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Many carriers, such as airlines and ocean carriers, collaborate through the formation of alliances. The

detailed alliance design is clearly important for both the stability of the alliance and profitability of the

alliance members. This work is motivated by a real-life liner shipping “resource exchange alliance” agreement

design. We provide an economic motivation for interest in resource exchange alliances and propose a model

and method to design a resource exchange alliance. The model takes into account how the alliance members

compete after a resource exchange by selling substitutable products and thus enables us to obtain insight

into the effect of capacity and the intensity of competition on the extent to which an alliance can provide

greater profit than when in the setting without an alliance. The problem of determining the optimal amounts

of resources to exchange is formulated as a stochastic mathematical program with equilibrium constraints

(SMPECs). We show how to determine whether there exists a unique equilibrium after resource exchange,

how to compute the equilibrium, and how to compute the optimal resource exchange. SMPEC problem,

which is generally very difficult to solve, is well-posed in the paper, and robust results can be obtained with

a reasonable amount of computational effort.

Key words : alliance, resource exchange, pricing, revenue management, stochastic mathematical

programming with equilibrium constraints, non-cooperative game

1. Introduction

Alliances are collaborative agreements made between two or more parties in order to achieve

common goals and to improve competitiveness. Increasingly, alliances are being recognized as a

key component of business strategies and can be found easily in many industries. For example, in

the liner shipping industry, ocean container carriers often make an alliance agreement to provide

joint services. A “service is a cycle of successive port visits that repeats according to a regular

schedule, typically with weekly departures at each port in the cycle. To maintain a schedule of

weekly departures at each port, the headway between successive ships traversing the cycle must
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be one week. Thus, if it takes a ship n weeks to complete one cycle, then n ships are needed

to offer the service with weekly departures at each port in the cycle. For many services between

Asia and North America and services between Asia and Europe, it takes a ship between 5 and

10 weeks to complete one cycle, and thus several ships are needed to offer the service. Taking into

account that a large container ship can cost a hundred million US dollars1, it becomes clear that

for even the large carriers it would require an enormous investment to introduce a new service.

For this reason, ocean carriers form an alliance. Another example of a widely used alliance can

be found in the airline industry. Airlines often sell tickets on each others’ flights through code

share agreements; an alliance member (the marketing member) can sell tickets for flights operated

by another alliance member (the operating member) and the marketing member can put its own

code on the flight. Code sharing dramatically increases the number of itinerary products that each

airline can sell. Vacation packages provide another example of seller alliances enabling the sale of

products combined from the resources/products of several sellers. For example, a vacation package

may consist of airline tickets for 2 people, a hotel room for 4 nights, and car rental for 5 days.

Computers and peripherals provide another example of products combined from the resources of

several sellers.

Seller alliances can be structured in many different ways. The rules of an alliance are clearly

critical for both the stability of the alliance and the well-being of the alliance members. The major

distinguishing factor between different alliance structures involves the control of the resources

involved. In a so-called “free-sale” or “soft-block” agreement, each alliance member controls the

availability of the resources (such as seat space on flights or container slots on voyages) that it

contributed and other alliance members can buy the resources from the owner and include it in

the products that they sell as long as the owner makes the resources available. Under a “resource-

exchange” or “hard-block” agreement, alliance members exchange resources, and thereafter each

alliance member controls the resources allocated to them as though they were the owners of the

resources.

In the liner shipping industry, the most widely used form of the alliances is the “resource

exchange” type (also called a slot exchange alliance or a cross slot charter alliance). Under the

resource exchange alliance, carriers agree to provide each other a specified amount of capacity

and possibly a specified amount of money in advance of the sales season. For example, carrier

one provides carrier two x1 slots on each of its voyages on its service and carrier two provides

carrier one x2 slots on each of its voyages on its service. Thereafter each carrier can make bookings

for itineraries that include voyages operated by both carriers, thereby dramatically increasing the

1 e.g.,http://www.emma-maersk.com/specification/
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number of itinerary products that each carrier can sell. Suppose the carrier one operates a service

with the cycle of port visits A,B,C,A, and carrier two operates a service with the cycle of port

visits A,D,E,A. If a customer wants to send a container from port C to port D via port A and

there is no alliance between the carriers, then the customer should make a booking with carrier one

to send the container from C to A and a separate booking with carrier two to send the container

from A to D. However, after the slot exchange agreement, each carrier can offer the customer a

complete booking from D via A to G and controls the pricing for such products as they control

the pricing for all their other products. A real-life example of such an alliance can be found in the

Hanjin-Evergreen Agreement2, in which Hanjin operated a service that visits New York, Norfolk,

Savannah, Rio Grande, Itajai, and Santos, and Evergreen operated a service that visits Shanghai,

Ningbo, Kaohsiung, Hong Kong, Yantian, Singapore, Durban, Cape Town, Montevideo, Buenos

Aires, and Santos. Evergreen provided Hanjin with 100 Twenty-foot Equivalent Unit (TEU) slots

on each voyage of its service and Hanjin provided Evergreen with 137 TEU slots on each voyage

of its service. Thus, if a customer wants to send a container from Cape Town to Rio Grande,

then with the alliance the customer can book a single itinerary from Cape Town to Rio Grande

via Santos with either carrier, whereas without an alliance the customer would have to make two

separate bookings. In fact, this type of alliances are very common in practice and other similar

examples of such alliance agreements can be found easily3.

The ocean container carriers also enter into a resource exchange alliance when they introduce

new joint services. As described earlier, services repeat according to a regular schedule and in order

to offer weekly departures at each port in the cycle, the number of ships needed to provide the

service is equal to the number of weeks that it takes a ship to complete the cycle. Under a resource

exchange alliance, each carrier in the alliance provides one or more ships to be used for the service,

and the capacity on each ship is partitioned among the alliance members. An example of such an

alliance is the China Shipping Container Lines (CSCL) / United Arab Shipping Company (UASC)

Agreement4. The new joint service consists of the cycle of port visits of Xiamen, Hong Kong,

Yantian, Shanghai, New York, Norfolk, Savannah, Xiamen. The cycle takes 9 weeks to complete,

with weekly departures at each port, and thus deploys 9 vessels, 6 contributed by CSCL and 3

contributed by UASC. The alliance contract enables each carrier in the alliance to offer weekly

departures at each port in the service without having to commit 9 ships to the service.

Several advantages of alliances can be easily identified. By entering carrier alliances, the seller

can offer a larger number of itinerary products to a much wider choice of destinations, leading

2 Details of the contract can be seen at http://www2.fmc.gov/agreement_lib/011968-000.pdf

3 Please see similar contracts on http://www2.fmc.gov/agreements/type_npage.aspx

4 The contract detail can be found on http://www2.fmc.gov/agreement_lib/012168-000.pdf
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to enhanced marketing opportunities. It is especially apparent when carriers introduce new joint

services – without an alliance, each carrier may not have sufficient resources to offer such a global

service. Alliances also offer a consumer “seamless” worldwide travel/shippment experiences. Again,

suppose the carrier one operates a service with the cycle of port visits A,B,C,A, and carrier two

operates a service with the cycle of port visits A,D,E,A. Under no alliance, customers who want to

send a container from port C to port D via port A should make separate bookings with multiple

carriers. Even worse, if something goes wrong with the acquisition of one of the components in the

itinerary, it is difficult for the customer to get the other seller to make appropriate adjustments.

For example, if carrier one delays the arrival of the container at port A, then the customer has to

convince carrier two to change the booking from port A without a penalty, whereas such adjustment

should be easier if the customer made the booking with a single carrier. There also exists an

economic motivation. As will be shown in the paper, if separate sellers sell a partial product in the

itinerary, then each seller will have an incentive to charge a higher price for its component in order

to (at least implicitly) extract as much of the total revenue as it can. This leads to system-wide

inefficiencies and thus loss in total profit; in the example above, under no alliance, carrier one

would charge more for its own itinerary product, shipment of a container from port C to port A

and carrier two would do the same. Therefore, total prices for the complete shipment (port C to

port D via port A) would be higher, resulting in lower demand and profit. In fact, when the sellers

form a “well-designed contract” where they can sell a complete product to customers, profits may

increase.

However, along with its obvious benefits, an alliance could pose a new problem. After formation

of an alliance, alliance members can sell substitute products (in the previous example, both carriers

now offer a service of shipment from port C to port D) and thus compete with each other for

the same demand. That is, alliances increase not only the sellers’ product portfolios but also

competition. It is easy to see that a poorly designed alliance may be detrimental to both sellers

and therefore, the questions remains – are sellers better off with an alliance or not?

In this paper, our study focuses on resource exchange alliances. Since alliance members compete

by selling substitute products after an alliance, we propose an alliance design model which explic-

itly takes into account how the exchange of resources affects the competition among the alliance

members, unlike several other papers on resource exchange alliances. Our model is presented as

a stochastic optimization model with equilibrium constraints (SMPECs), and we determine the

optimal resource exchange amount which maximizes the sum of the alliance members’ total profits

after the exchange, considering the resulting competition. For each resource exchange, the competi-

tion among alliance members is modeled as a noncooperative game in which each alliance member
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chooses the prices for its own products, subject to its own capacity constraints (which depend on

the resource exchange), to maximize its own profit.

The paper is organized as follows. We review the relevant literature in the next section and then

provide an important economic motivation for interest in resource exchange alliances in Section 3.

As mentioned above, if customers want to buy a product that consists of components provided by

different sellers, then in an attempt to maximize their own profits, the sellers tend to choose prices

for their components that are too high, which leads to loss in total profit. Intuitively this happens

because each seller is implicitly attempting to gather a larger share of the total revenue without an

alliance. The idea is illustrated with a specific model in Section 3. It is shown that the equilibrium

prices without an alliance are higher than the prices under perfect coordination and the equilibrium

quantities without an alliance are lower than the quantities under perfect coordination. We also

show that the total profit of a resource exchange alliance with well-chosen exchange quantities

is greater than the total profit without an alliance. In addition, we show that the equilibrium

prices, quantities, and profits are equal for a resource exchange alliance with exchange quantities

chosen to maximize the total profit and for perfect coordination. The major purpose of the model

is to demonstrate that if customers want to buy a product that consists of components provided

by different sellers, then sellers who attempt to maximize their own profits will tend to choose

prices that are too high. A secondary purpose of the model is to demonstrate how a well designed

resource exchange alliance may increase the total profit and the amount of increase depends upon

the intensity of competition and the resource capacity.

In Section 4, we consider more general models of no alliance, perfect coordination, and a resource

exchange alliance. For resource exchange alliances, we formulate an optimization model to deter-

mine the amount of each resource to be exchanged, taking into account the consequences of the

exchange on subsequent competition among alliance members. If one assumes that after a resource

exchange, each alliance member chooses the prices of its products to maximize its own profit, and

that this behavior of the alliance members leads to an equilibrium, then the problem can be formu-

lated as a mathematical program with equilibrium constraints. An important question is whether,

for each resource exchange, there exists an equilibrium and, if so, whether it is unique.

In Section 5 we show how to determine whether a unique equilibrium exists, and how to compute

it. We solve examples of the mathematical program with equilibrium constraints (which in general

is a hard, poorly behaved problem), and in Section 6 we compare the results for the cases with no

alliance, perfect coordination, and a resource exchange alliance.
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2. Related Literature

This paper is motivated by the design of resource exchange alliances in the liner shipping industry

and we formulate the alliance design problem as a Stochastic Mathematical Program with Equi-

librium Constraints (SMPEC). Therefore, our paper is related to two streams of research: studies

of liner shipping alliances and Mathematical Programs with Equilibrium Constraints (MPECs).

When studying liner shipping and airline alliances, it is useful to note that in both industries

the term “alliance” is used for two different scales of agreement. The larger scale agreements

usually involve more than two carriers and can be described as agreements of large scope but

limited specificity with the idea that alliance members will enter into more specific collaborative

agreements with each other. Current examples are the Grand Alliance, the New World Alliance,

and the CKYH Alliance in the liner shipping industry and the Star Alliance, the Sky Team Alliance,

and the OneWorld Alliance in the airline industry. Most smaller scale agreements are between two

carriers, although sometimes more than two carriers are involved. These agreements address specific

operational collaboration rules, such as resource exchange, or free sale of each other’s capacity, or

sharing of facilities, such as port terminals or airport gates. These smaller scale agreements are

also called alliances. The agreements described in the introduction are examples of such alliances.

There is a substantial amount of literature on alliances which is mainly focused on strategic level

problems such as tactical motivations, the main driving factors for alliances, and the potential

outcomes of alliances. Slack et al. (2002) empirically examine the changes in services made by

container shipping lines in response to the formation of alliances and Yang et al. (2011) consider

the increase of ship size and new strategy of alliance and study the economic performance and

stability of liner shipping alliances. Panayides and Wiedmer (2011) also describe the structure and

dynamics of strategic alliances in container liner shipping and analyze the operational and strategic

changes within the last ten years.

Of particular interest to us is the part of this literature that highlights the competition among

alliance members as an important factor affecting the stability of alliances. For example, Midoro

and Pitto (2000) identify the existence of intra-alliance competition as a key force driving alliance

instability in the liner shipping industry. Lu et al. (2006) conducted a survey among members of

the CKYH Alliance to determine key strategic reasons for liner shipping alliances, disadvantages

of alliances, and reasons for success of alliances. They also recognize the competition between

alliance members as a primary disadvantage of strategic alliances in liner shipping. In addition, they

demonstrate that the two most important key strategic reasons for liner shipping alliances were

to expand service coverage and to increase service frequency, which are the two motivations that

we illustrated in the introduction. In this paper, we realize the importance of intra-competitions
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among alliance members and take those competitions into consideration in designing the optimal

alliance contract.

On the other hand, literature on alliance design is very sparse. Song and Panayides (2002) analyze

operations of liner shipping alliances involving two small examples in liner shipping. They propose

to use cooperative game theory to analyze strategic alliance but they do not address alliance design

decisions (such as resource exchange quantities or free sale prices). Agarwal and Ergun (2010)

address a large scale service network design in which ocean carriers integrate the networks and

share capacity on their ships in a liner shipping alliance. They propose a heuristic for choosing the

services to operate under the alliance and a heuristic for assigning the vessels of each alliance carrier

to the chosen services. They also propose the use of side payments made by each carrier who sends

a shipment along an edge in the network to all the alliance carriers in proportion to the capacity

contributed to the edge by the carriers, and then they model each carrier’s decision problem as

a linear program. Side payments that lead to the central optimal flows can then be obtained by

solving the resulting inverse problem. They mention the importance of competitive prices, but

their model assumes that the prices charged by the carriers for origin-destination shipments are

fixed exogenously and are not affected by the side payments that the carriers have to make. Their

model also assumes that the demands for each carrier are fixed exogenously and thus there is

no competition among carriers in their model, despite every alliance carrier’s ability to serve the

same origin-destination shipments using the same services. In contrast, in our model prices are

determined endogenously taking competition into account and these prices depend on the alliance

design. Our paper is most closely related to the one written by Lu et al. (2010). They consider a slot

exchange contract between two ocean carriers and propose two optimization models to determine

slot exchange amounts and the number of containers flowing between different origin-destination

port pairs. The optimization model in their paper is formulated from the point of view of one of

the two carriers whereas our model is formulated as a mathematical program with equilibrium

constraints with the upper level determining the slot exchange amounts maximizing the total profit

of the alliance and the lower level representing the competition between the alliance members after

slot exchange. Also, the model in Lu et al. (2010) takes prices as input whereas prices are decision

variables in the lower level of our model.

In the context of airline alliance collaborations and operations, there exist several interesting

studies which address questions such as the choice of flights to include in code-share agreements,

the choice of transfer price or proration rates in free-sale alliances, and the effect of airline alliances

on booking limits. For example, Sivakumar (2003) presents Code Share Optimizer, a tool built by

United Airlines that considers the interaction between proration agreements, demand, fares, and

market shares and O’Neal et al. (2007) built a code-share flight profitability tool to automate the
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code-share flight selection process at Delta airlines. Abdelghany et al. (2009) also present a model

for airlines to determine a set of flights for a code-share agreement. On the other hand, Netessine

and Shumsky (2005) examine how horizontal and vertical competition affect airline seat inventory

decisions and how airlines in an alliance may coordinate these decisions by agreements similar to

revenue-sharing contracts. Hu et al. (2013) extend the analysis in Netessine and Shumsky (2005)

and study a model of a free-sale airline alliance. Similar to our model, their model is a two-stage

model with the alliance design decision in the first stage and operational selling decisions of indi-

vidual airlines in the second stage, formulated as a Nash equilibrium problem. In addition to static

proration scheme, Wright et al. (2010) formulate a Markov-game dynamic model of two airlines

and Wright (2011) extends the dynamic bid-price sharing scheme under incomplete information.

In the present paper, we are concerned with a particular formulation of stochastic mathematical

programs that involve equilibrium constraints. MPEC plays a very important role in many fields

such as operations research, economics, and engineering design and it has been receiving more and

more attention in the optimization field. However, at the same time, it is well known that MPECs

are still one of the most challenging problems in optimization, and there is a strong need to improve

and develop the advance theoretical and numerical tools to be applied in practical problems.

MPECs are constrained optimization problems with constraints resulting from an equilibrium

problem. They are a generalization of a bilevel problem, where instead of a lower-level optimization

problem, there is a lower-level equilibrium problem, possibly defined by a parametric variational

inequality. MPECs are difficult, non-convex and non-smooth optimization problem and thus the

well developed nonlinear programming theory cannot be applied to MPECs directly. We may

refer to, e.g., Giallombardo and Ralph (2008), DeMiguel et al. (2005), Facchinei and Pang (2003),

Luo et al. (1996), and references therein for a further discussion. Since MPECs are already very

difficult to handle, obviously, stochastic MPECs are extremely difficult to deal with due to the

additional efforts required to account for the uncertainty involved in the problem (e.g., Birbil et al.

2006, Shapiro and Xu 2008, Xu and Ye 2010, and Shanbhag et al. 2011). Although MPECs and

stochastic MPECs are important modeling tools for numerous applications, there is only little

literature that demonstrates successful formulation and provides an efficient solution approach for

nontrivial examples. Kachani et al. (2008) address the dynamic pricing problem with learning of the

parameters in the price-demand relationship. They show that the problem can be formulated as a

MPEC problem, propose a solution method, and discuss various insights through a computational

study. Also, Côté et al. (2003) propose a new modeling approach for pricing and fare optimization

in the airline industry based on a bilevel mathematical programming and demonstrate that the

use of this modeling paradaim allows a company to maximize revenue while taking into account

the behavior of the passengers as well as the complex topology of airline networks in a detailed

fashion.
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3. An Economic Rationale for Alliances

In this section we present an economic rationale for alliances in a setting where customers want a

product that is composed of products (here called resources) sold by two sellers. For example, a

customer wants to send a container from A to C and to accomplish that in the absence of an alliance

the customer buys transportation service from A to B provided by one seller and transportation

service from B to C provided by another seller. The intuitive idea behind the economic rationale

is that each seller chooses its price to extract the maximum profit for the seller and in the absence

of an alliance, the resulting equilibrium prices are too high in the sense that lower prices maximize

the total profit of the two sellers. We use a simple model to illustrate the idea. We also use the

model to introduce resource exchange alliances in a simple setting before proceeding to the more

general setting. For the model, it also turns out that a well designed alliance attains the maximum

total profit which could be attained under the perfect coordination. We will discuss the general

setting in detail later but the core insight will remain same.

We consider 2 sellers, indexed by i = ±1. Each seller produces one resource. Seller i produces

resource i and a maximum quantity bi of resource i can be consumed. Seller i has a constant

marginal cost of ci per unit of resource i consumed and seller i chooses the price ỹi + ci per unit

of resource i, that is, ỹi denotes the price in excess of the marginal cost ci per unit of resource i.

Customers want to consume a product that requires one unit of each resource. (In this section, there

is no demand for a product that consists of only one resource. General settings will be discussed

in later sections.) Thus, customers buy products consisting of one unit of each resource and pay

c−1+ ỹ−1+c1+ ỹ1 per unit of product. The demand d for products depends on the prices as follows:

d = max{0, α̃− β̃(ỹ−1 + ỹ1)} (1)

where α̃ and β̃ are positive constants known to each seller. Assume that α̃ > 0, that is, demand is

positive if each seller charges only its marginal cost. The detailed calculations for this section are

given in Appendix A.

3.1. No Alliance

First consider the case with no alliance which is modeled as a non-cooperative game. Let bmin :=

min{b−1, b1}. Thus, the number of products sold is given by min{bmin, max{0, α̃− β̃(ỹ−1 + ỹ1)}}
and the profit of seller i is given by

g̃i(ỹi, ỹ−i) := ỹimin{bmin, max{0, α̃− β̃(ỹ−i + ỹi)}}

If bmin ≥ α̃/3, then the equilibrium prices are given by

ỹ∗
i =

α̃

3β̃
(2)
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the equilibrium demand is equal to

α̃− β̃(ỹ∗
−1 + ỹ∗

1) =
α̃

3
> 0 (3)

the resulting profit of seller i is equal to

ỹ∗
i min{bmin, max{0, α̃− β̃(ỹ∗

−i + ỹ∗
i )}} =

α̃2

9β̃
(4)

and thus the total profit of both sellers together is equal to

ỹ∗
−1

[

α̃− β̃(ỹ∗
−1 + ỹ∗

1)
]

+ ỹ∗
1

[

α̃− β̃(ỹ∗
−1 + ỹ∗

1)
]

=
2α̃2

9β̃
(5)

If bmin ≤ α̃/3, then all pairs of prices (ỹ−1, ỹ1) on the line segment between (bmin/β̃, [α̃−2bmin]/β̃)

and ([α̃−2bmin]/β̃, bmin/β̃) are equilibria. For all of these equilibrium prices the total price is equal

to (α̃− bmin)/β̃, the demand is equal to bmin, the resulting profit of seller i is equal to ỹibmin, and

thus the total profit of both sellers together is equal to

ỹ−1bmin + ỹ1bmin =
α̃− bmin

β̃
bmin (6)

3.2. Perfect Coordination

Next we determine the maximum achievable total profit of the two sellers together, that is, the

total profit if the sellers would perfectly coordinate pricing.

The total profit of the two sellers is given by

g̃(ỹ−1, ỹ1) := [ỹ−1 + ỹ1]min{bmin, max{0, α̃− β̃(ỹ−1 + ỹ1)}}

If bmin ≥ α̃/2, then the optimal total price is equal to

ȳ−1 + ȳ1 =
α̃

2β̃
(7)

Note that (2) and (7) show that ỹ∗
−1 + ỹ∗

1 > ȳ−1 + ȳ1, that is, the total of the equilibrium prices

under no alliance is greater than the optimal total price. (These results are reminiscent of the

comparison of the cases with and without vertical integration by Spengler (1950); however, the

setting here is different because one seller does not buy a product from another seller and add a

mark-up before reselling it.) The corresponding demand is equal to

α̃− β̃(ȳ−1 + ȳ1) =
α̃

2
>

α̃

3
= α̃− β̃(ỹ∗

−1 + ỹ∗
1) (8)

and the total profit of both sellers together is equal to

[ȳ−1 + ȳ1]
[

α̃− β̃(ȳ−1 + ȳ1)
]

=
α̃2

4β̃
(9)
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If bmin ≤ α̃/2, then the optimal total price is given by ȳ−1 + ȳ1 = (α̃− bmin)/β̃, with correspond-

ing demand equal to bmin. The total profit of both sellers together is equal to (ȳ−1 + ȳ1) bmin =

(α̃− bmin) bmin/β̃,

Note that when capacity is small, bmin ≤ α̃/3, the total profit of the setting with no alliance

cannot be increased by coordination. When capacity is large, bmin ≥ α̃/2, the relative amount by

which the total profit can be increased is given by

α̃2

4β̃
− 2α̃2

9β̃

2α̃2

9β̃

=
1

8

When capacity is intermediate, α̃/3≤ bmin ≤ α̃/2, then the relative amount by which the total

profit can be increased is bounded by

0 ≤
α̃−bmin

β̃
bmin − 2α̃2

9β̃

2α̃2

9β̃

≤ 1

8

This potential increase in profit is the major economic motivation for alliances. The extent to

which this increase can be attained by an alliance depends on the capacity and the customer choice

behavior, including the extent to which the sellers can differentiate their products. In the next

section we consider a resource exchange alliance and investigate the effect of both capacity and

product differentiation on the total profit with and without an alliance.

3.3. Resource Exchange Alliance

In this paper, we focus on a form of alliances, so called “resource exchange alliance”. Under this

type of alliance, alliance members exchange resources (e.g., container slots) in advance of sales.

After exchange, each seller controls resources allocated to them as though they were the owners

of the resources. The key questions is how much of each resource (including money) should be

exchanged to maximize the total profit of alliance members. One important thing to note here is

that after exchange, alliance members compete for the same demand since each seller chooses their

own prices to sell products. Therefore, it is critical to take the resulting competition into account

when determining the optimal resource exchange amounts. As we will show later, the competition

is affected by capacity and product differentiation levels.

Consider a resource exchange alliance involving the two sellers. Let xi ∈ [0, bi] denote the amount

of resource i that seller i makes available to seller −i, and let x := (x−1, x1). Then the number of

units of the two-resource product that seller i can sell is qi(x) :=min{bi −xi, x−i}. Typically, cost
items that make up the largest part of the marginal cost ci of seller i are passed on to the customer

via the marketing seller even if the customer buys the product from seller −i. For example, in

the case of ocean carriers, these marginal costs consist mostly of amounts paid to other parties
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such as the port operator for stevedoring services and storage. Hence, assume that seller −i pays

seller i an amount ci for each unit of resource i that seller −i uses, so that each seller has marginal

cost equal to c−1 + c1 for the two-resource product. Specifically, a resource exchange alliance with

zero exchange of resources (x= 0) may be chosen, in which case the sellers sell only the separate

resources as in the case without an alliance. Thus, in general, the total profit of an optimally

designed resource exchange alliance is no less than the total profit without an alliance. Let yi

denote the markup of seller i, that is, the difference between the price of seller i and the marginal

cost c−1 + c1 for the two-resource product.

The demand di(yi, y−i) for the product sold by seller i depends on the prices as follows:

di(yi, y−i) = max{0, α−βyi + γy−i)} (10)

where α and β are positive constants and γ ∈ (0, β). That is, after the alliance, sellers sell substitute

product and therefore compete with each other. Here, provision is made for brand distinction

between the products sold by the sellers. The constants are known to each seller. To keep the

number of parameters in this example small, the constants α, β, and γ are the same for both

sellers.

Under this setting, the number of units of product sold by seller i is given by

min{qi(x), max{0, α−βyi + γy−i)}}, and the profit of seller i is given by

gi(x, yi, y−i) := yimin{qi(x), max{0, α−βyi + γy−i}}

Next we establish a relation between α̃ and β̃, and α, β and γ, to facilitate a fair comparison

among the settings with no alliance, with perfect coordination, and with an alliance. Consider

prices (ỹ−1, ỹ1) in the no-alliance setting, such that ỹ−1 + ỹ1 < α̃/β̃. Suppose that the two alliance

members charge the same price y−1 = y1 = ỹ−1 + ỹ1 for the two-resource products. Then the total

demand in the no-alliance setting given by (1) is equal to α̃− β̃(ỹ−1+ ỹ1)> 0, and the total demand

in the alliance setting given by (10) is equal to 2(α− βy1 + γy1) = 2α− 2(β − γ)(ỹ−1 + ỹ1). Thus

the total demand in the two settings is the same if α̃= 2α and β̃ = 2(β − γ). It is also shown in

Appendix A.4 that a model of perfect coordination with demand given by (10) leads to the same

optimal prices, demands, and profits as the model in Section 3.2 with demand given by (1) if α̃= 2α

and β̃ = 2(β − γ). Hence the results for the settings with no alliance, with perfect coordination,

and with an alliance will be compared using α̃= 2α and β̃ = 2(β− γ).

For the setting with an alliance, for any given resource exchange x, let (y∗
−1(x), y

∗
1(x)) denote

the equilibrium prices of the two sellers for the two-resource product. The alliance design problem

is to choose x∈ [0, b−1]× [0, b1] to maximize

f(x) := g−1(x, y
∗
−1(x), y

∗
1(x))+ g1(x, y

∗
1(x), y

∗
−1(x))
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and x∗ denote an optimal resource exchange. (existence and uniqueness of the equilibrium are

addressed in the detailed calculations in Appendix A.3. The resulting profit of seller i is given by

gi(x, y
∗
i (x), y

∗
−i(x)).

A natural question here might be on how the total profit f(x∗) should be partitioned among the

alliance members. First, note that if money can be exchanged together with the other resources,

then any partition of the total profit can be achieved. In that case, the Nash bargaining solution for

a two-player cooperative game provides a compelling partition of the total profit that is also easy

to characterize: each alliance member receives its profit in the setting without an alliance plus half

the difference between the maximum total profit f(x∗) of the alliance and the total profit without

an alliance. Detailed discussion and derivation is given in Section 4.6.

Table 1 and Figure 1 summarize the results for the settings with no alliance, with perfect coor-

dination, and with an alliance. The detailed calculations are given in Appendix A. Here we just

mention that there are three cases regarding capacity: (1) Capacity bmin is large enough so that both

sellers can be provided with sufficient product capacity qi(x) to make capacity not constraining in

equilibrium (bmin ≥ 2αβ/(2β− γ)), (2) Capacity bmin is so small that the product capacity qi(x) of

both sellers must be constraining in equilibrium (bmin ≤ αβ(β+γ)/(2β2−γ2)), and (3) Capacity bmin

is small enough that the product capacity qi(x) of at least one seller must be constraining in equi-

librium but large enough so that one seller can be provided with sufficient product capacity qi(x)

to make capacity not constraining in equilibrium (αβ(β+ γ)/(2β2 − γ2)≤ bmin ≤ 2αβ/(2β− γ)).

Figure 2 shows a plot of the relative increase in total profit with an alliance over no alliance,

that is, (f(x∗)− [g̃−1(ỹ
∗
−1, ỹ

∗
1)+ g̃1(ỹ

∗
1 , ỹ

∗
−1)])/[g̃−1(ỹ

∗
−1, ỹ

∗
1)+ g̃1(ỹ

∗
1 , ỹ

∗
−1)], as a function of bmin/α and

γ/β. The figure shows that the relative increase is largest when the capacity is large (bmin ≥ α).

In addition, the total profit under an alliance equals the total profit under perfect coordination as

shown in Table 1. One additional observation which is interesting to note here is that in addition

to profit increase, the prices without an alliance are higher than the prices under an alliance except

when the capacity is small (where the prices and profits are same). In summary, we could show that

a well designed resource exchange alliance indeed captures the foregone profit without an alliance.

For general models presented later in Section 4 and Section 6, the main insights remain same.

4. Model

In this section, we present a general model for a resource exchange alliance which could involve

multiple resources. In addition to the alliance model, we also present models for the settings with

no alliance and with perfect coordination to facilitate comparisons.

As we describe in Section 3.3, a resource exchange alliance can be designed in two stages. At

the first stage, alliance members together determine the optimal resource exchange amount which
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2α

3

α

bmin

β0
γ

2αβ

2β − γ

3

2

1

Figure 1 The regions distinguished in Table 1

Table 1 Comparison of no alliance, perfect coordination, and a resource exchange alliance, in terms of price,

demand, total profit, and consumer surplus, for a single product with two resources.

Region Capacity Quantity No-Alliance Perfect Coordination Alliance

1 0≤ bmin ≤ 2α
3

Total Price 2α−bmin
2(β−γ)

2α−bmin
2(β−γ)

2α−bmin
2(β−γ)

Total Demand bmin bmin bmin

Total Profit (2α−bmin)bmin
2(β−γ)

(2α−bmin)bmin
2(β−γ)

(2α−bmin)bmin
2(β−γ)

2 2α
3
≤ bmin ≤ α Total Price 2α

3(β−γ)

2α−bmin
2(β−γ)

2α−bmin
2(β−γ)

Total Demand 2α
3

bmin bmin

Total Profit 4α2

9(β−γ)

(2α−bmin)bmin
2(β−γ)

(2α−bmin)bmin
2(β−γ)

3 α≤ bmin Total Price 2α
3(β−γ)

α

2(β−γ)
α

2(β−γ)

Total Demand 2α
3

α α

Total Profit 4α2

9(β−γ)
α2

2(β−γ)
α2

2(β−γ)

maximizes the total profit of both sellers before the demand becomes known. At the second stage,

each seller separately sets the optimal price to maximize their own profit under some constraints.

As we have discussed earlier, the alliance members are now competing with each other by selling

substitute products. Thus, an important aspect of this modeling is that when we make a decision

at the first stage, we need to incorporate the resulting competition from the second stage. The

modeling can be done with stochastic mathematical programming with equilibrium constraints.

We will discuss more details in this section.

4.1. Multiple-Resource Network Example

We first provide an example with multiple resources to illustrate the models that will be formulated

in later sections.
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Figure 2 Plot of the relative increase in total profit with an alliance over no alliance, that is,

(f(x∗)− [g̃−1(ỹ
∗
−1, ỹ

∗
1)+ g̃1(ỹ

∗
1 , ỹ

∗
−1)])/[g̃−1(ỹ

∗
−1, ỹ

∗
1)+ g̃1(ỹ

∗
1 , ỹ

∗
−1)], as a function of bmin/α and γ/β.

Consider 2 sellers, indexed by i=±1. (It can be easily seen from the results in Section 4.3 how

to extend the model and the solution method to a setting with more than 2 sellers at the cost

of more complicated notation.) Seller i produces ki resource types indexed by j = 1, . . . , ki. For

example, resource j may denote the voyage of ocean carrier i scheduled to depart from Cape Town

to Santos every Monday at 8am. Initially, before any resource exchange, seller i has quantity bi,j

of resource j and a constant marginal cost of ci,j per unit of resource j consumed.

A liner shipping network is shown in Figure 3 and some voyage and port data are given in

Table 2. In this network, port 1 is a connection hub for both ocean carriers. In fact, this network is

similar to the one in the Hanjin-Evergreen Agreement described in the Introduction. Each carrier

operates 4 voyages. For example, voyage 5, taking place from port 1 to port 4, is operated by

carrier 1, and has a capacity of 3000 TEU. The set of products that can be sold by each carrier

is different in the case with no alliance and the case with an alliance. Table 3 shows the products

and the corresponding itineraries (here simply specified by the origin-destination pair) which could

be offered by the two carriers. The column labeled “Carrier” specifies which carriers can sell each

product in the case with no alliance and with an alliance. For example, in the case with no alliance,

product 7 can be sold by carrier 1 only, and in the case with an alliance, product 7 can be sold by

both carriers (“A” denotes both carriers under alliance). On the other hand, product 17, involving

travel from port 3 to port 4 via port 1, can only be sold in the case with an alliance and in that

case it can be sold by both carriers. However, note that there is demand for travel from port 3

to port 4 both in the case with no alliance and in the case with an alliance. In the case with no

alliance, all demand for travel from port 3 to port 4 is satisfied by making two separate bookings;

a booking with carrier -1 for travel from port 3 to port 1 and a booking with carrier 1 for travel
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Figure 3 Multiple-resource network example

Voyage number Carrier Departure Arrival Capacity (TEU)
1 -1 1 2 3000
2 -1 2 1 3000
3 -1 1 3 3000
4 -1 3 1 3000
5 1 1 4 3000
6 1 4 1 3000
7 1 1 5 3000
8 1 5 1 3000

Table 2 Voyage information

Table 3 Product information for network example.

Product Carrier Origin Destination Product Carrier Origin Destination
1 -1 or A 1 2 11 1 or A 4 5
2 -1 or A 2 1 12 1 or A 5 4
3 -1 or A 1 3 13 A only 2 4
4 -1 or A 3 1 14 A only 4 2
5 -1 or A 2 3 15 A only 2 5
6 -1 or A 3 2 16 A only 5 2
7 1 or A 1 4 17 A only 3 4
8 1 or A 4 1 18 A only 4 3
9 1 or A 1 5 19 A only 3 5
10 1 or A 5 1 20 A only 5 3

from port 1 to port 4. In the case with an alliance, demand for travel from port 3 to port 4 can be

satisfied in four different ways: (1) by making a booking with carrier -1 for travel from port 3 to

port 1 and a booking with carrier 1 for travel from port 1 to port 4, or (2) by making a booking

with carrier 1 for travel from port 3 to port 1 and a booking with carrier -1 for travel from port 1

to port 4, or (3) by making a booking for travel from port 3 to port 4 via port 1 with carrier -1, or

(4) by making a booking for travel from port 3 to port 4 via port 1 with carrier 1. In the case with

an alliance, the choices exercised by the buyers and thus the resulting aggregate demand depends

on the prices of the carriers for the different products. In this paper we consider linear models of

aggregate demand as specified in more detail later.

4.2. Resource Exchange Alliance Model

In this section we introduce a general model of a resource exchange alliance involving multiple

resources. After resource exchange, seller i may have some of each resource supplied by seller −i

as well as some of each resource supplied by itself. Index the union of the resources by j = 1, . . . , k,

where k= k−1 + k1. Let bi = (bi,1, . . . , bi,k) denote the initial endowment of seller i of each resource

(bi,j = 0 if resource j is supplied by seller −i). Let xj denote the amount of resource j that seller 1

makes available to seller −1. For example, x= (−1100,−1200,−1000,−1500,1400,1700,1300,1600)

for the network in Section 4.1 means that carrier −1 gives 1100 TEU on voyage 1 to carrier 1,

carrier 1 gives 1400 TEU on voyage 5 to carrier −1, etc.

After the resource exchange, seller i can sellmi products, indexed by ℓ= 1, . . . ,mi. In the example

in Table 3, mi = 20 for i=±1. Let yi,ℓ denote the price of seller i for product ℓ in excess of the
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marginal cost of the product, and di,ℓ denote the demand for product ℓ of seller i. Consider the

following linear demand model:

di,ℓ = −
mi
∑

ℓ′=1

Ei,ℓ,ℓ′yi,ℓ′ +

m−i
∑

ℓ′=1

B−i,ℓ,ℓ′y−i,ℓ′ +Ci,ℓ (11)

where Ei,ℓ,ℓ′ denotes the rate of change of the demand for product ℓ of seller i with respect to the

price of product ℓ′ of the same seller i, and B−i,ℓ,ℓ′ denotes the rate of change of the demand for

product ℓ of seller i with respect to the price of product ℓ′ of the other seller −i. Using matrix

notation, di =−Eiyi+B−iy−i+Ci, where di, yi,Ci ∈R
mi , Ei ∈R

mi×mi , Bi ∈R
m−i×mi , and attention

is restricted to values of (y−1, y1) such that di ≥ 0 for i = ±1. Let Ai ∈ R
k×mi be the “network

matrix”, i.e., Ai,j,ℓ denotes the amount of resource j consumed by each unit of product ℓ sold by

seller i.

Next we introduce the two-stage alliance design problem. Given a first stage resource exchange

decision x∈R
k, at the second stage each seller i wants to solve the following optimization problem:

max
yi,di∈R

mi
+

yT

i di

s.t. Aidi ≤ bi − ix
di = −Eiyi +B−iy−i +Ci ≥ 0

(12)

We are interested in the Nash equilibrium defined by the two optimization problems (12) for i=±1.

Since the demand in unknown at the first stage, we are taking the demand uncertainty into account

with a stochastic version of the alliance design problem as follows. At the first stage, when x is

chosen, elements of matrices Ei and Bi, and vectors Ci, are random. However, the network matrices

Ai are deterministic. Let ξ := (E−1,E1,B−1,B1,C−1,C1) denote the random data vector. At the

first stage, the expected value with respect to the distribution of ξ of an objective (specified below)

is optimized. Also, note that the Nash equilibrium associated with the second stage depends on

the realization of ξ.

Let Qi := Ei +ET

i ∈ R
mi×mi denote the symmetric version of Ei. We assume that matrices Ei

and hence Qi, are positive definite. Let Im denote the m×m identity matrix, 0m denotes the zero

vector in R
m, and 0m,n denotes the zero matrix in R

m×n. Then the optimization problem (12) can

be written as follows:
min

yi∈R
mi
+

1
2
yT

i Qiyi − yT

i B−iy−i −CT

i yi

s.t. Wi (Eiyi −B−iy−i) ≥ ηi + iMix.
(13)

where

Wi :=

[

Ai

−Imi

]

, ηi := WiC̃i +

[

−bi
0mi

]

, Mi :=

[

Ik
0mi,k

]

.

A point (y∗
−1(x), y

∗
1(x)) is a solution of the equilibrium problem if y∗

1(x) is an optimal solution of

problem (13) for i= 1 when y−1 = y∗
−1(x), and also y∗

−1(x) is an optimal solution of problem (13)



18

for i=−1 when y1 = y∗
1(x). Note that (y∗

−1(x), y
∗
1(x)) also depends on ξ but the dependence is not

shown in the notation. (The above problem is called a generalized Nash equilibrium problem since

the feasible set of problem (13) depends on y−i.) Let Vi(x, ξ), i=±1, denote the optimal objective

values of problem (13) at the equilibrium point given data ξ, i.e.,

Vi(x, ξ) := 1
2
y∗
i (x)

TQiy
∗
i (x)− y∗

i (x)
TB−iy

∗
−i(x)−CT

i y
∗
i (x) (14)

Note that these functions are well defined only if the equilibrium point (y∗
−1(x), y

∗
1(x)) exists and

is unique. We will discuss existence and uniqueness of the equilibrium point in Section 4.3.

Now, at the first stage, we consider designs of the resource exchange alliance that aim to maximize

the total profit of the sellers. Let b = b1 − b−1 ∈ R
k. Note that bj > 0 if resource j is supplied

by seller 1 and bj < 0 if resource j is supplied by seller −1. Let lj and uj be lower and upper

bounds, respectively, such that bjlj ≥ 0 and bjuj ≥ 0, that is, lj, uj, and bj have the same sign, and

|lj| ≤ |uj| ≤ |bj|. Then the first stage problem is as follows:

max
x∈Rk

{

f(x) := E
[

V−1(x, ξ)+V1(x, ξ)
]}

s.t. bjxj ≥ 0 ∀ j = 1, . . . , k
|lj| ≤ |xj| ≤ |uj| ∀ j = 1, . . . , k

(15)

As mentioned, the expectation in (15) is with respect to a specified probability distribution of

the data vector ξ. In particular, if a single value for ξ is considered in the first stage, then the

problem (15) is deterministic and the expectation operator can be removed.

4.3. Existence and Uniqueness of Nash Equilibrium

Recall that the matrices Qi are positive definite and hence problem (13) is a convex quadratic

programming problem. The first order (KKT) necessary and sufficient optimality conditions for

problem (13) are
Qiyi −B−iy−i −Ci −ET

i W
T

i λi = 0
Wi (Eiyi −B−iy−i)− ηi − iMix ≥ 0

λi ≥ 0
λT

i [Wi (Eiyi −B−iy−i)− ηi − iMix] = 0

(16)

where λi denotes the vector of Lagrange multipliers associated with the inequality constraints

in (13).

The optimality conditions (16) can be written as a variational inequality. A widely used “stan-

dard” approach to establish existence and uniqueness of a solution to the optimality conditions and

thus existence and uniqueness of a Nash equilibrium is to exploit monotonicity of the variational

inequality. However, in our case the variational inequality is not monotone and therefore a different

approach is required. We explain how we could solve the MPEC problem next.
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Consider the optimization problem

min
y−1,y1,λ−1,λ1

∑

i=±1

λT

i [Wi (Eiyi −B−iy−i)− ηi − iMix]

s.t. Qiyi −B−iy−i −Ci −ET

i W
T

i λi = 0, i=±1
Wi (Eiyi −B−iy−i)− ηi − iMix ≥ 0, i=±1
λi ≥ 0, i=±1

(17)

Note that the objective value of problem (17) is nonnegative at all feasible points, and

(y∗
−1, y

∗
1 , λ

∗
−1, λ

∗
1) is a solution of the optimality conditions (16) if and only if its objective value in

problem (17) is zero, in which case it is an optimal solution of problem (17). It follows from the

first equation of (16) that

λT

i Wi = yT

i QiE
−1
i − yT

−iB
T

−iE
−1
i −CT

i E
−1
i

After substitution of this into the objective, problem (17) becomes

min
y−1,y1,λ−1,λ1

∑

i=±1

(

yT

i QiE
−1
i − yT

−iB
T

−iE
−1
i −CT

i E
−1
i

)

(Eiyi −B−iy−i)−λT

i (ηi + iMix)

s.t. Qiyi −B−iy−i −Ci −ET

i W
T

i λi = 0, i=±1
Wi (Eiyi −B−iy−i)− ηi − iMix ≥ 0, i=±1
λi ≥ 0, i=±1

(18)

We note that the objective function of problem (18) is quadratic with its quadratic term

(yT

−1, y
T

1 )Ψ(yT

−1, y
T

1 )
T, where

Ψ :=

[

Q−1 +BT

−1E
−1
1 B−1 −B−1 −Q−1E

−1
−1B1

−B1 −Q1E
−1
1 B−1 Q1 +BT

1E
−1
−1B1

]

(19)

The problem (18) is a convex quadratic program if and only if the matrix Ψ, or equivalently the

symmetric matrix Ψ+ΨT, is positive semidefinite.

Theorem 1. Suppose that the problem (18) is feasible and that the matrix Ψ, defined in (19), is

positive definite. Then problem (18) has an optimal solution (y∗
−1, y

∗
1 , λ

∗
−1, λ

∗
1) with (y∗

−1, y
∗
1) being

unique. Moreover, if the optimal objective value of problem (18) is zero, then (y∗
−1, y

∗
1) is the unique

Nash equilibrium.

The proof is given in Appendix B.

A similar approach can be used if there are more than two sellers. In such a case more than two

sets of optimality conditions of the form (16) will be involved and in the quadratic program (18)

the index i will take on more than two values.

Given the reformulation above, the question of existence and uniqueness of the Nash equilibrium

can be answered with the following steps: (1) verify that the matrix Ψ (or the symmetric matrix

Ψ+ΨT) is positive definite, (2) solve the convex quadratic program (18) if Ψ is positive definite,

and (3) verify that the optimal objective value is zero. Note that if Ψ is positive definite, then
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the quadratic program (18) can be solved efficiently and hence existence and uniqueness of the

equilibrium point can easily be verified numerically. Some simple necessary conditions and sufficient

conditions for Ψ to be positive definite can be identified. A necessary condition for Ψ to be positive

definite is that its block diagonal matrices Q−1 + BT

−1E
−1
1 B−1 and Q1 + BT

1E
−1
−1B1 be positive

definite. Note that these matrices are indeed positive definite because E−1 and E1 are positive

definite. Also, note that if B−1 and B1 are null matrices, then matrix Ψ is the block diagonal

matrix diag(Q−1,Q1), and hence Ψ is positive definite because Q−1 and Q1 are positive definite.

More general, if matrices Ei are “significantly bigger” than Bi, then one may expect matrix Ψ to

be positive definite. The intuitive explanation of this sufficient condition is that if the demand for

each seller’s product depends on the price of the product more than it depends on the prices of

other products, then the matrix is positive definite. Another instructive example is the following.

Example 1. Suppose that the products of the two sellers are direct substitutes for each other,

that is, for each product of seller i there is a product of seller −i that is a close substitute. This

allows the possibility that seller −i may not be able to sell the substitute product because it does

not have the resources to do so. It seems that in the applications of interest, the set of products can

always be chosen so that this property holds. Hence, the matrices Bi are squared, i.e., m−1 =m1.

Suppose that the matrices Ei and Bi, i=±1, are diagonal. Then Qi =Ei and

Ψ =

[

E−1 +B2
−1E

−1
1 −B−1 −B1

−B−1 −B1 E1 +B2
1E

−1
−1

]

.

Since matrices Ei are positive definite it follows that E1 + B2
1E

−1
−1 is positive definite, and thus

it follows by the Schur complement condition for positive definiteness that Ψ is positive definite

if and only if the matrix E−1 +B2
−1E

−1
1 − (B−1 +B1)

2(E1 +B2
1E

−1
−1)

−1 is positive definite. Since

matrices Ei and Bi are diagonal, this matrix is positive definite if and only if the matrix

(E−1 +B2
−1E

−1
1 )(E1 +B2

1E
−1
−1)− (B−1 +B1)

2 = E−1E1 +B2
−1B

2
1E

−1
−1E

−1
1 − 2B−1B1

is positive definite. In turn this matrix is positive definite if and only if the matrix

E2
−1E

2
1 +B2

−1B
2
1 − 2E−1E1B−1B1 = (E−1E1 −B−1B1)

2

is positive definite. Note that the last matrix is always positive semidefinite and is positive definite

if and only if matrix E−1E1 −B−1B1 does not have any zero diagonal elements.

4.4. No Alliance Model

In this section, we present a model for the setting with no alliance. This model will be used to

compare the profits under no alliance, under an alliance, and under perfect coordination. First we

describe the demand model for the setting with no alliance.
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Under an alliance, there are a total of m distinct products. Some of the products may be offered

by only one seller and some of the products may be offered by both sellers. In the example in

Table 3, m = 20 and each of the 20 products is offered by both sellers in an alliance. These m

products can be partitioned into three subsets: sets Li, for i=±1, of products which can be offered

by seller i with and without an alliance and set L0 of products which could be offered only under

an alliance. For the example in Table 3, L−1 contains products 1 to 6, L1 contains products 7 to 12,

and L0 contains products 13 to 20.

As before, let ỹi,ℓ denote the price of seller i for product ℓ ∈ Li. Suppose that the resulting

demand for product ℓ∈Li is given by

d̃i,ℓ = −
∑

ℓ′∈Li

Ẽi,ℓ,ℓ′ ỹi,ℓ′ +
∑

ℓ′∈L−i

B̃−i,ℓ,ℓ′ ỹ−i,ℓ′ + C̃i,ℓ (20)

Using matrix notation, d̃i = −Ẽiỹi + B̃−iỹ−i + C̃i, where d̃i, ỹi, C̃i ∈ R
|Li|, Ẽi ∈ R

|Li|×|Li|, B̃i ∈
R

|L−i|×|Li|, and attention is restricted to values of (ỹ−1, ỹ1) such that d̃i ≥ 0 for i=±1. Let Ãi,j,ℓ

denote the amount of resource j consumed by each unit of product ℓ ∈ Li, and let Ãi ∈ R
ki×|Li|

denote the network matrix.

Similar to the example with two resources in Section 3, the parameters E,B,C in demand

model (11) and the parameters Ẽ, B̃, C̃ in demand model (20) should be related in a particular

way to facilitate a fair comparison of the prices, demands, and total profits between the settings

with and without an alliance. The derivation of the relation is given in Appendix C.

The setting with no alliance is formulated as a non-cooperative game in which each seller i wants

to solve the optimization problem

max
ỹi,d̃i∈R

|Li|
+

ỹT

i d̃i

s.t. Ãid̃i ≤ bi
d̃i = −Ẽiỹi + B̃−iỹ−i + C̃i ≥ 0

(21)

The no alliance outcome is the Nash equilibrium defined by the two optimization problems (21)

for i = ±1 as long as it exists and is unique. The Nash equilibrium is computed using the same

approach described in Section 4.3.

4.5. Perfect Coordination Model

The models with and without an alliance presented above are compared with a perfect coordination

model given in this section. The perfect coordination model considers a setting in which the sellers

coordinate pricing together to maximize the sum of the sellers’ profits as given by the following

optimization problem:

max
(y−1,y1)∈R

m−1×R
m1

∑

i=±1

yT

i (−Eiyi +B−iy−i +Ci)

s.t.
∑

i=±1

Ai (−Eiyi +B−iy−i +Ci) ≤ b−1 + b1

−Eiyi +B−iy−i +Ci ≥ 0 , i=±1

(22)
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4.6. Alliance Profit Allocation

In a resource exchange alliance, resources including money are exchanged between the alliance

members. Thus the allocation of the alliance profit is one of the alliance design decisions. In this

section, we address the question of how the alliance profit should be allocated to each members.

We follow an axiomatic approach, similar to Nash (1950, 1953), Kalai and Smorodinsky (1975)

and Kalai (1977). To better explain the meaning of one of the axioms, here we allow the profits

of the sellers to be measured in different currency units with exchange rate coefficients e−1, e1 to

convert the profits to a common currency unit, but in the rest of the paper, it is assumed that the

costs and revenues have already been converted to the same currency unit. Let a= (a−1, a1) denote

the Nash equilibrium profits if the sellers do not form an alliance, that is, ai ∈R denotes the profit

of seller i if the sellers do not collaborate.

Let the maximum total profit g∗ := sup{e−1g−1(x, y−1, y1)+ e1g1(x, y1, y−1) : 0≤ xi ≤ bi, i=±1,

(y−1, y1) is a Nash equilibrium after resource exchange x}. The set of achievable profit pairs under
a resource exchange alliances is denoted by A := {(b−1, b1) : ai ≤ bi, i=±1, e−1b−1 + e1b1 ≤ g∗}.
Also, let A denote the set of all such allocation problems characterized by (a,A). An allocation

solution is a function f :A 7→R
2 such that f(a,A)∈A for all (a,A)∈A. Given these notations, we

impose the following axioms on an allocation solution:

Pareto optimality: For each (a,A)∈A, it holds that f(a,A) is strongly Pareto optimal on A, that

is, for each b∈A such that b 6= f(a,A) it holds that fi(a,A)> bi for at least one i.

Symmetry: For each symmetric (a,A)∈A, that is, a−1 = a1 and if (b−1, b1)∈A then (b1, b−1)∈A,

it holds that f−1(a,A) = f1(a,A).

Invariance under positively homogeneous affine transformations: For each (a,A) ∈ A and coeffi-

cients c−1, c1 > 0, d−1, d1 ∈R, consider the allocation problem (a′,A′)∈A given by a′
i := ciai+di and

A′ := {(c−1b−1 + d−1, c1b1 + d1)∈R
2 : (b−1, b1)∈A}. Then f(a′,A′) satisfies fi(a

′,A′) = cifi(a,A)+

di for i=±1.

The last axiom means that the profit allocation to each seller is independent of the currency units

in which the seller’s profits are measured and independent of the inclusion of constant costs or

revenues in the profit function.

Proposition 1. The unique allocation solution that satisfies the axioms of Pareto optimality,

symmetry, and invariance under positively homogeneous affine transformations is given by

fi(a,A) =
g∗ − e−ia−i + eiai

2ei
(23)

The proof is given in Appendix D. Note that the allocation solution satisfies

e−1 [f−1(a,A)− a−1] = e1 [f1(a,A)− a1] =
g∗ − e−1a−1 − e1a1

2



Chun, Kleywegt, and Shapiro: Resource Exchange Seller Alliances
23

that is, the incremental profit g∗− e−ia−i− eiai relative to the Nash equilibrium is divided equally

between the sellers.

5. Solution Approach

In this section, we present a solution method for the multiple-resource model described in Section 4.

Recall that we first solve the problem (18) to solve the second-stage Nash equilibrium problem

and that problem (18) can be solved efficiently if the matrix Ψ defined in (19) is positive definite.

Next consider the first stage problem (15). The expectation in (15) is taken with respect to the

probability distribution of the random data vector ξ. We assume that we can sample from that

distribution by using Monte Carlo sampling techniques and hence generate an independent and

identically distributed sample ξ1, . . . , ξN . Next we approximate the expectation with the sample

average and construct the following Sample Average Approximation (SAA) problem:

max
x∈Rk

{

f̂N(x) :=
∑N

n=1

[

V−1(x, ξ
n)+V1(x, ξ

n)
]

}

s.t. bjxj ≥ 0 ∀ j = 1, . . . , k
|lj| ≤ |xj| ≤ |uj| ∀ j = 1, . . . , k

(24)

Theoretical properties of the SAA approach have been studied extensively (e.g., Shapiro et al. 2009).

Under mild conditions, the optimal objective value and optimal solution of the SAA problem (24)

converge exponentially fast to the optimal objective value and optimal solution of the problem (15)

(cf., Shapiro and Xu 2008). The first-stage problem may not be convex and thus it may be hard to

solve problem (24) to optimality. For that reason, we may only ensure convergence to a stationary

point of the problem (15). Nevertheless, in our numerical experiments, solutions typically seem to

be stable and insensitive to the choice of starting point.

In order to solve the SAA problem (24) numerically, we need to compute derivatives ∇xVi(x, ξ
n)

of the first-stage objective functions Vi at a feasible point x and sample point ξn. Consider a feasible

point x and assume that Ψ is positive definite and that the second-stage problem has an equilibrium

point (y∗
−1(x), y

∗
1(x)) (the equilibrium depends on ξn as well but the dependence is not shown in the

notation). Let (y∗
−1(x), y

∗
1(x), λ

∗
−1(x), λ

∗
1(x)) be a solution of the system (16) of first order optimality

conditions (and thus (y∗
−1(x), y

∗
1(x), λ

∗
−1(x), λ

∗
1(x)) is also a solution of the quadratic programming

problem (17)). Note that, since Ψ is positive definite, it holds that (y∗
−1(x), y

∗
1(x)) is unique and is

a continuous function of x (e.g., Bonnans and Shapiro 2000).

Recall that Lagrange multipliers corresponding to inactive constraints are zeros. Let

Ii(yi, y−i, x) :=
{

j ∈ {1, . . . , k+mi} : [Wi (Eiyi −B−iy−i)− ηi − iMix]j = 0
}

denote the index set of active constraints of the problem (13). It is said that the strict complemen-

tarity condition holds at an equilibrium point (y∗
−1(x), y

∗
1(x)) if among the corresponding Lagrange
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multiplier vectors λi, there exists at least one such that [λi]j > 0 for all j ∈ Ii(y
∗
i (x), y

∗
−i(x), x), for

i=±1, i.e., there are Lagrange multipliers corresponding to the active constraints that are positive.

Now, suppose that the strict complementarity condition holds at (y∗
−1(x), y

∗
1(x)), with [λ∗

i (x)]j > 0

for all j ∈ Ii(y
∗
i (x), y

∗
−i(x), x), for i = ±1. Then for small perturbations dx of x, the active con-

straints remain active and the inactive constraints remain inactive. Therefore, by linearizing the

optimality conditions (16) at (y∗
−1(x), y

∗
1(x), λ

∗
−1(x), λ

∗
1(x)), the following system of m−1 +m1 +2k

linear equations in m−1 +m1 +2k unknowns (dy−1, dy1, dλ−1, dλ1) is obtained:

Qidyi −B−idy−i −ET

i W
T

i dλi = 0, i=±1
[Wi (Eidyi −B−idy−i)− iMidx]j = 0, j ∈ Ii(y

∗
i (x), y

∗
−i(x), x), i=±1

[dλi]j = 0, j 6∈ Ii(y
∗
i (x), y

∗
−i(x), x), i=±1

(25)

Suppose that the linear system (25) is nonsingular. Then for any dx sufficiently small, the sys-

tem (25) has a unique solution and by the Implicit Function Theorem, the solution of (25)

gives the differential of (y∗
−1(x), y

∗
1(x), λ

∗
−1(x), λ

∗
1(x)) at x. More specifically, the system (25)

can be written in the form S(dy−1, dy1, dλ−1, dλ1) = T dx, where S ∈ R
(m−1+m1+2k)×(m−1+m1+2k)

and T ∈ R
(m−1+m1+2k)×k. If S is nonsingular, then (dy−1, dy1, dλ−1, dλ1) = S−1T dx, and thus

∇(y∗
−1(x), y

∗
1(x), λ

∗
−1(x), λ

∗
1(x)) = S−1T . It follows from (14) that

∇xVi(x, ξ) = ∇y∗
i (x)

TQiy
∗
i (x)−∇y∗

i (x)
TB−iy

∗
−i(x)−∇y∗

−i(x)
TBT

−iy
∗
i (x)−∇y∗

i (x)
TCi (26)

∇2
xxVi(x, ξ) = ∇y∗

i (x)
TQi∇y∗

i (x)−∇y∗
i (x)

TB−i∇y∗
−i(x)−∇y∗

−i(x)
TBT

−i∇y∗
i (x) (27)

can be calculated easily.

The analysis above shows that sufficient conditions for differentiability of Vi with respect to x

at (x, ξ) are the strict complementarity condition and nondegeneracy of the system (25). These

conditions are not necessary — for example, if Mi = 0 for i=±1, then Vi(x, ξ) is constant and hence

differentiable with respect to x. Also, the expectation operator often smooths nondifferentiable

functions. For example, if ∇xVi(x, ξ) exists for almost every ξ and a mild boundedness condition

holds, then E[Vi(x, ξ)] is differentiable at x and ∇xE[Vi(x, ξ)] = E[∇xVi(x, ξ)] (e.g., Shapiro et al.

2009, Theorem 7.44). The derivatives in (26) and (27) are used to solve SAA problems (24) with

a trust-region method. Numerical results are given in Section 6.

6. Numerical Examples

In this section, we present numerical results to compare profits in settings with an alliance, no

alliance, and perfect coordination. We present results for the network example given in Section 4.1.

We first provide the results for the deterministic case with known demand functions in Section 6.1,

and then present results for the stochastic case with random demand functions in Section 6.2.
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6.1. Deterministic Examples

We first describe how the input data Ei, Bi, and Ci for the numerical examples were chosen. For

the example network, m−1 =m1 = 20, and thus Ei,Bi ∈R
20×20 and Ci ∈R

20 for i=±1. For each

instance, a specific ratio r1 ∈ [0,1) is chosen such that |B−i,ℓ,ℓ′ |= r1|Ei,ℓ,ℓ′ |. Thus, r1 is similar to

the ratio γ/β of the two-resource example in Section 3.3 and represents the level of differentiation

between the sellers’ products (smaller ratios mean higher levels of differentiation). For all instances,

it was verified that the resulting matrix Ψ defined in (19) was positive definite.

For the no alliance setting, we used the transformations in Appendix C to obtain Ẽi, B̃i, and C̃i.

In addition, we investigated the effect of a difference in product attractiveness between the settings

with and without an alliance. As mentioned, in a setting without an alliance, a buyer may have to

buy products from multiple sellers and combine them to obtain the product desired by the buyer.

Under an alliance a seller may offer the combined product to the buyer, making it more convenient

for the buyer to obtain the product (“one-stop shopping”). There may be additional ways in which

an alliance increases demand. For example, with a liner shipping alliance, the coordination of

connecting voyage schedules to reduce lay-over time or missed connections and rebooking cost may

further enhance the combined product under an alliance. This might increase the potential demand

level under an alliance compared to that under no alliance. Motivated by these observations, we

solved some instances in which the demands under no alliance is obtained using the transformations

in Appendix C, but with a reduction in the demand for products assembled from more than one

seller by a factor of r2 ∈ (0,1] (in the notation of that section, the part of the demand for products

in Li derived from the demand for products in L0,−1 ∪L0,1 was reduced by a factor of r2).

The two-stage alliance design problem (15) was solved using a trust region algorithm. At each

iteration, given the current value of the resource exchange vector x, the convex quadratic pro-

gram (17) was solved. It was verified that the optimal objective value of (17) was zero, that is, the

solution of (17) gave a solution of the second stage equilibrium problem (12) for i=±1. It was also

verified that the strict complimentary condition held and that the system (25) was nonsingular.

Next the derivatives of the objective function of (15) with respect to x could be computed, and the

trust region algorithm could execute the next iteration. As mentioned, the objective function of (15)

may not be convex. To address the concern of potential multiple local optima, we used 50 different

starting points x0 for the first iteration for each instance. In each scenario, all 50 starting points

led to similar final solutions and final objective values.

For the no alliance model, the second-stage equilibrium problem had to be solved only once for

each instance. For the perfect coordination model, the convex quadratic optimization problem (22)

also had to be solved only once for each instance.
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Table 4 Comparison of total profit for a resource exchange alliance, no alliance, and perfect coordination, for

different levels of product differentiation.

Deterministic Model
r1 = 0.2 r1 = 0.5 r1 = 0.8

Total Relative Total Relative Total Relative
(r2 = 1) Revenue increase (%) Revenue increase (%) Revenue increase (%)

No alliance 3180600 3227900 3269800
Perfect Coordination 3434300 7.98 3433400 6.37 3433000 4.99

Alliance 3432355 7.92 3416153 5.83 3363869 2.88

Table 5 Comparison of maximum achievable total revenue under different convenience level

Deterministic Model
r2 = 0.2 (High) r2 = 0.6 r2 = 1 (No Difference)

Total Relative Total Relative Total Relative
(r1 = 0.5) Revenue increase (%) Revenue increase (%) Revenue increase (%)
No alliance 3115900 3184500 3227900

Perfect Coordination 3433400 10.19 3433400 7.82 3433400 6.37
Alliance 3416153 9.64 3416173 7.27 3416153 5.83

Table 4 presents the total profits under different levels of product differentiation represented by

different values of r1 given r2 = 1 and with diagonal matrices Ei and Bi. The largest increase in

profits relative to the no alliance setting was obtained under high levels of product differentiation.

For example, when r1 = 0.2, an alliance increases the profit of the no alliance setting by 7.92%, and

perfect coordination increases the profit by 7.98%. Even under a low level of product differentiation

(r1 = 0.8), an alliance still increases the profit by 2.88%, and perfect coordination increases the

profit by 4.99%. Similar results were obtained with non-diagonal matrices.

In order to further investigate the impact of capacity and product differentiation level on the

competition and thus the potential profit improvement, we performed the experiments given dif-

ferent capacity levels and r1 values. In order to compare the results easily, we generated similar

plots to the ones given in Section 3.3 for the two-resource model. Here, there exists demand for a

product that consists of only one resource thus it represents more general cases. Figure 4 shows

a plot of the relative increase in total profit with an alliance over no alliance as a function of the

capacity bmin/α and the product differentiation level γ/β. The general insights remain same; the

relative increase is largest when the capacity is large and the product differentiation level is high.

Interestingly, in addition to the profit increase, we also found that the prices under no alliance is

generally higher than the price under an alliance as shown in Figure 5. These are consistent with

what we have observed in Section 3.3.

We also compared profits for different values of r2. Table 5 compares the total profits under

different levels of convenience represented by different values of r2 for r1 = 0.5 and with diagonal

matrices Ei and Bi. As expected, the relative increase in profit is larger for smaller values of r2.

6.2. Stochastic Examples

In this section, we present results for the stochastic model (that is, the first stage problem (15)

with expectation in the objective) presented in Section 4. The random data Ei, Bi, and Ci followed
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Figure 4 Plot of the relative increase in profit with an alliance over no alliance.
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Figure 5 Plot of the relative decrease in price with an alliance over no alliance.

a multivariate normal distribution with means as described in Section 6.1, standard deviations

proportional to the means, and correlation coefficients of 0.6.

We generated and solved SAA problems with different sample sizes N = 20,40, . . . ,500. At each

iteration of the first-stage problem, the second-stage problem was solved for each of the N sample

points ξn. Then, for each of the N sample points ξn, the derivatives of Vi(x, ξ
n) were computed as

given in (26) and (27). The averages of these derivatives over the N sample points then gave the

derivatives of the first-stage objective of the SAA problem (24).

Finally, after a resource exchange x was chosen by solving a SAA problem, we evaluated the

total profits in the alliance, no alliance, and perfect coordination settings with an independent and

identically distributed sample of 1000 sample points, independent of the samples used in the SAA

problem. Table 6 reports the number of iterations of the trust region algorithm until termination,

the resource exchange solution xopt at termination, the objective value (objopt) of the SAA problem

at xopt, and the gradient norm (‖g‖) of the SAA objective function at xopt, for different sample
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Table 6 Optimal solution under different sample sizes for the stochastic case

n iter objopt ‖g‖ xopt

20 41 -3409501 1.08E-04 1444 1550 1395 1480 -1501 -1586 -1393 -1523
100 39 -3408869 3.53E-05 1443 1549 1394 1479 -1503 -1585 -1393 -1525
300 43 -3409336 3.25E-05 1447 1553 1398 1483 -1499 -1582 -1388 -1521
500 41 -3413295 8.62E-05 1446 1553 1397 1482 -1500 -1582 -1389 -1522
a n: sample size
b iter: number of iterations when algorithm stopped
c objopt: objective function value at the optimal solution
d ‖g‖: gradient norm at the optimal solution
e xopt: optimal solution
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Figure 6 Histogram of the pairwise difference in total profit between an alliance and no alliance, using a

sample of 1000 sample points.

sizes N , for the network example in Section 4.1. As far as we know, these are the first stochastic

mathematical programs with equilibrium constraints motivated by an application that has been

solved reasonably.

Figure 6 presents a histogram of the pairwise difference in total profit between an alliance

and no alliance, using a sample of 1000 sample points, independent of the samples used in the

SAA problem. The total profit under an alliance was larger for all 1000 sample points, with the

percentage increase varying from 5.24% to 6.31%.

7. Conclusion

In this paper we presented an economic motivation for interest in alliances by showing that without

an alliance sellers will tend to price their products too high and sell too little, thereby foregoing

potential profit. We showed that under a resource exchange alliance, some of the foregone profit

can be captured. In fact, the relative increase is largest when the capacity is large and the product

differentiation level is high.

We formulated the problem of determining the optimal amounts of resources to exchange as

a mathematical program with equilibrium constraints, taking the competition that results from
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alliance members selling similar products into account. In general, Mathematical Programs with

Equilibrium Constraints (MPEC) are extremely badly behaved, often because the lower level equi-

librium, if it exists, is discontinuous in the upper level decision. As a result MPECs are notoriously

intractable and stochastic MPECs are even more intractable. Our solution approach utilizeing a

trust region algorithm provides a method to search for an optimal exchange and the stochastic

MPECs for the alliance design problems could be solved reasonably well.

Many research questions regarding alliances remain. In this paper we consider one type of

alliances, namely resource exchange alliances. Such alliances are attractive because they do not

require complicated coordination after the resource exchange has taken place and do not raise anti-

trust concerns. since they enhance competition instead of reducing competition. However, there are

many other potential alliance structures of interest that remain to be analyzed and compared in

greater detail. In addition, the problem of optimal revenue management under an alliance is very

challenging and has not received much attention in the literature. Thus the problem of optimal

revenue management under an alliance remains to be addressed.
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Appendix A: Derivation of Results for Two-Resource Model

Appendix A.1: No Alliance

First consider the case in which bmin ≥ α̃ − β̃(ỹ−1 + ỹ1) > 0 (it is shown later for which input parameter

values this condition holds). In this case the profit function of seller i is given by

g̃i(ỹi, ỹ−i) = ỹi

[

α̃− β̃(ỹ−i + ỹi)
]

Then the best response function of seller i is given by

Bi(ỹ−i) =
α̃− β̃ỹ−i

2β̃

Solving the system

ỹi =
α̃− β̃ỹ−i

2β̃

for i=±1, the equilibrium (ỹ∗
−1, ỹ

∗
1) is obtained, where

ỹ∗
i =

α̃

3β̃
> 0

The demand at the equilibrium prices (ỹ∗
−1, ỹ

∗
1) is equal to

α̃− β̃(ỹ∗
−1 + ỹ∗

1) =
α̃

3
> 0 (28)

Therefore, if bmin ≥ α̃/3, then the equilibrium prices are given by (2), the equilibrium demand is given by (3),

the resulting profit of seller i is given by (4), and thus the total profit of both sellers together is given by (5).

Next, consider the case in which bmin ≤ α̃/3. Note that in this case α̃≥ 3bmin > bmin.

Case (1): First, consider any pair of prices (ỹ−1, ỹ1) such that ỹ−1 + ỹ1 < (α̃ − bmin)/β̃. In Figure 7, this

corresponds to (a). Then α̃− β̃(ỹ−1 + ỹ1)> bmin > 0, and thus the profit of seller i is given by

g̃i(ỹi, ỹ−i) = ỹibmin

Thus, if ỹ−1+ ỹ1 < (α̃− bmin)/β̃, then the profit of seller i is increasing in ỹi, and hence such a pair of prices

(ỹ−1, ỹ1) cannot be an equilibrium.

Case (2): Next, consider any pair of prices (ỹ−1, ỹ1) such that ỹ−1 + ỹ1 ≥ α̃/β̃. In Figure 7, this corresponds

to (b). Then the demand and profit of each seller is zero.

Case (3.1): Next, consider any pair of prices (ỹ−1, ỹ1) such that α̃/β̃ > ỹ−1+ ỹ1 > (α̃−bmin)/β̃ and ỹ−1+2ỹ1 >

α̃/β̃. In Figure 7, this corresponds to (c). Then 0< α̃− β̃(ỹ−1 + ỹ1)< bmin, and thus the profit of seller i is

given by

g̃i(ỹi, ỹ−i) = ỹi

[

α̃− β̃(ỹ−i + ỹi)
]

Note that

∂g̃1(ỹ1, ỹ−1)/∂ỹ1 = α̃− β̃ỹ−1 − 2β̃ỹ1 < 0

Thus, if α̃/β̃ > ỹ−1 + ỹ1 > (α̃− bmin)/β̃ and ỹ−1 +2ỹ1 > α̃/β̃, then the profit of seller 1 is decreasing in ỹ1,

and hence such a pair of prices (ỹ−1, ỹ1) cannot be an equilibrium.



Chun, Kleywegt, and Shapiro: Resource Exchange Seller Alliances
33

(a) Case 1: ỹ−1 + ỹ1 < (α̃− bmin)/β̃. (b) Case 2: ỹ−1 + ỹ1 ≥ α̃/β̃.

(c) Case 3.1: α̃/β̃ > ỹ−1+ ỹ1 > (α̃−bmin)/β̃ and ỹ−1+

2ỹ1 > α̃/β̃.

(d) Case 3.2: α̃/β̃ > ỹ−1 + ỹ1 > (α̃ − bmin)/β̃ and

2ỹ−1 + ỹ1 > α̃/β̃.

(e) Case 4: ỹ−1+ ỹ1 = (α̃−bmin)/β̃ and (ỹ−1 < bmin/β̃

or ỹ1 < bmin/β̃).

(f) Case 5: The line segment between (bmin/β̃, α̃/β̃−

2bmin/β̃) and (α̃/β̃− 2bmin/β̃, bmin/β̃).

Figure 7 Different regions of the pair of prices (ỹ−1, ỹ1) corresponding to different cases.
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Case (3.2): Next, consider any pair of prices (ỹ−1, ỹ1) such that α̃/β̃ > ỹ−1+ ỹ1 > (α̃−bmin)/β̃ and 2ỹ−1+ ỹ1 >

α̃/β̃. In Figure 7, this corresponds to (d). It follows similarly to Case 3.1 that the profit of seller −1 is

decreasing in ỹ−1, and hence such a pair of prices (ỹ−1, ỹ1) cannot be an equilibrium.

Case (4.1): Next, consider any pair of prices (ỹ−1, ỹ1) such that ỹ−1+ ỹ1 = (α̃−bmin)/β̃ and 0≤ ỹ−1 < bmin/β̃.

Note that α̃− β̃(ỹ−1 + ỹ1) = bmin, and thus the corresponding profit of seller −1 is given by

g̃−1(ỹ−1, ỹ1) = ỹ−1bmin

Next, consider ŷ−1 :=
(

α̃/β̃− ỹ1

)

/2. First, note that

ỹ1 ≤ ỹ−1 + ỹ1 =
α̃− bmin

β̃
<

α̃

β̃

⇒ α̃− β̃ỹ1
2

> 0

⇔ α̃− β̃

(

α̃/β̃− ỹ1
2

+ ỹ1

)

> 0

⇔ α̃− β̃ (ŷ−1 + ỹ1) > 0

Also, note that

ỹ−1 < bmin/β̃

⇔ ỹ−1 +(α̃− bmin)/β̃ < α̃/β̃

⇔ 2ỹ−1 + ỹ1 < α̃/β̃

⇔ ỹ−1 <
α̃/β̃− ỹ1

2
= ŷ−1

and thus α̃− β̃ (ŷ−1 + ỹ1)< α̃− β̃ (ỹ−1 + ỹ1) = bmin. Thus the corresponding profit of seller −1 is given by

g̃−1(ŷ−1, ỹ1) = ŷ−1

[

α̃− β̃ (ŷ−1 + ỹ1)
]

Next, note that

ỹ−1 < bmin/β̃

⇒
(

bmin − β̃ỹ−1

)2

> 0

⇔ b2min +2bminβ̃ỹ−1 + β̃2ỹ2−1 > 4bminβ̃ỹ−1

⇔
(

bmin + β̃ỹ−1

)2

> 4β̃ỹ−1bmin

⇔
(

bmin/β̃+ ỹ−1

2

)(

bmin + β̃ỹ−1

2

)

> ỹ−1bmin

⇔





α̃/β̃−
(

α̃/β̃− bmin/β̃− ỹ−1

)

2









α̃− β̃
(

α̃/β̃− bmin/β̃− ỹ−1

)

2



 > ỹ−1bmin

⇔
(

α̃/β̃− ỹ1
2

)(

α̃− β̃ỹ1
2

)

> ỹ−1bmin

⇔
(

α̃/β̃− ỹ1
2

)



α̃−
β̃
(

α̃/β̃− ỹ1

)

2
− β̃ỹ1



 > ỹ−1bmin

⇔ ŷ−1

(

α̃− β̃ŷ−1 − β̃ỹ1

)

> ỹ−1bmin

⇔ g̃−1(ŷ−1, ỹ1) > g̃−1(ỹ−1, ỹ1)
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Thus such a pair of prices (ỹ−1, ỹ1) cannot be an equilibrium.

Case (4.2): Next, consider any pair of prices (ỹ−1, ỹ1) such that ỹ−1+ ỹ1 = (α̃− bmin)/β̃ and 0≤ ỹ1 < bmin/β̃.

Consider ŷ1 :=
(

α̃/β̃− ỹ−1

)

/2. It follows similarly to Case 4.1 that g̃1(ŷ1, ỹ−1)> g̃1(ỹ1, ỹ−1) and thus such a

pair of prices (ỹ−1, ỹ1) cannot be an equilibrium. In Figure 7, Case (4.1) and Case (4.2) correspond to (e).

Case (5): The only remaining pairs of prices to check are pairs (ỹ−1, ỹ1) on the line segment between

(bmin/β̃, α̃/β̃ − 2bmin/β̃) and (α̃/β̃ − 2bmin/β̃, bmin/β̃). In Figure 7, this corresponds to the line segment on

(f). Consider any pair of prices (ỹ−1, ỹ1) = (1− γ)(bmin/β̃, α̃/β̃ − 2bmin/β̃) + γ(α̃/β̃ − 2bmin/β̃, bmin/β̃) for

γ ∈ [0,1]. It follows from bmin ≤ α̃/3 that 0< bmin/β̃ ≤ α̃/β̃− 2bmin/β̃, and thus ỹi > 0. Note that ỹ−1 + ỹ1 =

(1−γ)(α̃/β̃− bmin/β̃)+γ(α̃/β̃− bmin/β̃) = (α̃− bmin)/β̃, that ỹ−1+2ỹ1 = (1−γ)(2α̃/β̃−3bmin/β̃)+γα̃/β̃ ≥
α̃/β̃, where the inequality follows from bmin ≤ α̃/3, and similarly 2ỹ−1 + ỹ1 ≥ α̃/β̃. Then, for any ŷ1 < ỹ1, it

holds that ỹ−1 + ŷ1 < (α̃− bmin)/β̃, and thus it follows from Case (a) that g̃1(ŷ1, ỹ−1)< g̃1(ỹ1, ỹ−1). Also, for

any ŷ1 > ỹ1, it holds that ỹ−1 + ŷ1 > (α̃− bmin)/β̃ and ỹ−1 + 2ŷ1 > α̃/β̃, and thus it follows from Case (c)

that g̃1(ŷ1, ỹ−1)< g̃1(ỹ1, ỹ−1). Hence, given ỹ−1, ỹ1 is the best response for seller 1. Similarly, given ỹ1, ỹ−1

is the best response for seller −1.

Therefore, if bmin ≤ α̃/3, then all pairs of prices (ỹ−1, ỹ1) on the line segment between (bmin/β̃, α̃/β̃ −
2bmin/β̃) and (α̃/β̃ − 2bmin/β̃, bmin/β̃) are equilibria. For all of these equilibrium prices total price is equal

to (α̃− bmin)/β̃, the demand is equal to bmin, the resulting profit of seller i is equal to ỹibmin, and thus the

total profit of both sellers together is given by (6).

Appendix A.2: Perfect Coordination

In this section, we determine the maximum achievable total profit of the two sellers together, that is, the

total profit if the sellers would perfectly coordinate pricing.

The total profit of the two sellers is given by

g̃(ỹ−1, ỹ1) := (ỹ−1 + ỹ1)min{bmin, max{0, α̃− β̃(ỹ−1 + ỹ1)}}

First consider the case in which bmin ≥ α̃− β̃(ỹ−1 + ỹ1)> 0. In this case the total profit of the two sellers is

given by

g̃(ỹ−1, ỹ1) := (ỹ−1 + ỹ1)
[

α̃− β̃(ỹ−1 + ỹ1)
]

The optimal total price ȳ−1 + ȳ1 that maximizes the total profit is given by

ȳ−1 + ȳ1 =
α̃

2β̃
> 0

The demand at the optimal total price ȳ−1 + ȳ1 is equal to

α̃− β̃(ȳ−1 + ȳ1) =
α̃

2
>

α̃

3
= α̃− β̃(ỹ∗

−1 + ỹ∗
1) (29)

Therefore, if bmin ≥ α̃/2, then the optimal total price is given by (7), the corresponding demand is given

by (8), the total profit of both sellers together is given by (9), and the consumer surplus is given by (??).

Next, consider the case in which bmin ≤ α̃/2. In this case the optimal total price is given by

ỹ−1 + ỹ1 =
α̃− bmin

β̃
> 0
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with corresponding demand equal to bmin. The total profit of both sellers together is equal to

(ỹ−1 + ỹ1) bmin =
α̃− bmin

β̃
bmin

and the consumer surplus is equal to

1

2

[

α̃

β̃
− α̃− bmin

β̃

]

bmin =
b2min

2β̃

Appendix A.3: Resource Exchange Alliance

For given values of b−1 and b1, the feasible set S1 of two-resource products that can be sold by the two

sellers is given by S1 := {(q−1(x), q1(x)) : xi ∈ [0, bi], i = ±1}. Next we show that this set S1 is equal to

S2 := {(q−1, q1) ∈ [0, bmin]
2 : q−1 + q1 ≤ bmin}. First, consider any (q−1(x), q1(x)) ∈ S1 with corresponding

(x−1, x1) ∈ [0, b−1] × [0, b1]. Without loss of generality, suppose that b−1 = bmin. Then q−1(x) + q1(x) =

min{b−1 −x−1, x1}+min{b1 −x1, x−1} ≤ b−1 −x−1 +x−1 = b−1 = bmin, and thus (q−1(x), q1(x))∈ S2. Next,

consider any (q−1, q1) ∈ S2. Choose xi = q−i for i=±1. Note that xi ∈ [0, bi] since q−i ∈ [0, bmin]. Also, xi =

q−i ≤ bmin − qi = bmin −x−i ≤ b−i −x−i, and thus q−i(x) =min{b−i −x−i, xi}= xi = q−i. Thus (q−1, q1)∈ S1,

and hence S1 = S2. Hence, the first-stage decision variables may be considered to be the resource exchange

quantities x = (x−1, x1) ∈ [0, b−1]× [0, b1], or equivalently the capacities q = (q−1, q1) ∈ S2 of two-resource

products after exchange.

Case 1. First consider the case in which qi >α−βyi+γy−i > 0 for i=±1 (it is considered later for which

input parameter values and values of q and y this condition holds). In this case the profit function of each

seller i is given by

gi(yi, y−i) = yi [α−βyi + γy−i]

Then the best response function of each seller i is given by

Bi(y−i) =
α+ γy−i

2β

Solving the system

yi =
α+ γy−i

2β

for i=±1, the equilibrium (y∗
−1, y

∗
1) is obtained, where

y∗
i =

α

2β− γ
> 0 (30)

Note that the equilibrium prices are greater than the marginal cost c−1 + c1 of the two-resource product.

The demand at the equilibrium prices (y∗
−1, y

∗
1) is equal to

α−βy∗
i + γy∗

−i =
αβ

2β− γ
> 0 (31)

The resulting profit of each seller is equal to

y∗
i min{qi, max{0, α−βy∗

i + γy∗
−i}} =

α2β

(2β− γ)2
(32)

and thus the total profit of both sellers together is equal to

2
α2β

(2β− γ)2
(33)
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2β − γ

J
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M
0

Figure 8 Different cases of capacity bmin for a resource exchange alliance.

Therefore, if qi ≥ αβ/(2β − γ) for i = ±1, then the equilibrium prices are given by (30), the equilibrium

demand is given by (31), the resulting profit of each seller is given by (32), and thus the total profit of both

sellers together is given by (33). Note that qi ≥ αβ/(2β−γ) for i=±1 requires that bmin ≥ 2αβ/(2β−γ). Thus

the results above hold if bmin ≥ 2αβ/(2β−γ) and the resource exchange x is chosen such that qi ≥ αβ/(2β−γ)

for i = ±1. In Figure 8, the line ABCD shows pairs (q−1, q1) such that q−1 + q1 = bmin > 2αβ/(2β − γ),

obtained with resource exchange x= (x−1, x1) such that xi = q−i = bmin − qi = bmin − x−i ≤ b−i − x−i. Thus,

for the given value of bmin > 2αβ/(2β− γ), the set of points (q−1, q1) such that qi ≥ αβ/(2β− γ) for i=±1

and q−1 + q1 ≤ bmin corresponds to triangle BCI. All corresponding resource exchanges x lead to sales of

two-resource products of αβ/(2β − γ) by each seller, corresponding to point I, and provide total profit of

2α2β/(2β− γ)2.

Case 2. Next, consider the case in which 0≤ q−i ≤ α−βy−i + γyi and qi >α−βyi + γy−i > 0 (as before,

it is considered later for which input parameter values and values of q and y this condition holds). In this
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case the profit function of seller −i is given by

g−i(y−i, yi) = y−iq−i

and the profit function of seller i is given by

gi(yi, y−i) = yi [α−βyi + γy−i]

Then the best response function of seller −i is given by

B−i(yi) = max{y−i : q−i ≤ α−βy−i + γyi} =
α+ γyi − q−i

β

and the best response function of seller i is given by

Bi(y−i) =
α+ γy−i

2β

Solving the system

y−i =
α+ γyi − q−i

β

yi =
α+ γy−i

2β

the solution (y∗
−1, y

∗
1) is obtained, where

y∗
−i =

2αβ+αγ− 2βq−i

2β2 − γ2

y∗
i =

αβ+αγ− γq−i

2β2 − γ2
(34)

(It is checked later under what conditions y∗
−i, y

∗
i > 0 and (y∗

−i, y
∗
i ) is the unique equilibrium.) The demands

at the prices (y∗
−i, y

∗
i ) are equal to

d−i(y
∗
−i, y

∗
i ) = α−βy∗

−i + γy∗
i = q−i (35)

di(y
∗
i , y

∗
−i) = α−βy∗

i + γy∗
−i =

αβ(β+ γ)−βγq−i

2β2 − γ2
(36)

Recall that we are considering the case in which q−i ≤ α−βy−i+γyi and qi >α−βyi+γy−i. Note that q−i =

α−βy∗
−i+γy∗

i . Also note that qi >α−βy∗
i +γy∗

−i if and only if qi >αβ(β+γ)/(2β2−γ2)−βγq−i/(2β
2−γ2).

Examples of the line qi = αβ(β + γ)/(2β2 − γ2)− βγq−i/(2β
2 − γ2) are given in Figure 8 by line LFI for

i = 1 and by line MGI for i = −1. It can be verified that the intercept satisfies αβ(β + γ)/(2β2 − γ2) ∈
(0,2αβ/(2β − γ)). The slope of the lines are negative if γ > 0 and positive if γ < 0. Note that if q−i =

αβ/(2β−γ), then αβ(β+γ)/(2β2−γ2)−βγq−i/(2β
2−γ2) = αβ/(2β−γ), and thus in all cases the lines go

through I = (αβ/(2β−γ), αβ/(2β−γ)). In Figure 8, if bmin > 2αβ/(2β−γ), such as in the case in which the

line ABCD shows pairs (q−1, q1) such that q−1+q1 = bmin, then the set of points (q−1, q1) such that 0≤ q−1 ≤
α− βy∗

−1 + γy∗
1, q1 > α− βy∗

1 + γy∗
−1, and q−1 + q1 ≤ bmin, corresponds to quadrilateral ABIL. (Note that

q−1 ≤ αβ/(2β−γ), since it has already been shown that q−1 >α−βy∗
−1+γy∗

1 in triangle BCI.) Similarly, the

set of points (q−1, q1) such that 0≤ q1 ≤ α−βy∗
1+γy∗

−1, q−1 >α−βy∗
−1+γy∗

1, and q−1+q1 ≤ bmin, corresponds

to quadrilateral DCIM (note that q1 ≤ αβ/(2β− γ)). If αβ(β+ γ)/(2β2 − γ2)< bmin ≤ 2αβ/(2β− γ), such

as in the case in which the line EFGH shows pairs (q−1, q1) such that q−1 + q1 = bmin, then the set of
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points (q−1, q1) such that 0≤ q−1 ≤ α−βy∗
−1+γy∗

1, q1 >α−βy∗
1 +γy∗

−1, and q−1+ q1 ≤ bmin, corresponds to

triangle EFL, and the set of points (q−1, q1) such that 0≤ q1 ≤ α− βy∗
1 + γy∗

−1, q−1 >α− βy∗
−1 + γy∗

1, and

q−1 + q1 ≤ bmin, corresponds to triangle HGM . It is verified in Case 3 that, if bmin ≤ αβ(β+ γ)/(2β2 − γ2),

then qi ≤ α−βy∗
i + γy∗

−i for i=±1.

Next we verify that, if q−i ≤ αβ/(2β − γ), then the prices y∗
−i, y

∗
i given in (34) satisfy y∗

−i, y
∗
i > 0, that

is, the prices are greater than the marginal cost c−1 + c1 of the two-resource product. First note that the

denominator in the expressions for y∗
−i and y∗

i is positive. Next consider the numerator in the expression for

y∗
−i. Note that

2β2 < 4β2 − γ2 = (2β+ γ)(2β− γ)

⇔ αβ

2β− γ
<

2αβ+αγ

2β

Thus, if q−i ≤ αβ/(2β− γ), then

q−i <
2αβ+αγ

2β

⇔ 0 < 2αβ+αγ− 2βq−i

⇔ 0 <
2αβ+αγ− 2βq−i

2β2 − γ2
= y∗

−i

Next consider the numerator in the expression for y∗
i . If γ ≤ 0, then α(β + γ)− γq−i > 0 (recall that γ ∈

(−β,β)), and thus

y∗
i =

αβ+αγ− γq−i

2β2 − γ2
> 0

Next, consider the case with γ > 0. Note that

αβ

2β− γ
<

αβ

γ
<

αβ+αγ

γ

Thus, if q−i ≤ αβ/(2β− γ), then

q−i <
αβ+αγ

γ

⇔ 0 < αβ+αγ− γq−i

⇔ 0 <
αβ+αγ− γq−i

2β2 − γ2
= y∗

i

Next we verify that, if q−i ≤ αβ/(2β−γ) and qi >αβ(β+γ)/(2β2−γ2)−βγq−i/(2β
2−γ2), then (y∗

−i, y
∗
i )

given in (34) is the unique equilibrium. First, recall that Bi(y−i) = (α+γy−i)/(2β) is the unique best response

for seller i if the capacity qi of seller i is not constraining. Note that if seller −i chooses price y∗
−i and

qi > αβ(β + γ)/(2β2 − γ2)− βγq−i/(2β
2 − γ2), then the capacity qi of seller i is not constraining, and thus

y∗
i given in (34) is the unique best response for seller i to y∗

−i. Next we verify that y∗
−i given in (34) is the

unique best response for seller −i to y∗
i . Given y∗

i , the profit of seller −i is given by

g−i(y−i, y
∗
i ) = y−imin{q−i, max{0, α−βy−i + γy∗

i }}

=











y−iq−i if y−i ≤ α+γy∗

i −q−i

β

y−i (α−βy−i + γy∗
i ) if

α+γy∗

i −q−i

β
≤ y−i ≤ α+γy∗

i

β

0 if y−i ≥ α+γy∗

i

β
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Thus g−i(y−i, y
∗
i ) is a nondecreasing linear function of y−i if y−i ≤ (α+ γy∗

i − q−i)/β. If (α+ γy∗
i − q−i)/β <

y−i < (α+ γy∗
i )/β, then g−i(y−i, y

∗
i ) is a concave quadratic function of y−i, with

g′
−i(y−i, y

∗
i ) = −2βy−i +α+ γy∗

i

< −2 (α+ γy∗
i − q−i)+α+ γy∗

i

= −α− γy∗
i +2q−i

= −α− γ
αβ+αγ− γq−i

2β2 − γ2
+2q−i

=
−2αβ2 −αβγ+(4β2 − γ2)q−i

2β2 − γ2

Note that

−2αβ2 −αβγ+(4β2 − γ2)q−i

2β2 − γ2
≤ 0

⇔ −2αβ2 −αβγ+(4β2 − γ2)q−i ≤ 0

⇔ −αβ(2β+ γ)+ (2β− γ)(2β+ γ)q−i ≤ 0

⇔ −αβ+(2β− γ)q−i ≤ 0

⇔ q−i ≤
αβ

2β− γ

Hence, if q−i ≤ αβ/(2β − γ), then g′
−i(y−i, y

∗
i )< 0 for all y−i ∈ ((α+ γy∗

i − q−i)/β, (α+ γy∗
i )/β). Hence, the

unique best response for seller −i to y∗
i is B−i(y

∗
i ) = (α+ γy∗

i − q−i)/β. Therefore, if q−i ≤ αβ/(2β− γ) and

qi >αβ(β+ γ)/(2β2 − γ2)−βγq−i/(2β
2 − γ2), then (y∗

−i, y
∗
i ) given in (34) is the unique equilibrium.

The resulting profit of each seller is equal to

g−i(y
∗
−i, y

∗
i ) = y∗

−iq−i

=
α (2β+ γ) q−i − 2βq2−i

2β2 − γ2

gi(y
∗
i , y

∗
−i) = y∗

i

(

α−βy∗
i + γy∗

−i

)

=

(

αβ+αγ− γq−i

2β2 − γ2

)(

αβ (β+ γ)−βγq−i

2β2 − γ2

)

=
α2β (β+ γ)

2 − 2αβγ (β+ γ) q−i +βγ2q2−i

(2β2 − γ2)
2 (37)

and thus the total profit of both sellers together is equal to

G(q−i) =
α (2β+ γ) q−i − 2βq2−i

2β2 − γ2
+

α2β (β+ γ)
2 − 2αβγ (β+ γ) q−i +βγ2q2−i

(2β2 − γ2)
2

=
α (2β+ γ) (2β2 − γ2) q−i − 2β (2β2 − γ2) q2−i +α2β (β+ γ)

2 − 2αβγ (β+ γ) q−i +βγ2q2−i

(2β2 − γ2)
2

=
α2β (β+ γ)

2
+α (4β3 − 4βγ2 − γ3) q−i −β (4β2 − 3γ2) q2−i

(2β2 − γ2)
2 (38)

Therefore, if q−i ≤ αβ/(2β − γ) and qi > αβ(β + γ)/(2β2 − γ2) − βγq−i/(2β
2 − γ2), then the equilibrium

prices are given by (34), the equilibrium demand is given by (36), the resulting profit of each seller is given

by (37), and thus the total profit of both sellers together is given by (38).
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Case 3. Next consider the case in which 0 ≤ qi ≤ α − βyi + γy−i for i = ±1. (It will be shown that

this case holds if and only if 0 ≤ qi ≤ αβ(β + γ)/(2β2 − γ2) − βγq−i/(2β
2 − γ2) for i = ±1. In Figure 8

this case corresponds to two-resource product capacities (q−1, q1) in region 0LIM . Thus the entire region

{(q−1, q1) : qi ≥ 0, i=±1} is covered by Cases 1–3.) In this case the profit function of each seller i is given

by

gi(yi, y−i) = yiqi

Then the best response function of each seller i is given by

Bi(y−i) = max{yi : qi ≤ α−βyi + γy−i} =
α+ γy−i − qi

β

Solving the system

yi =
α+ γy−i − qi

β

for i=±1, the equilibrium (y∗
−1, y

∗
1) is obtained, where

y∗
i =

α(β+ γ)−βqi − γq−i

β2 − γ2
(39)

(It is checked later under what conditions y∗
i > 0 and (y∗

−1, y
∗
1) is the unique equilibrium.) The demand of

seller i at the prices (y∗
−1, y

∗
1) is equal to

α−βy∗
i + γy∗

−i = qi > 0 (40)

Next we verify that, if qi ≤ αβ(β + γ)/(2β2 − γ2) − βγq−i/(2β
2 − γ2) for i = ±1, then the prices y∗

i

given in (39) satisfy y∗
i > 0 for i = ±1, that is, the prices are greater than the marginal cost c−1 + c1 of

the two-resource product. Note that qi ≤ αβ(β + γ)/(2β2 − γ2)− βγq−i/(2β
2 − γ2) for i=±1 implies that

q−1 + q1 ≤ 2αβ/(2β − γ). For a given pair (q−1, q1) such that qi ≤ αβ(β + γ)/(2β2 − γ2)− βγq−i/(2β
2 − γ2)

for i=±1, consider the line with slope −1 through the point (q−1, q1). For example, in Figure 8, EFGH is

such a line, with points (q−1, q1) on line segment FG satisfying qi ≤ αβ(β+γ)/(2β2−γ2)−βγq−i/(2β
2−γ2)

for i=±1; and JK is also such a line, with all points (q−1, q1) on line segment JK satisfying qi ≤ αβ(β +

γ)/(2β2 − γ2)− βγq−i/(2β
2 − γ2) for i=±1. We show that the prices y∗

i given by (39) corresponding to all

points (q−1, q1) on line segment FG satisfy y∗
i > 0. It follows that the prices y∗

i given by (39) corresponding to

all points (q−1, q1) on line segment JK also satisfy y∗
i > 0. The coordinates of point F are ([(2β2−γ2)(q−1+

q1)−αβ(β+γ)]/(2β2−βγ−γ2), [αβ(β+γ)−βγ(q−1+ q1)]/(2β
2−βγ−γ2)) and the coordinates of point G

are ([αβ(β+γ)−βγ(q−1+q1)]/(2β
2−βγ−γ2), [(2β2−γ2)(q−1+q1)−αβ(β+γ)]/(2β2−βγ−γ2)). Consider

the prices y∗
i given in (39). Note that

y∗
i =

α(β+ γ)−βqi − γq−i

β2 − γ2
> 0

⇔ α(β+ γ)−βqi − γq−i > 0

⇔ βqi + γ(q−i + qi − qi) < α(β+ γ)

⇔ (β− γ)qi + γ(q−i + qi) < α(β+ γ) (41)
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If (q−1, q1) is on line segment FG, then

qi ≤
αβ(β+ γ)−βγ(q−1 + q1)

2β2 −βγ− γ2

⇔ (β− γ)qi + γ(q−i + qi) ≤ (β− γ)
αβ(β+ γ)−βγ(q−1 + q1)

2β2 −βγ− γ2
+ γ(q−i + qi)

=
αβ3 −αβγ2 +β2γ(q−1 + q1)− γ3(q−i + qi)

2β2 −βγ− γ2

=
αβ(β2 − γ2)+ (β2 − γ2)γ(q−1 + q1)

2β2 −βγ− γ2

=
(β− γ)(β+ γ)[αβ+ γ(q−1 + q1)]

(β− γ)(2β+ γ)

=
(β+ γ)[αβ+ γ(q−1 + q1)]

2β+ γ
(42)

Next, by separately considering the cases γ ≤ 0 and γ ≥ 0, we show that [αβ + γ(q−1 + q1)]/(2β + γ) < α,

then it follows from (42) that (β− γ)qi + γ(q−i + qi)<α(β+ γ), and hence it follows from (41) that y∗
i > 0.

First, suppose that γ ≤ 0. Note that

−γ < β

⇔ β < 2β+ γ

⇔ αβ

2β+ γ
< α

⇒ αβ+ γ(q−1 + q1)

2β+ γ
< α (43)

The last step follows since γ ≤ 0 and q−1 + q1 ≥ 0. It follows from (41), (42) and (43) that, if γ ≤ 0, then

y∗
i > 0.

Next, suppose that γ ≥ 0. Note that

γ < β

⇔ β < 2β− γ

⇔ αβ(2β− γ+2γ)

(2β− γ)(2β+ γ)
< α

⇔
αβ+ 2αβγ

2β−γ

2β+ γ
< α

⇒ αβ+ γ(q−1 + q1)

2β+ γ
< α (44)

The last step follows since γ ≥ 0 and q−1 + q1 ≤ 2αβ/(2β − γ). It follows from (41), (42) and (44) that, if

γ ≥ 0, then y∗
i > 0.

Next we verify that, if qi ≤ αβ(β+γ)/(2β2−γ2)−βγq−i/(2β
2−γ2) for i=±1, then (y∗

−1, y
∗
1) given in (39)

is the unique equilibrium. We verify that y∗
i given in (39) is the unique best response for seller i to y∗

−i. Given

y∗
−i, the profit of seller i is given by

gi(yi, y
∗
−i) = yimin

{

qi, max{0, α−βyi + γy∗
−i}
}

=











yiqi if yi ≤
α+γy∗

−i−qi

β

yi
(

α−βyi + γy∗
−i

)

if
α+γy∗

−i−qi

β
≤ yi ≤

α+γy∗

−i

β

0 if yi ≥
α+γy∗

−i

β
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Thus gi(yi, y
∗
−i) is a nondecreasing linear function of yi if yi ≤ (α+ γy∗

−i − qi)/β. If (α+ γy∗
−i − qi)/β < yi <

(α+ γy∗
−i)/β, then gi(yi, y

∗
−i) is a concave quadratic function of yi, with

g′
i(yi, y

∗
−i) = −2βyi +α+ γy∗

−i

< −2
(

α+ γy∗
−i − qi

)

+α+ γy∗
−i

= −α− γy∗
−i +2qi

= −α− γ
α(β+ γ)−βq−i − γqi

β2 − γ2
+2qi

=
−αβ2 −αβγ+βγq−i +(2β2 − γ2)qi

β2 − γ2

If (q−1, q1) is on line segment FG, then

qi ≤
αβ(β+ γ)−βγ(q−i + qi)

2β2 −βγ− γ2

⇔ 0 ≥ −αβ2 −αβγ+βγ(q−i + qi)+ (2β2 −βγ− γ2)qi

= −αβ2 −αβγ+βγq−i +(2β2 − γ2)qi

⇔ 0 ≥ −αβ2 −αβγ+βγq−i +(2β2 − γ2)qi
β2 − γ2

⇔ g′
i(yi, y

∗
−i) < 0

Hence, if (q−1, q1) is on line segment FG, then g′
i(yi, y

∗
−i)< 0 for all yi ∈ ((α+ γy∗

−i − qi)/β, (α+ γy∗
−i)/β).

Hence, the unique best response for seller i to y∗
−i is Bi(y

∗
−i) = (α + γy∗

−i − qi)/β. It follows in the same

way that if (q−1, q1) is on line segment JK, then the unique best response for seller i to y∗
−i is Bi(y

∗
−i) =

(α+γy∗
−i− qi)/β. Therefore, if qi ≤ αβ(β+γ)/(2β2−γ2)−βγq−i/(2β

2−γ2) for i=±1, then (y∗
−1, y

∗
1) given

in (39) is the unique equilibrium.

The resulting profit of each seller i is equal to

y∗
i min{qi, max{0, α−βy∗

i + γy∗
−i}} =

α(β+ γ)qi −βq2i − γq−iqi
β2 − γ2

(45)

and thus the total profit of both sellers together is equal to

α(β+ γ)(q−1 + q1)−β(q2−1 + q21)− 2γq−1q1

β2 − γ2
(46)

Therefore, if qi ≤ αβ(β+ γ)/(2β2 − γ2)−βγq−i/(2β
2 − γ2) for i=±1, then the equilibrium prices are given

by (39), the equilibrium demand is given by (40), the resulting profit of each seller is given by (45), and thus

the total profit of both sellers together is given by (46).

Next we determine the value of (q−1, q1) that maximizes the total profit of both sellers together under

Case 3. First we fix the value of q−1 + q1 at some value q≤ bmin, and choose q1 to maximize the total profit

subject to q−1 + q1 = q. Thereafter we choose q to maximize the total profit subject to q ≤ bmin. It follows

from (46) that the total profit is equal to

α(β+ γ)(q−1 + q1)−β(q2−1 + q21)− 2γq−1q1

β2 − γ2
=

α(β+ γ)(q−1 + q1)−β(q2−1 +2q−1q1 + q21)+ 2βq−1q1 − 2γq−1q1

β2 − γ2

=
α(β+ γ)q−βq2 +2(β− γ)(q− q1)q1

β2 − γ2

=
α(β+ γ)q−βq2 +2(β− γ)qq1 − 2(β− γ)q21

β2 − γ2
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Let

H1(q1) :=
α(β+ γ)q−βq2 +2(β− γ)qq1 − 2(β− γ)q21

β2 − γ2

Note that H1 is a concave quadratic function that is maximized at q∗1 = q/2, and the corresponding value of

q−1 is also q∗−1 = q/2. Recall that (46) applies if qi ≤ αβ(β + γ)/(2β2 − γ2)− βγq−i/(2β
2 − γ2) for i=±1.

Note that

q∗i ≤ αβ(β+ γ)

2β2 − γ2
− βγ

2β2 − γ2
q∗−i for i=±1

⇔ q

2
≤ αβ(β+ γ)

2β2 − γ2
− βγ

2β2 − γ2

q

2

⇔ q ≤ 2αβ

2β− γ

Next we choose q to maximize the total profit subject to q≤ bmin and q≤ 2αβ/(2β− γ). Let

H2(q) := H1(q/2)

=
α(β+ γ)q−βq2 +2(β− γ)q2/2− 2(β− γ)q2/4

β2 − γ2

=
2α(β+ γ)q− (β+ γ)q2

2(β− γ)(β+ γ)

=
2αq− q2

2(β− γ)

Note that H2 is a concave quadratic function and H ′
2(q

∗) = 0⇔ q∗ = α. Also note that q∗ = α≤ 2αβ/(2β−γ)

if and only if γ ≥ 0. Let amin := min{α, bmin,2αβ/(2β− γ)}. Then the value of (q−1, q1) that maximizes the

total profit and that satisfies qi ≤ αβ(β+ γ)/(2β2 − γ2)−βγq−i/(2β
2 − γ2) for i=±1, is q∗−1 = q∗1 = amin/2.

The corresponding total profit is H2(amin) = (2α− amin)amin/[2(β− γ)]. This concludes Case 3.

Optimal exchange. Next, we compare the profits under Cases 1, 2, and 3, and determine the value of

(q−1, q1), that is, the value of the exchange x = (x−1, x1), that maximizes the total profit of both sellers

together. Different cases hold, depending on the capacity ratio bmin/α and the price coefficient ratio γ/β

(recall that γ/β ∈ (−1,1)). The different cases are depicted in Figure 9.

Case A (small capacity). bmin/α≤ [1+ γ/β]/[2− (γ/β)2], that is, bmin ≤ αβ(β+ γ)/(2β2 − γ2):

In Figure 8, line JK shows an example of pairs (q−1, q1) such that q−1 + q1 = bmin for a given value of

bmin < αβ(β + γ)/(2β2 − γ2), and triangle 0JK shows pairs (q−1, q1)≥ 0 such that q−1 + q1 ≤ bmin. In this

case, the capacity bmin is so small that all feasible values of (q−1, q1) correspond to Case 3. Recall that

αβ(β+ γ)/(2β2 − γ2)∈ (0,2αβ/(2β− γ)).

Case A1. γ/β ≤ 0 and bmin/α≤ [1+ γ/β]/[2− (γ/β)2], that is, γ ≤ 0 and bmin ≤ αβ(β+ γ)/(2β2 − γ2):

Recall that 2αβ/(2β−γ)≤ α if and only if γ ≤ 0. Since bmin ≤ αβ(β+γ)/(2β2−γ2)< 2αβ/(2β−γ)≤ α, it

follows that bmin =min{α, bmin,2αβ/(2β−γ)}, and thus the value of (q−1, q1) that maximizes the total profit

is q∗−1 = q∗1 = bmin/2, and the maximum total profit is (2α− bmin)bmin/[2(β − γ)]. The resulting equilibrium

price of each seller, given by (39), is y∗
i = (2α− bmin)/[2(β − γ)], and the resulting equilibrium demand of

each seller, given by (40), is equal to q∗i = bmin/2.
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1

2

3

1

2

bmin

α

1−1 γ

β
0

0

1

2

B1

B2

A1

A2

C1

C2

β(β + γ)

2β2 − γ2

2αβ

2β − γ

≈ 0.618

Figure 9 Different cases of the capacity ratio bmin/α and the price coefficient ratio γ/β.

Case A2. γ/β ≥ 0 and bmin/α≤ [1+ γ/β]/[2− (γ/β)2], that is, γ ≥ 0 and bmin ≤ αβ(β+ γ)/(2β2 − γ2):

In this case, bmin ≤ αβ(β+γ)/(2β2−γ2)< 2αβ/(2β−γ) and α≤ 2αβ/(2β−γ). If αβ(β+γ)/(2β2−γ2)≤
α, then bmin ≤ α and thus bmin = min{α, bmin,2αβ/(2β − γ)}, the value of (q−1, q1) that maximizes the

total profit is q∗−1 = q∗1 = bmin/2, and the maximum total profit is (2α− bmin)bmin/[2(β − γ)]. The resulting

equilibrium price of each seller, given by (39), is y∗
i = (2α− bmin)/[2(β − γ)], and the resulting equilibrium

demand of each seller, given by (40), is equal to q∗i = bmin/2. Note that αβ(β+γ)/(2β2−γ2)≤ α if and only

if γ/β ≤ (
√
5− 1)/2 = 1/ϕ=ϕ− 1≈ 0.618, where ϕ denotes the golden ratio. If γ/β > (

√
5− 1)/2 (and thus

α < αβ(β + γ)/(2β2 − γ2)), then there are two possibilities. If bmin ≤ α, then as before, q∗−1 = q∗1 = bmin/2,

the equilibrium price of each seller is y∗
i = (2α− bmin)/[2(β − γ)], the equilibrium demand of each seller is

equal to q∗i = bmin/2, and the maximum total profit is (2α− bmin)bmin/[2(β − γ)]. Otherwise, if α < bmin,

then q∗−1 = q∗1 = α/2, the resulting equilibrium price of each seller, given by (39), is y∗
i = α/[2(β − γ)], the

resulting equilibrium demand of each seller, given by (40), is equal to q∗i = α/2, and the maximum total

profit is (2α−α)α/[2(β−γ)] = α2/[2(β−γ)]. Note that in this case the optimal resource exchange x∗ is such

that q∗−1 + q∗1 = α< bmin, that is, some capacity is not used.

Case B (intermediate capacity). [1+γ/β]/[2−(γ/β)2]≤ bmin/α≤ 2/(2−γ/β), that is, αβ(β+γ)/(2β2−
γ2)≤ bmin ≤ 2αβ/(2β− γ):

In Figure 8, line EFGH shows an example of pairs (q−1, q1) such that q−1 + q1 = bmin for a given value of

bmin ∈ (αβ(β+γ)/(2β2−γ2), 2αβ/(2β−γ)), and triangle 0EH shows pairs (q−1, q1)≥ 0 such that q−1+q1 ≤
bmin. In this case with intermediate capacity bmin, there are feasible values of (q−1, q1) corresponding to
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Case 3, for example in pentagon 0LFGM in Figure 8, and there are feasible values of (q−1, q1) corresponding

to Case 2, for example in triangles EFL and GHM in Figure 8.

Consider any two pairs (q−1, q1) and (q′−1, q
′
1) in triangle EFL such that q−1 = q′−1. It follows from (34),

(36), (37), and (38) that the equilibrium prices, the equilibrium demand, the profit of each seller, and thus

the total profit of both sellers together are the same for (q−1, q1) and (q′−1, q
′
1). Therefore, for any point

(q−1, q1) in triangle EFL, there is a point (q−1, αβ(β+ γ)/(2β2 − γ2)−βγq−1/(2β
2 − γ2)) on the boundary

LF between triangle EFL and pentagon 0LFGM with the same total profit as at point (q−1, q1). Next, we

show that the total profit as a function of (q−1, q1) is continuous on the boundary between triangle EFL

and pentagon 0LFGM . Recall from (46) that the total profit at a point (q−1, q1) in pentagon 0LFGM is

equal to

α(β+ γ) (q−1 + q1)−β
(

q2−1 + q21
)

− 2γq−1q1

β2 − γ2

Specifically, at the boundary point (q−1, αβ(β+ γ)/(2β2 − γ2)− βγq−1/(2β
2 − γ2)) the total profit is equal

to

α(β+ γ)
(

q−1 +
αβ(β+γ)−βγq−1

2β2−γ2

)

−β

(

q2−1 +
[

αβ(β+γ)−βγq−1

2β2−γ2

]2
)

− 2γq−1
αβ(β+γ)−βγq−1

2β2−γ2

β2 − γ2

=















[α2β(β+ γ)2 (2β2 − γ2)−α2β3(β+ γ)2]

+
[

α(β+ γ) (2β2 − γ2)
2 −αβγ(β+ γ) (2β2 − γ2)+ 2αβ3γ(β+ γ)− 2αβγ(β+ γ) (2β2 − γ2)

]

q−1

+
[

−β (2β2 − γ2)
2 −β3γ2 +2βγ2 (2β2 − γ2)

]

q2−1















(2β2 − γ2)
2
(β2 − γ2)

=







α2β (2β2 − γ2 −β2) (β+ γ)2

+α (4β4 − 4β2γ2 + γ4 − 2β3γ+βγ3 +2β3γ− 4β3γ+2βγ3) (β+ γ)q−1

−β (4β4 − 4β2γ2 + γ4 +β2γ2 − 4β2γ2 +2γ4) q2−1







(2β2 − γ2)
2
(β2 − γ2)

=







α2β (β2 − γ2) (β+ γ)2

+α (4β4 − 4β3γ− 4β2γ2 +3βγ3 + γ4) (β+ γ)q−1

−β (4β4 − 7β2γ2 +3γ4) q2−1







(2β2 − γ2)
2
(β2 − γ2)

=







α2β (β− γ) (β+ γ)3

+α (4β3 − 4βγ2 − γ3) (β− γ) (β+ γ)q−1

−β (4β2 − 3γ2) (β− γ) (β+ γ)q2−1







(2β2 − γ2)
2
(β− γ) (β+ γ)

=
α2β(β+ γ)2 +α (4β3 − 4βγ2 − γ3) q−1 −β (4β2 − 3γ2) q2−1

(2β2 − γ2)
2

which is the same as the total profit given by (38) for point (q−1, αβ(β+γ)/(2β2−γ2)−βγq−1/(2β
2−γ2)) in

triangle EFL. Thus the total profit as a function of (q−1, q1) is continuous on the boundary between triangle

EFL and pentagon 0LFGM . The same observation applies to the total profit as a function of (q−1, q1)

in triangle GHM . Hence, in Case B with intermediate capacity, it is sufficient to optimize (q−1, q1) over

pentagon 0LFGM only, that is, it is sufficient to restrict attention to feasible values of (q−1, q1) corresponding

to Case 3. The rest of Case B follows in the same way as for Case A with small capacity.
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Case B1. γ/β ≤ 0 and [1+γ/β]/[2− (γ/β)2]≤ bmin/α≤ 2/(2−γ/β), that is, γ ≤ 0 and αβ(β+γ)/(2β2−
γ2)≤ bmin ≤ 2αβ/(2β− γ):

Consider the optimal value of (q−1, q1) in pentagon 0LFGM . Since bmin ≤ 2αβ/(2β − γ) ≤ α, it follows

that bmin =min{α, bmin,2αβ/(2β−γ)}, and thus the value of (q−1, q1) in pentagon 0LFGM that maximizes

the total profit is q∗−1 = q∗1 = bmin/2, and the maximum total profit is (2α−bmin)bmin/[2(β−γ)]. The resulting

equilibrium price of each seller is y∗
i = (2α− bmin)/[2(β− γ)], and the resulting equilibrium demand of each

seller is equal to q∗i = bmin/2.

Case B2. γ/β ≥ 0 and [1+γ/β]/[2− (γ/β)2]≤ bmin/α≤ 2/(2−γ/β), that is, γ ≥ 0 and αβ(β+γ)/(2β2−
γ2)≤ bmin ≤ 2αβ/(2β− γ):

If γ/β ≥ (
√
5−1)/2 (and thus α≤ αβ(β+γ)/(2β2−γ2)), then α=min{α, bmin,2αβ/(2β−γ)}, the value of

(q−1, q1) that maximizes the total profit is q∗−1 = q∗1 = α/2, and the maximum total profit is (2α−α)α/[2(β−
γ)] = α2/[2(β − γ)]. The resulting equilibrium price of each seller, given by (39), is y∗

i = α/[2(β − γ)], and

the resulting equilibrium demand of each seller, given by (40), is equal to q∗i = α/2. In this case the optimal

resource exchange x∗ is such that q∗−1+ q∗1 = α≤ bmin, that is, some capacity is not used. If γ/β < (
√
5−1)/2

(and thus α>αβ(β+γ)/(2β2−γ2)), then there are two possibilities. If α≤ bmin, then as before, q∗−1 = q∗1 =

α/2, the equilibrium price of each seller is y∗
i = α/[2(β− γ)], the equilibrium demand of each seller is equal

to q∗i = α/2, and the maximum total profit is α2/[2(β − γ)]. Otherwise, if bmin ≤ α, then q∗−1 = q∗1 = bmin/2,

the equilibrium price of each seller is y∗
i = (2α− bmin)/[2(β − γ)], the equilibrium demand of each seller is

equal to q∗i = bmin/2, and the maximum total profit is (2α− bmin)bmin/[2(β− γ)].

Case C (large capacity). bmin/α≥ 2/(2− γ/β), that is, bmin ≥ 2αβ/(2β− γ):

In Figure 8, line ABCD shows an example of pairs (q−1, q1) such that q−1 + q1 = bmin for a given value of

bmin ≥ 2αβ/(2β− γ), and triangle 0AD shows pairs (q−1, q1)≥ 0 such that q−1 + q1 ≤ bmin. In this case with

large capacity bmin, there are feasible values of (q−1, q1) in quadrilateral 0LIM in Figure 8 corresponding to

Case 3, there are feasible values of (q−1, q1) corresponding to Case 2, for example in quadrilaterals ABIL

and DCIM in Figure 8, and there are feasible values of (q−1, q1) corresponding to Case 1, for example in

triangle BCI in Figure 8.

For any point (q−1, q1) in ABIL, there is a point (q−1, αβ(β+ γ)/(2β2 − γ2)− βγq−1/(2β
2 − γ2)) on the

boundary IL between ABIL and 0LIM with the same total profit as at point (q−1, q1). It was shown under

Case B that the total profit as a function of (q−1, q1) is continuous on the boundary. The same observation

applies to the total profit as a function of (q−1, q1) in DCIM . Hence, in Case C with large capacity, it is

sufficient to optimize (q−1, q1) over quadrilateral 0LIM and triangle BCI only, that is, it is sufficient to

restrict attention to feasible values of (q−1, q1) corresponding to Case 3 and Case 1.

Case C1. γ/β ≤ 0 and bmin/α≥ 2/(2− γ/β), that is, γ ≤ 0 and bmin ≥ 2αβ/(2β− γ):

Since 2αβ/(2β − γ)≤ α and bmin ≥ 2αβ/(2β − γ), it follows that 2αβ/(2β − γ) =min{α, bmin,2αβ/(2β −
γ)}, and thus the value of (q−1, q1) that maximizes the total profit over 0LIM is given by q∗−1 = q∗1 =

αβ/(2β − γ) represented by point I, and the corresponding total profit is (2α− 2αβ/(2β − γ))2αβ/(2β −
γ)/[2(β − γ)] = 2α2β/(2β − γ)2. Also, as shown in Case 1, all values of (q−1, q1) in triangle BCI have the

same total profit of 2α2β/(2β−γ)2. Thus, any point (q−1, q1) in triangle BCI represents an optimal resource
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exchange for Case C1. For all such optimal resource exchanges, the resulting equilibrium price of each seller,

given by both (30) and (39), is y∗
i = α/(2β− γ), and the resulting equilibrium demand of each seller, given

by both (31) and (40), is equal to αβ/(2β− γ).

Case C2. γ/β ≥ 0 and bmin/α≥ 2/(2− γ/β), that is, γ ≥ 0 and bmin ≥ 2αβ/(2β− γ):

Since bmin ≥ 2αβ/(2β − γ) ≥ α, it follows that α = min{α, bmin,2αβ/(2β − γ)}, and thus the value of

(q−1, q1) that maximizes the total profit over 0LIM is q∗−1 = q∗1 = α/2, and the corresponding total profit is

(2α−α)α/[2(β− γ)] = α2/[2(β− γ)]. Also, all values of (q−1, q1) in triangle BCI have the same total profit

of 2α2β/(2β− γ)2. Note that

4β2 − 4βγ+ γ2 ≥ 4β2 − 4βγ

⇒ (2β− γ)2 ≥ 4β(β− γ)

⇒ α2

2(β− γ)
≥ 2α2β

(2β− γ)2

Thus the optimal point for Case C2 is q∗−1 = q∗1 = α/2, and the maximum total profit is α2/[2(β − γ)]. The

resulting equilibrium price of each seller, given by (39), is y∗
i = α/[2(β − γ)], and the resulting equilibrium

demand of each seller, given by (40), is equal to q∗i = α/2.

Inspection of the results above for the settings with no alliance, perfect coordination, and a resource

exchange alliance reveal that the results can be summarized by 5 cases, as in Table 1.

Consumer surplus. To calculate the consumer surplus associated with demand model (10), it is instruc-

tive to start with a utility model that leads to demand model (10). Consider a representative consumer

who consumes z−1 units of the product sold by seller −1 and z1 units of the product sold by seller 1. Sup-

pose that the resulting utility is given by U(z−1, z1) := a−1z−1 + a1z1 − b−1z
2
−1/2 − b1z

2
1/2 − cz−1z1 with

b−1, b1, b−1b1− c2 > 0. Given a price pi for the product sold by each seller i, the consumer chooses quantities

(z−1, z1) to maximize the consumer surplus U(z−1, z1)− p−1z−1 − p1z1. It follows that the chosen quantities

satisfy

zi =
aib−i − a−ic

b−1b1 − c2
− b−i

b−1b1 − c2
pi +

c

b−1b1 − c2
p−i

This utility model leads to the demand model (10) if α = (aib−i − a−ic)/(b−1b1 − c2), β = bi/(b−1b1 − c2),

and γ = c/(b−1b1− c2) for i=±1, that is, if ai = α/(β−γ), bi = β/(β2−γ2), and c= γ/(β2−γ2) for i=±1.

In regions 1 and 2 in Table 1, the resulting consumer surplus is given by

U(bmin/2, bmin/2)−
2α− bmin

2(β− γ)

bmin

2
− 2α− bmin

2(β− γ)

bmin

2
=

b2min

4(β− γ)

In regions 3 and 4, the resulting consumer surplus is given by

U(αβ/(2β− γ), αβ/(2β− γ))− α

2β− γ

αβ

2β− γ
− α

2β− γ

αβ

2β− γ
=

α2β2

(β− γ)(2β− γ)2

In region 5, the resulting consumer surplus is given by

U(α/2, α/2)− α

2(β− γ)

α

2
− α

2(β− γ)

α

2
=

α2

4(β− γ)

Thus, in region 1 all three settings have the same consumer surplus. In region 2, the consumer surplus

under perfect coordination and under the alliance are the same, and as shown in Section 3.2, both are larger
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than the consumer surplus under no alliance. To compare the consumer surplus under the alliance and under

no alliance in regions 3 and 4, note that

α2

9(β− γ)
≤ α2β2

(β− γ)(2β− γ)2

⇔ −4βγ+ γ2 ≤ 5β2

which holds since γ ∈ (−β,β), and thus in regions 3 and 4 the consumer surplus under the alliance is greater

than the consumer surplus under no alliance. To compare the consumer surplus under the alliance and under

perfect coordination in region 3, note that

b2min

4(β− γ)
≥ α2β2

(β− γ)(2β− γ)2

⇔ bmin ≥ 2αβ

2β− γ

and thus in region 3 the consumer surplus under perfect coordination is greater than the consumer surplus

under the alliance. To compare the consumer surplus under the alliance and under perfect coordination in

region 4, note that

α2

4(β− γ)
≥ α2β2

(β− γ)(2β− γ)2

⇔ (2β− γ)2 ≥ 4β2

which holds since γ ≤ 0 in region 4, and thus in region 4 the consumer surplus under perfect coordination

is greater than the consumer surplus under the alliance. Finally, in region 5 the consumer surplus under

perfect coordination and under the alliance are the same, and both are larger than the consumer surplus

under no alliance by a factor of 9/4. Note that, similar to total profit, the consumer surplus under perfect

coordination and under the alliance are the same except when capacity is large (bmin ≥ 2αβ/(2β − γ)) and

the sellers’ products are complements (γ ≤ 0).

Appendix A.4: Perfect Coordination with Product Differentiation

The model of perfect coordination introduced in Section 3.2 (with details given in Section 7) was based

on a model of demand d for the two-resource product given by d = max{0, α̃ − β̃(ỹ−1 + ỹ1)}, and the

model of an alliance introduced in Section 3.3 (with details given in Section 7) was based on a model of

demand di(yi, y−i) for the two-resource product of seller i given by di(yi, y−i) = max{0, α − βyi + γy−i},
where α̃= 2α+2(β− γ)(c−1 + c1) and β̃ = 2(β− γ). Thus, the model of perfect coordination in Section 3.2

does not make provision for different brands of the two-resource product, but the model of an alliance in

Section 3.3 makes provision for different brands of the two-resource product. In this section, we consider a

model of perfect coordination that makes provision for different brands of the two-resource product.

The demand di(yi, y−i) for the brand i product sold is given as follows:

di(yi, y−i) = α−βyi + γy−i

where as before yi denotes the excess of the price of the brand i product over the marginal cost c−1 + c1,

and we consider only values of (y−1, y1) such that α−βyi + γy−i ≥ 0 for i=±1.
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First consider the case in which the capacity is not constraining (it is determined later what amount of

capacity is sufficient for this condition to hold). In this case, the total profit is given by

g(y−1, y1) := y−1d−1(y−1, y1)+ y1d1(y1, y−1) = α(y−1 + y1)−β(y2−1 + y21)+ 2γy−1y1

Note that

∇g(y−1, y1) =

[

α− 2βy−1 +2γy1
α− 2βy1 +2γy−1

]

∇2g(y−1, y1) =

[

−2β 2γ
2γ −2β

]

and thus ∇2g(y−1, y1) is negative definite (β > 0, β2 − γ2 > 0), and hence g is a concave quadratic function.

Therefore, the prices that maximize the total profit are given by

y∗
−1 = y∗

1 =
α

2(β− γ)
, (47)

and the corresponding total demand at the optimal prices is equal to α. Thus, if bmin ≥ α, then the total

profit of the two sellers under perfect coordination is given by α2

2(β−γ)
. Note that the optimal prices, demand,

profit, and consumer surplus are the same as for perfect coordination in Section 3.2 when bmin ≥ α.

Next consider the case in which bmin <α. First we consider price points (y−1, y1) such that d−1(y−1, y1)+

d1(y1, y−1) ≤ bmin, and then we consider price points (y−1, y1) such that d−1(y−1, y1) + d1(y1, y−1) ≥ bmin.

It follows from the results above for g that the point (y̌−1, y̌1) that maximizes g subject to the constraint

d−1(y−1, y1) + d1(y1, y−1)≤ bmin satisfies d−1(y̌−1, y̌1) + d1(y̌1, y̌−1) = bmin, that is, 2α− (β − γ)(y̌−1 + y̌1) =

bmin. Let

g1(y1) := g ([2α− bmin]/[β− γ]− y1, y1)

= α
2α− bmin

β− γ
−β

(2α− bmin)
2

(β− γ)
2 +2(β+ γ)

(

2α− bmin

β− γ
− y1

)

y1

Note that g1 is a concave quadratic function with maximum at y̌1 = (2α− bmin)/[2(β− γ)] (and thus y̌−1 =

y̌1 = (2α− bmin)/[2(β− γ)]).

Next consider price points (y−1, y1) such that d−1(y−1, y1)+d1(y1, y−1)≥ bmin, that is, 2α− (β−γ)(y−1+

y1) ≥ bmin. The model should specify how capacity bmin is to be allocated between the two brands if

d−1(y−1, y1) + d1(y1, y−1)> bmin. There are various ways to allocate constrained capacity. Here we present

one such way, the equal rationing rule, in detail, and then we point out other ways that lead to the same

results. Under the equal rationing rule, if d−1(y−1, y1) + d1(y1, y−1)> bmin, then the same fraction λ of the

demands di(yi, y−i) for the different brands is satisfied, where

λ =
bmin

d−1(y−1, y1)+ d1(y1, y−1)
=

bmin

2α− (β− γ)(y−1 + y1)

Then, the total profit is given by

g2(y−1, y1) = λy−1(α−βy−1 + γy1)+λy1(α−βy1 + γy−1)

= bmin

α(y−1 + y1)−β(y−1 + y1)
2 +2(β+ γ)y−1y1

2α− (β− γ)(y−1 + y1)
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Let y := y−1 + y1, and let

g3(y, y1) := g2(y− y1, y1)

= bmin

αy−βy2 +2(β+ γ)yy1 − 2(β+ γ)y21
2α− (β− γ)y

Recall that, in this case, 2α− (β− γ)(y−1+ y1)≥ bmin, and thus y≤ (2α− bmin)/(β− γ). First, consider any

fixed value of y ∈ [0, (2α− bmin)/(β − γ)], and maximize g3(y, ·) with respect to y1. Note that g3(y, ·) is a

concave quadratic function with maximum at ŷ1 = y/2 (and thus ŷ−1 = ŷ1 = y/2). Next, let

g4(y) := g2(y/2, y/2)

=
bmin

2

2αy+ γy2 −βy2

2α− (β− γ)y

=
bmin

2
y

Note that the maximum of g4 over y ∈ [0, (2α− bmin)/(β − γ)] is attained at y = (2α− bmin)/(β − γ), and

thus ŷ−1 = ŷ1 = (2α− bmin)/[2(β− γ)]. Therefore, if bmin <α, then the optimal prices are

y∗
−1 = y∗

1 = y̌−1 = y̌1 = ŷ−1 = ŷ1 =
2α− bmin

2(β− γ)
(48)

with corresponding total demand equal to bmin. Thus, the total profit under perfect coordination is equal to

(2α− bmin)bmin/[2(β − γ)]. Note that the optimal prices, demand, profit and consumer surplus are also the

same as for perfect coordination in Section 3.2 when bmin ≤ α.

Other rationing rules also lead to the same results. For example, suppose that the demand for brand −1

is satisfied first and then the remaining capacity, if any, is used for brand 1. In this case, the total profit is

given by

g5(y−1, y1) = y−1min{bmin, α−βy−1 + γy1}+ y1min{max{0, bmin − (α−βy−1 + γy1)}, α−βy1 + γy−1}

For this rationing rule the optimal prices are same as in (48).

Appendix B: Proof of Theorem 1

In the problem (18), the objective value is bounded below by zero. It is known that a quadratic program

with a bounded objective value has an optimal solution. To establish uniqueness, consider the problem

min
(x,y)∈X

{

f(x, y) := xTQx+ aTx+ bTy
}

(49)

where X ⊂R
n1 ×R

n2 is a convex set and Q is an n1 × n1 positive definite matrix. Let (x∗
1, y

∗
1) and (x∗

2, y
∗
2)

be two optimal solutions of (49). Consider the function φ(t) := f(tx∗
1 + (1− t)x∗

2, ty
∗
1 + (1− t)y∗

2). Note that

φ is a quadratic function, φ(t) = αt2 + βt+ γ, where α = (x∗
1 − x∗

2)
TQ(x∗

1 − x∗
2). Note that α ≥ 0 since Q

is positive definite, and thus φ is convex. Convexity of X and optimality of (x∗
1, y

∗
1) and (x∗

2, y
∗
2) implies

that φ(t) ≥ φ(0) = φ(1) for all t ∈ [0,1]. Moreover, convexity of φ implies that φ(t) ≤ φ(0) = φ(1) for all

t∈ [0,1]. Hence φ(t) = φ(0) = φ(1) for all t∈ [0,1], and thus α= 0. Since Q is positive definite it follows that

x∗
1 = x∗

2. Finally, if the optimal objective value of problem (18), and hence of problem (17), is zero, then

(y∗
−1, y

∗
1, λ

∗
−1, λ

∗
1) satisfies the necessary and sufficient optimality conditions (16), and thus (y∗

−1, y
∗
1) is the

Nash equilibrium.
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Appendix C: Details of Demand Transformation for No Alliance Model

The parameters E,B,C in demand model (11) and the parameters Ẽ, B̃, C̃ in demand model (20) should be

related in a particular way to facilitate a fair comparison of the prices, demands, total profit, and consumer

surplus between the settings with and without an alliance. In this section we derive the relation.

The relation between the demand models with and without an alliance is based on the assumption that

the overall demand level for each product is the same with and without an alliance. Recall that Li denotes

the set of products which can be offered by seller i with and without an alliance, for i=±1, and L0 denotes

the set of products which could be offered only under an alliance. In addition, let L0,i ⊂L0 denote the set of

products in L0 that can be offered by seller i under an alliance, and let Li,−i ⊂Li denote the set of products

in Li that can be offered by seller −i under an alliance, but not without an alliance. Thus, for the setting

with an alliance the number of demand equations (and prices) for each seller i is mi = |Li|+ |L0,i|+ |L−i,i|,
and for the setting without an alliance the number of demand equations (and prices) for each seller i is only

|Li|.
The following example is used to explain the derivation of the relation between the demand models.

Seller −1 produces resource A, and seller 1 produces resources B and C. With an alliance, the following

products are offered by each seller: Product A using 1 unit of resource A each, product B using 1 unit of

resource B each, product C using 1 unit of resource C each, product BC using 1 unit of resource B and

1 unit of resource C each, and product A2BC using 2 units of resource A, 1 unit of resource B, and 1 unit

of resource C each. Without an alliance, product A is offered by seller −1 only and seller −1 captures all

the demand for product A, and products B, C, and BC are offered by seller 1 only and seller 1 captures all

the demand for products B, C, and BC. Product A2BC is not offered by either seller, but there still is the

same demand for product A2BC; buyers buy each unit of product A2BC by buying 2 units of product A

from seller −1, and 1 unit of product BC from seller 1. As shown later, the demands for products A and BC

derived from the demand for product A2BC is added to the respective demands for products A and BC by

themselves. Note that this derivation assumes that buyers buy each unit of product A2BC by buying 1 unit

of product BC from seller 1 instead of buying 1 unit of product B and 1 unit of product C separately from

the same seller. This assumption may be questionable if the price of buying products B and C separately

is less than the price of product BC. In the numerical work, we verified that the prices of multiple resource

products offered by a seller were less than the sum of the prices of any products that could be bought

separately to make up the multiple resource product. Thus, in this example, L−1 = {A}, L1 = {B,C,BC},
L0,−1 = {A2BC}, L0,1 = {A2BC}, L−1,1 = {A}, and L1,−1 = {B,C,BC}. With an alliance, the demand for

each product is given by (11):

di,A = −Ei,A,Ayi,A −Ei,A,Byi,B −Ei,A,Cyi,C −Ei,A,BCyi,BC −Ei,A,A2BCyi,A2BC

+B−i,A,Ay−i,A +B−i,A,By−i,B +B−i,A,Cy−i,C +B−i,A,BCy−i,BC +B−i,A,A2BCy−i,A2BC +Ci,A

di,B = −Ei,B,Ayi,A −Ei,B,Byi,B −Ei,B,Cyi,C −Ei,B,BCyi,BC −Ei,B,A2BCyi,A2BC

+B−i,B,Ay−i,A +B−i,B,By−i,B +B−i,B,Cy−i,C +B−i,B,BCy−i,BC +B−i,B,A2BCy−i,A2BC +Ci,B

di,C = −Ei,C,Ayi,A −Ei,C,Byi,B −Ei,C,Cyi,C −Ei,C,BCyi,BC −Ei,C,A2BCyi,A2BC
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+B−i,C,Ay−i,A +B−i,C,By−i,B +B−i,C,Cy−i,C +B−i,C,BCy−i,BC +B−i,C,A2BCy−i,A2BC +Ci,C

di,BC = −Ei,BC,Ayi,A −Ei,BC,Byi,B −Ei,BC,Cyi,C −Ei,BC,BCyi,BC −Ei,BC,A2BCyi,A2BC

+B−i,BC,Ay−i,A +B−i,BC,By−i,B +B−i,BC,Cy−i,C +B−i,BC,BCy−i,BC

+B−i,BC,A2BCy−i,A2BC +Ci,BC

di,A2BC = −Ei,A2BC,Ayi,A −Ei,A2BC,Byi,B −Ei,A2BC,Cyi,C −Ei,A2BC,BCyi,BC −Ei,A2BC,A2BCyi,A2BC

+B−i,A2BC,Ay−i,A +B−i,A2BC,By−i,B +B−i,A2BC,Cy−i,C +B−i,A2BC,BCy−i,BC

+B−i,A2BC,A2BCy−i,A2BC +Ci,A2BC

To use these observations and the demand functions given by (11) for the alliance setting to derive

the demand functions for the products with no alliance, first note that the demands in (11) depend on

|L0,−1|+ |L0,1|+ |L−1|+ |L1|+ |L−1,1|+ |L1,−1| prices yi,ℓ, but the demands in (20) depend on only |L−1|+ |L1|
prices. Thus, to derive the demands of the products with no alliance (as a function of the |L−1|+ |L1| prices ỹ
with no alliance), it remains to determine appropriate values to substitute into (11) for the |L0,−1|+ |L0,1|+
|L−1|+ |L1|+ |L−1,1|+ |L1,−1| prices y given the prices ỹ. First, consider the easy case: if a product ℓ is offered

by the same seller i in both the setting with an alliance and the setting without an alliance, that is, ℓ ∈Li,

then simply substitute price ỹi,ℓ for yi,ℓ in the demand model (11). Thus, in the example above, ỹ−1,A, ỹ1,B,

ỹ1,C , and ỹ1,BC are substituted for y−1,A, y1,B, y1,C , and y1,BC respectively. Next, if a product ℓ offered by a

seller i in the alliance setting is not offered by any seller in the no alliance setting, that is, ℓ∈L0,i, but it can

be assembled in the no alliance setting by buying a−1 units of product ℓ−1 from seller −1 and a1 units of

product ℓ1 from seller 1, then substitute price a−1ỹ−1,ℓ−1
+ a1ỹ1,ℓ1 for yi,ℓ in the demand model (11). Thus,

in the example above, 2ỹ−1,A + ỹ1,BC is substituted for y−1,A2BC and y1,A2BC . Next, if a product ℓ offered

by a seller i in the alliance setting is not offered by seller i in the no alliance setting, but it is offered by

seller −i in the no alliance setting, that is, ℓ∈L−i,i), then we choose the price yi,ℓ in the demand model (11)

so that together with the other prices yi′,ℓ′ , i
′ =±1, ℓ′ ∈ Li′ ∪L0,i′ , already determined as described above,

will equate di,ℓ to zero. Note that if there are n such products, then n linear equations are obtained by

equating the n linear expressions for di,ℓ to zero, and under reasonable conditions these equations can be

solved for the n desired values of yi,ℓ. Thus, for the example above, the system of equations

−E1,A,Ay1,A −E1,A,B ỹ1,B −E1,A,C ỹ1,C −E1,A,BC ỹ1,BC −E1,A,A2BC(2ỹ−1,A + ỹ1,BC)

+B−1,A,Aỹ−1,A +B−1,A,By−1,B +B−1,A,Cy−1,C +B−1,A,BCy−1,BC +B−1,A,A2BC(2ỹ−1,A + ỹ1,BC)+C1,A

= 0

−E−1,B,Aỹ−1,A −E−1,B,By−1,B −E−1,B,Cy−1,C −E−1,B,BCy−1,BC −E−1,B,A2BC(2ỹ−1,A + ỹ1,BC)

+B1,B,Ay1,A +B1,B,B ỹ1,B +B1,B,C ỹ1,C +B1,B,BC ỹ1,BC +B1,B,A2BC(2ỹ−1,A + ỹ1,BC)+C−1,B

= 0

−E−1,C,Aỹ−1,A −E−1,C,By−1,B −E−1,C,Cy−1,C −E−1,C,BCy−1,BC −E−1,C,A2BC(2ỹ−1,A + ỹ1,BC)

+B1,C,Ay1,A +B1,C,B ỹ1,B +B1,C,C ỹ1,C +B1,C,BC ỹ1,BC +B1,C,A2BC(2ỹ−1,A + ỹ1,BC)+C−1,C

= 0
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−E−1,BC,Aỹ−1,A −E−1,BC,By−1,B −E−1,BC,Cy−1,C −E−1,BC,BCy−1,BC −E−1,BC,A2BC(2ỹ−1,A + ỹ1,BC)

+B1,BC,Ay1,A +B1,BC,B ỹ1,B +B1,BC,C ỹ1,C +B1,BC,BC ỹ1,BC +B1,BC,A2BC(2ỹ−1,A + ỹ1,BC)+C−1,BC

= 0

is solved for y1,A, y−1,B, y−1,C , and y−1,BC as linear functions of ỹ−1,A, ỹ1,B, ỹ1,C , and ỹ1,BC .

To state the general relation between parameters E,B,C in demand model (11) and the parameters

Ẽ, B̃, C̃ in demand model (20) in general, we first develop the notation needed for a concise representation.

Let the rows and columns of matrix Ei be grouped so that the first group of rows and columns correspond to

products in Li, the second group of rows and columns correspond to products in L0,i, and the third group of

rows and columns correspond to products in L−i,i. Hence Ei can be partitioned into submatrices as follows:

Li L0,i L−i,i

Ei =





Ei,i Ei,0,i Ei,−i,i

E0,i,i E0,i,0,i E0,i,−i,i

E−i,i,i E−i,i,0,i E−i,i,−i,i





Li

L0,i

L−i,i

This grouping of the rows and columns of Ei implies that the rows and columns of di, yi, Bi, and Ci are

similarly grouped:

L−i L0,−i Li,−i

B−i =





Bi,−i Bi,0,−i Bi,i,−i

B0,i,−i B0,i,0,−i B0,i,i,−i

B−i,i,−i B−i,i,0,−i B−i,i,i,−i





Li

L0,i

L−i,i

, yi =





yi,i
yi,0,i
yi,−i,i



 , Ci =





Ci,i

Ci,0,i

Ci,−i,i



 , di =





di,i

di,0,i

di,−i,i





Note that given the prices ỹ in the no alliance setting, the prices for the same products in the alliance setting

are yi,i = ỹi ∈R
|Li|. Let Ri,i′,ℓ,ℓ′ denote the number of units of product ℓ′ ∈Li′ used to assemble one unit of

product ℓ ∈ L0,i. Then, given the prices ỹ in the no alliance setting, the price paid to assemble one unit of

product ℓ∈L0,i in the no alliance setting is

∑

i′=±1

∑

ℓ′∈L
i′

Ri,i′,ℓ,ℓ′ ỹi′,ℓ′

Let Ri,i′ ∈ R
|L0,i|×|L

i′
| denote the matrix with entry Ri,i′,ℓ,ℓ′ in the row corresponding to ℓ ∈ L0,i and the

column corresponding to ℓ′ ∈ Li′ . Then, given the prices ỹ in the no alliance setting, the prices paid to

assemble each unit of product in L0,i is given by

yi,0,i =
∑

i′=±1

Ri,i′ ỹi′

Next, consider the demand for products in L−i,i.

di,−i,i = −E−i,i,iyi,i −E−i,i,0,iyi,0,i −E−i,i,−i,iyi,−i,i +B−i,i,−iy−i,−i +B−i,i,0,−iy−i,0,−i +B−i,i,i,−iy−i,i,−i +Ci,−i,i

= −E−i,i,iỹi −E−i,i,0,i

∑

i′=±1

Ri,i′ ỹi′ −E−i,i,−i,iyi,−i,i

+B−i,i,−iỹ−i +B−i,i,0,−i

∑

i′=±1

R−i,i′ ỹi′ +B−i,i,i,−iy−i,i,−i +Ci,−i,i
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Then, given the prices ỹ in the no alliance setting, the value of (y−1,1,−1, y1,−1,1) is chosen to set

(d−1,1,−1, d1,−1,1) = 0. The system of equations (d−1,1,−1, d1,−1,1) = 0 can be written as −Dy−+F ỹ+C− = 0,

where

y− :=

[

y−1,1,−1

y1,−1,1

]

, ỹ :=

[

ỹ−1

ỹ1

]

, C− :=

[

C−1,1,−1

C1,−1,1

]

, D :=

[

E1,−1,1,−1 −B1,−1,−1,1

−B−1,1,1,−1 E−1,1,−1,1

]

F :=

[

−E1,−1,−1 −E1,−1,0,−1R−1,−1 +B1,−1,0,1R1,−1 −E1,−1,0,−1R−1,1 +B1,−1,1 +B1,−1,0,1R1,1

−E−1,1,0,1R1,−1 +B−1,1,−1 +B−1,1,0,−1R−1,−1 −E−1,1,1 −E−1,1,0,1R1,1 +B−1,1,0,−1R−1,1

]

Under reasonable conditions D is nonsingular (more specifically, positive definite), and then the unique

solution is y− =D−1F ỹ+D−1C−. Let

L1,−1 L−1,1 L−1 L1

D−1 =

[

D−1
−1,−1 D−1

−1,1

D−1
1,−1 D−1

1,1

]

L1,−1

L−1,1
, F =

[

F−1,−1 F−1,1

F1,−1 F1,1

]

L1,−1

L−1,1

Then

yi,−i,i = (D−1
i,−iF−i,i +D−1

i,i Fi,i)ỹi +(D−1
i,−iF−i,−i +D−1

i,i Fi,−i)ỹ−i +(D−1
i,−iC−i,i,−i +D−1

i,i Ci,−i,i)

=
∑

i′=±1

(

∑

i′′=±1

D−1
i,i′′Fi′′,i′ ỹi′ +D−1

i,i′Ci′,−i′,i′

)

Next, the demand model (11) is used to derive the demand for each product ℓ∈Li that is offered in the no

alliance setting:

di,ℓ =



−
∑

ℓ′∈Li

Ei,ℓ,ℓ′yi,i,ℓ′ −
∑

ℓ′∈L0,i

Ei,ℓ,ℓ′yi,0,i,ℓ′ −
∑

ℓ′∈L−i,i

Ei,ℓ,ℓ′yi,−i,i,ℓ′

+
∑

ℓ′∈L−i

B−i,ℓ,ℓ′y−i,−i,ℓ′ +
∑

ℓ′∈L0,−i

B−i,ℓ,ℓ′y−i,0,−i,ℓ′ +
∑

ℓ′∈Li,−i

B−i,ℓ,ℓ′y−i,i,−i,ℓ′ +Ci,ℓ





+
∑

i′=±1





∑

ℓ′∈L
0,i′

Ri′,i,ℓ′,ℓ



−
∑

ℓ′′∈L
i′

Ei′,ℓ′,ℓ′′yi′,i′,ℓ′′ −
∑

ℓ′′∈L
0,i′

Ei′,ℓ′,ℓ′′yi′,0,i′,ℓ′′ −
∑

ℓ′′∈L
−i′,i′

Ei′,ℓ′,ℓ′′yi′,−i′,i′,ℓ′′

+
∑

ℓ′′∈L
−i′

B−i′,ℓ′,ℓ′′y−i′,−i′,ℓ′′ +
∑

ℓ′′∈L
0,−i′

B−i′,ℓ′,ℓ′′y−i′,0,−i′,ℓ′′ +
∑

ℓ′′∈L
i′,−i′

B−i′,ℓ′,ℓ′′y−i′,i′,−i′,ℓ′′ +Ci′,ℓ′









The first term in brackets above corresponds to the demand for product ℓ∈Li by itself, and the second term

in brackets corresponds to the demand for product ℓ to assemble products ℓ′ ∈ L0,i′ , i
′ = ±1. In terms of

matrix notation, the demands for the products in Li that are offered in the no alliance setting is given by

di,i = [−Ei,iyi,i −Ei,0,iyi,0,i −Ei,−i,iyi,−i,i +Bi,−iy−i,−i +Bi,0,−iy−i,0,−i +Bi,i,−iy−i,i,−i +Ci,i]

+
∑

i′=±1

[

RT

i′,i (−E0,i′,i′yi′,i′ −E0,i′,0,i′yi′,0,i′ −E0,i′,−i′,i′yi′,−i′,i′

+B0,i′,−i′y−i′,−i′ +B0,i′,0,−i′y−i′,0,−i′ +B0,i′,i′,−i′y−i′,i′,−i′ +Ci′,0,i′)]

Next, replace yi,i, yi,0,i, and yi,−i,i with the expressions in terms of ỹ derived above. Then the demands d̃i

for the products in Li in the no alliance setting as a function of the prices ỹ in the no alliance setting are

obtained, as follows:

d̃i =

[

−Ei,iỹi −Ei,0,i

∑

i′=±1

Ri,i′ ỹi′ −Ei,−i,i

∑

i′=±1

(

∑

i′′=±1

D−1
i,i′′Fi′′,i′ ỹi′ +D−1

i,i′Ci′,−i′,i′

)
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+Bi,−iỹ−i +Bi,0,−i

∑

i′=±1

R−i,i′ ỹi′ +Bi,i,−i

∑

i′=±1

(

∑

i′′=±1

D−1
−i,i′′Fi′′,i′ ỹi′ +D−1

−i,i′Ci′,−i′,i′

)

+Ci,i

]

+
∑

i′=±1

[

RT

i′,i

(

−E0,i′,i′ ỹi′ −E0,i′,0,i′

∑

i′′=±1

Ri′,i′′ ỹi′′ −E0,i′,−i′,i′

∑

i′′=±1

(

∑

i′′′=±1

D−1
i′,i′′′Fi′′′,i′′ ỹi′′ +D−1

i′,i′′Ci′′,−i′′,i′′

)

+B0,i′,−i′ ỹ−i′ +B0,i′,0,−i′

∑

i′′=±1

R−i′,i′′ ỹi′′

+B0,i′,i′,−i′

∑

i′′=±1

(

∑

i′′′=±1

D−1
−i′,i′′′Fi′′′,i′′ ỹi′′ +D−1

−i′,i′′Ci′′,−i′′,i′′

)

+Ci′,0,i′

)]

Note that the demands d̃i above are consistent with the demand model (20), for the following parameter

values:

Ẽi = Ei,i +Ei,0,iRi,i +Ei,−i,i

∑

i′=±1

D−1
i,i′Fi′,i −Bi,0,−iR−i,i −Bi,i,−i

∑

i′=±1

D−1
−i,i′Fi′,i

+RT

i,iE0,i,i −RT

−i,iB0,−i,i

+
∑

i′=±1

RT

i′,i

(

E0,i′,0,i′Ri′,i +E0,i′,−i′,i′

∑

i′′=±1

D−1
i′,i′′Fi′′,i −B0,i′,0,−i′R−i′,i −B0,i′,i′,−i′

∑

i′′=±1

D−1
−i′,i′′Fi′′,i

)

B̃−i = −Ei,0,iRi,−i −Ei,−i,i

∑

i′=±1

D−1
i,i′Fi′,−i +Bi,−i +Bi,0,−iR−i,−i +Bi,i,−i

∑

i′=±1

D−1
−i,i′Fi′,−i

−RT

−i,iE0,−i,−i +RT

i,iB0,i,−i

+
∑

i′=±1

RT

i′,i

(

−E0,i′,0,i′Ri′,−i −E0,i′,−i′,i′

∑

i′′=±1

D−1
i′,i′′Fi′′,−i +B0,i′,0,−i′R−i′,−i +B0,i′,i′,−i′

∑

i′′=±1

D−1
−i′,i′′Fi′′,−i

)

C̃i = −Ei,−i,i

∑

i′=±1

D−1
i,i′Ci′,−i′,i′ +Bi,i,−i

∑

i′=±1

D−1
−i,i′Ci′,−i′,i′ +Ci,i

+
∑

i′=±1

RT

i′,i

(

−E0,i′,−i′,i′

∑

i′′=±1

D−1
i′,i′′Ci′′,−i′′,i′′ +B0,i′,i′,−i′

∑

i′′=±1

D−1
−i′,i′′Ci′′,−i′′,i′′ +Ci′,0,i′

)

Appendix D: Proof of Proposition 1

Consider any (a,A)∈A. Let ci = ei > 0, di =−eiai.

Consider the allocation problem (a′,A′) ∈ A given by a′
i := ciai + di = 0 and A′ :=

{(c−1b−1 + d−1, c1b1 + d1)∈R
2 : (b−1, b1)∈A}=

{

(b′−1, b
′
1) : 0 = a′

i ≤ b′i, i=±1, b′−1 + b′1 ≤ g∗ − e−1a−1 − e1a1
}

.

Note that (a′,A′) is symmetric. It follows from the axioms of Pareto optimality and symmetry that

f−1(a
′,A′) = f1(a

′,A′) = (g∗ − e−1a−1 − e1a1)/2. Next it follows from the axiom of invariance under

positively homogeneous affine transformations that cifi(a,A) + di = fi(a
′,A′), that is, ei [fi(a,A)− ai] =

(g∗ − e−1a−1 − e1a1)/2.
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