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find that there will be ASD relationship even there is only very little difference in mean, variance,
skewness, or kurtosis. Investors may prefer to conclude ASD only if the dominance is nearly almost.
Levy, et al. (2010) have provided two approaches to solve the problem. In this paper, we extend
their work by first recommending an existing stochastic dominance test to handle the issue and
thereafter developing a new test for the ASD which could detect dominance for any pre-determined
small value. We also provide two approaches to obtain the critical values for our proposed test.
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1 Introduction

Stochastic dominance (SD) theory has been well established, see, for example, Hanoch and

Levy (1969), Hadar and Russell (1969), and Rothschild and Stiglitz (1970). Leshno and

Levy (2002) extend it to the theory of almost stochastic dominance (ASD) for most decision

makers. ASD has been widely used in many areas, especially in finance, see, for example,

Levy (2006, 2009), Bali, et al. (2009), and Levy, et al. (2010).

Recently, Guo, et al. (2013) find that when comparing any two prospects, there will be

ASD relationship even there is only very little difference in mean, variance, skewness, or

kurtosis. Investors may prefer to conclude ASD only if the dominance is nearly almost.

Levy, et al. (2010) have provided two approaches to solve the problem. In this paper, we

extend their work by first recommending an existing stochastic dominance test to handle

the issue and thereafter developing a new test for the ASD which could detect dominance

for any pre-determined small value. We also provide two approaches to obtain the critical

values for our proposed test.
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2 Notations and Definitions

Suppose that random variables X and Y defined on the support Ω = [a, b] with means µX

and µY and standard deviations σX and σY have the corresponding distribution functions

F and G, respectively.

H(1) = H and H(n)(x) =

∫ x

a
H(n−1)(t)dt for H = F,G and n = 2, 3, 4 ;

∣

∣

∣

∣F (n) −G(n)
∣

∣

∣

∣ =

∫ b

a

∣

∣F (n)(x)−G(n)(x)
∣

∣dx , and (1)

Sn ≡ Sn(F,G) =
{

x ∈ [a, b] : G(n)(x) < F (n)(x)
}

for n = 1, · · · , 4 .

In this paper we modify the concept of the ASD by restricting the range of ϵ to be

smaller than a predetermined value, say, for example, 5%, set by users, instead of the value

of 1/2 used in the ASD definition stated in Leshno and Levy (2002), modified by Tzeng et

al. (2012), and Guo, et al. (2013, 2013a). To be precise, we present the definition as follows:

Definition 1 Let F and G be the corresponding distribution functions of X and Y . For

any predetermined value positive value ϵ0 which is much smaller than 1/2,

ϵ0-ASD1: X is said to dominate Y by ϵ0-FSD1, denoted by X ≽almost(ϵ0)
1 Y or F ≽almost(ϵ0)

1

G, if and only if

∫

S1

[

F (x)−G(x)
]

dx ≤ ϵ0
∣

∣

∣

∣F −G
∣

∣

∣

∣

ϵ0-ASD2: X is said to dominate Y by ϵ0-ASD2, denoted by X ≽almost(ϵ0)
2 Y or F ≽almost(ϵ0)

2

G, if and only if

∫

S2

[

F (2)(x)−G(2)(x)
]

dx ≤ ϵ0
∣

∣

∣

∣F (2) −G(2)
∣

∣

∣

∣ and µX ≥ µY ;

ϵ0-ASD3: X is said to dominate Y by ϵ0-ASD3, denoted by X ≽almost(ϵ0)
3 Y or F ≽almost(ϵ0)

3

G, if and only if

∫

S3

[

F (3)(x)−G(3)(x)
]

dx ≤ ϵ0
∣

∣

∣

∣F (3) −G(3)
∣

∣

∣

∣ and G(n)(b) ≥ F (n)(b) for n = 2, 3 .

ϵ0-ASD4: X is said to dominate Y by ϵ0-ASD4, denoted by X ≻almost(ϵ0)
4 Y or F ≽almost(ϵ0)

4

G, if and only if

∫

S4

[

F (4)(x)−G(4)(x)
]

dx ≤ ϵ0
∣

∣

∣

∣F (4) −G(4)
∣

∣

∣

∣ and G(n)(b) ≥ F (n)(b) for n = 2, 3, 4 ,
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where ϵ0-ASDn is the n-order ASD for n = 1, · · · , 4.

From Definition 1, we can see clearly that the proportions of the nagging negative areas

in which G(n)(x) below F (n)(x) over the total absolute area differences are bounded by a

predetermined value ϵ0 which is much smaller than 1/2. To explain the advantage of using

our modification, we define the following utility functions:

Definition 2 For n = 1, · · · , 4,

Un =
{

u : (−1)iu(i) ≤ 0 , i = 1, · · · , n
}

,

U∗

n(ϵ0) =
{

u ∈ Un : (−1)n+1u(n)(x) ≤ inf{(−1)n+1u(n)(x)}[1/ϵ0 − 1] ∀x
}

,

in which ϵ0 is much smaller than 1/2.1

We note that since ϵ0 is a predetermined value which is much smaller than 1/2, U∗

n(ϵ0)

can be much closer to Un such that most of the investors in Un will be in U∗

n(ϵ0). Thus, the

advantage of using ϵ0-ASD – the modification of ASD – in Definition 1 is that when one

confirms X is preferred to Y in the sense of ϵ0-ASDn, one could conclude that all investors

with u in U∗

n(ϵ0) will prefer X is preferred to Y which, in turn, could implies that most of

the investors with u in Un will prefer X is preferred to Y . Hence, we claim that by using

our modified ASD could draw preference for most investors if ϵ0 is small.

3 The Theory

Recently, Guo, et al. (2013) find that when comparing any two prospects, there will be ASD

relationship even there is only very little difference in mean, variance, skewness, or kurtosis.

Investors may prefer to conclude ASD only if the dominance is nearly almost. Levy, et

al. (2010) have provided a good solution. They suggest two approaches. We modify their

suggestion as follows:

The first approach is to check the actual area violation ϵ that is (significantly) smaller

than 1/2. The second approach is to find for a given group of subjects what is the allowed

area violation by each investor and whether for all subjects belonging to this group the allowed

area violation is greater than the actual area violation.

1We note that the theory can be extended to satisfy utilities defined to be non-differentiable and/or
non-expected utility functions, readers may refer to Wong and Ma (2008) and the references therein for
more information.
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In this paper, we extend their work by first recommending an existing stochastic domi-

nance test to handle the issue and thereafter developing a new test for the ASD which could

detect dominance for any pre-determined small value. We first recommend an existing s-

tochastic dominance test to handle the issue in next subsection.

3.1 Initial Stochastic Dominance Test

There are several SD tests. Among them, there are two broad classes of SD tests. One is the

minimum/maximum statistic, while the other is based on distribution values computed on a

set of grid points. McFadden (1989) first develops a SD test using the minimum/maximum

statistic. Later on, Barrett and Donald (2003) develop a Kolmogorov-Smirnov-type test

and Linton et al. (2005) extend their work to relax the iid assumption. On the other

hand, the SD tests developed by Anderson (1996) and Davidson and Duclos (DD, 2000)

compare the underlying distributions at a finite number of grid points whereas Bai, et

al. (2011) extend their work by deriving the limiting distributions of the test statistics

to be stochastic processes, proposing a bootstrap method to decide the critical points of

the tests and proving the consistency of the bootstrap tests. The advantages of the DD

test are (1) it has been examined to be one of the most powerful approaches and yet less

conservative in size (see Tse and Zhang, 2004; Lean et al., 2008), and (2) it compares

the underlying distributions at a finite number of grid points which, in turn, tells us the

percentage of one prospect dominating another and vice verse. This information is useful

for decision makers to determine the ASD relationship among the prospects and thus we

first recommend decision makers to apply the DD test to determine the ASD relationship

among the prospects. Readers may refer to Davidson and Duclos (2000) and Bai, et al.

(2011) for the test statistics or refer to Fong, et al. (2005, 2008), Gasbarro, et al. (2007,

2012), and Chan, et al. (2012) for the use of the SD tests in applications. We discuss the

procedure briefly in this section.

To check whether there is any SD between F and G, we could test the following hy-

pothesis, for n = 1, · · · , 4, H0 : Fn ≡ Gn, against three alternatives

H1 : F ̸≡n G , H1l F ≻n G , and H1r F ≺n G . (2)

Let {fi} (i = 1, 2, · · · , Nf ) and {gi} (i = 1, 2, · · · , Ng) be observations drawn from the

independent random variables Y and Z with distribution functions F and G, respectively.
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The integrals F (n) and G(n) for F and G are defined in (1) for n = 1, · · · , 4. For a grid of

pre-selected points {xk, k = 1, · · · ,K}, we propose to use the following modified n-order

DD test statistic, Tn(x) (n = 1, · · · , 4) to test for H1, H1l, and H1r:

Tn(x) =
F̂ (n)(x)− Ĝ(n)(x)

√

V̂n(x)
, (3)

where

V̂n(x) = V̂F (n)(x) + V̂G(n)(x), Ĥn(x) =
1

Nh(n− 1)!

Nh
∑

i=1

(x− hi)
n−1
+ ,

V̂Hn
(x) =

1

Nh

[

1

Nh((n− 1)!)2

Nh
∑

i=1

(x− hi)
2(n−1)
+ − Ĥ(n)(x)2

]

, H = F,G; h = f, g .

The modified DD test compares distributions at a finite number of grid points. Various

studies examine the choice of grid points. For example, Tse and Zhang (2004) show that

an appropriate choice of K for reasonably large samples ranges from 6 to 15. Too few grids

will miss information about the distributions. To solve this problem, Lean, et al. (2007),

Wong, et al. (2008), Qiao, et al. (2012), and others suggest to use the 10 major partitions

with 10 minor partitions within any two consecutive major partitions in each comparison

and draw statistical inference. We recommend to use the simulated critical value suggested

by Bai, et al. (2011) to make inference.

We note that by applying the DD test Tn(x) in (3), one will know how many percent

F ≻n G and how many percent G ≻n F significantly for n = 1, · · · , 4. If F ≻n G is more

than 50% while G ≻n F is less than the predetermined small value ϵ0 which is much smaller

than 1/2, then we conclude that F ≽almost(ϵ0)
n G for n = 1, · · · , 4.

3.2 New ASD Test

The advantage of applying the modified DD test Tn(x) in (3) is that one will know how

many percent F ≻n G and how many percent G ≻n F significantly. This information could

then be used to determine whether F ≽almost(ϵ0)
n G or G ≽almost(ϵ0)

n F for n = 1, · · · , 4.

However, the disadvantage of applying the DD test Tn(x) in (3) is that it does not fit in

the requirement of ASD in Definition 1. To circumvent this limitation, in this paper we

propose to use another test for testing ASD. We will develop the test in this section to test

the following hypothesis:

H0 :

∫

Sn

[

F (n)(x)−G(n)(x)
]

dx ≤ ϵ0
∣

∣

∣

∣F (n) −G(n)
∣

∣

∣

∣, n = 1, · · · , 4 .
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Notice that the left side of the above inequality can be rewritten as

∫

Sn

[

F (n)(x)−G(n)(x)
]

dx := I1 =

∫

max(F (n)(x)−G(n)(x), 0)dx.

Similarly, we can have

∫

SC
n

[

F (n)(x)−G(n)(x)
]

dx := I2 =

∫

min(F (n)(x)−G(n)(x), 0)dx.

Through some computations, we can find that the null hypothesis is equivalent to

H0 : (1− ϵ0)I1 + ϵ0I2 ≤ 0, n = 1, · · · , 4 .

As for F (n)(x), note that

F (n)(x) =
1

(n− 1)!

∫ x

x
(x− t)n−1dF (t) =

1

(n− 1)!
E(x−X)n−1

+

here the function t 7→ (t)+ = max(0, t).

Suppose now {Xi}Ni=1 and {Yi}Mi=1 are independent random samples from distributions

with F and G, respectively. We also assume M/(N +M) = λ̂ → λ ∈ (0, 1). Then, we can

estimate F (n)(x) and G(n)(x) by the following equations:

F̂ (n)(x) =
1

(n− 1)!

1

N

N
∑

i=1

(x−Xi)
n−1I(Xi ≤ x), Ĝ(n)(x) =

1

(n− 1)!

1

M

M
∑

i=1

(x−Yi)
n−1I(Yi ≤ x).

When the estimates of F (n)(x) and G(n)(x) are obtained, we can estimate I1 and I2 by

using the following:

Î1 =

∫

max(F̂ (n)(x)− Ĝ(n)(x), 0)dx, Î2 =

∫

min(F̂ (n)(x)− Ĝ(n)(x), 0)dx.

Then, the test statistic can be defined as follows:

TN,M =

√

NM

N +M
[(1− ϵ0)Î1 + ϵ0Î2]. (4)

When the value of TN,M is very large, we reject the null hypothesis. The decision rule

is that “rejecting H0 if TN,M > cn”, where cn is the critical value that will be discussed in

next section. To state the properties of the test, we first introduce the following notations:

T1(x) =

√

NM

N +M

[

(F̂ (n)(x)− F (n)(x))− (Ĝ(n)(x)−G(n)(x))
]

,

T 1(x) =
1

(n− 1)!

∫ x

x
(x− t)n−1d

(√
λB(F (t))−

√
1− λB(G(t))

)

,

T =

∫

max(T 1(x), 0)dx ,

where B(·) is the standardized Brownian bridge on the interval [0, 1].

The following result characterizes the properties of our proposed test.
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Theorem 1 Assume that cn is a positive finite constant, we have:

(A) if H0 is true, then

lim
N,M→∞

P (reject H0) ≤ P (T > cn) ≡ α(cn) ;

(B) otherwise,

lim
N,M→∞

P (reject H0) = 1 .

4 Determination of critical values

4.1 Multiplier Methods

In this section, we propose to use the multiplier method which is also known as the non-

parametric Monte Carlo method. As discussed by Van der Vaart and Wellner (1996), this

method aims to simulate a process that is identical and independent to the original limiting

asymptotic process. We discuss the Monte Carlo test procedure for determining the p-value

as follows:

Step 1. Generate random variables eFi (i = 1, 2, · · · , N) and eGi (i = 1, 2, · · · ,M) inde-

pendently with zero mean and unit variance. Let EF
N := (eF1 , · · · , eFN ), EG

N :=

(eG1 , · · · , eGM ) and define the conditional counterpart of T 1(x) as

T 1(E
F
N , EG

M , x) = λ̂1/2 1√
N

N
∑

i=1

[

1

(n− 1)!
(x−Xi)

n−1I(Xi ≤ x)− F̂ (n)(x)

]

eFi

−(1− λ̂)1/2
1√
M

M
∑

i=1

[

1

(n− 1)!
(x− Yi)

n−1I(Yi ≤ x)− Ĝ(n)(x)

]

eGi .

The resultant conditional test statistic is

T (EF
N , EG

M ) =

∫

max(T 1(E
F
N , EG

M , x), 0)dx.

Step 2. Generate m sets of EF
N , EG

M , say E
(i),F
N , E

(i),G
M , i = 1, · · · ,m and get m values of

T (EF
N , EG

M ) , say T (E
(i),F
N , E

(i),G
M ), i = 1, · · · ,m.

Step 3. The p-value is estimated by p̂k = nk/(m+1), where nk is the number of T (E
(i),F
N , E

(i),G
M )

which is larger than or equal to TN,M . Reject H0 when p̂k ≤ α for a designed level α.

Using the above multiplier method, we obtain the following theorem:

Theorem 2 Applying the multiplier method described above, we have
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(A) if H0 is true, then

lim
N,M→∞

P (reject H0) ≤ α ;

(B) otherwise,

lim
N,M→∞

P (reject H0) = 1 .

In order to compute the p-values in practice, we must deal with the fact that the in-

tegrals that define the relevant random variables must be calculated. Notice that I1 =

E
(

max(F (n)(U) − G(n)(U), 0)
)

(b − a), Here, U follows a uniform distribution on [a, b].

Now, we generate K independent random samples {Uj}Kj=1 from U(a, b), we then approxi-

mate Î1 by

1

K

K
∑

j=1

max(F̂ (n)(Uj)− Ĝ(n)(Uj), 0)(b− a).

Similarly, we can approximate T (EF
N , EG

M ) =
∫

max(T 1(E
F
N , EG

M , x), 0)dx in the above al-

gorithm by

1

K

K
∑

j=1

max(T 1(E
F
N , EG

M , Uj), 0)(b− a).

By using this procedure, one can make the approximation as accurate as one wants subject

to one’s time and constraints on their computers.

4.2 Bootstrap Methods

Another approach to obtain the p-value simulation is to use bootstrap technique as described

below:

Step 1. Draw a sample {X∗

i , i = 1, · · · , N} from the pooled sample {Xi, Yj : i = 1, 2, · · · , N ; j =

1, 2, · · · ,M} with replacement and draw another sample {Y ∗

i , i = 1, · · · ,M} in the

same way.

Step 2. Compute T ∗

N,M in the same way as TN,M but with the bootstrapped samples

{X∗

i , i = 1, · · · , N} and {Y ∗

i , i = 1, · · · ,M}. Repeat Step 2 m times to get m T ∗

N,M ’s,

denoted by T ∗

N,M,i(i = 1, 2, · · · ,m).

Step 3. The p-value is estimated by p̂k = nk/(m + 1), where nk is the number of T ∗

N,M,i

which is larger than or equal to TN,M . Reject H0 when p̂k ≤ α for a designed level α.

Using the above bootstrap method, we obtain the following theorem:
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Theorem 3 Applying the bootstrap method described above, we have

(A) if H0 is true, then

lim
N,M→∞

P (reject H0) ≤ α ;

(B) otherwise,

lim
N,M→∞

P (reject H0) = 1.

At last, we link the relationship of the two tests we discussed in this paper in the

following theorem:

Theorem 4 For any n = 1, · · · , 4, if we there are more than 50% of Tn(x) in (3) confirms

that F ≻n G significantly for more than 50% while F ≺n G significantly for ϵ0 with ϵ0 much

smaller than 1/2, then using TN,M in (4) to test ASD will be satisfied for ϵ0.

5 Concluding Remarks

Leshno and Levy (2002) extend it to the stochastic dominance (SD) theory of almost s-

tochastic dominance (ASD) for most decision makers. When comparing any two prospects,

Guo, et al. (2013) find that there will be ASD relationship even there is only very little

difference in mean, variance, skewness, or kurtosis. Investors may prefer to conclude ASD

only if the dominance is nearly almost. Levy, et al. (2010) have provided two approaches to

solve the problem. In this paper, we extend their work by first recommending an existing

stochastic dominance test to handle the issue and thereafter developing a new test for the

ASD which could detect dominance for any pre-determined small value. We also provide

two approaches to obtain the critical values for our proposed test statistic.
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