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In this addendum to Carey (2005), we draw several more analogies with the
Black-Scholes model. We derive the characteristic function of the underlying log process
as a function of the volatilities of all orders. Option prices are shown to satisfy an infinite-
order version of the Black-Scholes partial differential equation. We find that in the same
way that the option sensitivity to the cost of carry is related to delta and vega to gamma
in the Black-Scholes model, the option sensitivity to j-th order volatility is related to the

j-th order sensitivity to the underlying. Finally, we argue that third-order volatility

provides a possible basis for the introduction of a “skew swap” product.
We begin by recalling some definitions and notation. Let (X;) be a positive-

valued adapted stochastic process on a filtered probability space (Q,F,(F),Q), t > 0.
Here (X;) can be interpreted as a financial variable, (F;) as the market information
structure, () as an equivalent martingale measure. Let 6t > 0 denote a finite period of
time, and define 6X; = X, 5 — X;, so that the relative change of the process over the
interval ¢ to t 4 0t reads 6Xt/Xt. E, - denotes expectation conditional on F;, and j is

a generic positive integer.
We define j-th order finite-period volatility Ey',t via the identity:

1, = B (6X,X,) [st,

with the convention that X, equals the nonnegative root when j is even, and we let

oj = limg o X;; denote j-th order instantaneous volatility. The rationale for using j

as an exponent can be found in Carey (2005), along with snapshot implied values for the
S&P 500 options market.
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1. CHARACTERISTIC FUNCTION

Let ¢(v) denote the characteristic function at time ¢ of In X, ., 7 > 0, that is:
¢(v) = E; expliv(In X, . )] = B X{{,,

i> = —1. Now in the general case the volatilities we have defined are stochastic. In
appendix 1 we show that when the finite-period volatilities of all orders exist and are
deterministic, ¢(v) can be obtained as:

o0

1+

=1

_ w)
o(v) = thH j]ziuétl’ (1)

(1

where 7 is a positive multiple of 6t, the product is over u = t,t + 6t,...,t + 7 — 6t , and:

[j] = Jp(e=1)(o=2)..(o—=j + 1)

is a generalised binomial coefficient. If we further suppose that there exists a A > 0
such that this assumption holds for every 6t < A, then clearly the instantaneous
volatilities, when they exist, are also deterministic. Then, fixing 7 > 0 and taking the
limit 6t \, 0 in (1) yields:

d(v) = X[V exp , (2)

5[

=17

where the o;, which are assumed to exist, are defined via:

Jiu

. 1 t+1 .
ol = —f ol du,
TJi

again with the convention that o, is nonnegative when j is even, and will be referred to

as average volatilities.

We make three comments on these results. First, as in Carey (2005) we point out
that we have not shown that deterministic instantaneous volatilities imply (2) in and of
themselves. Expression (2) is perhaps best viewed as an approximation to (1) for the
case when Ot is arbitrarily small. Second, if o; =0 for every j > 2 then the

J
characteristic function (2) can be rewritten as:

d(v) = exp[iv(lnXt + <01 — 103 )T) — 102037],

implying that In X;, , is normally distributed (with mean In X, +<01 —%(722)7 and

variance a%r). Thus, nonzero values for higher-order average volatilities indicate and

quantify deviations from the lognormal distribution. Third, we point out that the sequence
of volatilities may not be truncated at any index greater than two. Indeed, this would
imply that the characteristic function has the form exp P(v), with P(v) a polynomial of
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order greater than two, contradicting the theorem of Marcinkiewicz (see Stuart and Ord
(1994), §4.8). This does not however rule out such a strategy by way of approximation.

2. DYNAMICS AND SENSITIVITIES

We now consider the dynamics of a European-exercise option contract with
maturity 7. We choose the money-market account as numeraire, and assume
deterministic interest rates, with R, denoting the riskfree rate per unit time for the

period ¢ to ¢ + 6t, and with 1, = limg\ o R, denoting the short rate.

We next assume that the volatilities of all orders are deterministic as per the
previous section. By (2), the characteristic function of In X; depends only on the level of

the underlying variable, the average volatilities, and time. Thus, given a set of
volatilities, a payoff function and a rate of interest, the price of the contract is some
function of the underlying variable and time, say C(X,t), which we will assume to be

infinitely differentiable in X, and once differentiable in ¢.
Now since the discounted price of the option is a martingale under (), we have:

for every t < T — 6t. Letting 8&0 denote the j-th order partial derivative of C' with
respect to X, expand C(X, + 6X,,t + 6t) in the Taylor series:

C(X; + 6X,,t + 8t) = C(X,,t + 6t) + Y H(6X,) 05 C(X,,t + 6t). (4)
j=1

As shown in appendix 2, substituting (4) into (3) and taking the limit 6t \, 0 yields the
dynamics of the option price as:

)+ Y kol XI95C(X,t) = n,0(X, 1), (3)

Jj=1

for almost every (X,t) € (0,00) x [0,7'], where 0,C is the derivative of C with respect

to t.!
As an example, consider the case where the underlying is a traded asset paying
no dividends, implying o,; = r;. Assume further that the instantaneous rate of interest

is a constant 7, = r, second-order instantaneous volatility is a constant o,, = o, and
all higher-order volatilities are zero. Then (5) reduces to the Black-Scholes equation:

9:C(X,t) + rXoxC(X,t) + £ 0> X?050(X,t) = rC(X,1). (6)

1 Equation (5) is closely related to the backward Kramers-Moyal expansion, which describes the evolution of
the probability density of a Markov process when the initial time and level are varied, and which is to (5) what
the backward Kolmogorov equation is to (6) — see Gillespie (1992) for a detailed introduction. In fact,
heuristically terminating a (forward) Kramers-Moyal expansion at the second term (yielding a forward
Kolmogorov, or Fokker-Planck, equation) was the approach used by Albert Einstein in his original
characterisation of Brownian motion (see Gardiner (1985), §7.2.2). However, as directly implied by Pawula’s
theorem, the expansion cannot be terminated at any higher order (see Van Kampen (1992), page 269). This
mirrors our earlier finding that the sequence of volatilities cannot terminate at any order greater than two.
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A further analogy with the Black-Scholes model can be drawn with respect to the
sensitivities of the option price. We note that in the Black-Scholes model, the price
sensitivity of a plain vanilla option to a change in the cost of carry b is related to the
option delta via:

oC oC
EDR &
and vega is related to gamma via:
oC 0*C
=~ — 70X?
9o ' C 0X2

(see Haug (1997), §1.3). As shown in appendix 3, under (2) these results generalise to:?

j—1 -
0c¢ =T fj‘j X/ 6]0
do; j—1!" ox/

/ (7)

for a generic European-exercise contract. Thus, the option price sensitivity to j-th order
volatility is directly proportional to the j-th order sensitivity to the underlying, by a
factor which increases linearly with time to maturity.

3. SOME APPLICATIONS

In Carey (2005) we suggest investigating the extent to which derivatives pricing
and risk management can be carried out based on a finite set of leading-order volatilities,
say up to order four. This essentially involves identifying a pricing formula or procedure
which both dispenses the user from (exogenously) specifying an infinite set of volatilities,
and prices the product(s) at hand with acceptable precision. The generalised Edgeworth
expansion formula of Jarrow and Rudd (1982) and other moment-based formulae are
obvious candidates, but other approaches are possible. Regardless of the
implementation, the simple relationship between sensitivities to the underlying and
sensitivities to the volatilities promises computational savings as well as conceptual
clarity in risk management.

Here we suggest another possible application, making use of the intuitive nature
of these new risk metrics. As shown in Carey (2005), the volatilities can be interpreted,
via a simple thought experiment, as break-even relative changes. Indeed, as illustrated
by a sample of implied values for S&P 500 options, the volatilities of order two, three and
four (and those beyond, although they are not reported) have the same order of
magnitude, each falling between 5% and 25% in absolute value.® Thus, the intuitive
nature of ordinary volatility carries over to the new quantities both in concept and in
practice.

While this quality in a risk metric holds little interest from an analytical or
computational perspective, it is fundamentally important whenever the metric is traded,
be it in isolation (as in a variance swap) or packaged with other exposures (as in a
generic derivatives book). Indeed, it is the vehicle for the opinions of the trader with
respect to a wide range of future scenarios, often synthesised in a nonanalytical way, and
as such must provide an intuitive handle on market conditions.

There is a degree of interest among investors in “trading the skew”, which at this
time must be done via unwieldy and expensive options trades. While the variance can be

2 Here C is as defined in appendix 3.
3 We recall that in this example, first-order volatility equals the cost of carry.
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traded directly via variance swaps, there is currently no such product for skewness. This
could arguably be ascribed in part to the absence of a sufficiently compelling quantity
from a trading perspective, and in this regard it is worth noting that variance swaps are
quoted in terms of the corresponding volatilities, not as raw variances. Whereas
traditional measures of skewness almost certainly do not possess the right qualities, we
suggest third-order volatility could help spark interest in a “skew swap” product.
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APPENDIX 1

To establish (1), let z denote an arbitrary complex number, and note that:

(Xesr /X, | = [H X5t/ X, ] = TT(1+8x,/x, ). (AL.1)

u

Next recall the binomial identity:

0o (%
(1+ﬁ)Z=Z[j]ﬁj, |8l < 1.
§=0
We may then write:
[e’e] ya .
1+6X,/X,) = A(ex,/x,Y, (A1.2)
sy =2 (xx)

assuming that ‘6Xu/Xu

< 1 almost surely for every w«. This assumption is safe for

typical financial variables, provided that the time step 6t is sufficiently small. Suppose
further that:

>

(o]
Jj=0 ]

(Josset] -5

Jj=0

E’U,

[j] E, (6XU/XU )j (A1.3)

for every u. Now FE,;- = [HEU]-, so that taking expectations in (Al.1) and using
u

(A1.2) and (A1.3) iteratively, along with the fact that the ¥/ are deterministic, yields:

j7u

. (A1.4)

E; (Xt+T/Xt )Z = H

u

© (2
1+Z[ .]zg.uét
=)

Setting z = w, v € R, yields (1), while if z =n, n = 1,2,..., then this reduces to the
discrete-period moment formula in Carey (2005).
To derive (2), note that:

% (2
1+ > | |51 ,6t = exp
=)

oo (Z
o(ét)+2[ .]zgiuét ,
=)

where o0(6t) represents terms which vanish with 6t faster than Ot (that s,
0(615)/615 — 0 as 6t \, 0). Replacing in (A1.4), rearranging and simplifying yields:

By (Xpir )X, )Z — exp . (AL.5)

0(6t) > N
o T+;;[j]2m5t
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j7u

Now by definition Egu — ol as 6t \, 0, hence ZE%(‘% — U]jT. Assuming that:

00 z 00 z
limg o ZZ[}.]E%& = > limg g Z[j]Ziuét,
j=1 u J=1 u
taking limits in (A1.5) yields:

E, (Xt+T/Xt )Z = &Xp

TZ[]']U;
=

As above, setting z = v yields (2), while z = n yields the average-volatilities moment
formula in Carey (2005).
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APPENDIX 2
We begin with:
(1+ R6t)C(X;,t) = E,C(X, + 6X,,t + 6t), (A2.1)

and expand C(X; + 6X;,t + 6t) as

O(X; + 86Xyt + 6t) = O(X;,t + 6t) + ) H(6X,)/ 05C(Xy,t +6t).  (A2.2)
j=1

Assuming that:
Z% §X,) 0% C(X,,t + 6t) ZEf[ (6X,) 0% C(X,,t + 6t) ],
substituting (A2.2) into (A2.1) yields:

(1 + R6t)C(X,,t) = O(X,,t + 6t) -l—ZlEt (6X, ) |04 C(X,,t + 6t).

Jj=

Noting that E; [(6X;)’ | = 2§7tth6t and rearranging gives:

C(X;,t + 6t) — C(X,,t)
&t

+ Z L 3!, X]04C(X,,t + 6t) = R,C(X,,1)

almost surely. Taking the limit 6t \, 0 yields (5).
We note here that equation (5) can be liberalised by the change of variable

o dy
Y = In X . A straightforward induction shows that %Xjaﬂ(- = [ , ] -,% so that:
i J

dy

j c(Y,t) = nC(Y,t),

0, 1)+ aj{t [

=1

highlighting the beginnings of a correspondence with formula (2). A solution to this
equation can in principle be sought using the standard Fourier transformation technique,
although there are potential technical complications attached to the infinite series. In any
event, this achieves nothing more than confirm (2).

4 J — (93 J+l1
Use 8X(Xax)-—<j6X+X8X )
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APPENDIX 3

Under (2), the density of the underlying at expiration, given X, = X, is:

0o . > (w)
QZQ(XI):%I_ exp(—ivIn X') X" exp TZ j]ag dv,
and an option with payoff f(Xr) therefore has price:
_ . r & ' ' /
C = exp( j; r,du j; F(XNg(XNHdX".
Now:>
8/6(] . 00 . , ak . 0 (v )
= 5= exp(—ivin X X" |lexp|T |o? |dv
8Xk 27rf—:x; p( >8Xk[ ] b jz_:l J J
~ w) o () |
:%f exp (—ivln X' ) k! X% exp TZ o] |dv
—00 k = ]
and:
dqg | [ . ;) > (W) .
— =Ll exp(—iwln X') X" ——exp|T ol idu
ot 27rffoo p( ) ot P jz_:l J)
o w) x ()
:%f exp(—iwln X')7 X" exp TZ | o] |dv
—00 k =1 ]
from which:
0 0
3
Thus:
k
20 _gnde.
Ok

and (7) follows.

> Here we assume that the differentiations and integrations can be performed indifferently in either order.
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