size 0t. The corresponding instantaneous volatilities follow suit, with
Grip = Oy = oy =0, ' > 1.

For an operational implementation, on the basis of the previous section we may
fix t and a small interval size ¢, and assume that (2) holds for every 6t < ¢ for a
suitable number of higher orders of j. The moments of the market variable are then
given by (5), and the average forward volatilities can be implied from the market prices
of liquid vanilla options, to be used as risk metrics or as inputs into a pricing scheme. An
example of implied values for the S&P 500 options market can be found in Carey (2005).
We again emphasise that no assumptions have been made regarding future spot
volatilities X, 1y or oy, t' >, j>2.

To obtain Black-Scholes and related formulae, it is enough to make the additional
assumption that the average forward volatilities of orders 5 > 2 are zero, whereupon the
moments (5) define the market variable as lognormal, and in our case Black’s (1976)
formula applies with second-order average forward volatility oy in the role of the
traditional volatility parameter. One rationale could involve noting that, over a suitably
small period of time, changes in the market variable are likely to be small, with
‘6Xt//Xt/‘ < 1 almost certainly. Thus, as j increases, the quantity Eit,t’ — and by
extension its limit O-]{tﬂf, — might be assumed to rapidly decrease in magnitude, providing

a basis for truncating the sum in (5) to yield the approximation:
EfX}”’ ~ X)?z,eén(n—l)(fgr
(<Xt t ’

which again is tantamount to approximating the distribution of the market variable by

the lognormal underlying Black’s formula.

Page 6 of 10



Now the assumption that the path-conditional forward volatilities are invariant to
the interim path may not be entirely realistic. Indeed, it could be supposed that for even
j, the exposure (5Xtr/Xtr )j should command a higher premium in the case of an
erratic, volatile path in the run-up to time t’, than in the case of a more subdued
trajectory. However, for odd j the picture is not as clear, and assumption (2) is possibly
less detrimental. Moreover, it is clearly much preferable to assuming that the spot
volatilities are deterministic, as in Carey (2005). In the latter case, one is assuming that
the premium is invariant not only to the path of the underlying variable over (t,t'], but
also to the evolution of its fundamentals, be it developments in related markets, in the
wider economy, or in the political environment, all carried in the larger information set
F. . In contrast, the weaker assumption (2) allows the spot volatilities to respond and

adjust to some measure of new information.

4. CONCLUSION

We have introduced the concept of path-conditional forward volatility, and
considered the case where it equals forward volatility. This was shown to yield moment
formulae analogous to those in Carey (2005), but without any assumptions with respect
to future spot volatilities. In particular, Black-Scholes-related formulae were obtained
without assuming that volatility is deterministic.

We briefly mention a possible alternative interpretation of path-conditional
forward volatility. Our argument featuring JF; V &, as an information set, while
squarely in the tradition of the gambling analogies used in probability theory, conjures up
visions of being locked up in a basement from time ¢, with only a price ticker for

company. A more appealing alternative could involve a scenario under which the
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available information remains limited to F,, but the parties agree to condition the
exchange of payments on the realisation of some pre-specified interim path. While this
works well when F, and Xt,t’ are generated by finite partitions, we have eschewed this
interpretation owing to the technical idiosyncrasies of the general case.

Another issue to investigate is whether the local volatility models of Dupire
(1994), Derman and Kani (1994) and Rubinstein (1994) can be extended along similar
lines. An often-voiced criticism of this class of models is that in practice, future spot
volatility is constrained in an unrealistic fashion. It may be that a (suitably specified)
path-conditional forward volatility can be substituted for the deterministic local volatility
function, thereby addressing this issue, and perhaps also offering a more compelling

interpretation of empirical implied volatility surfaces.
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APPENDIX

Following Carey (2005), we note that:

n

1+i:1[j](6Xu/Xu)j], (A1)

(Xeer /X, ) = H(1 +6x,/%,) =TI

u
using the binomial theorem. Now since:

Fo=FNVX; CHEVNX s Coo CFRNV X iprst
we have:

By =E = ELyysi-Eiigror (A2)

A

by the law of iterated expectations. Thus, assuming that the Ej,t,u exist and satisfy

~

Yitu = 2y forevery j < n, taking expectations at time ¢ in (A1), applying (A2) and

simplifying iteratively yields (3). To derive (5) we note that:

n (n no(n
1+ Z;[j]il;?w&t = exp|o(6t) + Z[j]2§7t7u5t]
J:

J=1

where o0(6t) represents terms which vanish with 6t faster than Ot (that is,
o(ét)/ét — 0 as 6t \, 0). Replacing in (3), we obtain:

n

E, (XH_T/Xt) = expz (A3)

n .
o

0((5t)+2
=1

Now by definition ng Hajjyt’u as 0t \, 0, hence ZE?ymétHagT, and since
u

Zo(ét) = 0((515)7/615 — 0, taking limits in (A3) yields (5).
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