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Abstract: 

This paper analyzes the dynamics of a variant of Jones (2002) semi-endogenous growth model within the 

feasible parameter space. We derive the long run growth rate of the economy and do a detailed bifurcation analysis 

of the equilibrium. We show the existence of codimension-1 bifurcations (Hopf, Branch Point, Limit Point of 

Cycles, and Period Doubling) and codimension-2 (Bogdanov-Takens and Generalized Hopf) bifurcations within the 

feasible parameter range of the model. 

It is important to recognize that bifurcation boundaries do not necessarily separate stable from unstable 

solution domains.  Bifurcation boundaries can separate one kind of unstable dynamics domain from another kind of 

unstable dynamics domain, or one kind of stable dynamics domain from another kind (called soft bifurcation), such 

as bifurcation from monotonic stability to damped periodic stability or from damped periodic to damped 

multiperiodic stability.  There are not only an infinite number of kinds of unstable dynamics, some very close to 

stability in appearance, but also an infinite number of kinds of stable dynamics.  Hence subjective prior views on 

whether the economy is or is not stable provide little guidance without mathematical analysis of model dynamics. 

When a bifurcation boundary crosses the parameter estimates’ confidence region, robustness of dynamical 

inferences from policy simulations are compromised, when conducted, in the usual manner, only at the parameters’ 

point estimates. 
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1. Introduction 

Romer (1990) proposed growth driven by technological change resulting from the research and 

development of profit maximizing agents. Endogenous growth models resulted. The drivers of long run 

growth in such models are increases in research and development intensity or investment in human 

capital. These models have implications for policy measures in research and development and in 

education. 

Knowledge can be used by many people at the same time without loss. As a result, production has 

increasing returns to scale associated with new ideas, which, in turn, depend on population. This 

phenomenon is the “strong” scale effect produced by the first generation endogenous growth models of 

Romer (1990) and Grossman and Helpman (1991). In these models the growth rate of the economy is an 

increasing function of the population. As shown by Jones (1995), this result is inconsistent with United 

States data. Jones (2002) tries to explain these facts with a model that exhibits “weak” scale effects. Jones 

found that long-run growth arises from the worldwide discovery of ideas, which depend on the rate of 

population growth of the countries contributing to world research, rather than the level of population. Such 

models are often called semi-endogenous growth models.  

We incorporate human capital accumulation into a Jones model.  We explicitly takes into account the 

possibility that the investment in skill acquisition by agents might be positively, negatively, or not 

influenced at all by technological progress. Hence the direction of technological progress is ultimately 

driven by human capital investment (Bucci, 2008). Compared to Bucci (2008), we introduce the 

possibility of decreasing returns to scale associated with human capital and with time spent accumulating 

human capital in the production equation. The assumption of decreasing returns to scale is necessary to 

account for the scale effects in the model. Also, the introduction of such a human capital accumulation 

equation allows us to have a closed form solutions for the steady state of the modified model. 

The next task of the paper is to examine whether the dynamics of the model change within the 

feasible parameter space of the model. A system undergoes bifurcation if a small, smooth change in a 

parameter value produces a sudden 'qualitative' or topological change in the nature of singular points and 

trajectories of the system. The presence of bifurcation damages the inference robustness of dynamics, 

when dynamical inferences are produced at point estimates of the parameters. Knowing the stability 

boundaries inside the feasible region of the parameter space can lead to more reliable policy simulations.  
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We used the numerical continuation package, Matcont, to analyze the bifurcation scenario. We showed the 

existence of Andronov-Hopf, Branch Point, Limit Point of Cycles, Bogdanov-Takens, and Generalized 

Hopf bifurcations within the feasible parameter range of the model. Some of these results have never 

previously appeared in the literature on endogenous/semi-endogenous growth models. 

Stability analysis is critical in understanding the dynamics of the model. Benhabib and Perli (1994) 

analyzed the stability properties of long-run equilibrium in the Lucas (1988) model. Arnold (2000a, b) has 

analyzed the stability of equilibrium in the Romer (1990) model. Arnold (2006) has done the same for the 

Jones (1995) model. Mondal (2008) examined the dynamics of the Grossman-Helpman (1991b) model of 

endogenous product cycles. The results derived in these papers provide important insights to researchers 

considering different policies. But a detailed bifurcation analysis has not been done so far for most of 

these well known endogenous and semi-endogenous growth models. The current paper aims to fill part of 

that gap. For example, endogenous growth theory primarily holds that the long run growth rate of an 

economy depends on policy measures such as subsidies for research and development or for education. A 

detailed knowledge of stability and bifurcation boundaries of the models can give more accurate 

implications of different policy measures. 

As pointed out by Banerjee, Barnett, Duzhak, and Gopalan (2011), “Just as it is important to know for 

what parameter values a system is stable or unstable, it is equally important to know the nature of stability 

(e.g., monotonic convergence, damped single periodic convergence, or damped multi-periodic 

convergence) or instability (periodic, multi-periodic, or chaotic)”.  Barnett and He (1999, 2001, and 2002) 

examined the dynamics of the Bergstrom-Wymer continuous-time dynamic macroeconometric model of 

the UK economy. Both transcritical bifurcation boundary and Hopf bifurcation boundary were found. 

Barnett and He (2008) have estimated the singularity bifurcation boundaries within the parameter space 

for the Leeper and Sims (1994) model. Barnett and Duzhak (2010) found Hopf and Period Doubling 

bifurcations using local bifurcation analysis in a New Keynesian model. More recently, Banerjee, Barnett, 

Duzhak, and Gopalan (2011) examined the possibility of cyclical behavior in the Marshallian 

Macroeconomic Model, and Barnett and Eryilmaz (2013, 2014) investigated bifurcation in open economy 

models. 

2. Model Structure 

The labor endowment equation is given by  
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(1)  LAt + LYt = Lt = ϵtNt , 
where, at time t, Lt is employment, LYt is the labor employed in producing output, LAt is the total number 

of researchers, and Nt is the total population having rate of growth n > 0. Each person is endowed with 

one unit of time and divides the time among producing goods, producing ideas, and producing human 

capital, while ϵt and (1 − ϵt) represent the amount of time the person spends producing output and 

accumulating human capital, respectively. Physical capital is accumulated by foregoing consumption. 

Then (2) K̇ =  sktYt − dKt, K0 > 0,  

where skt is the fraction of output invested, d is the exogenous, constant rate of depreciation, Yt is the 

aggregate production of homogenous final goods, and Kt is capital stock. Hence, we can write (3)  K̇ =  Yt − Ct − dKt . 
Output is produced using the total quantity of human capital, HYt, and a set of intermediaries.   

Then (4)  HYt = htLYt , 
where htis human capital per person and LYt is labor employed in producing output. An individual’s 

human capital, ht, is produced by foregoing time in the labor force.  Then (5)  hṫ =  ηhtβ1(1 − ϵt)β2 −  θgAht ,             0 < β1 ,  β2 ,  ϵt < 1, 𝜂 > 0, (1 + θ) > 0,   
where η is productivity of human capital in the production of new human capital, θ reflects the effect of 

technological progress on human capital investment, and gA = 𝐴̇𝐴 is the growth rate of technology. 

Equation (5) builds on the human capital accumulation equation from the Uzawa-Lucas model (Uzawa, 

1965 and Lucas, 1988).   

Firstly, the equation is modified to show that the higher the level of human capital or time spent 

accumulating human capital, the more difficult it is to generate additional human capital (Gong, Greiner 

and Semmler, 2004). This is reflected in the equation by 0 < β1 ,  β2 < 1. The model will exhibit strong 



pg. 5 

 

scale effects, if the value of β1or β2 equals 1. An increase in the time spent for education or a higher level 

of human capital raises the growth rate of human capital accumulation monotonically.  In turn, the 

balanced growth rate increases. United States data are inconsistent with those results, as shown by Jones 

(2002). The United States economy is fluctuating around its balanced growth path, even though 

educational attainment and research intensity have been steadily rising for over a decade.  

Secondly, we incorporate the fact that faster technological progress, gA, may influence the rate of 

human capital accumulation, which depends on the technological parameter θ. We restrict θ > −1 to 

prevent explosive or negative long run growth rates, as in Bucci (2008). Hence faster technological 

progress may increase, decrease, or have no effect on human capital investment. Introduction of such a 

human capital accumulation equation has two advantages. First, it allows us to account for the scale 

effects, which are usually present in endogenous growth models. Second, it makes the model tractable, 

and we are able to solve for possible steady states. 

The production function is given by 

(6) Yt = HYt1−α ∫ x(i)αA0  di  
where x(i) is the input of intermediate i, and A is the number of available intermediates, α ∈ (0,1), and 11−α

 is the elasticity of substitution for any pair of intermediates. Research and development (R&D) enable 

firms to produce new intermediates. The R&D technology is (7) Ȧ =  γ HAtλAt1−ϕ,                       ϕ > 0, 0 < 𝜆 ≤ 1.   
According to this equation, new ideas produced at any point in time depend on the effective research 

effort (HAt) and existing stock of ideas (At), while ϕ represents the externalities associated with R&D.  

Then (8) HAt = htLAt  
2.1 Final Goods Sector 

The representative final output firm rents capital goods, x(i), from monopolist i at price p(i) and pays 

w as the rental rate for per unit of human capital. For each durable, the firm chooses a profit–maximizing 

quantity x(i) and Hy to 
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maxx,Hy ∫ [Hy1−α∞0 x(i)α −  p(i)x(i)] di − wHy. 

Solving the maximization problem gives 

 (9)  p(i) = αHy1−αx(i)α−1 , 
(10) w = (1 − α) YHy . 

2.2 Intermediate Goods Sector 

Each intermediate good x(i) is produced by a monopolist, who owns an infinitely-lived patent on a 

technology determining how to transform costlessly a unit of raw material (K) into intermediate good. The 

production function is x = K . The producer of each specialized durable takes p(i) as given, from equation 

(9), in choosing the profit maximizing output, x, in accordance with profit level 

π = maxx p(x)x − rx, 
where ‘r’ is the rental price of raw capital. Solving the monopoly profit maximization problem gives  (11)  p(i) = p̅ =  r

α
 . 

The flow of monopoly profit is  (12)   π(i) = π̅ = p̅x̅ − rx̅ = (1 − α)p̅x̅.  
2.3 The Research and Development Sector 

The decision to produce new specialized input depends on a comparison of the discounted stream of 

net revenue and the cost of the initial investment in a design. Because the market for designs is 

competitive, the price for designs, PA, will be bid up until equal to the present value of the net revenue 

that a monopoly can extract. Hence, 

(13) ∫ e−∫ r(s)dsτt π(τ)dτ = PA(t)∞t ,  

where r is the interest rate. Assuming free entry into the R&D sector, we have the zero profit condition 
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(14)    wHA = PA γHAλA1−ϕ⏟      Ȧ  . 

If  υ(t) denotes the value of the innovation, then 

(15)  υ(t) = ∫ e−∫ r(s)dsτt π(τ)dτ∞t .  

Therefore, equation (14) can equivalently be written as, (16)  wHA = υγHAλA1− ϕ. 

Also because of symmetry with respect to different intermediates, K = Ax .  The production function 

then is (17)   Y =  (AHY)1−α(K)α . 

Hence, from equation (10) and (17), 

(18)   w =  (1 − α)A ( KAHY)α
 . 

From zero profits in the final goods sector, π = HY1−αAxα − pAx − wHY = 0; and from equation 

(10), we have (19)   Y − wHY = Apx = αY.          
Notice that wages equalize across sectors, as a result of free entry and exit. 

2.4 Consumers 

Individuals maximize intertemporal utility to choose consumption and the fraction of time devoted to 

human capital production (or the fraction of time devoted to market work). Hence, the agent’s problem is 

maxct,ϵt ∫ e−(ρ−n)t∞

t [c(τ)1−σ − 1] / (1 − σ)    dt 
 subject to K̇ = rt[Kt + υtAt] + wtHt − ctNt − υtAṫ − υṫAt, hṫ =  ηhtβ1(1 − ϵt)β2 −  θgAht , 
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and ϵt ∈ [0,1], 
where ρ , with ρ > 𝑛 > 0, is the subjective discount rate, and σ ≥ 0 is the inverse of the intertemporal 

elasticity of substitution in consumption. 

3. Local Bifurcation Analysis 

       Let  m = YK and  g = cNK .  Using equations (11), (19), and K = Ax implies (20)   r = α2m.  

The physical capital equation can be written as, 

(21)   K̇K =  m − g − d.  

As shown in the appendix, the consumers’ intertemporal optimization conditions are 

(22)   ċc = r−ρ
σ
= α2m−ρ

σ
 , 

(22′)    − r + ḣh ( β2LY(1− ε)N+ 1) +  θgA ( β2LY(1− ε)N− (1 − β1)) =  (β2 − 1) (−ε)̇(1−ε)− ẇw−  n.  

Substituting equations (20), (21), (22), and using g = cNK , we can derive 
ġg = ċc − ṄN− K̇K, so that 

(23)  ġg = (α2
σ
− 1)m − ρ

σ
+ n + g + d.  

Multiplying both sides of equation (1) by ht, and using the equations (4) and (8), we have (24) ht LAt⏟   HAt + htLYt⏟  HYt = htLt⏟Ht = htϵtNt  Let     u = γAϕ hϵN  and  ν = (1−α)Y
υA   

Using equations (10), (16), and (24) in equation (7), ȦA = γHAAϕ .  Setting λ=1 for the rest of the analysis, 

(25) ȦA = γAϕ hϵN⏟  u − (1−α)Y
υA⏟  
ν
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The following can be shown from equation (15), while using π = α(1−α)YA  from equations (12) and 

(19): 

(26) υ̇
υ
= r − π

υ
= α2m− αν  

Let f = ϵt(1− ϵt) . Using equation (10) and (16), it can be shown that  

(27) LYt(1− ϵt)Nt = 1(1− ϵt)htNt (1−α)Ytwt = νfu . 

Letting  z = η(1− ϵt)β2ht1−β1 , equation (5) can be written as,  

 (28) ḣh = z −  θgA  

We can derive  
ẇw = υ̇

υ
+ (1 − ϕ) ȦA   from equation (16).  Substitute equation (25) and (26), we get 

(29) ẇw = α2m− αν + (1 − ϕ)(u − ν).  
Equation (22’) is simplified in the following way by using (28), (29), and (30): 

(30) ϵ̇ϵ = 1f(β2−1) [−z − θgA(β1 − 2) + αν − β2 zνfu − (1 − ϕ)(u − ν) − n] . 
From equation (17), we have 

(31)  m = YK = (AHYK )1−α.    
Using equation (16), (18), and (31), it follows that 

         υγA1−ϕ = w = (1 − α)A ( KAHY)α

 

which implies that 

m α1−α = (1−α)Aϕ
υγ

. 
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Substituting equations (25) and (26) into, 
ṁm = (1−α)

α
[− υ̇

υ
+ ϕ ȦA], which is derived from the above relation, 

we find 

(32) ṁm = (1−α)
α
[−α2m+ αν + ϕ(u − ν)].  

From equations (21) and (32) and using ẎY = ṁm+ K̇K, it follows that 

(33) ẎY = (1−α)
α
[−α2m+ αν + ϕ(u − ν)] + (m − g − d)  

Substituting results from (25), (26), and (33) into 
ν̇
ν
= ẎY − υ̇

υ
− ȦA, we acquire 

(34) ν̇
ν
= [(1 − α)m + ν− g + {(1−α)ϕ

α
− 1} (u − ν) − d] . 

Using equation (30) in 
żz = −β2f ϵ̇ϵ− (1 − β1) ḣh and ḟf = ϵ̇ϵ (1 + f), we derive 

(35) żz = 1f(β2−1) [−z − θgA(β1 − 2) + αν − β2 zνfu − (1 − ϕ)(u − ν) − n] − (1 − β1)(z − θgA),  
(36) ḟf = (1+f)f(β2−1) [−z − θgA(β1 − 2) + αν − β2 zνfu − (1 − ϕ)(u − ν) − n] . 
Using equations (25), (28),( 30) in 

u̇u = ḣh+ ṄN− ϕ ȦA+ ϵ̇ϵ, we find 

(37) u̇u = z − θgA + n − ϕ(u − ν) + [−z−θgA(β1−2)+αν−β2zνfu −(1−ϕ)(u−ν)−n]f(β2−1)   

Equations (23), (32), (34), (35), (36), and (37) represent the dynamic equations for the model.  

3.1 Steady State 

Definition 1. We define a steady state to be a state at which variables g,m, v, z, f, and u grow at constant 

(possibly zero) rates. A steady state is a balanced growth path with zero growth rate. 

Therefore, the steady state, s∗ = (g∗, m∗, v∗, z∗, f ∗, u∗), is such that,ġ = ṁ = v̇ = ż = ḟ = u̇ = 0. The 

steady state is derived by solving the following equations. 
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(38) (α2
σ
− 1)m − ρ

σ
+ n + g + d = 0, 

(39) −α2m+ αν + ϕ(u − ν) = 0,  
(40) (1 − α)m + ν− g − d + {(1−α)ϕ

α
− 1} (u − ν) = 0,  

(41) z − θgA + n − ϕ(u − ν) + [−z−θgA(β1−2)+αν−β2zνfu −(1−ϕ)(u−ν)−n]f(β2−1) = 0,  
(42) 1f(β2−1) [−z − θgA(β1 − 2) + αν − β2 zνfu − (1 − ϕ)(u − ν) − n] − (1 − β1)(z − θgA) = 0,  
(43)  − z − θgA(β1 − 2) + αν − β2 zνfu − (1 − ϕ)(u − ν) − n = 0.  

The steady state is (z*, v*,u*,m*,g*,f*), where 

z∗ = nθϕ , 

v∗ = ρ−n
α
+ nσϕα

  , 
u∗ = v∗ + nϕ , 

m∗ = v∗
α
+ n

α2  , 
g∗ = (1 − α2

σ
)m∗ + ρ

σ
− n − d, 

f ∗ = u∗v∗β2 (ϕρ
θn − (ϕ+1−σ)

θ
− (β1 − 1)).  

Theorem 1. A unique steady state exists, if 

Λ = (1 + ϕ)(σ− 1)gA + ρ− n > 0. 

Proof: Λ>0 is necessary and sufficient for the transversality condition for the consumer’s utility 

maximization problem to hold.  See the appendix for the rest of the proof. 
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A complete bifurcation analysis of the steady state is done in the next section. But first we briefly 

discuss the appearance of the path of the aggregate variables. At the balanced growth path, the aggregate 

variables 𝐾, 𝐶, 𝑌, in accordance with the appendix, grow at the same rate  given by   
𝐾̇𝐾 = 𝐶̇𝐶 = 𝑌̇𝑌 = (1 + 𝜙)𝑔𝐴,  

where the growth rate of technology is derived to be  𝑔𝐴 = 𝑛𝜙.  

3.2 Bifurcation 

We examine the existence of codimension 1 and codimension 2 bifurcations in the dynamical system 

defined by equations (23), (32), (34), (35), (36), and (37). The codimension, as defined by Kuznetsov 

(2004), is the number of independent conditions determining the bifurcation boundary. Varying a single 

parameter permits us to identify codimension-1 bifurcation and varying 2 parameters permits us to 

identify codimension-2 bifurcation. 

Andronov-Hopf bifurcation is the birth of a limit cycle from an equilibrium in the dynamical system.  

The equilibrium changes stability through a pair of purely imaginary eigenvalues. We use the numerical 

continuation package Matcont to detect such bifurcations. While some of the limit cycles generated by 

Andronov-Hopf bifurcation are stable (supercritical bifurcation), there could be some unstable limit cycles 

(subcritical bifurcation) created. Table 1 reports the values of the subjective discount rate, ρ, the share of 

human capital and the share of time devoted for the human capital production, β1and β2, respectively, the 

effect of technological progress on human capital accumulation, θ, and the depreciation rate of capital, d, at 

which Hopf bifurcation occurs, when those parameters are treated as free parameters. 

 A positive value of the first Lyapunov coefficient indicates creation of subcritical Hopf bifurcation. 

Thus for each of the cases reported in Table 1, an unstable limit cycle with periodic orbit bifurcates from 

the equilibrium. When ρ, β1, θ, are 𝑑 are treated as free parameters, a slight perturbation of them gives rise 

to Branch Points (Pitchfork/Transcritical bifurcations). Notice that some of the Hopf points detected are 

neutral saddles and are not bifurcations.  

The cyclical behavior could occur for various reasons. For instance, suppose profits for a monopolist 

increases. As the market for designs is competitive, the price for designs , PA, is bid up until it is equal to 

http://www.scholarpedia.org/article/Bifurcation
http://www.scholarpedia.org/article/Limit_cycle
http://www.scholarpedia.org/article/Equilibrium
http://www.scholarpedia.org/article/Dynamical_systems
http://www.scholarpedia.org/article/Equilibrium
http://www.scholarpedia.org/article/Stability
http://www.scholarpedia.org/article/Eigenvalues
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the present value of the net revenue that a monopoly can extract. From equation (14), wages in the R&D 

sector rise. As a result of higher wages in the research sector, labor moves out of output production to the 

research sector. When a sufficient amount of externalities to R&D, 1 − ϕ > 0, in equation (7)) is present, 

the growth rate of technology gA starts rising.  If there is a negative effect of technical progress on human 

capital investment so that θ > 0, human capital accumulation starts declining. The price of final good 

durables is a positive function of the average quality of labor given by equation (4) and (9). This implies 

that prices start falling in the final goods sector as a result of declining average quality of labor.  Then 

monopoly profits start falling. 

We further investigate the stability properties of cycles generated by different combination of such 

parameters. Continuation of limit cycles from the Hopf point for the case when ρ  is the free parameter 

gives rise to two Period Doubling (flip) bifurcations. Period doubling bifurcation occurs, when a new limit 

cycle emerges from an existing limit cycle, and the period of the new limit cycle is twice that of the old 

one. The initial period doubling bifurcations occur at ρ = 0.0257 and ρ = 0.0258 with a negative normal 

form coefficient indicating stable double-period cycles. 

Continuing computation further from the Hopf point gives rise to Limit Point (Fold/ Saddle Node) 

bifurcation of cycles. From the family of limit cycles bifurcating from the Hopf point, Limit Point Cycle 

(LPC) is a fold bifurcation, where two limit cycles with different periods are present near LPC point at ρ = 

0.0258. We get another Period Doubling (flip) bifurcations upon further computation.  

We carry out the continuation of limit cycles from the second Hopf point with θ treated as the free 

parameter. We investigate the existence of codimension-2 bifurcations by allowing two free 

parameters, θ and ρ, for the first case and θ and β1for the second. Two points were detected 

corresponding to codimension 2 bifurcations: Bogdanov-Takens and Generalized Hopf (Bautin) for each 

of the cases. At each Bogdanov-Takens point the system has an equilibrium with a double zero 

eigenvalue. The normal form coefficients (a,b) are reported in Table 1 and are all nonzero. The 

Generalized Hopf points are nondegenerate, since the second Lyapunov coefficient l2 is nonzero. The 

Generalized Hopf (Bautin) bifurcation is a bifurcation of an equilibrium, at which the critical equilibrium 

has a pair of purely imaginary eigenvalues, and the first Lyapunov coefficient for the Andronov-Hopf 

bifucation vanishes. The bifurcation point separates branches of subcritical and supercritical Andronov-

http://www.scholarpedia.org/article/Bifurcation
http://www.scholarpedia.org/article/Equilibrium
http://www.scholarpedia.org/article/Stability_of_Equilibria
http://www.scholarpedia.org/article/Eigenvalues
http://www.scholarpedia.org/article/Andronov-Hopf_Bifurcation
http://www.scholarpedia.org/article/Andronov-Hopf_Bifurcation
http://www.scholarpedia.org/article/Andronov-Hopf_Bifurcation
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Hopf bifurcations in the parameter plane. For nearby parameter values, the system has two limit cycles, 

which collide and disappear through a saddle-node bifurcation . 

Table 1 

Parameters Varied Equilibrium Bifurcation Continuation  𝛽1 
(Figure i) {𝛼 = 0.4, 𝜌 = 0.055,  𝛽2 =0.04, 𝑛 = 0.01, 𝑑 = 0, 𝜃 =0.4, 𝜙 = 1, 𝜎 = 8} 

Branch Point (BP)  𝛽1 = 1 

 

 

 𝛽1 
(Figure ii) {𝛼 = 0.4, 𝜌 =0.025772,  𝛽2 = 0.04, 𝑛 =0.01, 𝑑 = 0, 𝜃 = 0.4, 𝜙 =0.8, 𝜎 = 0.08 } 

Hopf (H) 

First Lyapunov coefficient = 

0.0000230,  𝛽1 = 0.19 

 

 𝛽2 {𝛼 = 0.4,  𝛽1 = 0.19, 𝜌= 0.025772, 𝑛 = 0.01, 𝑑= 0, 𝜃 = 0.4, 𝜙 = 0.8, 𝜎= 0.08} 
Hopf (H) 

First Lyapunov coefficient 

=0.00002302, 𝛽2 = 0.040000 

 

𝑑 {𝛼 = 0.4,  𝛽1 = 0.19, 𝜌= 0.055,  𝛽2 = 0.04, 𝑛= 0.01, 𝜃 = 0.4, 𝜙 = 1, 𝜎= 8} 
Branch Point (BP) 𝑑 = 0.826546 

 

𝝆 

(Figure iii) {𝛼 = 0.4,  𝛽1 = 0.19, 𝜌= 0.055,  𝛽2 = 0.04, 𝑛= 0.01, 𝑑 = 0, 𝜃 = 0.4, 𝜙= 1, 𝜎 = 0.08} 
Figure iii (A)  

Hopf (H) 

First Lyapunov coefficient = 

0.0000149 𝜌 =0.025772 

 

Figure iii (B): Bifurcation of Limit 

Cycle 

Period Doubling 

(period = 1,569.64;  𝜌 = 0.0257) 

Normal form coefficient = 

-4.056657e-013 

Period Doubling 

(period = 1,741.46; 𝜌 = 0.0258) 

Normal form coefficient = 

-7.235942e-015 

Limit point cycle 

(period = 2,119.53; 𝜌 = 0.0258) 

http://www.scholarpedia.org/article/Andronov-Hopf_Bifurcation
http://www.scholarpedia.org/article/Periodic_Orbit
http://www.scholarpedia.org/article/Saddle-node_Bifurcation_of_Periodic_Orbits
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Normal form coefficient= 

7.894415e-004 

Period Doubling 

(period = 2,132.13; 𝜌 = 0.0258) 

Normal form coefficient = 

-1.763883e-013 

Branch Point (BP) 𝜌=0.026726 

 

Hopf (H), Neutral Saddle, 𝜌=0.026698 

 

 𝜽 

(Figure iv) {𝛼 = 0.4,  𝛽1 = 0.19, 𝜌= 0.029710729,  𝛽2= 0.04, 𝑛 = 0.01, 𝑑 = 0, 𝜙= .69716983, 𝜎 = 0.08} 

Figure iv (A)  

Hopf (H) 

First Lyapunov coefficient 

=0.0000230,  𝜃=0.400000 

 

Hopf (H) 

First Lyapunov coefficient = 

0.00001973 𝜃=0.355216 

 

Figure iv (B): Codimension-2 

bifurcation 

Generalized Hopf (GH) 𝜃 = 0.000044, 𝜌= 0.580853 

l2= (0.000001254) 

Bogdanov-Takens (BT) 𝜃 =0,  𝜌=0.644247 

(a,b)= (0.000001642, -0.003441) 

Generalized Hopf (GH) 𝜃 = 0.000055 ,  𝛽𝟏 = 0.584660 

l2=0.0000008949 

Bogdanov-Takens (BT) 𝜃=0,   𝛽𝟏=0.903003 

(a,b)=(0.000006407790,0.03291344) 

Hopf (H) 

Neutral saddle, 𝜃=0.612624 

 

Branch Point (BP) 𝜃 = 0.613596 
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4. Conclusion 

This paper provides a detailed stability and bifurcation analysis of a modified version of the Jones 

model. Along the balanced growth path, we have shown that the long run growth rate of the model 

depends on the rate of population growth and the externality associated with R&D. We have provided a 

detailed bifurcation analysis of the model’s equilibrium. Several Andronov-Hopf bifurcations and Branch 

Points are located. Further, the stability properties of the limit cycles created from these Hopf bifurcations 

are examined. We showed the existence Limit Point of Cycles and Period Doubling bifurcations within 

the feasible parameter range of the model. These are all Codimension-1 bifurcations. Codimension-2 

bifurcations like Bogdanov-Takens and Generalized Hopf are also located. The choice of certain 

parameters in locating various bifurcation boundaries emphasizes the role played by human capital in such 

a model, in which the engine of growth is technological progress, which in turn, is driven by human 

capital investment. The presence of this interdependent relationship, wherein the level of technological 

progress influences the rate of human capital accumulation, which in turn determines the growth rate of 

technology, creates the possibility of multitude of dynamics in the model. Hence, the parameters in the 

human capital accumulation among others equation play a key role in determining the dynamics of the 

model. It could even lead the economy to an unstable equilibrium and the balanced growth path may never 

be achieved. 

Appendix: 

We use the zero profit condition 𝑤𝑡𝐻𝐴𝑡 = 𝜐𝑡𝐴𝑡̇ and equation (26), 𝐴𝑡𝜐𝑡̇ = 𝐴𝑡𝑟𝑡𝜐𝑡 − 𝐴𝑡𝜋𝑡 , in the 

wealth accumulation equation of the households, 𝐾̇ = 𝑟𝑡[𝐾𝑡 + 𝜐𝑡𝐴𝑡] + 𝑤𝑡𝐻𝑡 − 𝑐𝑡𝑁𝑡 − 𝐴𝑡̇𝜐𝑡 − 𝐴𝑡𝜐𝑡̇, to get 𝐾̇ = 𝑟𝑡𝐾𝑡 + 𝑤𝑡ℎ𝑡(1 − 𝑙ℎ𝑡)𝑁𝑡 − 𝑐𝑡𝑁𝑡 − 𝑤𝑡ℎ𝑡𝐿𝐴𝑡 + 𝐴𝑡𝜋𝑡. 
The relevant Hamiltonian for the consumer’s problem is ℋ = 𝑒−(𝜌−𝑛)𝑡[𝑐(𝜏)1−𝜎 − 1] / (1 − 𝜎) + 𝜆[𝑟𝑡𝐾𝑡 + 𝑤𝑡ℎ𝑡(1 − 𝑙ℎ𝑡)𝑁𝑡 − 𝑐𝑡𝑁𝑡 − 𝑤𝑡ℎ𝑡𝐿𝐴𝑡 + 𝐴𝑡𝜋𝑡] +                    𝜇[𝜂ℎ𝑡𝛽1(1 − 𝜖𝑡)𝛽2 −  𝜃𝑔𝐴ℎ𝑡]. 

The first order conditions are 

(44) 𝑐−𝜎𝑒−(𝜌−𝑛)𝑡 =  𝜆𝑁               ⇒  𝑐̇𝑐 = 𝑟− 𝜌𝜎  ,    
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(45) 𝜀:     − 𝜆𝑤ℎ𝑁 −  𝜇𝜂ℎ𝛽1𝛽2(1 −  𝜀)𝛽2−1 = 0        ⇒  𝜆𝜇 = 𝜂ℎ𝛽1−1(1− 𝜀)𝛽2−1𝛽2𝑤𝑁 ,   

(46) 𝐾:     𝜆𝑟 =  − 𝜆̇                ⇒  𝜆̇𝜆 = −r ,     

(47) ℎ:      𝜆𝑤𝜀𝑁 − 𝜆𝑤𝐿𝐴 +  𝜇𝜂𝛽1ℎ𝛽1−1(1 −  ε)𝛽2 −  μθ𝑔𝐴 = −𝜇̇ . 

Dividing (47) by 𝜇 and substituting (45) into it, we get,  

 (48)  𝜂ℎ𝛽1−1(1 −  𝜀)𝛽2 [ 𝛽2𝐿𝑌(1−𝜀)𝑁 + 𝛽1] −  θ𝑔𝐴 = − 𝜇̇𝜇 . 

Now, from (45),   𝜆̇𝜆 − 𝜇̇𝜇 = (𝛽2 − 1) ((−𝜀̇)(1−𝜀) + (𝛽1 − 1) ℎ̇ℎ − 𝑤̇𝑤 −  𝑛,and substituting (46)and (48) into it, we get  
 −𝑟 + ℎ̇ℎ ( 𝛽2𝐿𝑌(1− 𝜀)𝑁 + 1) +  θ𝑔𝐴 ( 𝛽2𝐿𝑌(1− 𝜀)𝑁 − (1 − 𝛽1)) =  (𝛽2 − 1) (−𝜀)̇(1−𝜀)− 𝑤̇𝑤 −  𝑛 . 

The transversality conditions are  lim𝑡→∞
𝜆𝑡[𝐾𝑡 + 𝜐𝑡𝐴𝑡] = 0, 

lim𝑡→∞
𝜇𝑡ℎ𝑡 = 0.  

In a steady state, 𝑔̇ = 𝑚̇ = 𝑣̇ = 𝑢̇ = 𝑓̇ = 𝑧̇ = 0.  Using the fact that, in the steady state, 𝐻𝑌𝐻  is constant, we 

can derive the following relations. 

𝑔̇ = 0 and 𝑚̇ = 0 implies 𝐾̇𝐾 = 𝑐̇𝑐 + 𝑛 = 𝑌̇𝑌  

We use 𝑧̇ = −𝛽2 𝜖̇𝜖 𝑓 − (1 − 𝛽1) ℎ̇ℎ = 0 and 𝑓̇ =  𝜖̇𝜖 (1 + 𝑓) = 0  to derive the following.    
𝜖̇𝜖 = (−1+𝛽1)𝛽2 ℎ̇ℎ  

Hence 𝑢̇ = ℎ̇ℎ + 𝑁̇𝑁 − 𝜙 𝐴̇𝐴 + 𝜖̇𝜖 = 0 implies ℎ̇ℎ = 𝛽2(1−𝛽1+𝛽2) [𝜙𝑔𝐴 − 𝑛].  As a result, if follows that 

𝐻𝑌̇𝐻𝑌 = 𝐻̇𝐻 = ℎ̇ℎ + 𝑁̇𝑁 + 𝜖̇𝜖 = 𝜙𝑔𝐴 . 
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From equation (32), = 𝑌𝐾 = (𝐴𝐻𝑌𝐾 )1−𝛼 .  Hence, 

𝑚̇𝑚 = (1 − 𝛼) [𝐴̇𝐴+ 𝐻𝑌̇𝐻𝑌 − 𝐾̇𝐾] = 0 implies, 𝐾̇𝐾 = 𝐴̇𝐴+ 𝐻𝑌̇𝐻𝑌 = (1 + 𝜙)𝑔𝐴.  Thus, 𝐾̇𝐾 = 𝐶̇𝐶 = 𝑌̇𝑌 = (1 + 𝜙)𝑔𝐴. 

The transversality condition implies that, (1 + 𝜙)(𝜎 − 1)𝑔𝐴 + 𝜌 − 𝑛 > 0. 

In the balanced growth path, 
𝜖̇𝜖 = 0, which implies 

ℎ̇ℎ = 0. Hence, 𝑔𝐴 = 𝑛𝜙 
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