

Stage-Dependent Intellectual Property Rights

Chu, Angus C. and Cozzi, Guido and Galli, Silvia

Durham University, University of St. Gallen, University of St. Gallen

April 2011

Online at https://mpra.ub.uni-muenchen.de/49743/ MPRA Paper No. 49743, posted 11 Sep 2013 11:50 UTC

Stage-Dependent Intellectual Property Rights

Angus C. Chu, Guido Cozzi, and Silvia Galli*

May 2013

Abstract

Inspired by the Chinese experience, we develop a Schumpeterian growth model of distance to frontier in which economic growth in the developing country is driven by domestic innovation as well as imitation and transfer of foreign technologies through foreign direct investment. We show that optimal intellectual property rights (IPR) protection is stage-dependent. At an early stage of development, the country implements weak IPR protection to facilitate imitation. At a later stage of development, the country implements strong IPR protection to encourage domestic innovation. Therefore, the growth-maximizing and welfare-maximizing levels of patent strength increase as the country evolves towards the world technology frontier, and this dynamic pattern is consistent with the actual evolution of patent strength in China.

JEL classification: O31, O34, O40

Keywords: economic growth, stage-dependent intellectual property rights

Chu: angusccc@gmail.com. University of Liverpool Management School, University of Liverpool, UK. Cozzi: guido.cozzi@unisg.ch. Department of Economics, University of St. Gallen, Switzerland. Galli: silvia.galli@unisg.ch. Department of Economics, University of St. Gallen, Switzerland.

^{*}We are very grateful to the anonymous Referees and Patrick Francois (the Editor) for their insightful comments that have improved the manuscript significantly. We also would like to thank Elias Dinopoulos, Rachel Griffith, Oleksandr Talavera, Fabrizio Zilibotti, and seminar participants at Academia Sinica, City University of Hong Kong, Durham University, Newcastle University, the University of Hull, and the University of Mainz for their helpful suggestions. The usual disclaimer applies.

"China and others are entering the tricky middle-income stage of development in which the big advances from absorbing rich-world technology start to run out." The Economist (2011)

1 Introduction

In the late 1970's and early 1980's, the implementation of a modern intellectual property rights (IPR) system in China was subject to intense debates.¹ Proponents including Deng Xiaopeng, the paramount leader of China at that time, saw the creation of a modern IPR system in China as a necessary means to attract foreign direct investment (FDI) and to provide incentives for domestic innovation. In 1982, the first intellectual property law under the leadership of Deng was drafted in China. Then, through a series of policy reforms, the strength of patent rights in China increased over time. For example, the Ginarte-Park index of patent rights in China gradually increased from 1.33 in 1985 to 4.08 in 2005.² In 1992. the statutory term of patent in China was lengthened from 15 years to 20 years.³ Then, in compliance with the TRIPS agreement,⁴ China reformed its patent system again in $2000.^5$ Recently, the Third Amendment to the Chinese Patent Law was approved in December 2008 and came into effect in October 2009 with the objective of building China into an innovative country with well-protected IPR by 2020.⁶ Following these patent reforms, research and development (R&D) as a percentage of gross domestic product (GDP) in China increased from 0.7% in 1992 to 1.7% in 2009. As for the inflow of FDI to China, it increased from US11 billion in 1992 to US185 billion in 2010.⁷

⁵The policy changes include (a) providing patentholders with the right to obtain a preliminary injunction against the infringing party before filing a lawsuit, (b) stipulating standards to compute statutory damages, (c) affirming that state and non-state enterprises enjoy equal patent rights, and (d) simplifying the patent application process, examination and transfer procedures and unifying the appeal system. See for example Hu and Jefferson (2009) who show that this patent reform is a major factor for explaining the increase in patenting activities in China.

⁶See for example Yang and Yen (2010) for a review of the policy changes in this third amendment. In summary, the changes aim at (a) promoting patent applications, (b) encouraging exploitation of jointly owned patents, (c) heightening patentability requirement, (d) increasing statutory damages and administrative fines, (e) clarifying the granting of compulsory licenses, and (f) establishing protection for genetic resources.

⁷Data from the World Development Indicators.

¹See for example Allison and Lin (1999) and La Croix and Konan (2002) for a discussion on the historical development of IPR in China.

²The Ginarte-Park index is on a scale of 0 to 5, and a larger number implies stronger patent rights. See Ginarte and Park (1997) and Park (2008a) for a detailed description of this patent index.

³As for the term of patent for utility model and design patents, it was lengthened from 5 years to 10 years. Also, this patent reform expanded patentable subject matter in China.

⁴The Agreement on Trade-Related Aspects of Intellectual Property Rights (TRIPS) is an agreement of the World Trade Organization (WTO). In summary, TRIPS establishes a minimum level of IPR protection that must be provided by all member countries.

In addition to strengthening patent rights, China also improved the protection for trade secrets by developing a comprehensive set of laws and regulations over the last two decades.⁸ In a recent report issued by NERA Economic Consulting, Sepetys and Cox (2009, p. 3) nicely summarize the evolution of IPR in China as follows.

In the early stages of development, with limited resources and limited capacity for research and development, there may be little or no IPR protection. Domestic industry will be characterized by imitation rather than innovation. Imitation allows for low-cost production, low prices for goods and services, and the stimulation of consumption and employment. A weak IPR regime may support technological growth and development through imitation in early stages of development. At subsequent stages of development, however, a weak IPR regime discourages domestic innovation. Innovation and technological development are drivers of economic growth. Economies that succeed in shifting into knowledgebased production are characterized by domestic innovation, typically supported with well-designed and adequately enforced IPR laws.

In this study, we develop a stylized growth-theoretic model to formalize this commonly discussed insight on the evolution of IPR in developing countries using China as a timely example. For example, one objective of China's twelfth five-year plan (2011-2015) is to shift its reliance on foreign technology to domestic innovation. A recent study by Li (2010) provides an interesting case-study analysis on the biotechnology and pharmaceutical industries to demonstrate that China is in the process of transforming from an imitation-oriented economy to an innovation-oriented economy and that strengthening patent rights can play an important role in facilitating this transformation process. This finding is consistent with the implication of our analysis.

To analyze stage-dependent IPR for a developing country at different stages of development, we consider a Schumpeterian growth model of distance to frontier in which economic growth in the developing country is driven by domestic innovation as well as imitation and transfer of foreign technologies through FDI. We show that the model features an inverted-U effect of patent strength on domestic innovation under a certain parameter space. The intuition is as follows. On the one hand, increasing patent strength has a positive effect on domestic innovation by reducing imitation. On the other hand, the reduction in imitation leads to an increase in FDI that strengthens the displacement effect of foreign technologies on domestic innovation. As for the growth-maximizing and welfare-maximizing strengths of IPR protection, we show that they are stage-dependent. At an early stage of development,

⁸See for example Zuber (2008) for a discussion on the protection of trade secrets in China and the US.

the country implements weak IPR protection to facilitate imitation of foreign technologies. At a later stage of development, the country implements strong IPR protection to encourage domestic innovation. Specifically, we derive an analytical result to show that the growth-maximizing level of patent protection increases as the country evolves towards the world technology frontier. Furthermore, we provide a numerical result to illustrate that the welfare-maximizing level of patent protection also increases as the country evolves towards the world technology frontier. These findings are consistent with the actual evolution of patent strength in China and other developing countries.

This study relates to the literature on IPR and economic growth. This literature focuses on an important issue that is optimal IPR protection. An early study by Nordhaus (1969) finds that the optimal patent length should balance the static distortionary effect of markup pricing and the dynamic gain from enhanced innovation. In a dynamic general-equilibrium model, Judd (1985) finds that the optimal patent length is infinite while Iwaisako and Futagami (2003) and Futagami and Iwaisako (2007) find that the optimal patent length can be finite in a version of the Romer model. Kwan and Lai (2003) show that extending the effective lifetime of patent would lead to a substantial increase in R&D and welfare whereas Li (2001) and O'Donoghue and Zweimuller (2004) consider the effects of patent breadth on R&D and economic growth. Dinopoulos and Syropoulos (2007) and Davis and Sener (2012) analyze the effects of rent protection activities on innovation. Chu (2009) and Chu et al. (2012) analyze the effects of blocking patents on R&D and welfare. Recently, Acemoglu and Akcigit (2012) consider optimal state-dependent patent protection based on the endogenous technological gap between the leader and followers in an industry. However, this literature rarely considers optimal IPR protection in developing countries in which economic growth is driven by imitation and transfer of foreign technologies in addition to domestic innovation. We fill this gap in the literature by analyzing the optimal strength of IPR protection in a developing country at different stages of economic development.⁹

Our study also relates to the literature on IPR and North-South product cycles.¹⁰ A key question in this literature is whether strengthening Southern IPR protection stimulates or stifles Northern innovation. Grossman and Helpman (1991) find that strengthening Southern IPR protection either has no effect or a negative effect on Northern innovation.¹¹ Lai (1998)

⁹Chen and Puttitanum (2005) also argue that optimal IPR protection should depend on a country's level of development, and they analyze this issue in a one-period game-theoretic model in which the level of development is captured by an exogenous parameter.

¹⁰See for example Grossman and Helpman (1991), Helpman (1993), Lai (1998), Yang and Maskus (2001), Glass and Saggi (2002a, 2002b), Glass and Wu (2007), Tanaka *et al.* (2007), Parello (2008), Dinopoulos and Segerstrom (2010), Branstetter and Saggi (2011) and Iwaisako *et al.* (2011).

¹¹Grossman and Helpman (1991) consider a tax (subsidy) on imitation that decreases (increases) Southern imitation, which is similar to the effects of IPR protection.

shows that whether Southern IPR protection has a positive or negative effect on Northern innovation depends on the mode of technology transfer (i.e., imitation versus FDI) whereas Glass and Wu (2007) argue that the effect also depends on the type of technological innovation (i.e., quality improvement versus variety expansion). Instead of analyzing the effects of Southern IPR protection on Northern innovation, the present study focuses on a different issue that is optimal IPR protection in the South as a function of its technology distance from the North.

An influential study by Grossman and Lai (2004) considers globally optimal IPR protection in an open-economy model featuring both developed and developing countries that have asymmetric innovative capability and market size. The present study differs from Grossman and Lai (2004) by considering a model in which (a) economic growth in the developing country is driven by both domestic innovation and foreign technology transfer and (b) the relative importance of innovation and technology transfer changes endogenously as the country evolves towards the world technology frontier. These two features together imply that optimal IPR protection should be stage-dependent, which is an important property that is absent in all the abovementioned studies.

Finally, this paper relates mostly to studies on distance to frontier and convergence; see Acemoglu *et al.* (2003, 2006), Aghion *et al.* (2005), Howitt and Mayer-Foulkes (2005), Benhabib *et al.* (2012) and Gersbach *et al.* (2013). Our paper extends these influential studies by endogenizing an important economic institution that is the IPR system and analyzing how it evolves as an economy develops towards the world technology frontier.¹² Furthermore, we consider innovation and multiple channels of foreign technology transfer through imitation and FDI that are key features of the Chinese economy.

The rest of this study is organized as follows. Section 2 presents some stylized facts. Section 3 describes the theoretical model. Section 4 analyzes stage-dependent IPR protection. Section 5 explores various extensions of the model. The final section concludes with a discussion.

2 Stylized facts

In this section, we first present the cross-sectional relationship between patent strength and the distance to frontier. We obtain data on labor productivity relative to the US (i.e., US

 $^{^{12}}$ Wu (2010) also considers the effects of IPR protection in a Schumpeterian model of distance to frontier; however, he focuses on the existence of non-convergence traps and how patent protection affects the convergence of developing countries. Our study differs from his interesting analysis by introducing FDI to the distance-to-frontier model and by analyzing the growth-maxizing and welfare-maximizing paths of IPR protection in developing countries.

labor productivity is normalized to one) from the Penn World Table, and this variable, relative labor productivity (RLP), inversely measures the distance to frontier. To capture the strength of IPR, we consider the standard Ginarte-Park index of patent rights, which is available with one observation every 5 years for each country. Figure 1 presents a very clear positive relationship between IPR and RLP for data in 2005.¹³ This empirical correlation is consistent with a key result from our theoretical model, according to which a country that is closer to the frontier has the incentive to implement stronger patent rights.

Figure 1: Relationship between IPR and distance to frontier

From our theoretical analysis, we will show that the result of this stage-dependent IPR policy is driven by the following important property of the model: the positive growth effect of IPR through innovation strengthens relative to the negative growth effect of IPR through imitation as a country evolves towards the technology frontier. Therefore, in the rest of this section, we consider a panel regression model to establish some suggestive evidence for these effects. In the empirical literature, it is well known that the growth effects of IPR protection differ across developed and developing countries; see for example Park (2008b) for a survey. In the following empirical framework, instead of treating developed and developing countries as separate groups, we use a distance-to-frontier variable to capture the degree of economic development as a continuous variable and find that it indeed has an interactive effect with IPR on economic growth. Specifically, we consider an unbalanced panel from 1970 to 2005 for 92 countries.¹⁴

¹³This positive relationship would also emerge if we look at data in other years.

¹⁴We include all countries with available data for each variable in at least some years during this period.

We consider the following empirical specification.

$$growth_{i,t+1} = \delta_0 + \delta_1 IPR_{i,t} + \delta_2 IPR_{i,t} * RLP_{i,t} + \delta_3 RLP_{i,t} + \Gamma \chi_{i,t} + \varepsilon_{i,t},$$

where $growth_{i,t+1}$ is the growth rate of per capita GDP in country *i*, that is $\ln GDP_{i,t+1} - \ln GDP_{i,t}$. $IPR_{i,t}$ is the Ginarte-Park index of patent rights.¹⁵ $RLP_{i,t}$ is relative labor productivity defined above. Vector $\chi_{i,t}$ denotes standard control variables including (a) education measured by the average years of schooling from the Barro-Lee data set, (b) the degree of openness measured by the sum of export and import over GDP from the Penn World Table, (c) an index of economic freedom from the annual report of Economic Freedom of the World, (d) country fixed effects, and (e) period fixed effects. Differentiating growth with respect to IPR, we have

$$\frac{\partial growth_{i,t+1}}{\partial IPR_{i,t}} = \delta_1 + \delta_2 RLP_{i,t}.$$

Our hypothesis is that $\delta_1 < 0$ and $\delta_2 > 0$. In other words, for a country that is far away from the world technology frontier (i.e., a small $RLP_{i,t}$), the effect of IPR on economic growth is negative. For a country that is close to the world technology frontier (i.e., a large $RLP_{i,t}$), the effect of IPR on economic growth becomes positive. In summary, our empirical results below indeed show that $\delta_1 < 0$ and $\delta_2 > 0$.

We have considered a number of estimation techniques. The results are summarized in Table 1, in which the dependent variable is $growth_{i,t+1}$. The first column of Table 1 reports the coefficients of the country fixed effects estimation, whereas the second column also includes period effects, which may reflect technical progress and business cycle components common to all countries, in addition to the persistent country-specific aspects such as geography, institutions, and initial efficiencies. Both country and period fixed effects are jointly significant with p-value lower than 1%. Similarly, country dummies are significant given period dummies, and period dummies are significant given country dummies. We have also performed Hausman tests based on the difference between fixed effects and random effects, which reject the random effects specification at less than 1% significance. To partially correct for the endogeneity of the explanatory variables, we have also reported in the third column the 2-stage least square coefficients for which the instruments are the lagged independent

¹⁵It is true that the Ginarte-Park index of patent rights may not be a perfect measure of relative patent strength across countries; however, so long as this mismeasurement is time invariant, it will be captured by country fixed effects.

variables. Neither the signs nor the magnitude of the coefficients change much.¹⁶ Therefore, the available cross-country evidence seems to provide suggestive evidence that the beneficial growth effect of IPR strengthens relative to the negative effect as a country evolves towards the world technological frontier. Our theoretical model in the next section serves to provide a causal interpretation on these empirical correlations.

3 A simple model of distance to frontier

We consider a Schumpeterian growth model of distance to frontier.¹⁷ The discrete-time model has four components (a) individuals, (b) final goods, (c) intermediate goods, and (d) R&D. We solve for the decentralized equilibrium. In each period, there is a unit continuum of risk-neutral individuals indexed by j. Each individual j lives for one period, inelastically supplies one unit of labor and consumes final goods to maximize expected utility. To facilitate tractable aggregation of social welfare across individuals, we follow a common specification in the literature to consider linear utility given by $u_t^j = E[c_t^j]$, where c_t^j denotes consumption by individual j.¹⁸ Labor supply is used as an input for final goods. Final goods can be consumed by individuals, devoted to various types of R&D activities or used as an input for intermediate goods. To model the effects of IPR, we consider a specific IPR parameter Θ_t that captures the effects of domestic patent protection on imitation,¹⁹ which in turn affects FDI and innovation. This setup captures the main concerns of policymakers in China. We assume that domestic innovation is affected by domestic patent protection but not by foreign patent protection, and this assumption is consistent with the observation that the vast majority of inventions by residents in China is only patented domestically.²⁰

¹⁶In the working-paper version of this study, we also report the results based on a dynamic panel regression and show that the finding of $\delta_1 < 0$ and $\delta_2 > 0$ is robust to this extension; see Chu *et al.* (2013).

¹⁷Our model borrows many elements from other Schumpeterian models of distance to frontier, such as Acemoglu *et al.* (2003, 2006), Aghion *et al.* (2005) and Howitt and Mayer-Foulkes (2005).

¹⁸Alternatively, we can assume that there is a representative household in each period. In this case, the household faces a static budget constraint in which consumption expenditure equals income that consists of wage income and monopolistic profits earned by domestic firms. Given that labor supply is inelastic, these two formulations are equivalent.

¹⁹Although we don't explicitly model patent length in this study, one can also think of Θ_t affecting the hazard rate of a patent being imitated, which in turn determines the effective lifetime of a patent. In the case of China, the statutory term of patent has been 20 years and remained unchanged since 1992 despite two patent reforms in 2000 and 2008. Furthermore, the Ginarte-Park index of patent rights, which is a commonly used empirical measure of patent strength, considers statutory patent duration as only one of five measures of patent rights; see Ginarte and Park (1997) and Park (2008) for details.

 $^{^{20}}$ For example, according to data in WIPO (2012), residents in China made less than 20,000 patent applications abroad in 2011, which represent a mere 4.6% of the 435,608 patent applications made by residents in China in 2011. Griffith and Miller (2011) provide empirical evidence that the growth in patenting activities in China is associated with a growth in the creation of technologies by Chinese inventors.

A key difference between our model and the models in Acemoglu *et al.* (2003, 2006) is in our formulation of the interaction between imitation of foreign technologies and domestic innovation in the developing country. In previous studies, imitation and innovation in an industry are assumed to be performed by the same firm implying that the interaction between imitation and innovation lies in the resource allocation across the two types of activities within a firm. In contrast, in our model, imitation and innovation in an industry are performed by two different firms capturing the realistic scenario in which domestic innovation in the developing country can be displaced by the importation of more advanced foreign technologies. In other words, our framework captures in a stylized way both the positive spillover effect and the negative market-stealing effect of foreign technologies on domestic technologies discussed in the empirical literature on technology diffusion.²¹

Another key difference is that we take into consideration two channels of foreign technology transfer (a) FDI and (b) imitation. Within this framework, a stronger patent system makes imitation of foreign technologies more difficult. Consequently, the lower intensity of imitation improves the incentives for technology transfer via FDI, and this theoretical finding is consistent with empirical evidence.²² As for the effects of stronger patent protection on domestic innovation, there are a direct positive effect from the decrease in imitation and an indirect negative effect from the increase in FDI (i.e., the displacement effect of foreign technologies on domestic innovation). Therefore, our model features an inverted-U effect of patent strength on domestic innovation that has been documented in recent empirical studies, such as Lerner (2009) and Qian (2007).²³

In the model, we consider a specific sequence of actions by domestic innovators, foreign firms and domestic imitators. In particular, we assume that the action of domestic innovators is followed by foreign firms and then imitators.²⁴ This specific sequence of actions gives rise to the two important and realistic implications discussed above. First, domestic innovation may be displaced by foreign technologies. Second, a strengthening of patent protection that reduces imitation may encourage both domestic innovation and foreign technology transfer

²¹See for example Aitken and Harrison (1999), who find that "productivity in domestically owned plants declines when foreign investment increases. This suggests a negative spillover from foreign to domestic enterprises, which we interpret as a market-stealing effect."

 $^{^{22}}$ An early study by Lee and Mansfield (1996) finds a positive effect of IPR on FDI. Although subsequent studies produce mixed results, recent empirical studies tend to find a positive effect. For example, Javorcik (2004) finds that IPR has a positive effect on FDI in technology-intensive sectors of transition economies. Considering a more comprehensive set of countries, Branstetter *et al.* (2006) also find that strengthening IPR has a positive effect on technology transfer.

 $^{^{23}}$ See also Akiyama and Furukawa (2009), Furukawa (2007, 2010), Horii and Iwaisako (2007), Iwaisako and Futagami (2013) and Chu *et al.* (2012), who derive an inverted-U relationship between patent strength and innovation in the R&D-based growth model via other mechanisms.

²⁴It is useful to note that this formulation allows for the possibility that domestic innovators may decide not to invest in innovation at an early stage of development when patent protection is too weak.

supporting the abovementioned rationales for implementing a modern IPR system in China.

Finally, as in previous studies, we assume that there is no trade in factors of production and the developing country takes the world technology frontier as given.²⁵ A slight modification from previous studies is that we allow for trade in final goods, so that foreign firms that perform FDI can retrieve their monopolistic profits out of the developing country.

3.1 Final goods

This sector is perfectly competitive, and firms take the output and input prices as given. Final goods Y_t (chosen as the numeraire) are produced by combining labor input with a unit continuum of differentiated intermediate goods $X_t(i)$ indexed by $i \in [0, 1]$. We consider a standard production function.

$$Y_t = L_t^{1-\alpha} \int_0^1 A_t^{1-\alpha}(i) X_t^{\alpha}(i) di,$$
 (1)

where $A_t(i)$ is the level of technology associated with $X_t(i)$. The aggregate supply of labor L_t is one for all t.²⁶ The conditional demand function for $X_t(i)$ is

$$X_t(i) = A_t(i) \left[\alpha / P_t(i) \right]^{1/(1-\alpha)},$$
(2)

where $P_t(i)$ is the price of $X_t(i)$ for $i \in [0, 1]$.²⁷

3.2 Intermediate goods and domestic innovation

There is a unit continuum of intermediate goods indexed by $i \in [0, 1]$, and each industry *i* is dominated by a temporary monopolistic leader. In each industry, an individual is randomly chosen as the entrepreneur, who is given the opportunity to innovate at the beginning of the period and potentially dominate the industry for the remaining period. In the next period, all relevant patents expire²⁸ and the monopolistic position will be randomly assigned to another entrepreneur who performs the next innovation. This simple setup, which is in line

 $^{^{25}\}mathrm{See}$ Section 6 for a discussion of this assumption.

²⁶Setting $L_t = 1$ also allows us to sidestep the issue of scale effects.

²⁷There is also a conditional demand function for labor given by $w_t = (1 - \alpha) \left[\int_0^1 A_t^{1-\alpha}(i) X_t^{\alpha}(i) di \right] / L_t^{\alpha}$, where w_t is the wage rate and $L_t = 1$. Given that labor supply is inelastic and the final goods sector is the only sector that employs labor, we do not need to determine w_t to solve the model.

²⁸The current patent length of 20 years in China and most countries is indeed shorter than the average generation length of 25 years.

with other Schumpeterian models of distance to frontier, simplifies the model by equating the return to R&D to the monopolistic profit in the current period, and this simplification allows us to focus on the dynamic aspects of distance to frontier.

For each monopolist, producing one unit of intermediate goods requires one unit of final goods. The familiar profit-maximizing price is $P_t(i) = 1/\alpha$.²⁹ Therefore, using (2), we can derive the amount of profit as

$$\pi_t(i) = P_t(i)X_t(i) - X_t(i) = \overline{\pi}A_t(i), \tag{3}$$

where $\overline{\pi} \equiv (1 - \alpha) \alpha^{(1+\alpha)/(1-\alpha)}$ is a composite parameter.

At the beginning of time t, the level of productivity in industry i is $A_{t-1}(i)$. An entrepreneur is given the opportunity to increase the level of productivity to $\widetilde{A}_t(i) = (1 + \gamma_t)A_{t-1}(i)$, where γ_t is the step size of innovation that is a choice variable.³⁰ The expected return to innovation in industry i is $(1 - p_t)\overline{\pi}[\widetilde{A}_t(i) - A_{t-1}(i)] = (1 - p_t)\overline{\pi}\gamma_t A_{t-1}(i)$, where $p_t \in [0, 1]$ is the endogenous probability (to be derived below) that the monopolistic position will be taken away either by a foreign firm or by a domestic imitator before production in this period begins. When this probability p_t is high, the entrepreneur only has a small chance of capturing the monopolistic profit and has less incentives to do R&D. This setup relates to the idea of intellectual appropriability discussed in Cozzi (2001) and Cozzi and Spinesi (2006). Under this interpretation, p_t can be viewed as the probability that the monopolistic position is stolen by another entrepreneur before the innovator manages to start production.

To increase the level of technology by a step size of γ_t in industry *i*, the entrepreneur has to devote $R_t(i)$ units of final goods to R&D. We consider a simple convex cost function given by

$$R_t(i) = \frac{(\gamma_t)^{\sigma}}{\sigma \overline{\gamma}} A_{t-1}(i), \qquad (4)$$

where $\overline{\gamma}$ is a productivity parameter and $\sigma > 2.^{31}$ In (4), the scaling by $A_{t-1}(i)$ is common in the literature to capture increasing difficulty in innovation and to ensure a stationary γ_t on the balanced-growth path. The expected profit of R&D is $(1-p_t)\overline{\pi}\gamma_t A_{t-1}(i) - R_t(i)$. Simple

²⁹In line with the standard treatment in this class of models, we assume that the monopolist of an industry is always able to charge the unconstrained monopoly price.

³⁰It is useful to note that although a domestically invented technology may not be as advanced as foreign technologies, it was nevertheless patentable in China before its third amendment to patent laws when the novelty requirement for a patentable invention required only local novelty within China. After the recent passage of this third amendment, patentability in China is now based on global novelty. Nevertheless, domestic innovators may invent locally adapted inventions that are "sufficiently" different from foreign inventions and patentable in China.

³¹This parameter assumption $\sigma > 2$ ensures that the equilibrium growth rate is concave in p_t , so that the growth-maximizing level of patent protection is an interior solution.

differentiation yields the equilibrium step size of innovation given by

$$\gamma_t = \left[(1 - p_t) \overline{\pi} \overline{\gamma} \right]^{1/(\sigma - 1)} \tag{5}$$

for $i \in [0, 1]$. Equation (5) shows that an increase in p_t reduces the incentives for innovation and decreases γ_t .

Proposition 1 Weaker intellectual appropriability (i.e., a larger p_t) decreases the equilibrium step size of domestic innovation.

3.3 Foreign direct investment

After the domestic entrepreneurs complete their R&D projects and before they sell their products, foreign firms may transfer recent technological developments from the world technology frontier to the developing country. We refer to this process as FDI. The decision of FDI is made by foreign firms, and their incentives depend on monopolistic profits in the developing country. After the foreign firms set up production in the domestic economy, they combine their advanced foreign technologies with domestic intermediate goods to produce final goods.³²

FDI is a random process. If the investment is successful in industry i, then the foreign firm takes away the monopolistic position from the domestic entrepreneur in that industry. Before this process of technology transfer begins, the level of productivity in industry i at time t is $\tilde{A}_t(i) = (1 + \gamma_t)A_{t-1}(i)$. If the technology transfer succeeds, then productivity in industry i further increases to³³

$$\widehat{A}_t(i) = \widetilde{A}_t(i) + g^* A_{t-1}^*.$$
(6)

 A_{t-1}^* is the level of technology at the world technology frontier at time t-1 and evolves according to

$$A_t^* = (1+g^*)A_{t-1}^*,\tag{7}$$

³²This phenomenon differs from capital embodied technology transfer, under which domestic firms obtain foreign technologies by buying foreign equipments and machineries that contain foreign technologies. In the case of China, obtaining foreign technologies by enticing foreign firms to set up production facilities in China seems to be an equally common approach.

 $^{^{33}}$ Here we assume that the transfer of foreign technologies is incomplete in the sense that domestic technology level does not jump to the world technology frontier for two reasons. First, complete technology transfer would rule out any interesting convergence process. Second, in reality we rarely observe that firms in developing countries *immediately* catch up with firms in developed economies. The automobile industry in China would be a classic example in which despite many years of FDI, "China is still five to ten years from building cars to global standards without foreign help." The Economist (2013)

where q^* is the exogenous growth rate of the world technology frontier. In other words, (6) considers the case in which the domestic economy imports newly developed frontier technologies from abroad. Although newly developed technologies represent an important source of technology transfer to developing countries, it is conceivable that previously developed technologies that have not been adopted by developing countries also represent another important source of technology transfer. Therefore, we explore this extension in Section 5.1.³⁴

The expected value of a successful transfer of foreign technologies via FDI in industry iis $(1 - \iota_t s)\overline{\pi}\widehat{A}_t(i)$, where $\iota_t \in [0, 1]$ is the probability that the transferred technologies will be imitated by a domestic firm in which case the foreign firm has to give away a share $s \in [0,1]$ of the market to the domestic imitator (to be discussed further below). To achieve a successful FDI project with probability f_t in industry *i*, the foreign firm has to devote $F_t(i)$ units of final goods. For analytical simplicity, we consider a quadratic cost function given by

$$F_t(i) = \frac{(f_t)^2}{2\overline{f}}\widehat{A}_t(i),\tag{8}$$

where \overline{f} is a productivity parameter. The expected profit of FDI is $f_t(1-\iota_t s)\overline{\pi}\widehat{A}_t(i) - F_t(i)$. Simple differentiation yields the equilibrium intensity of FDI given by

$$f_t = (1 - \iota_t s)\overline{\pi}\overline{f} \in [0, 1] \tag{9}$$

for $i \in [0, 1]^{35}$ Equation (9) shows that either a larger probability of imitation ι_t or a larger share s of the market to be given away to the imitator reduces the incentives for technology transfer via FDI.

Proposition 2 A higher rate of imitation (i.e., a larger ι_t) reduces the intensity of FDI.

3.4 Imitation and intellectual property rights

After the foreign firms complete their process of technology transfer, the domestic economy consists of two types of industries that are occupied by either (a) domestic innovators or (b) foreign firms. In the case of (a), a domestic individual is randomly chosen as an imitator, who has the ability to adapt the more advanced foreign technologies from other industries. We refer to this type of imitation as efficient imitation e_t .³⁶ In the case of (b), another domestic

³⁴In Section 5.1, we consider a more general specification $\widehat{A}_t(i) = \widetilde{A}_t(i) + g^* A_{t-1}^* + \phi(A_{t-1}^* - A_{t-1})$. ³⁵A parameter condition (P1) to be stated below will ensure that $f_t < 1$.

 $^{^{36}}$ We call this efficient imitation because it raises the level of technology in the industry.

individual is randomly chosen as an imitator, who has the ability to imitate existing foreign technologies in the industry. We refer to this type of imitation as inefficient imitation ι_t .³⁷ Both types of imitation are random. If the imitation process is successful, then the imitator takes away (a) the monopolistic position from the domestic innovator in the case of efficient imitation e_t or (b) some market share $s \in [0, 1]$ from the foreign firm in the case of inefficient imitation ι_t .³⁸ For s = 0, the imitator is unable to take away any market share from the foreign firm. For s = 1, the imitator takes away the entire market share from the foreign firm. The general case of $s \in (0,1)$ captures the scenario, in which the foreign firm and the domestic imitator collude and share the monopolistic profit as in Segerstrom (1991).³⁹ Under this general case, the domestic imitator is able to take away some market share from the foreign firm because domestic firms often have a competitive advantage over foreign firms through local knowledge and local network in developing countries. For example, Branstetter et al. (2006) note that when a foreign firm "...transfers this knowledge to local employees, there is a risk that these employees will defect to a local manufacturer, taking sensitive technology with them. These employees are able to combine the patented and unpatented elements of the firms' technology, effectively competing with it in the local market."

The return to efficient imitation is $\overline{\pi}\hat{A}_t(i)$. To achieve an efficient imitation with probability e_t in industry i, the imitator has to devote $E_t(i)$ units of final goods to imitative R&D. Again, we consider a simple quadratic cost function given by

$$E_t(i) = \Theta_t \frac{(e_t)^2}{2\overline{e}} \widehat{A}_t(i), \qquad (10)$$

where \overline{e} is a productivity parameter for efficient imitation and $\Theta_t \in (0, \infty)$ is a policy variable determining the level of patent protection at time t. This formulation captures the idea that a stronger system of patent protection (i.e., a larger Θ_t) makes imitation more difficult and potentially improves intellectual appropriability by domestic innovators. The expected profit from efficient imitation is $e_t \overline{\pi} \widehat{A}_t(i) - E_t(i)$. Simple differentiation yields the probability of a successful efficient imitation in industry i given by

$$e_t = \min\{\overline{e}\overline{\pi}/\Theta_t, 1\} \tag{11}$$

³⁷We call this inefficient imitation because it contributes nothing to the industry's level of technology.

³⁸Similarly, we can also introduce another profit-sharing parameter between domestic innovators and domestic imitators without changing our main results. However, we think it is more natural for the domestic imitators, who have imitated the more advanced foreign technologies from other industries, to force out the domestic innovators who possess less advanced technologies.

³⁹Here we assume that the foreign firm and the domestic imitator do not engage in competitive pricing that would wipe out the industry's profit, which in turn could deter the domestic imitator from entering the market, because in reality we do observe domestic firms competing with foreign firms and imitating their technologies.

for $i \in [0, 1]$.

The return to inefficient imitation is $s\overline{\pi}\widehat{A}_t(i)$. To achieve an inefficient imitation with probability ι_t in industry *i*, the imitator has to devote $I_t(i)$ units of final goods to imitative R&D. Again, we consider a simple quadratic cost function given by⁴⁰

$$I_t(i) = \Theta_t \frac{(\iota_t)^2}{2\overline{\iota}} \widehat{A}_t(i), \qquad (12)$$

where $\bar{\iota}$ is a productivity parameter for inefficient imitation. This formulation captures the idea that a stronger system of patent protection makes the imitation of foreign technologies more difficult and improves intellectual appropriability by foreign firms. The expected profit is $\iota_t s \bar{\pi} \hat{A}_t(i) - I_t(i)$. Simple differentiation yields the probability of a successful inefficient imitation in industry *i* given by

$$\iota_t = \min\{\bar{\iota}s\bar{\pi}/\Theta_t, 1\}$$
(13)

for $i \in [0, 1]$.

Proposition 3 A stronger system of patent protection (i.e., a larger Θ_t) reduces both types of imitation.

Proposition 3 shows that stronger patent protection reduces both efficient and inefficient imitations. The reduction in inefficient imitation increases foreign technology transfer via FDI from Proposition 2. As for the effects on domestic innovation, stronger patent protection has a direct positive effect by reducing efficient imitation and an indirect negative effect by increasing FDI. In (5), the probability p_t is given by $p_t = f_t + (1 - f_t)e_t$. In other words, at the time of innovation, a domestic innovator may be subsequently displaced by a foreign firm with probability f_t or by a domestic imitator with probability $(1 - f_t)e_t$. Differentiating $p_t = f_t + (1 - f_t)e_t$ with respect to Θ_t yields

$$\frac{\partial p_t}{\partial \Theta_t} = (1 - e_t) \frac{\partial f_t}{\partial \Theta_t} + (1 - f_t) \frac{\partial e_t}{\partial \Theta_t}.$$
(14)

Equation (14) shows that a larger Θ_t increases p_t through f_t (i.e., the displacement effect of foreign technologies) and decreases p_t through e_t (i.e., the direct effect of reducing domestic

 $^{^{40}}$ It is useful to note that the IPR policy parameter Θ_t affects both types of imitation symmetrically. In other words, patent policy protects both domestic and foreign firms in accordance with the national treatment of the TRIPS Agreement that requires member countries to provide the same patent rights to domestic and foreign firms.

imitation). Applying (9), (11) and (13), we find that

$$\frac{\partial p_t}{\partial \Theta_t} < 0 \iff \iota_t > \frac{1}{2s} \left(\frac{s^2 \overline{\iota}}{\overline{e}} - \frac{1 - \overline{\pi} \overline{f}}{\overline{\pi} \overline{f}} \right). \tag{15}$$

Recall that domestic innovation γ_t is decreasing in p_t from Proposition 1. Therefore, if and only if (15) holds, then patent strength Θ_t would have a monotonically positive effect on domestic innovation γ_t . In other words, for a sufficiently small ι_t (or equivalently, a sufficiently large Θ_t), it is possible for $\partial \gamma_t / \partial \Theta_t$ to become negative (i.e., $\partial p_t / \partial \Theta_t > 0$) implying an inverted-U effect of Θ_t on domestic innovation γ_t . The negative effect of patent protection on domestic innovation arises from the displacement effect of foreign technology transfer via FDI.

For a developing country, it is unlikely that the level of patent protection has reached this level.⁴¹ Therefore, we impose the following sufficient condition to ensure that $\partial \gamma_t / \partial \Theta_t > 0$ for $\Theta_t \in (0, \infty)$. This parameter condition is given by

$$\overline{f} < \frac{1}{\overline{\pi}(1 + s^2 \overline{\iota}/\overline{e})},\tag{P1}$$

for all $s \in [0, 1]$, which in turn implies $\overline{f} < 1/\overline{\pi}$.⁴² For the rest of the analysis, we assume that (P1) holds, so that the effect of patent protection on domestic innovation is monotonically positive. However, due to its negative effect on technology transfer through imitation, we will show that the overall effect of patent protection on economic growth continues to follow an inverted-U shape.

Proposition 4 A stronger system of patent protection (i.e., a larger Θ_t) raises FDI intensity f_t . If (P1) holds, then a stronger system of patent protection also has a positive effect on domestic innovation in the developing country.

For a given level of technology in an industry, (8) shows that a larger f_t also raises the amount of FDI. This finding is consistent with the time series behaviors of FDI and patent strength in China discussed in the introduction.

 $^{^{41}}$ See Park (2008b) for a survey of empirical studies on patent strength and innovation. Upon surveying the empirical literature, Park (2008b) concludes that although an inverted-U effect of patent strength on innovation is plausible, empirical evidence seems to suggest that the level of patent protection in most countries is still on the upward-sloping side of the curve.

⁴²This condition is sufficient for $f_t < 1$ in (9).

3.5 Aggregation

At the beginning of time t, the level of technology is industry i is $A_{t-1}(i)$. Then, the domestic innovator increases the level of technology to $\widetilde{A}_t(i)$. After that, if either a foreign firm or a domestic imitator succeeds in transferring foreign technologies into industry i, then the level of technology would further increase to $\widehat{A}_t(i)$. The transfer of foreign technologies succeeds with probability f_t whereas efficient imitation of foreign technologies succeeds with probability e_t . Using the law of large numbers, we derive the following law of motion for aggregate technology $A_t \equiv \int A_t(i) di$ in the developing country.

$$A_t = [f_t + (1 - f_t)e_t]g^*A_{t-1}^* + (1 + \gamma_t)A_{t-1}.$$
(16)

Intuitively, (16) states that the industries experience an average productivity improvement by $\gamma_t A_{t-1}$ through domestic innovation and a fraction $p_t = f_t + (1 - f_t)e_t$ of the industries experiences an additional productivity improvement by $g^* A_{t-1}^*$ through either FDI or efficient imitation.⁴³

We derive the aggregate production function by substituting $P_t(i) = 1/\alpha$ and (2) to (1).

$$Y_t = \zeta A_t,\tag{17}$$

where $\zeta \equiv \alpha^{2\alpha/(1-\alpha)}$ is a composite parameter. The resource constraint on final goods is

$$Y_t = C_t + X_t + R_t + E_t + I_t + F_t + NX_t,$$
(18)

where (a) C_t is aggregate consumption, (b) X_t is the amount of final goods used in the production of intermediate goods, (c) R_t is aggregate innovative R&D, (d) E_t is total expenditure on efficient imitation, (e) I_t is total expenditure on inefficient imitation, (f) F_t is total expenditure on FDI, and (g) NX_t is net export. Using $P_t(i) = 1/\alpha$ and (2), we obtain

$$X_t = \alpha^{2/(1-\alpha)} A_t. \tag{19}$$

From (4), aggregate innovative R&D is

$$R_t = \frac{(\gamma_t)^{\sigma}}{\sigma \overline{\gamma}} A_{t-1}.$$
 (20)

⁴³Rewriting (16) yields $(A_t - A_{t-1})/A_{t-1} = p_t g^* A_{t-1}^*/A_{t-1} + \gamma_t$, which is similar to the seminal Nelson-Phelps' catch-up function, and to which we have here provided some microfoundation, via our variables p_t and γ_t . See Benhabib and Spiegel (2005) for an analysis of other catch-up functions.

From (10), aggregate expenditure on efficient imitation is

$$E_t = (1 - f_t)\Theta_t \frac{(e_t)^2}{2\overline{e}} [(1 + \gamma_t)A_{t-1} + g^*A_{t-1}^*].$$
(21)

From (12), aggregate expenditure on inefficient imitation is

$$I_t = f_t \Theta_t \frac{(\iota_t)^2}{2\bar{\iota}} [(1+\gamma_t)A_{t-1} + g^* A_{t-1}^*].$$
(22)

From (8), aggregate expenditure on FDI is

$$F_t = \frac{(f_t)^2}{2\overline{f}} [(1+\gamma_t)A_{t-1} + g^* A_{t-1}^*].$$
(23)

As for the net export of final goods, it is given by

$$NX_t = \left(f_t(1 - \iota_t s)\overline{\pi} - \frac{(f_t)^2}{2\overline{f}}\right) [(1 + \gamma_t)A_{t-1} + g^*A_{t-1}^*].$$
(24)

In other words, the domestic economy exports goods to pay for the monopolistic profits (net of FDI expenditure) earned by foreign firms. Finally, aggregate consumption is

$$C_t = \zeta (1 - \alpha^2) A_t - (R_t + E_t + I_t + F_t + NX_t).$$
(25)

3.6 Convergence

If we define $a_t \equiv A_t/A_t^*$ as an inverse measure of the developing country's distance to the world technology frontier, then the law of motion for a_t is

$$a_t = [f_t + (1 - f_t)e_t] \left(\frac{g^*}{1 + g^*}\right) + \left(\frac{1 + \gamma_t}{1 + g^*}\right) a_{t-1} \equiv H(a_{t-1}).$$
(26)

Equation (26) is plotted in Figure 2 for a constant value of Θ .

Figure 2: Convergence

Figure 2 shows that a_t converges to a unique steady-state value given by

$$a^* = \frac{f + (1 - f)e}{1 - \gamma/g^*}.$$
(27)

To ensure that $a^* \in (0, 1)$, we naturally assume⁴⁴

$$g^* > \frac{\gamma}{1-p} = \frac{(\overline{\pi}\overline{\gamma})^{1/(\sigma-1)}}{(1-p)^{(\sigma-2)/(\sigma-1)}},$$
 (P2)

where p = f + (1 - f)e. At the steady state, the developing country grows at the same rate as the world technology frontier despite the fact that the step size of domestic innovation γ is smaller than g^* . However, if the developing country fails to obtain foreign technologies (i.e., f = e = 0), then it would diverge from the rest of the world because domestic innovation alone is insufficient for the country to catch up with the world technology frontier. Furthermore, (27) shows that stronger patent protection has opposing effects on the steady-state level of distance to frontier. On the one hand, a larger Θ stimulates domestic innovation γ and FDI f implying a positive effect on a^* . On the other hand, it discourages efficient imitation e implying a negative effect on a^* .

4 Stage-dependent IPR protection

In this section, we first analytically characterize the growth-maximizing level of patent protection. Then, we provide a numerical simulation on the welfare-maximizing path of patent

⁴⁴(P2) also implies $g^* > \gamma$, which guarantees convergence.

protection.

4.1 Growth-maximizing IPR protection

Given that achieving a specific growth rate (around 7% to 7.5%) has been a key objective in China's five-year plans until recently,⁴⁵ we are interested in analyzing the level of patent protection that maximizes contemporaneous economic growth. The growth rate of technology in the developing country at time t is

$$g_t \equiv \frac{A_t}{A_{t-1}} - 1 = p_t \frac{g^*}{a_{t-1}} + \gamma_t, \tag{28}$$

where $p_t = f_t + (1 - f_t)e_t$. This equation shows that for a backward country (i.e., a small a_{t-1}), obtaining foreign technologies through p_t (i.e., FDI and imitation) is relatively important for achieving a higher growth rate. In contrast, for an advanced country (i.e., a large a_{t-1}), domestic innovation γ_t becomes relatively important. This important property gives rise to a stage-dependent growth-maximizing level of patent protection.

Differentiating (28) with respect to p_t yields

$$\frac{\partial g_t}{\partial p_t} = \frac{g^*}{a_{t-1}} - \frac{(\overline{\pi}\overline{\gamma})^{1/(\sigma-1)}}{(\sigma-1)(1-p_t)^{(\sigma-2)/(\sigma-1)}},\tag{29}$$

$$\frac{\partial^2 g_t}{\partial p_t^2} = -\frac{(\overline{\pi}\overline{\gamma})^{1/(\sigma-1)}(\sigma-2)}{(\sigma-1)^2(1-p_t)^{1+(\sigma-2)/(\sigma-1)}} < 0.$$
(30)

The second-order condition implies that the growth rate g_t in the developing country is globally concave in p_t , whereas the first-order condition implies that the growth-maximizing p_t^g is given by (z, 1)/(z, 2)

$$p_t^g = 1 - \left(\frac{(\overline{\pi\gamma})^{1/(\sigma-1)}}{(\sigma-1)}\frac{a_{t-1}}{g^*}\right)^{(\sigma-1)/(\sigma-2)} \in (0,1),\tag{31}$$

which is decreasing in a_{t-1} and increasing in g^* . To see that $p_t^g > 0$ for any $a_{t-1} < 1$,

$$g^* > \frac{(\overline{\pi}\overline{\gamma})^{1/(\sigma-1)}}{(1-p)^{(\sigma-2)/(\sigma-1)}} > \frac{(\overline{\pi}\overline{\gamma})^{1/(\sigma-1)}}{(\sigma-1)} > \frac{(\overline{\pi}\overline{\gamma})^{1/(\sigma-1)}}{(\sigma-1)}a_{t-1},$$
(32)

where the first inequality follows from (P2), and the second inequality follows from $1 - p < (\sigma - 1)^{(\sigma - 1)/(\sigma - 2)}$, where $\sigma > 2$.

⁴⁵In the most recent five-year plan (2011 to 2015), the Chinese government has shifted its focus to emphasize more on households' welfare. For example, Feldstein (2011) writes that China's new five-year plan "is to shift official policy from maximizing GDP growth toward raising consumption and average workers' standard of living".

Because $p_t = f_t + (1 - f_t)e_t \in [\overline{\pi}\overline{f}, 1]$, the following parameter condition ensures that there exists a value of $\Theta_t \in (0, \infty)$ that equates $p_t = p_t^g$.

$$\overline{f} < \frac{p_t^g}{\overline{\pi}}.\tag{P3}$$

Therefore, the growth-maximizing p_t^g can be mapped into a unique level of growth-maximizing patent strength Θ_t^g that is increasing in a_{t-1} because p_t is monotonically decreasing in Θ_t given (P1). In other words, although patent protection has a monotonically positive effect on domestic innovation, it still has an inverted-U effect on economic growth because growth is driven by innovation, FDI and imitation. Furthermore, the growth-maximizing level of patent protection increases as the developing country evolves toward the world technology frontier. This finding of a stage-dependent growth-maximizing patent protection is driven by the property that the relative importance between foreign technologies and domestic innovation on the developing country's growth rate changes endogenously as it evolves towards the world technology frontier. Also, it is interesting to note that in the case of an increase in g^* , p_t^g increases and Θ_t^g decreases for a given a_{t-1} . Intuitively, when the technology frontier grows at a faster rate, it is more efficient for the developing country to imitate foreign technologies than to invest in domestic innovation by implementing a weaker patent system.

Proposition 5 As a developing country evolves towards the world technology frontier, the growth-maximizing patent strength increases over time. In addition, for a given stage of economic development, the growth-maximizing patent strength is decreasing in the growth rate of frontier technology.

4.2 Welfare-maximizing IPR protection

As for the welfare-maximizing patent strength, we consider a government that chooses Θ_t as a function of a_{t-1} to maximize aggregate welfare of current and future individuals given by $\sum_{t=1}^{\infty} \beta^{t-1} U_t$, where $U_t \equiv \int u_t^j dj$.⁴⁶ The assumption of risk neutrality implies that aggregate welfare of individuals at time t is simply given by aggregate consumption at time t (i.e., $U_t = C_t$). Substituting (20) - (24) into (25) yields

$$C_{t} = [\zeta(1-\alpha^{2})p_{t} - \Phi_{t}]g^{*}A_{t-1}^{*} + \left(\zeta(1-\alpha^{2}) - \frac{(\gamma_{t})^{\sigma}}{\sigma\overline{\gamma}(1+\gamma_{t})} - \Phi_{t}\right)(1+\gamma_{t})A_{t-1}, \quad (33)$$

⁴⁶We assume policy commitment by the government to rule out time inconsistent policies. For example, at the beginning of each period, the government may have the incentives to announce strong patent rights in order to attract FDI and then renege on this policy by allowing domestic firms to easily imitate foreign firms' technologies and to keep the profits in the domestic economy.

where $\Phi_t \equiv (1 - f_t)\Theta_t(e_t)^2/(2\overline{e}) + f_t\Theta_t(\iota_t)^2/(2\overline{\iota}) + f_t(1 - \iota_t s)\overline{\pi}$. The government's objective is

$$\max_{\Theta_t} \sum_{t=1}^{\infty} \beta^{t-1} C_t = A_0^* \max_{\Theta_t} \sum_{t=1}^{\infty} \left[\beta (1+g^*) \right]^{t-1} c_t,$$
(34)

where $c_t \equiv C_t / A_{t-1}^*$. Using (33), we can rearrange terms to obtain

$$c_t = [\zeta(1-\alpha^2)p_t - \Phi_t]g^* + \left(\zeta(1-\alpha^2) - \frac{(\gamma_t)^\sigma}{\sigma\overline{\gamma}(1+\gamma_t)} - \Phi_t\right)(1+\gamma_t)a_{t-1}.$$
 (35)

Given (34) and (35), we can solve for the socially optimal policy as a time-invariant dynamic programming, using the following Bellman equation.

$$v(a_{t-1}) = \max_{\Theta_t} c_t + \beta (1 + g^*) v(a_t),$$
(36)

where the law of motion for a_t is given by (26). Substituting (26) and (35) into (36), we derive an expression only in a_{t-1} , parameters, and policy variable Θ_t . Given the analytical complexity of this problem, we consider a numerical approach (described in an unpublished appendix) to simulate the welfare-maximizing path of patent strength Θ_t^u .

Our stylized model contains the following parameters $\{g^*, \beta, \alpha, s, \overline{\iota}, \overline{e}, \overline{\gamma}, \overline{f}, \sigma\}$ and variables $\{a_{t-1}, \Theta_t\}$. Some of these parameters such as $\{s, \overline{\iota}, \overline{e}, \overline{\gamma}, \overline{f}, \sigma\}$ are nonstandard, so we calibrate as many of them as possible using data on the Chinese economy. For the parameters that we cannot calibrate, we have to explore a range of values for robustness check. Therefore, this numerical exercise should be viewed as illustrative.

We consider 20 years in a generation. For the (inverse) distance-to-frontier variable, we set $a_{t-1} = 0.11$ to capture the relative labor productivity between China and the US in 2005. For the growth rate of frontier technologies, we set $g^* = (1 + 1.5\%)^{20} - 1$ to capture the long-run average annual TFP growth rate in the US. For the discount factor, we set β to match an annual discount rate of 10% to ensure that utility is bounded despite the high growth rate in China. For the labor share $1-\alpha$, we set α to 0.6 to match the 40% labor share of GDP in China.⁴⁷ For the profit-sharing parameter between foreign firms and domestic imitative firms, we set s = 0.5 as a benchmark and also consider $s \in \{0,1\}$ for robustness check. For the innovation parameter, we set $\overline{\gamma} = 1$ as a benchmark and also consider other values $\overline{\gamma} \in \{0.5, 2\}$ for robustness check. For the imitation parameters, we set $\overline{e} = 1$ and consider the symmetric case of $\overline{i} = \overline{e}$ as a benchmark, but we also consider $\overline{i} \in \{0.5\overline{e}, 2\overline{e}\}$ for robustness check. For the FDI parameter, we set $\overline{f} = 9$. Finally, for the curvature parameter

⁴⁷See for example Luo and Zhang (2010) for data on labor share in China.

in the innovation cost function, we set $\sigma = 5$. Given these parameter values, the optimal value of Θ_t^u evaluated at $a_{t-1} = 0.11$ is 0.053. With this complete set of parameter values, we can then compute the following moments from the model and compare them to the data of the Chinese economy. We find that from the model, the annual growth rate of output is 7.5%, consumption as a share of GDP is 0.49, and FDI as a share of GDP is 0.032. These calibrated moments are in line with the data on China from the Penn World Table and the World Development Indicators.

Using the above parameter values, we simulate the optimal path of IPR policy Θ_t^u and find that it is increasing in a_{t-1} .⁴⁸ This finding is robust to other parameter values. Hence, these numerical simulations indicate that our theoretical prediction on the growth-maximizing policy also applies to the welfare-maximizing policy. In Figure 3, we show our benchmark simulation outcome.

Figure 3: Optimal IPR policy as a function of the (inverse) distance to frontier

⁴⁸This result implies that it is optimal for the government to constantly reform the patent system as the country develops. However, implementing a reform is costly and occupies political leaders' time, which we do not model in this study. As a result, it is reasonable to expect occasional (rather than continuous) policy changes in the real world. More realistically, the political and legal environment evolves gradually in the direction of an increase in the enforcement of IPR. For example, a recent report prepared by the US-China Business Council (2013) finds that "China has made progress in recent years with continued improvements to its legal and regulatory framework for IPR protection, and gradual improvements to enforcement." All this is implicit in our IPR parameter Θ_t , which is meant to incorporate explicit legal aspects as well as the effective enforcement of patent rights.

5 Extensions

In this section, we explore a number of extensions to our baseline model. In Section 4.1, we consider a more general specification for the transfer of foreign technologies. In Section 4.2, we analyze the profit-sharing parameter s as a policy variable. In Section 4.3, we allow for the possibility that domestic innovators can engage in preemption to stifle against imitation.

5.1 Transfer of foreign technologies

In this subsection, we consider the case in which frontier technologies and also previously developed technologies that have not been adopted by the domestic economy are both important sources of technology transfer. In this case, we assume a more general specification by modifying (6) to

$$\widehat{A}_{t}(i) = \widetilde{A}_{t}(i) + g^{*}A_{t-1}^{*} + \phi(A_{t-1}^{*} - A_{t-1}),$$
(37)

where $A_{t-1}^* - A_{t-1}$ is the distance between frontier and domestic levels of technology,⁴⁹ and $\phi > 0$ is a parameter determining the importance of this channel of technology transfer (nesting our baseline model as a special case with $\phi \to 0$). In other words, if FDI succeeds in industry *i*, then the level of productivity in the industry increases by $g^*A_{t-1}^* + \phi(A_{t-1}^* - A_{t-1})$ (instead of just $g^*A_{t-1}^*$ as in Section 3.3).

Under the more general specification in (37), equation (16) becomes

$$A_{t} = p_{t}[g^{*}A_{t-1}^{*} + \phi(A_{t-1}^{*} - A_{t-1})] + (1 + \gamma_{t})A_{t-1}, \qquad (38)$$

where $p_t = [f_t + (1 - f_t)e_t]$. In other words, in addition to the average productivity improvement by $\gamma_t A_{t-1}$ in all industries, a fraction p_t of the industries experiences an additional productivity gain by $g^* A_{t-1}^* + \phi(A_{t-1}^* - A_{t-1})$ through either FDI or efficient imitation of foreign technologies. Rearranging terms, we derive from (38) the growth rate of the domestic economy given by

$$g_t \equiv \frac{A_t}{A_{t-1}} - 1 = \frac{p_t(g^* + \phi)}{a_{t-1}} + \gamma_t - p_t\phi.$$
(39)

Differentiating g_t with respect to p_t yields

$$\frac{\partial g_t}{\partial p_t} = \frac{g^* + \phi}{a_{t-1}} - \frac{(\overline{\pi}\overline{\gamma})^{1/(\sigma-1)}}{(\sigma-1)(1-p_t)^{(\sigma-2)/(\sigma-1)}} - \phi.$$
(40)

Therefore, $\partial^2 g_t / \partial (p_t)^2 < 0$ continues to be given by (30) as before. Setting $\partial g_t / \partial p_t = 0$ in

⁴⁹To facilitate tractable aggregation of $A_t \equiv \int A_t(i)di$, we assume that the technological distance is approximated by $A_{t-1}^* - A_{t-1}$ instead of $A_{t-1}^* - A_{t-1}(i)$.

(40) yields the growth-maximizing p_t^g given by

$$p_t^g = 1 - \left[\frac{(\overline{\pi}\overline{\gamma})^{1/(\sigma-1)}}{(\sigma-1)} \frac{a_{t-1}}{g^* + \phi(1-a_{t-1})}\right]^{(\sigma-1)/(\sigma-2)},\tag{41}$$

which is decreasing in a_{t-1} and increasing in g^* . Given that $p_t = [f_t + (1 - f_t)e_t]$ is the same as in Section 3 and is strictly decreasing in Θ_t , there exists a unique level of growth-maximizing patent strength Θ_t^g that is increasing in a_{t-1} and decreasing in g^* as before.

5.2 The profit-sharing parameter

In this subsection, we treat the profit-sharing parameter as a policy variable s_t and keep Θ as a constant. For simplicity, we consider our baseline model with $\phi = 0$. Substituting (13) into (9) yields

$$f_t = (1 - s_t^2 \overline{\iota} \overline{\pi} / \Theta) \overline{\pi} \overline{f}, \qquad (42)$$

which is decreasing in s_t . In other words, if the government implements a policy that increases the share of profits obtained by domestic imitators (e.g., by favoring domestic firms in court), then foreign firms would have less incentives to conduct FDI. Given that e_t in (11) does not depend on s_t , differentiating $p_t = f_t + (1 - f_t)e_t$ with respect to s_t yields

$$\frac{\partial p_t}{\partial s_t} = (1 - e_t) \frac{\partial f_t}{\partial s_t} < 0.$$
(43)

Because p_t is decreasing in s_t , domestic innovation γ_t must be increasing in s_t . Intuitively, increasing the share of profits that imitators can extract from foreign firms reduces FDI and its negative effect on domestic innovation. In other words, both s_t and Θ_t have a positive effect on domestic innovation γ_t and a negative effect on foreign technology transfer p_t . Given that the model is the same as before, the analysis in Section 4.1 applies, and there exists a growth-maximizing p_t^g that is decreasing in a_{t-1} . Therefore, as a country develops (i.e., a_{t-1} increases), the growth-maximizing level of p_t decreases, and hence, the government chooses a larger s_t to maximize economic growth. Therefore, whether we consider s_t or Θ_t as a policy variable, the stage-dependent property applies.

5.3 Preemption against imitation

In this subsection, we consider an extension in which domestic innovators may strategically choose a more drastic innovation to deter imitation. For simplicity, we consider a special case of our baseline model by setting $\overline{f} = 0$; in other words, we remove the element of FDI and assume that domestic imitators have the ability to copy foreign technologies from abroad. In this setting, domestic innovators first engage in domestic innovation, and then, domestic imitators may enter the market with more advanced technologies imitated from abroad. The imitation process is the same as efficient imitation in Section 3.4.

To introduce preemption against imitation, we modify (10) to

$$E_t(i) = \gamma_t^{\eta} \Theta_t \frac{(e_t)^2}{2\overline{e}} \widehat{A}_t(i), \qquad (44)$$

where γ_t^{η} captures in a stylized way the mechanism that a more drastic domestic innovation makes the entry of imitators more difficult, and $\eta \in (0, 1)$ is a curvature parameter. Taking γ_t as given, an imitator chooses e_t to maximize the expected profit of imitation. Simple differentiation yields

$$e_t = \min\left\{\frac{\overline{e}\overline{\pi}}{\gamma_t^{\eta}\Theta_t}, 1\right\},\tag{45}$$

which shows that a more drastic innovation reduces imitation.

As before, the expected return to R&D is $(1-p_t)\overline{\pi}\gamma_t A_{t-1}(i) - R_t(i)$, where $p_t = e_t$ (recall that $f_t = 0$). Taking the imitator's best response in (45) as given, the domestic innovator in industry *i* maximizes the expected return to R&D by choosing γ_t . Simple differentiation yields the following condition that characterizes the equilibrium step size of innovation γ_t .

$$\left[1 - \frac{(1-\eta)\overline{e}\overline{\pi}}{\gamma_t^{\eta}\Theta_t}\right]\overline{\pi} = \frac{(\gamma_t)^{\sigma-1}}{\overline{\gamma}},\tag{46}$$

where the left-hand side is the marginal benefit of raising γ_t and the right-hand side is the marginal cost of raising γ_t . Given $\eta \in (0, 1)$,⁵⁰ it can be shown that there exists a unique equilibrium level of γ_t , which is increasing in Θ_t .

In other words, stronger patent protection reduces imitation and stimulates innovation as in our baseline model. As before, the growth rate in the domestic economy is $g_t = p_t g^*/a_{t-1} + \gamma_t$, where $p_t = e_t$ is given by (45) and γ_t is determined by (46). Differentiating g_t with respect to Θ_t yields

$$\frac{\partial g_t}{\partial \Theta_t} = \frac{g^*}{a_{t-1}} \frac{\partial e_t}{\partial \Theta_t} + \frac{\partial \gamma_t}{\partial \Theta_t}.$$
(47)

⁵⁰In the case of $\eta = 1$, the innovation step size γ_t would be independent of patent strength Θ_t . In the case of $\eta > 1$, γ_t would be decreasing in Θ_t . However, we rule out these alternative cases given empirical evidence for the positive effect of patent rights on innovation in developing countries. For example, Chen and Puttitanun (2005) provide empirical evidence that patent protection has a positive effect on innovation in developing countries.

 $\partial \gamma_t / \partial \Theta_t > 0$ captures the positive effect of patent protection on domestic innovation that contributes to economic growth. $\partial e_t / \partial \Theta_t < 0$ captures the negative effect of patent protection on the imitation of foreign technologies, and reducing the transfer of foreign technologies hurts economic growth. Equation (47) shows that the relative importance of these two opposing effects of Θ_t on g_t is determined by a_{t-1} (i.e., the inverse distance to frontier). When a country is far away from (close to) the world technology frontier, the negative effect of patent protection on foreign technology transfer dominates (is dominated by) the positive effect of patent protection on domestic innovation. This implication is consistent with our baseline model as well as the stylized facts documented in Section 2.

6 Conclusion

In this study, we have developed a simple Schumpeterian growth model of distance to frontier to analyze the evolution of IPR protection in developing countries. Although our model is stylized, we believe that it captures the essence of the key issue that is the interrelation between economic development and optimal IPR protection. Specifically, an appropriate IPR system contributes to the economic development of a country, which in turn determines the optimal level of IPR protection in the country at a given stage of development. In summary, we find that the optimal strength of IPR protection increases as a developing country evolves towards the world technology frontier, and this theoretical finding of stage-dependent IPR protection is consistent with the actual evolution of the IPR system in China.

In terms of policy implications, our finding suggests that it is optimal for a developing country to gradually strengthen its IPR protection. In other words, requiring a developing country, such as China, to immediately raise its level of patent protection on par with developed countries would hurt its social welfare. In other words, the Chinese government would probably have wanted to implement a less significant reform to the patent system if the TRIPS Agreement were not a requirement for the accession to the WTO.⁵¹ In a National Academy of Sciences report, Merrill *et al.* (2004, p. 13) also argue that "patents exist in most countries, and the degree to which countries at different stages of economic development should adhere to the same standards of patentability, conform to the same rules, and follow the same administrative procedures is an enormously complex although extremely important set of issues. [...] readers should not infer that what we recommend for the United States we believe less-developed countries should adopt." Our finding of stage-dependant IPR policy

⁵¹Although the TRIPS Agreement requires developing countries to raise their level of patent protection on par with developed countries, the de facto increase in patent protection in China is likely to be smaller than expected due to an imperfect enforcement of statutory patent rights.

reiterates their concern and provides a justification for the WTO's procedure that when the TRIPS Agreement was implemented in developed countries in 1996, developing countries and least developed countries were given an extension of 4 years and 11 years respectively to apply the agreement's provisions.

Finally, in the theoretical model, we consider a developing country that takes the world technology frontier as given. Although it is arguable that technological progress in developed countries may be affected by the level of IPR protection in developing countries, it is still an open debate among existing studies (cited in the introduction) as to whether Southern IPR protection has a positive or negative effect on Northern innovation. Therefore, we leave this important but controversial issue to future research.

References

- [1] Acemoglu, D., Aghion, P., and Zilibotti, F., 2003. Vertical integration and distance to frontier. *Journal of the European Economic Association*, 1, 630-638.
- [2] Acemoglu, D., Aghion, P., and Zilibotti, F., 2006. Distance to frontier, selection, and economic growth. *Journal of the European Economic Association*, 4, 37-74.
- [3] Acemoglu, D., and Akcigit, U., 2012. Intellectual property rights policy, competition and innovation. *Journal of the European Economic Association*, 10, 1-42.
- [4] Aghion, P., Howitt, P., and Mayer-Foulkes, D., 2005. The effect of financial development on convergence: Theory and evidence. *Quarterly Journal of Economics*, 120, 173-222.
- [5] Aitken, B., and Harrison, A., 1999. Do domestic firms benefit from direct foreign investment? Evidence from Venezuela. American Economic Review, 89, 605-618.
- [6] Akiyama, T., and Furukawa, T., 2009. Intellectual property rights and appropriability of innovation. *Economics Letters*, 103, 138-141.
- [7] Allison, J., and Lin, L., 1999. The evolution of Chinese attitudes toward property rights in invention and discovery. University of Pennsylvania Journal of International Economic Law, 20, 735-791.
- [8] Benhabib, J., Perla, J., and Tonetti, C., 2012. Catch-up and fall-back through innovation and imitation. NBER Working Paper No. 18091.
- Benhabib, J., and Spiegel, M., 2005. Human capital and technology diffusion. In *Handbook of Economic Growth*, edited by Aghion, P., and Durlauf, S., vol. 1., pp. 935-966. Elsevier.
- [10] Branstetter, L., Fisman, R., and Foley, C., 2006. Do stronger intellectual property rights increase international technology transfer? Empirical evidence from US firm-level panel data. *Quarterly Journal of Economics*, 121, 321-349.
- [11] Branstetter, L., and Saggi, K., 2011. Intellectual property rights, foreign direct investment and industrial development. *Economic Journal*, 121,1161-1191.
- [12] Chen, Y., and Puttitanun, T., 2005. Intellectual property rights and innovation in developing countries. *Journal of Development Economics*, 78, 474–493.

- [13] Chu, A., 2009. Effects of blocking patents on R&D: A quantitative DGE analysis. Journal of Economic Growth, 14, 55-78.
- [14] Chu, A., Cozzi, G., and Galli, S., 2012. Does intellectual monopoly stimulate or stifle innovation? *European Economic Review*, 56, 727-746.
- [15] Chu, A., Cozzi, G., and Galli, S., 2013. Theory and empirics of stage-dependent intellectual property rights. MPRA Paper No. 44663.
- [16] Cozzi, G., 2001. Inventing or spying? Implications for growth. Journal of Economic Growth, 6, 55-77.
- [17] Cozzi, G., and Spinesi, L., 2006. Intellectual appropriability, product differentiation, and growth. *Macroeconomic Dynamics*, 10, 39-55.
- [18] Davis, L., and Sener, F., 2012. Private patent protection in the theory of Schumpeterian growth. *European Economic Review*, 56, 1446-1460.
- [19] Dinopoulos, E., and Segerstrom, P., 2010. Intellectual property rights, multinational firms and economic growth. *Journal of Development Economics*, 92, 13-27.
- [20] Dinopoulos, E., and Syropoulos, C., 2007. Rent protection as a barrier to innovation and growth. *Economic Theory*, 32, 309-332.
- [21] Feldstein, M., 2011. China's five-year plan and global interest rates. Project Syndicate, March 29, 2011.
- [22] Furukawa, Y., 2007. The protection of intellectual property rights and endogenous growth: Is stronger always better? *Journal of Economic Dynamics and Control*, 31, 3644-3670.
- [23] Furukawa, Y., 2010. Intellectual property protection and innovation: An inverted-U relationship. *Economics Letters*, 109, 99-101.
- [24] Futagami, K., and Iwaisako, T., 2007. Dynamic analysis of patent policy in an endogenous growth model. *Journal of Economic Theory*, 132, 306-334.
- [25] Gersbach, H., Schneider, M., and Schneller, O., 2013. Basic research, openness, and convergence. *Journal of Economic Growth*, 18, 33-68.
- [26] Ginarte, J., and Park, W., 1997. Determinants of patent rights: A cross-national study. *Research Policy*, 26, 283-301.

- [27] Glass, A., and Saggi, K., 2002a. Licensing versus direct investment: Implications for economic growth. *Journal of International Economics*, 56, 131-153.
- [28] Glass, A., and Saggi, K., 2002b. Intellectual property rights and foreign direct investment. Journal of International Economics, 56, 387-410.
- [29] Glass, A., and Wu, X., 2007. Intellectual property rights and quality improvement. Journal of Development Economics, 82, 393-415.
- [30] Griffith, R., and Miller, H., 2011. Innovation in China: The rise of Chinese inventors in the production of knowledge. IFS Working Paper No. W11/15.
- [31] Grossman, G., and Helpman, E., 1991. Endogenous product cycles. *Economic Journal*, 101, 1214-1229.
- [32] Grossman, G., and Lai, E., 2004. International protection of intellectual property. American Economic Review, 94, 1635-1653.
- [33] Helpman, E., 1993. Innovation, imitation, and intellectual property rights. *Economet*rica, 61, 1247-1280.
- [34] Horii, R., and Iwaisako, T., 2007. Economic growth with imperfect protection of intellectual property rights. *Journal of Economics*, 90, 45-85.
- [35] Howitt, P., and Mayer-Foulkes, D., 2005. R&D, implementation and stagnation: A Schumpeterian theory of convergence clubs. *Journal of Money, Credit and Banking*, 37, 147-177.
- [36] Hu, A., and Jefferson, G., 2009. A great wall of patents: What is behind China's recent patent explosion? *Journal of Development Economics*, 90, 57-68.
- [37] Iwaisako, T., and Futagami, K., 2003. Patent policy in an endogenous growth model. Journal of Economics, 78, 239-258.
- [38] Iwaisako, T., and Futagami, K., 2013. Patent protection, capital accumulation, and economic growth. *Economic Theory*, 52, 631-668.
- [39] Iwaisako, T., Tanaka, H., and Futagami, K., 2011. A welfare analysis of global patent protection in a model with endogenous innovation and foreign direct investment. *European Economic Review*, 55, 1137-1151.

- [40] Javorcik, B., 2004. The composition of foreign direct investment and protection of intellectual property rights: Evidence from transition economies. *European Economic Review*, 48, 39-62.
- [41] Judd, K., 1985. On the performance of patents. *Econometrica*, 53, 567-586.
- [42] Kwan, Y., and Lai, E., 2003. Intellectual property rights protection and endogenous economic growth. *Journal of Economic Dynamics and Control*, 27, 853-873.
- [43] La Croix, S., and Konan, D., 2002. Intellectual property rights in China: The changing political economy of Chinese-American interests. World Economy, 25, 759-788.
- [44] Lai, E., 1998. International intellectual property rights protection and the rate of product innovation. *Journal of Development Economics*, 55, 133-153.
- [45] Lee, J.-Y., and Mansfield, E., 1996. Intellectual property protection and US foreign direct investment. *Review of Economics and Statistics*, 78, 181-186.
- [46] Lerner, J., 2009. The empirical impact of intellectual property rights on innovation: Puzzles and clues. American Economic Review, 99, 343–348.
- [47] Li, C.-W., 2001. On the policy implications of endogenous technological progress. *Economic Journal*, 111, C164-C179.
- [48] Li, Y., 2010. Imitation to Innovation in China: The Role of Patents in Biotechnology and Pharmaceutical Industries. Northampton, Mass.: Edward Elgar Publishing.
- [49] Luo, C., and Zhang, J., 2010. Declining labor share: Is China's case different? China & World Economy, 18, 1-18.
- [50] Merrill, S., Levin, R., and Myers, M., 2004. A Patent System for the 21st Century. Washington, DC: National Academies Press.
- [51] Nordhaus, W., 1969. Invention, Growth, and Welfare. Cambridge, Mass.: The MIT Press.
- [52] O'Donoghue, T., and Zweimuller, J., 2004. Patents in a model of endogenous growth. Journal of Economic Growth, 9, 81-123.
- [53] Parello, C., 2008. A north-south model of intellectual property rights protection and skill accumulation. *Journal of Development Economics*, 85, 253-281.

- [54] Park, W., 2008a. International patent protection: 1960-2005. Research Policy, 37, 761-766.
- [55] Park, W., 2008b. Intellectual property rights and international innovation. In K. Maskus (ed.) Frontiers of Economics and Globalization, vol. 1, Handbook Series, Elsevier Science.
- [56] Qian, Y., 2007. Do national patent laws stimulate domestic innovation in a global patenting environment? A cross-country analysis of pharmaceutical patent protection, 1978– 2002. Review of Economics and Statistics, 89, 436–453.
- [57] Segerstrom, P., 1991. Innovation, imitation, and economic growth. Journal of Political Economy, 99, 807-827.
- [58] Sepetys, K., and Cox, A., 2009. Intellectual property rights protection in China: Trends in litigation and economic damages. *NERA Economic Consulting* Working Paper.
- [59] Tanaka, H., Iwaisako, T., and Futagami, K., 2007. Dynamic analysis of innovation and international transfer of technology through licensing. *Journal of International Economics*, 73, 189-212.
- [60] The Economist, 2011. The world economy: Catching up is very hard to do. September 24th, 2011.
- [61] The Economist, 2013. China: Voting with their wallets. April 20th, 2013.
- [62] The US-China Business Council, 2013. Intellectual property rights recommendation list. February 2013.
- [63] Wu, H., 2010. Distance to frontier, intellectual property rights, and economic growth. Economics of Innovation and New Technology, 19, 165-183.
- [64] Yang, G., and Maskus, K., 2001. Intellectual property rights, licensing, and innovation in an endogenous product-cycle model. *Journal of International Economics*, 53, 169-187.
- [65] Yang, W., and Yen, Y., 2010. The dragon gets new IP claws: The latest amendments to the Chinese patent law. *IPO Articles and Reports*.
- [66] WIPO, 2012. World Intellectual Property Indicators. WIPO Economics & Statistics Series.
- [67] Zuber, J., 2008. Trade secrets rules, regulation and enforcement in China and the US: A comparative analysis. *China Intellectual Property*, May-June 2008, 51-55.

Table 1. Regression results					
Dependent Variable: <i>Growth</i> _{it+1}					
<i>IPR</i> _{it}		-0.049***	-0.031*	-0.062*	
		(-3.51)	(-1.79)	(-1.68)	
<i>RLP</i> _{it}		-0.584***	-0.612***	-0.770***	
		(-5.83)	(-6.28)	(-4.97)	
IPR _{it} *RLP _{it}		0.055**	0.058**	0.093**	
		(2.48)	(2.29)	(3.21)	
Country fixed effects		Yes	Yes	Yes	
Period fixed effects		No	Yes	Yes	
2-Stage LS		No	No	Yes	
<i>R</i> ² -adjusted		0.58	0.60	0.58	
No. of observations		558	558	464	
F-statistics		6.61***	6.59***	4.25***	
DW		2.10	2.10	2.29	
Hausman Test of Cross-Section					
Random Effects: 90.4***					
Student's <i>t</i> -test values are in parentheses.					
* Statistically significant at 10%. ** Statistically significant at 5%. *** Statistically significant at 1%.					

Not for Publication

Unpublished Appendix: Numerical solution of the optimal IPR policy

Recall that the government's objective is

$$\max_{\Theta_t} \sum_{t=1}^{\infty} \beta^{t-1} C_t = A_0^* \max_{\Theta_t} \sum_{t=1}^{\infty} \left[\beta (1+g^*) \right]^{t-1} c_t,$$

where c_t is given by (35). Given the analytical complexity of this problem, we consider a numerical approach to solve for the welfare-maximizing path of patent strength. In our numerical analysis, we simulate numerically the value function, $v(a_{t-1})$, and the policy function $G(a_{t-1}) \equiv \Theta_t$, adopting a standard value-function iteration method, according to which⁵²:

1. We select a grid of points⁵³ for [0, 1], i.e. the state space of a_i , where now $i \in 1, ..., N$ indexes the *i*-th point in the grid (not time);

- 2. We start from an initial guess⁵⁴ of $v_0(a)$;
- 3. We obtain numerical solutions for

$$v_{1i} = \max_{\Theta_i} c_i + \beta (1 + g^*) v_0(a_i)$$

for all $i \in 1, ..., N$;

4. We obtain a (cubic) polynomial spline approximation of $v_1(a)$ such that $v_1(a_i) = v_{1i}$; 5. We iterate this procedure, this time starting from the new function $v_1(a_i)$, obtaining

$$v_{2i} = \max_{\Theta_i} c_i + \beta (1 + g^*) v_1(a_i)$$

for all $i \in 1, ..., N$;

6. Obtain a polynomial spline approximation of $v_2(a)$ such that $v_2(a_i) = v_{2i}$: this is necessary for the maximization to take place in the continuous space [0, 1], thereby admitting solutions for Θ_i corresponding to values of *a* not necessarily in the chosen grid⁵⁵;

7. We keep repeating the maximization and approximation, until the change in v_{ni} and in the policy variables does not exceed a tolerance value⁵⁶.

 $^{^{52}\}mathrm{All}$ computations have been performed using Matlab. The .m files used are available upon request.

⁵³This number is N = 40 in our simulations.

⁵⁴Identically equal to zero.

⁵⁵Otherwise $v_1(a_i)$ would not be defined.

 $^{^{56}}$ of 10^{-4} , and the number of iterations do not exceed a maximum number of loops, set equal to 80 in our simulations.