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This text presents a study of various models based on jump processes in the
context of foreign exchange (FX) rates modeling. Quality of FX rate log-
returns fit is assessed for models such as Merton and Kou jump-diffusions,
normal inverse Gaussian, variance gamma, and Meixner. The study is illus-
trated by simulation results that are provided for each of the models consid-
ered. Jump models are contrasted to the well-known (continuous) Brownian
motion model.
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T. Bunčák Jump Processes in Exchange Rates Modeling

1 Introduction

In this text, we would like to provide an account of various jump models based on
Lévy processes in the context of foreign exchange (FX) rates modeling. There are some
publications considering jump models employed in FX modeling, among others [8, 15, 4,
18, 3, 17, 12]. What they basically conclude is that jumps are important part of FX rate
models and that models based on random walks (e.g. Lévy processes) might be useful
since it is rather difficult to model a systematic dependence on history of the process.
Usually they come from a standard form of a model and modify it (e.g. include volatility
clustering, heterogeneous jumps, etc.) to make the model more suitable for a specific FX
rate modeling.

We give a comparative study of the widely used financial jump models in their standard
setting. In the literature mentioned above, they work mostly with modifications of jump-
diffusion models. Though we present these as well, we give examples of infinite activity
jump processes too. It seems these are rarely used in FX rate modeling, although they
provide good fit of FX rate returns, as we will see below. We compare these models
regarding quality of FX rate (concretely we use EURUSD rate data) returns fit and we
also present several results based on simulations.

The text is structured as follows. In Passage 2.1 we present FX rate modeling based on
the standard Brownian motion model – just to show inferiority of a continuous model
with respect to the jump models. In Passage 2.2.1 we give results corresponding to the
Merton jump-diffusion model. Subsection 2.2.2 presents the Kou jump-diffusion model.
Furthermore, we focus on infinite activity models; namely the normal inverse Gaussian
(NIG) model (Passage 2.3.1), the variance gamma (VG) model (Passage 2.3.2), and
finally the Meixner model (Passage 2.3.3). Passage 3 ends the treatise with some remarks
and conclusions.

2 Comparison of Specific Lévy Processes in FX Modeling

We give examples of various Lévy processes that might be employed in foreign exchange
rates modeling. We start with a simple Brownian motion model, then proceed to jump-
diffusion models, and finally to models based on infinite activity Lévy processes. In all
these examples we consider modeling of a logarithm exchange rate process since this is
quite common in the financial literature. Logarithmic transformation makes the process
more viable for modeling purposes. Hence by

rt = log(St), t ∈ T = [0, T ], T > 0,

we denote logarithmic FX rate process – considering {St} as the original (non-transformed)
FX rate process. Basically, we will try to model returns of this process (henceforth called
log-returns) defined as ∆rti = rti−rti−∆t, where ti = i∆t, i = 1, . . . , T

∆t , and T ≥ ∆t > 0
is such that n := T

∆t is a natural number. Note that time step in which log-returns are
sampled (from which parameters are estimated) is considered to be a unit time step, all
the other ∆t are supposed to be its multiples. Therefore there does not have to be ∆t
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T. Bunčák Jump Processes in Exchange Rates Modeling

in the estimation formulas below, although we write it in all the other formulas (where
it is relevant).

2.1 Brownian Motion Model

In order to be able to see contrast with models involving jumps we provide modeling
example of one of the simplest Lévy processes which is continuous, namely the Brownian
motion.

Specification

In this case we have
rt = µt+ σWt, t ∈ T,

where by {Wt, t ∈ T} we denote standard Brownian motion, µ ∈ R is a parameter called
drift, σ > 0 is called volatility. By the Itô formula there is

dSt = dert = St

(

(µ+
1

2
σ2)dt+ σdWt

)

, t ∈ T,

thus the original FX rate follows the so-called geometric Brownian motion. It is clear
that log-returns have the normal (Gauss) distribution N (µ∆t, σ2∆t) with density of the
form

f∆rt(x) = φ(x;µ∆t, σ2∆t) =
1√

2πσ2∆t
exp

(

−(x− µ∆t)2

2σ2∆t

)

, x ∈ R.

Estimation

Estimation of the parameters is quite simple in this setting – we employ the method of
moments (MM). Estimates are given by

µ̂ = M̂r, σ̂2 = V̂r,

where M̂r denotes the sample mean and V̂r the sample variance of the sample of log-
returns {∆rti , i = 1, . . . , n}.1

Statistics

In all of our modeling attempts we compare some sample statistics with their model
counterparts. For this reason we state formulas for the theoretical (model) mean Mr,
variance Vr, skewness Sr, and kurtosis Kr for each of the models introduced in this text;
in the Brownian setting simply

Mr = µ∆t, Vr = σ2∆t, Sr = 0, Kr = 3.

1It is known that for the normal distribution, MM and maximum-likelihood estimation (MLE) yield
technically the same estimates. Therefore, we do not needlessly employ MLE in this case.

3
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Returns Modeling

In this passage, we provide results illustrating modeling capabilities of the Gauss (Brow-
nian motion) model used for the FX rate log-returns2. We demonstrate the quality of fit
of log-returns distribution and some simple “predictions” based on simulations. In what
follows, analysis with the same structure can be found for any of the introduced models
to make results comparable.

Firstly, let us show a comparison of empirical and model (probability) densities, namely
Figure 1. In contrast with other (jump) models introduced within this text, we will
see that the Gauss distribution does not fit very well. This might be seen also from
Table 1, where we compare model and empirical values of some descriptive statistics for
all the models considered herein. Moreover, we make use of some standard criteria for
goodness-of-fit evaluation, namely the root-mean-square error (RMSE) and the Bayesian
information criterion (BIC) – which is sometimes also called the Schwarz criterion.
The former simply measures difference between the empirical and the model densities,
namely

RMSE =

√

√

√

√

k
∑

i=1

(

f∆rt(xi)− f̂∆rt(xi)
)2
,

where {xi, i = 1, . . . , k} is a given mesh of the returns density f∆rt support and f̂∆rt

denotes the empirical counterpart (EDF – empirical density function) of f∆rt . Clearly,
smaller values of RMSE suggest a better fit. BIC is defined as

BIC = 2L(θ)− log(n)|θ|,

where L(θ) denotes the log-likelihood function (see (3)), n is the number of (log-returns)
observations, and |θ| stands for the number of parameters. Contrarily to RMSE, larger
values of BIC should mean better fit quality. Overview of the values of criteria for dif-
ferent models might be found in Table 2. These values hint that Gauss distribution does
not provide such a good fit of FX rate log-returns as the presented jump models.

Model Mr Vr Sr Kr

Gauss -9.5991e-007 1.8518e-006 0 3
Merton JD -5.2788e-006 1.7524e-006 -0.02194 7.07
Kou JD -9.5971e-007 1.7589e-006 -0.078549 10.2913
NIG -9.6014e-007 1.8683e-006 -0.09745 12.7511
VG -2.6699e-006 1.6683e-006 0.042273 6.8322
Meixner -9.6475e-007 1.8256e-006 -0.07506 10.3032

Empirical M̂r V̂r Ŝr K̂r

-9.5991e-007 1.8518e-006 0.094547 13.6506

Table 1: Comparison of empirical and model statistics of log-returns – mean, variance,
skewness, kurtosis; fitted on EURUSD [1h returns 2005 – 2012]

2We work with EURUSD exchange rate data sampled hourly for the period 01/01/2005 – 27/10/2012.
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Figure 1: Comparison of empirical and model densities – Gauss model; EURUSD [1h
returns 2005 – 2012]

Model\Criterion RMSE BIC

Gauss 32.8041 504024.9539
Merton JD 6.4403 519362.9572
Kou JD 3.8792 519856.9482
NIG 2.3274 520121.4649
VG 7.4299 519486.5831
Meixner 1.6573 520129.278

Table 2: Goodness-of-fit criteria (RMSE and BIC) for different models; fitted on
EURUSD [1h returns 2005 – 2012]

Furthermore, we present a point prediction gained by the Gauss model simulation3 of
log-returns. For the distribution of the simulated FX rate, see Figure 2. Further on we will
see that these “predictions” are quite similar for all of the models in this text. Though
this is not surprising, considering the central limit theorem and the fact that during the
simulations, we make sums if independent identically distributed random variables with
similar means and variances.

Finally, let us present more results based on simulations. To get a rough image of model
trajectories, see Figure 3, where we display 5 simulated trajectories opposed to the

3Each simulation is conducted by sampling of 106 values/trajectories.
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Figure 2: Simulated point prediction, 24h period ahead – Gauss model; fitted on
EURUSD [1h returns 2005 – 2012]

real FX rate trajectory to whose returns model has been calibrated. Getting back to a
predictive kind of analysis, we try to fit model on a shorter period of time (in fact half of
the sample) and then simulate the FX rate process for 80 (trading hour) periods ahead
and compare this with the observed trajectory. In Figure 4, we show the real FX rate
trajectory together with the mean of simulated trajectories and standard deviation bands
around this mean. Here, the displayed RMSE is calculated from differences between
simulated and real FX rate values. Note that again, as in the point prediction case,
results of this “prediction” will be quite comparable throughout the different models
with almost no regard to the quality of fit.
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Figure 3: Real vs simulated trajectories – Gauss model; EURUSD
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Figure 4: Out-of-sample simulation vs real trajectory – Gauss model; EURUSD
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2.2 Jump-Diffusion Models

Jump-diffusion (JD) models form one of the subgroups of Lévy process based models.
Within this text, one may consider it as a direct generalization of Brownian motion
models since it is a superposition of a (drifted) Brownian motion process and a compound
Poisson process. In these type of models jumps are “rare” events with a prescribed
distribution governing their occurrence and magnitude. See [5, Subsection 4.1] for a
discussion of models based on Lévy processes.

We introduce two models of this type, namely the Merton JD model (see Passage 2.2.1)
and the Kou JD model (see Passage 2.2.2). They differ only in distribution of jumps as
we will see below.

2.2.1 Merton JD Model

Merton JD is a JD model with jump sizes that are normally distributed. This model was
introduced in [16].

Specification

Logarithmic FX rate process follows

(1) rt = µt+ σWt +

Nt
∑

i=1

Yi, t ∈ T,

where µ ∈ R is drift, σ > 0 volatility, {Nt, t ∈ T} is a Poisson process with (jump)
intensity λ > 0, and {Yi, i = 1, 2, . . .} are independent identically distributed (iid)
random variables with normal distribution N (ξ, τ2) – hence ξ ∈ R is the mean of jumps
parameter and τ2 > 0 is the variance of jumps parameter. Remind that by {Wt} we
denote standard Brownian motion. Note that {Wt}, {Nt} and {Yi} are all mutually
independent. By the Itô formula for jump-diffusion processes, see [19, Theorem 1.14] for
instance, we have

dSt = dert = St

(

(µ+ 1
2σ

2)dt+ σdWt

)

+

+ St−

∫

R

(ez − 1)N(dt, dz), t ∈ T,

where N(dt, dz) is the Poisson random measure associated with the Poisson process
{Nt}, see [5, Subsection 2.6] for instance. Lévy measure of this process is given by

ν(dz) = φ(z; ξ, τ2)dz =
1√
2πτ2

exp

(

−(z − ξ)2

2τ2

)

dz on R.

Density of the log-returns is given by

(2)























f∆rt(x) = e−λ∆t
∞
∑

k=0

{

(λ∆t)k

k!
exp

(

−(x− µ∆t− kξ)2

2(σ2∆t+ kτ2)

)

·

· (2π(σ2∆t+ kτ2))−
1

2

}

, x ∈ R.
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Estimation

To estimate Merton JD parameters we employ maximum-likelihood estimation (MLE)
technique. We want to estimate vector of parameters θ = (µ, σ, λ, ξ, τ) by maximization
of the log-likelihood function, namely

(3) max
θ∈Θ

L(θ) = max
θ∈Θ

n
∑

i=1

log(f∆rt(∆rti ;θ)),

where f∆rt(x;θ) is the density given by (2) – corresponding to specific vector of param-
eters θ ∈ Θ. By Θ we denote the parameter space defined with regards to conditions on
parameters introduced with the model above.4 As we can see in (2), expression for the
density involves infinite summation. However, this is not a big issue since the convergence
is sufficiently fast, so we can approximate the infinite sum by the sum of first kMAX = 100
elements for instance. The last thing is to find an appropriate initial estimate for the max-
imizing procedure. This is ensured by implementation of the expectation-maximization
algorithm described in [6].

Statistics

Statistics of the Merton JD model – namely mean Mr, variance Vr, skewness Sr, and
kurtosis Kr – are as follows

Mr = (µ+ λξ)∆t, Vr = (σ2 + λτ2 + λξ2)∆t,

Sr =
(3τ2ξ+ξ3)λ

(σ2+λτ2+λξ2)
3
2
√
∆t

, Kr =
(3τ4+6ξ2τ2+ξ4)λ
(σ2+λτ2+λξ2)2∆t

+ 3.

Returns Modeling

Following the structure of the corresponding passage for the previously introduced Brow-
nian motion (Gauss) model, we present analogous group of results. Quality of (log-returns
distribution) fit might be assessed from Figure 5.

We see that the fit is better than in the Gaussian case, but some of the other jump
models surpass even this fit – as we will find further on.

Onwards, let us illustrate model trajectories – see Figure 6. We also provide sketch of a
distribution of simulated “point prediction” of the FX rate value 24 hour period ahead,
see Figure 7. Finally, we show Figure 8 of the out-of-sample (80 hourly periods of simu-
lation, fitted on the half of the sample) simulated trajectories’ mean and corresponding
standard deviation bands. As we have said before, these will not differ much throughout
the different models considered herein.

4In each of the models we need to consider specific parameter space constraints, of course.
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Figure 5: Comparison of empirical and model densities – Merton JD model; EURUSD
[1h returns 2005 – 2012]

2.2.2 Kou JD Model

Here we have an example of another jump-diffusion model with a different distribution
of jumps sizes – a mixture of exponential distributions. The model was introduced in
[9].

Specification

Logarithmic FX rate follows the same type of the process as in (1). The only difference
is that jump sizes {Yi} have double exponential distribution – that is a mixture of two
exponential distributions, one for negative and one for positive jumps. So density of the
jump size is given as

fY (y) = pλ+e
−λ+y

1[y≥0] + (1− p)λ−e
−λ−|y|

1[y<0], y ∈ R,

where p ∈ [0, 1], λ+ > 0 is the reciprocal of positive jumps mean and λ− > 0 is the
reciprocal of absolute value of negative jumps mean. From this follows the Lévy measure,
namely

ν(dz) = fY (z)dz =
(

pλ+e
−λ+z

1[z≥0] + (1− p)λ−e
−λ−|z|

1[z<0]

)

dz on R.

Density of the log-returns is not available in a closed form, however, we may express it in
an approximate shape. This will be sufficient for our modeling purposes. For this reason
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Figure 6: Real vs simulated trajectories – Merton JD model; EURUSD
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Figure 7: Simulated point prediction, 24h period ahead – Merton JD model; fitted on
EURUSD [1h returns 2005 – 2012]
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Figure 8: Out-of-sample simulation vs real trajectory – Merton JD model; EURUSD

we neglect probability of more than one jumps in a single period log-return. Then by
the formulas for a mixture of normal and exponential distribution (see [9] for instance)
we get

(4)































f∆rt(x)
.
= λ∆t

{

pλ+e
σ2λ2+∆t

2
−(x−µ∆t)λ+ · Φ

(x−µ∆t−σ2λ+∆t

σ
√
∆t

)

+

+ qλ−e
σ2λ2

−
∆t

2
+(x−µ∆t)λ− · Φ

(

− x−µ∆t+σ2λ−∆t

σ
√
∆t

)

}

+

+ 1−λ∆t
σ
√
∆t

φ
(x−µ∆t

σ
√
∆t

)

, x ∈ R,

where q = 1 − p, Φ and φ are the cumulative distribution function and the probability
density function of the standard normal distribution, respectively.

Estimation

Estimation is performed by MLE as in the Merton JD model. Here we want to estimate
vector of parameters θ = (µ, σ, λ, p, λ+, λ−). Naturally, we plug (4) in (3) and run
the maximization procedure. To determine initial estimates for the MLE maximization
(3) we use “intuitive guesses”. More specifically, jumps are considered to be returns
with absolute value above some high quantile of the absolute log-returns. Initial p is
then estimated as the ratio of positive jumps count to the number of all the jumps
observed. Intensity of jumps is guessed from data and may be adjusted should the
maximization procedure has some problems with convergence. Parameters λ+ and λ−
are given as reciprocals of sample means of positive and (absolute value of) negative
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jumps, respectively. Finally, drift µ and volatility σ are initiated by sample mean and
sample standard deviation of non-jump observations of log-returns.

Statistics

Statistics of the Kou JD model – namely mean Mr, variance Vr, skewness Sr, and
kurtosis Kr – are as follows

Mr = (µ+ p λ
λ+

− (1− p) λ
λ−

)∆t, Vr = (σ2 + 2p λ
λ2
+

+ 2(1− p) λ
λ2
−

)∆t,

Sr =
6(p/λ3

+−(1−p)/λ3
−
)λ∆t

V
3
2
r

, Kr =
24(p/λ4

++(1−p)/λ4
−
)λ∆t

V2
r

+ 3.

Returns Modeling

Quality of the Kou JD model log-returns fit is displayed in Figure 9. We see that for
these data, it performs slightly better than the Merton JD model.
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Figure 9: Comparison of empirical and model densities – Kou JD model; EURUSD [1h
returns 2005 – 2012]

Again, we present results based on simulations. Namely an illustration of the model
trajectories in Figure 10, simulated point “prediction” of the FX rate in Figure 11, and
mean and standard deviation bands of simulated trajectories in Figure 12. Any comments
follow the line of those presented for the previously introduced models.

13
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Figure 10: Real vs simulated trajectories – Kou JD model; EURUSD
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Figure 11: Simulated point prediction, 24h period ahead – Kou JD model; fitted on
EURUSD [1h returns 2005 – 2012]
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Figure 12: Out-of-sample simulation vs real trajectory – Kou JD model; EURUSD

2.3 Infinite Activity Models

Infinite activity (Lévy) models is a subclass of models based on Lévy processes which
include infinite number of jumps in each (finite) interval. Hence it is not necessary
to introduce Brownian motion component in these models since even a small interval
behavior is well described by the infinite activity jump component. However, some of
these models may be expressed by the so-called Brownian subordination – i.e. as a time-
changed Brownian motion. This we will see in the examples of normal inverse Gaussian
(see Passage 2.3.1) and variance gamma (see Passage 2.3.2) models. Furthermore, we
demonstrate an application of another model used in finance, namely the Meixner model
(see Passage 2.3.3).

2.3.1 Normal Inverse Gaussian Model

Normal inverse Gaussian (NIG) model is a member of the class of generalized hyperbolic
models, i.e. models based on processes yielded by Brownian subordination with the
generalized inverse Gaussian subordinator. For more information about this class see
[5, Section 4.6] for instance. We will focus on the NIG model which was introduced to
finance in [2].
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Specification

Logarithmic FX rate follows the process

(5) rt = µt+ βZt +WZt , t ∈ T.

Parameters of the NIG model are µ ∈ R, α > 0, δ > 0, and 0 < |β| < α. Process {Wt} is
a standard Brownian motion. By {Zt} we denote the inverse Gaussian subordinator, that
is a (non-decreasing non-negative) process whose increments are governed be the inverse
Gaussian law. This means that {∆Zti = Zti − Zti−∆t, i = 1, . . . , n} has a distribution
IG( δγ∆t, δ2(∆t)2), where γ =

√

α2 − β2 and IG(ξ, λ) for any ξ > 0 and λ > 0 has a
probability density of the form

fIG(z; ξ, λ) =

√

λ

2πz3
exp

(

−λ(z − ξ)2

2ξ2z

)

, z > 0,

and, of course, fIG ≡ 0 for z ≤ 0. Interpretation of the NIG parameters is following.
Parameter α adjusts tail behavior, that is steepness of the NIG returns distribution –
larger α is, lighter are the tails of the distribution. Parameter β controls the skewness
of the returns distribution; β < 0 produces left-skewed densities, β > 0 right-skewed.
Standardly, µ is the location (or drift) parameter. Finally, δ plays a similar role to σ in
the previously introduced models, that is representing measure of the volatility of the
returns; higher δ leads to more volatile returns.

Furthermore, we introduce formula for the density of log-returns

(6)











f∆rt(x) = αδ∆t
π exp(λγ∆t+ β(x− µ∆t))·

· K1(α
√

δ2(∆t)2+(x−µ∆t)2)√
δ2(∆t)2+(x−µ∆t)2

, x ∈ R,

where Ku denotes the modified Bessel function of the second kind and index u, see [1]
for instance.

We also give the Lévy measure for this model, namely

ν(dz) =
αδ

π

exp(βz)K1(α|z|)
|z| dz on R \ {0}.

Estimation

Estimation of parameters is performed by MLE (3), considering that we have a closed
formula for the density of log-returns (6). Here we want to find an optimal vector of
parameters θ = (α, β, µ, σ). Again, we need to start MLE maximization procedure with
some initial values of parameters. This might be done with a MM estimate given by the
following formulas

α̂ = 3ρ̂
1

2 (ρ̂− 1)−1V̂− 1

2
r |Ŝr|−1, β̂ = 3(ρ̂− 1)−1V̂− 1

2
r Ŝ−1

r ,

µ̂ = M̂r − 3ρ̂−1V̂
1

2
r Ŝ−1

r , δ̂ = 3ρ̂−1(ρ̂− 1)
1

2 V̂
1

2
r |Ŝr|−1,

where ρ̂ = 3(K̂r − 3)Ŝ−2
r − 4, and M̂r, V̂r, Ŝr, K̂r are sample mean, sample variance,

sample skewness, and sample kurtosis (of the log-returns), respectively. Let us note that
for this MM estimation there has to be 3(K̂r − 3) > 5Ŝ2

r > 0. These formulas are taken
from [7].
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T. Bunčák Jump Processes in Exchange Rates Modeling

Statistics

Statistics of the NIG model – namely mean Mr, variance Vr, skewness Sr, and kurtosis
Kr – are as follows

Mr = (µ+ κ̄δ√
1−κ̄2

)∆t, Vr = δ2/(ᾱ(1− κ̄2)
3

2 )∆t,

Sr = 3κ̄/(
√
ᾱ∆t(1− κ̄2)

1

4 ), Kr = 3(4κ̄2 + 1)/(ᾱ∆t(1− κ̄2)
1

2 ) + 3,

where ᾱ = αδ, κ̄ = β/α.

Returns Modeling

NIG model fits the log-returns as displayed in Figure 13. This seems to be better than
both jump-diffusion models presented above.
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Figure 13: Comparison of empirical and model densities – NIG model; EURUSD [1h
returns 2005 – 2012]

Standardly, let us present the simulation results. Sample trajectories are depicted in
Figure 14. Point “prediction” can be seen in Figure 15. Finally, mean of simulated
trajectories with standard deviation bands can be found in Figure 16.
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Figure 14: Real vs simulated trajectories – NIG model; EURUSD
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Figure 15: Simulated point prediction, 24h period ahead – NIG model; fitted on
EURUSD [1h returns 2005 – 2012]
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Figure 16: Out-of-sample simulation vs real trajectory – NIG model; EURUSD

2.3.2 Variance Gamma Model

Variance gamma (VG) process is an example of a generalized tempered stable process. A
subclass of these processes that groups processes representable by Brownian motion sub-
ordination is called CGMY and VG process belongs to this subclass. Further information
about these processes might be found in [5, Section 4.5] for instance. Introduction of the
VG model to finance dates back to [10].

Specification

The model process for the FX rate is similar to the one considered in the NIG model
(see (5)). In the VG model there holds

rt = µt+ βZt + σWZt , t ∈ T,

where µ ∈ R, β ∈ R, and σ > 0. Subordinating process {Zt} is given by a gamma
process, i.e. process whose increments {∆Zti = Zti − Zti−∆t, i = 1, . . . , n} follow the
gamma distribution Γ(∆t/κ, κ). Parameter κ > 0 defines variance of the subordinator.
Standardly, µ dictates drift of the process in a calendar time. We may think of β as a
drift of the process in a business time, i.e. time given by the subordinator. Finally, σ
controls volatility of the process.

Density of Γ(k, θ) for any k > 0 and θ > 0 is given by

fΓ(z; k, θ) =
1

θkΓ(k)
zk−1 exp

(

−z

θ

)

, z > 0,
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naturally fΓ ≡ 0 for z ≤ 0; by Γ in the formula we denote the well-known gamma
function. Density of the log-returns is then as follows

(7)



















f∆rt(x) = 2(β2+2σ2/κ)
1
4
−

∆t
2κ

κ
∆t
κ

√
2πσΓ(∆t/κ)

|x− µ∆t|∆t
κ
− 1

2 · eβ/σ2(x−µ∆t)·

· K∆t
κ
− 1

2

(√
β2+2σ2/κ

σ2 |x− µ∆t|
)

, x ∈ R,

where Ku denotes the modified Bessel function of the second kind and index u, see [1] if
needed.

Moreover, Lévy measure corresponding to the VG model is expressed by

ν(dz) =
1

κ|z| exp
(

β

σ2
z −

√

β2 + 2σ2/κ

σ2
|z|
)

dz on R \ {0}.

Estimation

To estimate VG model parameters, we employ MLE again. So we want to estimate
θ = (µ, β, σ, κ) by (3) where we use (7). We initiate the MLE maximization procedure
with a MM estimate as in the NIG model. Here, the MM estimate is given by the
following procedure:

1. Find (numerically) a solution ε∗ to

ε(3 + 2ε)2

(1 + 4ε+ 2ε2)(1 + ε)
=

3Ŝ2
r

K̂r − 3
.

2. Compute MM estimates by

σ̂2 = V̂r/(1 + ε∗), κ̂ = 1
3(K̂r − 3) (1+ε∗)2

1+4ε∗+2ε∗2
,

β̂ =
ˆcmr,3

σ̂2κ̂
1

3+2ε∗ , µ̂ = rT /n− β̂,

where ˆcmr,3 denotes the third sample central moment of the log-returns.

Recall that by V̂r we mean sample variance, by Ŝr sample skewness, and by K̂r sample
kurtosis (of the log-returns). This MM estimate is adopted from [14].

Statistics

Statistics of the VG model – namely mean Mr, variance Vr, skewness Sr, and kurtosis
Kr – are as follows

Mr = (µ+ β)∆t, Vr = (σ2 + β2κ)∆t,

Sr =
(3σ2βκ+2β3κ2)∆t

V
3
2
r

, Kr =
(3σ4κ+6β4κ3+12σ2β2κ2)∆t

V2
r

+ 3.
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Figure 17: Comparison of empirical and model densities – VG model; EURUSD [1h
returns 2005 – 2012]

Returns Modeling

VG model provides a fit which is illustrated in Figure 17. We see that the quality is
worse than quality of fits provided by all of the models above, except for the Gauss
model (which is worse than all the jump models).

Furthermore, we present simulation results again. Sample trajectories of the VG model
are depicted in Figure 18. FX rate simulated “prediction” distribution can be seen in
Figure 19. Lastly, mean and standard deviation bands of simulated trajectories might
be found in Figure 20.
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Figure 18: Real vs simulated trajectories – VG model; EURUSD
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Figure 19: Simulated point prediction, 24h period ahead – VG model; fitted on EURUSD
[1h returns 2005 – 2012]
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Figure 20: Out-of-sample simulation vs real trajectory – VG model; EURUSD

2.3.3 Meixner Model

Last example of (infinite activity) Lévy models we present is the Meixner model which
was introduced to finance in [20]. Although there is a possibility to express the Meixner
model process as a time-changed Brownian motion (Brownian subordination) – see [11]
for instance – we do not present it here. The reason is that we use different approach
for simulations, namely rejection sampling. This shall illustrate the fact that one may
work with an infinite activity model even without usage of the convenient Brownian
subordination concept.

Specification

Increments of the logarithmic FX rate (log-returns) are governed by the Meixner distri-
bution MXN(µ∆t, α, β, δ∆t), hence density of the log-returns is written as follows

(8)











f∆rt(x) = (2 cos(β/2))2δ∆t

2απΓ(2δ∆t) exp
(

β(x−µ∆t)
α

)

·

·
∣

∣

∣
Γ
(

δ∆t+ i(x−µ∆t)
α

)∣

∣

∣

2
, x ∈ R,

where Γ denotes the gamma function, α > 0, −π < β < π, δ > 0, and µ ∈ R. Note
that µ is the drift (or location of returns) parameter, α controls scale of returns, β and
δ determine shape of the distribution – skewness and kurtosis in particular.

Furthermore, we give Lévy measure of the Meixner model

ν(dz) =
δ exp(βz/α)

z sinh(πz/α)
dz on R \ {0}.
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Estimation

We make use of MLE again. In this case, we plug (8) to (3) and perform maximization
procedure in order to find optimal θ = (µ, α, β, δ). As initial values of parameters we
use a MM estimate. Formulas for MM estimates are as follows

δ̂ = (K̂r − Ŝ2
r − 3)−1, β̂ = sign(Ŝr) arccos(2− δ̂(K̂r − 3)),

α̂ = (V̂r(cos β̂ + 1))
1

3 , µ̂ = M̂r − α̂δ̂ tan(β̂/2),

where M̂r, V̂r, Ŝr, and K̂r are sample mean, sample variance, sample skewness, and
sample kurtosis (of the log-returns), respectively. Note that this MM estimate exists
only if K̂r > 2Ŝ2

r + 3. The estimate might be found in [13] for instance.

Statistics

Statistics of the Meixner model – namely mean Mr, variance Vr, skewness Sr, and
kurtosis Kr – are as follows

Mr = (µ+ αδ tan(β/2))∆t, Vr = α2δ∆t/(cosβ + 1),

Sr = sin(β/2)
√

2
δ∆t , Kr =

2−cosβ
δ∆t + 3.

Returns Modeling

Mexiner model is the last model for which we present quality of fit Figure 21. Note that
this model performs the best among all the models considered.

In this last case, we also give the simulation results. Model trajectories are illustrated in
Figure 22. Point “prediction” distribution can be found in Figure 23. The last Figure 24
depicts mean and standard deviation bands of simulated trajectories.
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Figure 21: Comparison of empirical and model densities – Meixner model; EURUSD [1h
returns 2005 – 2012]
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Figure 22: Real vs simulated trajectories – Meixner model; EURUSD
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Figure 23: Simulated point prediction, 24h period ahead – Meixner model; fitted on
EURUSD [1h returns 2005 – 2012]
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Figure 24: Out-of-sample simulation vs real trajectory – Meixner model; EURUSD
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3 Concluding Remarks

We have considered multiple (jump) models in the context of FX rate modeling. We
can support the evidence from the literature that jumps are important part of FX rate
models. However, the focus is usually on the jump-diffusion models, although we have
seen that some of the infinite activity models (especially the Meixner model) are quite
capable of fitting the EURUSD returns in a proper way. This is probably due to the
fact that it is easier to modify jump-diffusion models than an infinite activity models,
since the structure of the former is more tractable (diffusion with a compound Poisson
part included, say). As a possible suggestion of a future research, one may overcome this
complication using the Brownian subordination concept.

As was shown by simulations, models in their standard forms do not differ a lot when
it comes to a prediction. This has been attributed to the central limit theorem and
the fact that in this Lévy (random walk) setting we always make sums of independent
identically distributed random variables. However, this might change with a modification
of standard forms of the models (as it is done to jump-diffusion models in the mentioned
literature).

Of course, a similar composition may be conducted on different data and/or period;
however, we believe that in this setting it provides an interesting set of information and
a motivation to a further study of jump models role in the FX rates modeling. What
might be also interesting is a comparison of (modified) jump models with models based
on macroeconomic fundamentals (and possibly their combination).
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