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Abstract

Aiyagari (1995) showed that long-run optimal fiscal policy features a positive tax rate on capital income
in Bewley-type economies with heterogeneous agents and incomplete markets. However, determining the
magnitude of the optimal capital income tax rate was considered to be prohibitively difficult due to the
need to compute the optimal tax rates along the transition path. This paper shows that, in this class of
models, long-run optimal fiscal policy and the corresponding allocation can be studied independently of the
initial conditions and the transition path. Numerical methods based on this finding are used on a model
calibrated to the U.S. economy. I find that the observed average capital income tax rate in the U.S. is too

high, the average labor income tax rate and the debt-to-GDP ratio are too low, compared to the long-run
optimal levels. The implications of these findings for the existing literature on the optimal quantity of debt
and constrained efficiency are also discussed.

1 Introduction

Aiyagari (1994a, 1995) showed that the optimal capital tax rate is positive even in the long run in Bewley-

type models, where labor income risk is not perfectly insurable.1 This result is in stark contrast with the ear-

lier results of Chamley (1986) and Judd (1985) for economies with complete financial markets.2 However,

the analysis of the Ramsey problem in Bewley-type models has remained theoretical. Quantitative studies

in the Ramsey tradition have provided only limited characterizations of optimal taxation, for instance, by

choosing tax rates that maximize long-run welfare in the economy, or by imposing non-trivial restrictions

on the policy tools available to the government. A quantitative analysis of long-run optimal taxation was

considered to be a daunting task, because it was believed that the long-run allocation was dependent on the

∗Department of Economics, Yeshiva University, 500 West 185th St., New York, NY 10033. E-mail: acikgoz@yu.edu
1See Hubbard and Judd (1986), Imrohoroglu (1998), Erosa and Gervais (2002), Domeij and Heathcote (2004), Conesa, Kitao, and

Krueger (2009), Gottardi, Kajii, and Nakajima (2011) among others for quantitative work and extensions in other environments.
2See Jones, Manuelli, and Rossi (1997), Atkeson, Chari, and Kehoe (1999), Chari and Kehoe (1999) and others for extensions.
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initial conditions of the economy as well as the transition path, as in models with complete markets.3

The main contribution of this paper is to show that this premise is premature in an infinite-horizon model

with incomplete markets and heterogeneous agents. Using the necessary conditions for optimality, I illustrate

that the long-run income tax rates, level of government debt, and the distribution of wealth and consumption

can be investigated independently of the transition path, and without taking a stand on the initial conditions

of an economy.4 I develop and apply numerical methods that rely on this observation to compute these levels

for the U.S. economy. A simple comparison of the quantitative results with the corresponding values for the

U.S. economy suggests that, (i) the government debt-to-GDP ratio is too low and it ought to be much higher,

(ii), the average labor income tax rate in the U.S. economy ought to be higher, and (iii) the average capital

income tax rate ought to be much lower than the currently observed levels.

The disconnect between long-run optimal allocation and initial conditions arise from a characteristic

feature of Bewley-type models. As long as households are impatient relative to the after-tax interest rate, the

long-run allocation in the economy is characterized by a stationary invariant distribution that is independent

of the initial conditions. In addition, if there are tight borrowing constraints, so that some of the agents are

credit-constrained each period, the distortions induced by future tax rates on earlier periods are irrelevant

asymptotically. Although Ramsey problem is non-stationary in general, in a Bewley-type environment, the

solution to the problem resembles that of a stationary problem. In the long run, fiscal policy and the induced

allocation depend only on the “deep parameters” of the model along with the underlying income process.

The seemingly extreme quantitative results for the U.S. economy are not suprising once we understand

how the policy tools available to the government interact with the main frictions in a Bewley-type economy.

By issuing debt, the government effectively relaxes the borrowing constraints of the private agents.5 The

government finances the interest payments on steady-state debt by taxing labor income heavily, reducing

the share of income that is stochastic, and effectively attenuating the income risk the private agents face.

The quantitative results suggest that in the long run, it is efficient for the government to maintain the

maximal debt that can be supported under the modified golden-rule, i.e. when capital-labor ratio (or capital

intensity) is equal to the first-best level. Along with high labor income tax rates, the government achieves

a close-to-minimal average labor income share in the economy. In the long run, instead of imposing high

3In Aiyagari (1994a)’s words (pg. 21-22), “[The question of whether actual tax policy is long run optimal] can only be resolved by
computing the solution path for the optimal tax problem and the associated limiting values. This computational problem is very hard,...
because the consumer’s problem is non-stationary and one of the state variables for the economy is the cross-section distribution of
asset holdings, which is an infinite dimensional variable.”

4This is in sharp contrast to models with certainty or complete markets. Surprisingly, in these models, without making a reference to
the initial conditions, we can say very little aside from optimal zero capital income tax in the long run. See Lucas (1990) and Auerbach
and Kotlikoff (1987) for further details.

5See Aiyagari and McGrattan (1998), Altig and Davis (1989), Hayashi (1985), Heathcote (2005), Holmstrom and Tirole (1998),
Hubbard and Judd (1986), Kocherlakota (2007), Vissing-Jorgensen and Krishnamurthy (2008), Shapiro and Slemrod (2003), Woodford
(1990), and Yotsuzuka (1987).
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capital tax rates to suppress precautionary motives for asset accumulation, the government acts to alleviate

the source of the problem that leads to inefficient level of savings. Interestingly, the need to finance a stream

of government expenditures has nothing to do with the qualitative features of long-run optimal fiscal policy,

supporting the view that inefficiencies induced by incomplete markets drive these results.

The quantitative exercise in this paper also suggest that the Ramsey planner delivers a flow welfare level

in the long run that is significantly lower than those that can be achieved by alternative tax rates. This result

warns us about the quantitative literature that relies exclusively on maximizing the flow welfare in the long

run. There are at least two reasons why these limited results are misleading. First, given the initial state of

the economy, transition to a candidate steady state (in particular, the one that maximizes welfare in the long

run) can potentially require extreme policy measures to be implemented over any feasible transition path.

In this case, a benevolent tax authority would not implement a policy that leads to the prescribed steady

state since the policy would not be ex-ante optimal. Such a fiscal policy reform might not even be politically

feasible due to the heavy burden it imposes on the initial periods/generations. Second, a pure steady-

state analysis disregards the intertemporal incentives of the tax authority. By contrast, using the necessary

conditions for optimality, I look specifically for long-run optimal allocations that could be achieved following

an optimal transition path. In the quantitative section, I illustrate that a social planner who maximizes the

flow welfare in the long run would choose a very high capital income tax rate, a very low labor income

tax rate, and a negative government debt for the U.S. economy, qualitatively the complete opposite of the

long-run optimal fiscal policy.

The steady-state results I provide downplay the appeal of providing a complete solution to the Ramsey

problem for the sole purpose of determining long-run optimal fiscal policy. Therefore, an optimal transition

analysis is left for future research. On the other hand, the results highlight the importance of the transition

path in evaluating the source of the welfare gains. Since, by construction, the Ramsey planner maximizes

average discounted welfare over the entire time horizon, and settles with a relatively low steady-state wel-

fare, studying the optimal transition path is the only way to understand where the welfare gains come from.

To gain some insight on these issues, I provide a constrained transition analysis where I illustrate the ex-

istence of feasible and welfare-improving dynamic paths leading to the long-run optimal allocation, even

when the economy starts from an allocation that features the highest possible steady-state welfare. In all of

these transition paths, welfare gains come from consumption front-loading, and/or a significant reduction

in consumption inequality.

This research is closely related to the branch of literature that emphasizes the importance of the transition

path for the long-run policy. Domeij and Heathcote (2004) rank alternative fiscal policies by quantifying

welfare gains or losses associated with the transition to a steady state. However, they restrict the taxes to

3



be constant over the transition path. While this is a clear improvement over any approach that relies on

a steady-state welfare comparison, their analysis would provide a biased estimate of the welfare gains and

the steady state might not be long-run optimal.6 Gottardi, Kajii, and Nakajima (2011) provide a complete

characterization of the optimal dynamic fiscal policy under incomplete markets in a highly stylized model of

human-capital accumulation. Sacrificing the generality of the problem in favor of a complete solution, their

approach allows for elegant closed-form solutions. By contrast, this paper answers quantitative questions

within the confines of a workhorse model used in the study of heterogeneity in macroeconomics, keeping

the environment as general as possible.

This paper is also related to the recent literature on constrained efficiency. It is well-known that an

equilibrium allocation in a model with incomplete financial markets can be improved on, since welfare

theorems do not hold in this environment. Therefore, fiscal policy has a role that goes beyond the need to

finance government spending. The widespread view that saving is inefficiently high in Bewley-type models

was recently challenged. For a reasonably calibrated incomplete markets model, Davila et al. (2012) find

that the capital stock is too low in the U.S. economy from a constrained efficiency perspective, and it ought

to be higher, a result that crucially depends on the income composition of the consumption-poor. Indeed,

the authors recommend a capital income subsidy for the U.S. economy. Gottardi, Kajii, and Nakajima (2013)

draw a similar striking conclusion based on their constrained inefficiency analysis: whether the capital

income should be taxed or not has nothing to do with agents saving “too much” relative to a complete

markets economy. These results are obviously in sharp contrast with those of Aiyagari (1994a, 1995), who

proved that in the long run, capital income should be taxed, regardless of the calibration of the economy. I

provide a discussion of constrained efficiency from an optimal fiscal policy perspective, where I emphasize

that the differences in policy tools available to the government are largely responsible for the conflicting

views.

The next section presents the benchmark model and the notions of equilibrium in detail. Section 3 is a

steady-state analysis of the Ramsey problem under incomplete markets, illustrating the main result of the

paper. This is followed by calibration of the benchmark model in section 4, and quantitative results for

the U.S. economy in section 5. Section 6 provides a discussion of the transitional dynamics, and section 7

concludes.
6See Krueger and Ludwig (2013) and Bakis, Kaymak, and Poschke (2012) for more recent applications of the same approach. Bakis,

Kaymak, and Poschke (2012) report quantitative results that support the main message of this paper. In their analysis of optimal
progressivity of taxes, they show that a social planner who maximizes the steady-state welfare would choose a regressive tax scheme
whereas a constrained transition analysis yields a progressive tax scheme instead.
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2 Model

The environment is very similar to the one used by Aiyagari (1994a). Time t ∈ {0, 1, . . . ,∞} is discrete.

There is a continuum of ex-ante identical households of measure one, a representative competitive firm, and

a benovelent government that has access to a commitment technology. There are no aggregate shocks.

The government taxes, or subsidizes capital income at rate τkt, market labor income at rate τnt. It

also issues debt Bt, and finances an exogenous and constant stream of government expenditures Gt = G.7

Without loss of generality, I assume that tax burden is on the households. Let rt and wt represent the interest

rate and the wage at time t and let r̄t = (1− τkt)rt ≥ 0 and w̄t = (1− τnt) ≥ 0 represent factor prices net of

taxes.

2.1 Households

In every period, each household is subject to an idiosyncratic labor productivity shock et that follows a

discrete first-order Markov process with transition matrix M and support E = {e1, ..., ek}. I assume that there

is a unique non-degenerate stationary distribution π. Let (E, E) denote the measurable space of productivity

where E denotes all subsets of E. Let (Et, Et) denote the product space of labor efficiency shocks up to

and including period t. Let ht = {e0, e1, e2, . . . , et} ∈ Et represent a particular realization of idiosyncratic

productivities up until time t and define Π : Et → [0, 1] to denote the probability measure over the product

space of labor productivities. With some abuse of notation, I use Π(ht) to denote the date-0 probability of

realization of the history of shocks ht. Assuming that a law of large numbers holds, Π(ht) also represents

the mass of agents with this particular realization of history at time t. At period 0, agents draw from the

unconditional distribution π.

Financial markets are incomplete and agents only have access to a single risk-free asset that represents

claims to physical capital. In each period, agents are subject to an exogenous borrowing constraint at+1 ≥

−a. For illustrative purposes and to rationalize an egalitarian objective, I assume that all agents enter period-

0 with assets a0. I relax this assumption later for the quantitative results. Let A = [−a,∞) ⊂ R denote the

space for assets.

Households have access to two productive technologies. They can either work at the market (using a

fraction 0 ≤ nt ≤ 1 of total time) and earn the market wage net of taxes, etw̄tnt, or use the alternative

tax-free home-production technology H(1−nt) which satisfies H ′(1−n) > 0, H ′′(1−n) < 0, and H(0) = 0.

Every period, given a post-tax wage level w̄t and labor efficiency et, a household divides time optimally

7None of the steady-state results depend on the assumption that government expenditures are constant, as long as the expenditures
converge to some fixed level G in the long run.
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between the two production technologies. It is clear that there is no income effect on labor supply in this

model.8 The total labor income of a household, yt(ht, w̄t), and supply of market hours, nt(h
t, w̄t), satisfy

yt(h
t, w̄t) = y(et, w̄t) = max

0≤nt≤1
H(1− nt) + etntw̄t for each t, ht, (1)

nt(h
t, w̄t) = n(et, w̄t) = arg max

0≤nt≤1
H(1− nt) + etntw̄t for each t, ht. (2)

The budget constraint of a household is

ct(h
t) + at+1(h

t) ≤ at(h
t−1)(1 + r̄t) + y(ht, w̄t) for each t, ht (3)

at+1(h
t) ≥ −a for each t, ht

Households derive utility from consumption goods and their objective is to solve

V H(a0; r̄, w̄) = max
{at+1(ht),ct(ht)}

∞
∑

t=0

βt
∑

ht∈Et

Π(ht)u(ct(h
t)) (4)

subject to (1) and (3), given the sequence of post-tax prices r̄ = {r̄0, r̄1, . . . }, w̄ = {w̄0, w̄1, . . . }, and initial

condition a0(h
−1) = a0.

I assume that the per-period utility function u(c) satisfies the standard assumptions u′(c) > 0, u′′(c) < 0,

limc→0 u
′(c) = ∞. In addition, following the literature on incomplete markets, I assume that there exist

constants c̄, σ > 0 such that −u′′(c)c/u′(c) ≤ σ for all c ≥ c̄. The last assumption ensures (when the shocks

are i.i.d.), that the level of assets remain bounded in the long run for each agent provided that the long-run

return on assets is lower than the inverse of the discount rate.9

The policy functions solve the following system of necessary conditions:

−u′(ct(h
t)) + ηt(ht) + β(1 + r̄t+1)

∑

ht+1∈Et+1

Π(ht+1|ht)u′(ct+1(h
t+1)) = 0 for each t, ht

ηt(h
t)(at+1(h

t) + a) = 0 for each t, ht

8The absence of income effect is important for obtaining cleaner results on the steady-state properties of the Ramsey problem and
the distinction drawn between a complete markets and an incomplete markets economy in the later sections does not rely on this
particular assumption. However, it is not clear whether the qualitative features of the model hinge on this assumption. Based on the
quantitative findings, it is reasonable to expect that similar results hold for an alternative model that features limited income effect on
labor supply.

9To the best of my knowledge, there is no proof of assets being bounded in the long run when the shocks are persistent. Due to
absence of theoretical results, following the literature, I verify this quantitatively. On the other hand, assets being bounded is a sufficient
condition for the Ramsey problem to be well-defined. Per-capita levels of all quantities can be bounded even when the relevant state
space is not compact. See Szeidl (2013). Unfortunately, theoretical results in this direction are limited.

6



ηt(h
t) ≥ 0 for each t, ht

lim
t→∞

βt
E[u′(ct(h

t))(at+1(h
t) + a)] = 0

where βtΠ(ht)ηt(h
t) is the date-t history-ht multiplier attached to the borrowing constraint. Let gt : Et → A

denote the policy function for assets; gt is measurable with respect to (Et, Et).

2.2 Representative Firm

The output net of depreciation, F (K,N) is constant-returns-to-scale, satisfying the usual neoclassical as-

sumptions FK > −δ, FN > 0, FKK < 0, FNN < 0, limK→0 FK = ∞, limN→0 FN = ∞.

The firm’s objective is to maximize profits in each period t. Therefore the following conditions are

satisfied:

rt = FK(Kt, Nt) (5)

wt = FN (Kt, Nt).

2.3 The government

The government has the following budget constraint in each period:

rtτktAt + wtτntNt +Bt+1 ≥ Gt + (1 + rt)Bt

where At = Kt −Bt is the aggregate assets held by the households in the economy.

Using the CRS assumption for the market technology, adding F (Kt, Nt) to both sides, one can express

this constraint in terms of post-tax prices:

Gt + (1 + r̄t)Bt + r̄tKt + w̄tNt ≤ F (Kt, Nt) +Bt+1 (6)

2.4 Competitive Equilibrium with Fiscal Policy

The competitive equilibrium in this economy can be defined in the standard way.

Definition 1 For given initial conditions (a0, B0) and time paths r̄, w̄, B, a competitive equilibrium with

fiscal policy consists of a household value function V H(.); household policy functions gt(.), nt(.); and sequences
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Ct, Kt, Nt, Ht, At, rt, and wt such that the following are satisfied:

1. The policy function gt(.) and value function V H(.) solve problem (4), nt(.) satisfies equation (2),

2. Given the sequence of factor prices rt, wt, the representative firm maximizes profits: Kt and Nt satisfy (5),

3. The government resource constraint (6) is satisfied.

4. All markets clear:

Asset market clearing

Kt = At −Bt for each t (7)

Goods market clearing

Ct +Gt +Kt+1 = F (Kt, Nt) +Ht +Kt for each t

Labor market clearing

Nt =
∑

ht∈Et

Π(ht)etnt(h
t, w̄t) for each t (8)

Sequences At+1 and Ht are generated by household policy functions:

At+1 =
∑

ht∈Et

Π(ht)gt(h
t; r̄, w̄) for each t (9)

Ht =
∑

ht∈Et

Π(ht)H(1− nt(h
t, w̄t)) for each t.

2.5 Ramsey Problem

In period 0, government chooses a sequence of prices r̄, w̄, and debt B in order to maximize a utilitarian ag-

gregate of sum of discounted utilities for all households, subject to market clearing and government resource

constraints. This defines the Ramsey problem in this environment.

Definition 2 Given the initial level of assets a0 and government debt B0, household policy functions gt(.) and

nt(.), and the exogenous government expenditure process Gt, the Ramsey Problem consists of the choice of

sequences of post-tax factor prices r̄ = {r̄0, r̄1, ...}, w̄ = {w̄0, w̄1, ...}, and government debt B = {B1, B2, ...}

that solve
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V (a0, B0) = max
r̄,w̄,B

V H(a0, r̄, w̄) (10)

subject to (6), (7), (8), and (9), given a0, B0.

It is clear that every solution to the Ramsey Problem is a competitive equilibrium allocation with taxes.

Since household policy functions depend on prices in all periods, a marginal change in date-t post-tax prices

would in general alter consumption and savings decisions for all periods.10 One standard way to simplify this

problem is to eliminate the household’s problem (interior problem) by using implementability constraints.

This approach is valid since, given any sequence of prices, the household’s problem is convex. Therefore the

first-order conditions of the household are necessary and sufficient for an optimum.

V (a0, B0) = max
{r̄t,w̄t,Bt+1,at+1(ht),ct(ht),ηt(ht)}

∞
∑

t=0

βt
∑

ht∈Et

Π(ht)u(ct(h
t)) (11)

subject to

ct(h
t) + at+1(h

t) ≤ at(h
t−1)(1 + r̄t) + y(ht, w̄t) for each t, ht

u′(ct(h
t))− ηt(h

t) = β(1 + r̄t+1)
∑

ht+1

Π(ht+1|ht)u′(ct+1(h
t+1)) for each t, ht

ηt(h
t)(at+1(h

t) + a) = 0 for each t, ht

Gt + (1 + r̄t)Bt + r̄tKt + w̄tNt ≤ F (Kt, Nt) +Bt+1 for each t

Kt+1 =
∑

ht∈Et

Π(ht)at+1(h
t)−Bt+1 for each t

Nt =
∑

ht∈Et

Π(ht)etnt(h
t, w̄t) for each t

given (1), (2), and initial conditions a0(h−1) = a0 and B0.

Next, I write a Lagrangian for problem (11). Let βtΠ(ht)λt+1(h
t) represent the multiplier for the date-

t, history-ht Euler equation, and let βtΠ(ht)ζt(h
t) represent the multiplier for the Kuhn-Tucker condition

for the borrowing constraint. By carrying terms across time periods, I obtain the following formulation,

incorporating only the implementability constraints into the objective function:

10Due to absence of wealth effect on labor supply, this is not true for labor supply decisions. Labor supply at time t is only affected by
the post-tax wage level at time t.
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L =

∞
∑

t=0

βt
∑

ht∈Et

Π(ht)

[

u(ct(h
t)) + u′(ct(h

t))
[

λt(h
t−1)(1 + r̄t)− λt+1(h

t)
]

(12)

+ λt+1(h
t)ηt(h

t)− ζt(h
t)ηt(h

t)(at+1(h
t) + a)

]

subject to

ct(h
t) + at+1(h

t) ≤ at(h
t−1)(1 + r̄t) + y(ht, w̄t) for each t, ht

Gt + (1 + r̄t)Bt + r̄tKt + w̄tNt ≤ F (Kt, Nt) +Bt+1 for each t

Kt+1 =
∑

ht∈Et

Π(ht)at+1(h
t)−Bt+1 for each t

Nt =
∑

ht∈Et

Π(ht)etnt(h
t, w̄t) for each t

given (1), (2), and initial conditions a0(h−1) = a0, B0 and λ0(h
−1) = 0.

Observe that agents start with multipliers λt(h
t) equal to zero since at period-0, there are no “Euler

equation promises” to be kept.

Problem (11) is not stationary and it involves constraints that are forward-looking. For instance, choice

variable r̄t+1 shows up as part of Euler equation constraints that belongs to period t. Therefore recursive

methods cannot be applied directly. Following Marcet and Marimon (2011), I expand the state space of

the problem to include Lagrange multipliers of the dynamic implementability constraints (in this case, Euler

equations) to recover stationarity. To be more precise, although the primary problem (11) does not admit

a recursive structure, the Lagrangian (12) does, once we keep track of the multipliers along with the usual

state variables, assets and labor efficiency. Since there is a continuum of households, the relevant state

variable for the Ramsey planner is the joint distribution of these 3 variables.11

It is also straightforward to show that if an agent hits the borrowing constraint, i.e. at+1(h
t) = −a,

then λt+1(h
t+1) = 0. This allows us to simplify the problem by eliminating the multipliers ζt and ηt and

formulating the problem using simple complementary slackness conditions.

Let L = [0,∞) represent the space for multipliers. For the recursive representation, I index all households

by (s, e) ≡ (a, λ, e) ∈ A×L×E. Let Σs represent the Borel σ-algebra on A×L, and Σ represent the product

11To be more precise, Marcet and Marimon (2011) constructs the recursive Lagrangian by “dualizing” the dynamic incentive con-
straints (Euler equations in my case) period by period, assuming that the solution to the primal problem is a saddle-point of the
corresponding Lagrangian. An earlier draft of their paper (1994) features the Ramsey problem under complete markets as an example,
whose formulation looks very similar to this model.
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σ-algebra on A × L × E. P represents the set of all probability measures over Σ with typical elements

µ, µ′ ∈ P.

Let µ0 be the distribution with all probability mass on a = a0 and λ = 0. Then we have V (a0, B0) =

W (µ0, B0) where W : P× R → R solves:

W (µ,B) = min
λ′(.)≥0

max
r̄,w̄,B′,a′(.),c(.)

∑

e

∫

u(c(.)) + u′(c(.))
[

λ(1 + r̄)− λ′(.)
]

µ(ds, e) + βW (µ′, B′) (13)

subject to

c(.) + a′(.) ≤ a(1 + r̄) + y(e, w̄) a.e. µ (14)

λ′(.) = 0 if a′(.) = −a a.e. µ

G+ (1 + r̄)B + r̄K + w̄N = F (K,N) +B′

K =
∑

e

∫

aµ(ds, e)−B

N =
∑

e

∫

en(e, w̄)µ(ds, e) =
∑

e

πeen(e, w̄)

µ′(S′, e′) =
∑

e

πee′

∫

I[(a′(.), λ′(.)) ∈ S′]µ(ds, e) for each S′ ∈ Σs and each e′ ∈ E

given (1) and (2), where a′(µ,B, s, e), λ′(µ,B, s, e) and c(µ,B, s, e) denote the choice of assets, multipliers,

and consumption respectively. I[.] is the indicator function taking a value of 1 if the condition in the brackets

is true, and 0 otherwise.

For the rest of the exposition, I will denote the policy function for assets and multipliers by a′ =

g(µ,B, s, e) and λ′ = h(µ,B, s, e) respectively. In the appendix, I show that the following first-order-

conditions are necessary at an interior (with respect to policy variables r̄, w̄ and B) solution to the Ramsey

problem.
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Proposition 1 An interior solution to the Ramsey problem satisfies the following conditions:

λ′ = h(.) : u′(c) ≥ β(1 + r̄′)E[u′(c′)|e] with equality if a′ > −a, a.e. µ

a′ = g(.) : u′(c) + u′′(c)
[

λ(1 + r̄)− λ′
]

= β(1 + r̄′)E

[

u′(c′) + u′′(c′)
[

λ′(1 + r̄′)− λ′′
]

|e

]

+ βγ′(FK(K ′, N ′)− r̄′) if a′ > −a, otherwise λ′ = 0, a.e. µ

B′(µ,B) : γ = β(1 + FK(K ′, N ′))γ′

r̄(µ,B) : γA =
∑

e

∫

u′(c)λµ(ds, e) +
∑

e

∫

a

(

u′(c) + u′′(c)
[

λ(1 + r̄)− λ′
]

)

µ(ds, e)

w̄(µ,B) : γN = γ(FN (K,N)− w̄)N ′(w̄) +
∑

e

∫

en(e, w̄)

(

u′(c) + u′′(c)
[

λ(1 + r̄)− λ′
]

)

µ(ds, e)

where γ is the multiplier for the government budget constraint.

Observe that at an optimal solution, a functional household Euler equation must be satisfied. Due

to the particular structure of this problem, the household-specific multiplier λ does not appear directly

in this equation. This property will allow me to conjecture that the policy function for assets satisfy

a′ = g(µ,B, a, λ, e) = g(µ,B, a, λ̃, e), for all λ, λ̃ ∈ L. Note that if this property does not hold over a set

of agents with positive measure, the planner effectively chooses different consumption and savings for two

types of households with the same asset and labor efficiency levels, but with different histories (hence λ).

Clearly, this cannot hold over an optimal path since this would violate the sequences of implementability

constraints for at least one of those households.12 This is not equivalent to stating that these multipliers are

irrelevant. The distribution of multipliers is a component of the planner’s state variable µ, and matters for the

planner’s choice of post-tax prices; this can be seen in the first-order conditions for r̄ and w̄. These post-tax

prices, in turn, show up in the household’s Euler equation and so affect consumption and saving. However,

conditional on the distribution of multipliers, two households with the same assets and labor efficiency will

have the same consumption and saving, independent of their particular values of λ. I will henceforth assume

that the policy function for assets takes the form a′ = g(µ,B, a, e) which simplifies the problem significantly.

3 Steady-State Analysis of the Ramsey Problem

Having provided the details of the model, we next seek the answer to the following question: Which steady

states, if any, could be optimal in the long run? This is not merely an investigation of a steady state that

12Assuming that the solution to the recursive problem is equivalent to the solution to the sequential problem, the time-series generated
by the recursive problem must be consistent with the consumption-savings plans of households who take the sequence of prices as given,
since these are internalized by the implementability conditions.
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maximizes flow welfare at the steady state. By contrast, this is an investigation of the limiting values of the

policy variables of an optimal transition. In particular, government’s discounting over the whole planning

horizon is taken into account. For the discussion that follows, I will refer to these limiting values and the

induced allocation as the “long-run optimal steady states”, or “Ramsey steady states”.

This “steady state refinement” turns out to be quite powerful. For many parameterizations of the model,

quantitative results show that a unique steady state survives this refinement. This property is particularly

surprising in this environment. It is well known that the complete markets benchmark can accommodate

multiple steady states, each of which can potentially be optimal for a different set of initial conditions. In-

deed, in the Chamley-Judd benchmark, there is no way of figuring out the long-run optimal labor taxes,

government debt, private assets and consumption levels without providing a complete solution to the prob-

lem, and without taking a stand on the initial conditions of the economy.13

To understand why we have an indeterminacy in the complete markets benchmark, it is illuminating to

take a closer look at the first-order necessary conditions of the planner for a version of the benchmark model

without uncertainty. To this end, we seek the steady state of the Ramsey problem with no idiosyncratic risk in

which consumption C, private assets A, post-tax prices r̄, w̄, government debt B, and exogenous government

expenditure G are constant. Below, I provide only a heuristic characterization of the steady state under

complete markets since the detailed proofs are available in Chamley (1986) for a slightly different version of

the same model. The following equations constitute the first-order necessary conditions of a planner when

there are no idiosyncratic shocks:

λt+1 : u′(Ct) = β(1 + r̄t+1)u
′(Ct+1) (15)

At+1 : u′(Ct) + u′′(Ct)
[

λt(1 + r̄t)− λt+1

]

= β(1 + r̄t+1)

[

u′(Ct+1) + u′′(Ct+1)
[

λt+1(1 + r̄t+1)− λt+2

]

]

(16)

+ βγt+1(FK(Kt+1, Nt+1)− r̄t+1)

Bt+1 : γt = β(1 + FK(Kt+1, Nt+1))γt+1 (17)

r̄t : γtAt = u′(Ct)λt +At

(

u′(Ct) + u′′(Ct)
[

λt(1 + r̄t)− λt+1

]

)

(18)

w̄t : γtNt = γt(FN (Kt, Nt)− w̄t)N
′(w̄t) +Nt(w̄t)

(

u′(Ct) + u′′(Ct)
[

λt(1 + r̄t)− λt+1

]

)

(19)

13See Lucas (1990) for a discussion of this point for an infinite-horizon model. Auerbach and Kotlikoff (1987) makes the same point
for a life-cycle model.
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Absent idiosycratic risk, since C = Ct = Ct+1 at a steady state, the household’s Euler equation (15)

reads β(1 + r̄) = 1. The government’s Euler equation (17) implies the modified golden-rule holds, i.e.

β(1 + FK(K,N)) = 1 at a steady state. Combining these two equations, as one would expect, we obtain the

Chamley-Judd zero capital tax result r̄ = r = FK(K,N).14 It is straightforward to show that imposing the

zero-tax result, the first-order condition for assets (equation (16)) becomes redundant. Now, observe that

the steady-state versions of the first-order conditions for r̄ and w̄ (equations (18) and (19)), the modified

golden-rule expression β(1 + FK(K,N)) = 1, along with steady-state household and government budget

constraints constitute 5 independent equations with 6 unknowns w̄, B, A, C, λ and γ (treating labor supply

N(w̄) to as a function of w̄).

What causes this system to be underdetermined in the Chamley-Judd benchmark? Since capital income

tax is non-distortionary in the initial period, it is efficient to impose confiscatory capital income taxes. Fol-

lowing the initial period, optimal capital tax rate converges to zero very rapidly, and in a large class of

models, this rate is independent of the initial conditions.15 The optimal policy, under complete markets, is to

front-load all intertemporal distortions, which is shown rigorously in a more general framework by Albanesi

and Armenter (2012). However, the fact that capital income should not be taxed in the long run is not suf-

ficient to define the optimal long-run policy completely. Given that capital tax rate ought to be zero except

for the few initial periods, the present value of labor income tax revenue is determined, to a large extent,

by the initial debt and present value of government expenditures net of initial capital levy available to the

government. The level of debt to be serviced in the long run, and the long-run labor income tax are jointly

determined by the optimal way to smooth these tax distortions over time.

Another way to see this point is to look at the structure of the representative household’s problem. With

no idiosyncratic risk and no borrowing constraints, given any sequence of prices (r̄, w̄) that converge to

steady-state values, the representative household’s Euler equation holds with equality in every period t.

Therefore, the initial level of assets (along with a transversality condition) determines the consumption and

asset levels at the steady state. It is clear that there is no hope of studying the steady-state levels of these

variables without making a reference to the initial conditions. Indeed, since β(1 + r̄) = β(1 + FK) = 1

holds, the steady-state version of the household’s Euler equation provides us no information about the level

of consumption in the long run.

14Both Chamley (1986) and Judd (1985) pointed out that government having access to debt is not responsible for the zero capital
tax result. In this economy, absent debt, household Euler equation implies positive capital tax (β(1 + r̄) < 1) leads to u′(Ct) → ∞,
and a capital subsidy (β(1 + r̄) > 1) leads to u′(Ct) → 0. In this sense, there are actually two independent reasons why capital tax
rate is zero in the long run for a complete markets economy.

15For instance, when the utility function is separable in consumption and leisure, and consumption utility function is of CRRA type,
optimal capital tax rate is zero for all t ≥ 1. See Chari and Kehoe (1999). Obviously, this result holds true for more general environments
if the initial capital levy equals the present value of all government expenditures. This is equivalent to having access to a lump-sum tax,
since the government does not need to resort to distortionary taxation.
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This observation led many economists to conjecture that an analogous result holds in economies with

incomplete markets and heterogeneous agents, i.e. the premise that long-run optimal fiscal policy and

allocation depend on initial conditions of the economy. I argue below that the problem of indeterminacy,

a characteristic of complete markets economy, does not arise in a Bewley-type economy. For the discussion

to follow, I provide the steady-state versions of the optimality conditions in Proposition 1, where I drop the

distribution as a state variable due to stationarity.16

λ′(a, λ, e) : u′(c) ≥ β(1 + r̄)E[u′(c′)|e] with equality if a′ > −a (20)

a′(a, λ, e) : u′′(c)
[

λ(1 + r̄)− λ′
]

= β(1 + r̄)E

[

u′′(c′)
[

λ′(1 + r̄)− λ′′
]

|e

]

(21)

+ βγ(FK(K,N)− r̄) if a′ > −a, otherwise λ′ = 0

r̄ : γA =
∑

e

∫

u′(c)λµ(ds, e) +
∑

e

∫

a

(

u′(c) + u′′(c)
[

λ(1 + r̄)− λ′
]

)

µ(ds, e)

(22)

w̄ : γN = γ(FN (K,N)− w̄)N ′(w̄) +
∑

e

∫

en(e, w̄)

(

u′(c) + u′′(c)
[

λ(1 + r̄)− λ′
]

)

µ(ds, e)

(23)

My argument hinges critically on the optimal positive capital income tax result provided by Aiyagari

(1995). He proved, as an intermediate step, that the modified golden-rule property still holds in this envi-

ronment; this follows from the steady-state version of the government’s Euler equation.17 It is well-known

that, as long as there is idiosyncratic risk, β(1+ r̄) < 1 is necessary for the stationarity of the joint distribution

of assets and labor efficiency in the long run.18 Aiyagari’s (1995) long-run optimal positive capital income

tax result, r̄ < FK , follows immediately from these two observations. Also note that at an optimal solution

to the Ramsey problem, the households are more impatient than the government in the long run.19

Observe that, given any optimal steady-state candidate post-tax prices (r̄, w̄) such that β(1+ r̄) < 1 holds,

standard methods in Aiyagari (1994b) and Huggett (1993) can be used to solve the household Euler equation

16Observe that I assume implicitly that the joint distribution of (a, λ, e) converges to a stationary invariant distribution. A potential
problem arises from the fact that under the given assumptions, there is no guarantee that λ is bounded or that there is an ergodic set
for λ. The numerical algorithm explained in the appendix actually does not impose any boundedness assumptions on the multipliers.
As long as the relevant moments of the distribution are finite, the problem is still well-defined. Although I do not provide a proof in this
paper, it should not be surprising that λ remains bounded in this weaker sense since it follows a process which resets whenever assets
hit the lower bound; this happens with probability one for any household.

17Aiyagari (1995) assumes that government spending is endogenous. This makes his proof more transparent because the multiplier
γ on the government’s budget constraint is equal to the marginal utility of government spending. However, he noted that the modified
golden-rule result still holds even when government expenditure is exogenous. See footnote 15 in Aiyagari (1995).

18See Schechtman and Escudero (1977).
19Households are impatient in the sense that they would deplete all assets given the post-tax prices in the hypothetical case of no

uncertainty. Since there is no uncertainty at the aggregate level, government is “patient”, i.e. β(1 + FK(K,N) = 1 holds.
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for the saving policy in the long run. Equilibrium saving policy, under standard technical conditions, provides

us the stationary distribution of assets and consumption. All of this is possible thanks to a particular feature

of Bewley-type models: Given that β(1 + r̄) < 1 holds and the households face idiosyncratic uncertainty, the

tension between impatience and the incentives to engage in precautionary saving ultimately defines a stable

invariant distribution, whose moments pin down the steady-state aggregate levels of household variables.20

In a nutshell, any candidate long-run optimal price pair (r̄, w̄) determines the average levels of private assets

and consumption under incomplete markets. In the complete markets benchmark, none of them do! I

exploit this feature to solve the system of necessary conditions to characterize long-run optimal fiscal policy

and allocation without having to solve for the transition. This is possible because the relevant system of

equations is not underdetermined.

Why is it the case that we can study long-run optimal fiscal policy in a Bewley-type economy independent

of the initial conditions? The discussion above points out that this is a feasible procedure, but it is silent

on why there is a disconnect between the initial period and the state of the economy in the long run.

A rigorous proof of the irrelevance of initial conditions is beyond the scope of this paper. The difficulty

arises from the fact that there are no theoretical results even on the convergence of the optimal Ramsey

solution to a steady state. However, assuming that the solution converges to a steady state, we can suggest a

particular characteristic of the Bewley-type models to be responsible for this result: As long as the borrowing

constraints are tighter than the natural borrowing limits, and β(1 + r̄) < 1 holds, every agent hits the

borrowing constraint infinitely often.21 Every time an agent faces the borrowing constraint, the process that

determines the intertemporal allocation of resources is “reset”, resulting in history-independence. From a

date-0 planner’s perspective, marginal change in tax rate in period t sufficiently far into the future has no

effect on an agent’s saving decision for earlier time periods due to the wedge in the Euler equation for periods

in which the agent hits the borrowing constraint.22

To further motivate this point, it is illuminating to concentrate on some of the established results in the

life-cycle literature. Erosa and Gervais (2002) show that initial conditions play no role in the determination

of long-run optimal fiscal policy, as long as there are no wealth transfers across generations. The relevance

20See Deaton (1991), Carroll (1997), Szeidl (2013) and others for an extensive discussion.
21An interesting case is one in which the agents are subject to the natural borrowing limit. In the current model, when long-run prices

are (r̄, w̄), this limit would be −
y(e1,w̄)

r̄
where e1 is the lowest idiosyncratic shock realization. However, under the natural borrowing

limit, some of the crucial moments of the stationary distribution that appear in the first-order necessary conditions are not defined.
In particular, marginal utility u′(c) is not integrable with respect to the measure µ, and neither is u′(c) + u′′(c)[λ(1 + r̄) − λ′]. For
example, if u′(c) were integrable, integrating both sides of household’s Euler equation (which holds with equality almost surely) (20)
and cancelling out integrals, we would get β(1 + r̄) = 1, which cannot hold in the long run. Therefore, it is not clear whether the
Ramsey problem is well-defined for this case.

22To understand the intuition, suppose heuristically that for a sequence of prices (r̄, w̄), an agent hits the borrowing constraint with
probability one before period T < ∞. Then a marginal increase in r̄t where t > T will have no effect on savings choice in period 0.
This is due to the fact that with probability one, there exists period k ≤ T at which Euler equation between periods k and k+1 is slack.
If this property holds true for all agents in the economy, there would be a disconnect between t = 0 and t = T .
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of their result stems from the fact that Bewley-type models feature agents who have a sequence of finite

planning horizons of uncertain length, similar to overlapping-generations models, as described by Aiya-

gari (1994a) and Aiyagari and McGrattan (1998). The long-run stationary distribution of the Bewley-type

economy resembles the cross-sectional distribution in a typical life-cycle model. The borrowing-constrained

agents in the former model act like the new-born generation in the latter model, who start their lives with

assets a = −a.

Fortunately, whether initial conditions matter for the long-run policy can be resolved quantitatively by

figuring out whether a unique policy and corresponding allocation solve the system of necessary equations

for optimality. Since optimal steady states constitute a subset of the steady states that satisfy the modified

golden-rule, the first step is to identify the latter set. For this, I follow Aiyagari (1994a) and show that w̄

can be used as an index for all such steady states. To see this, we can write the steady-state version of

government budget constraint as

A = K +B =
F (K,N)− w̄N −G

r̄

Due to assumption of constant returns to scale, K
N

is equal across all steady states that satisfy the modified

golden-rule. Since aggregate labor supply depends only on w̄, given w̄ (and G), F (K,N) − w̄N − G is

completely determined. Therefore the right-hand-side of the above expression is strictly decreasing in r̄ (for

r̄ > 0). On the supply side, for a fixed w̄, the aggregate steady-state savings A, is strictly increasing in r̄

without bound.23 This implies that there is at most one r̄ that solves the above equality for any given w̄.

Therefore, in practice, I can compute steady-state values of all variables and associate them with the post-

tax market wage. I let r̄(w̄) denote the associated post-tax interest rate and m(a, e; w̄) denote the long-run

distribution of (a, e) for given prices (r̄(w̄), w̄).

Following this step, for each such steady-state allocation, using equations (21) and (22), I solve for the

supporting multiplier policy λ′ = h(a, λ, e; w̄) and γ. Observe that this is possible since given any candidate

value for γ and the policy function a′ = g(a, e; w̄), the functional equation (21) can be solved for λ′(a, λ, e; w̄).

The policy functions can then be used to compute the stationary joint distribution µ(a, λ, e; w̄). The relevant

moments of the distribution are next used to pin down the value of γ using equation (22). As a final step,

I check whether the last necessary condition (23) is satisfied. In my quantitative analysis, for all parameter

values I used, there was a unique policy that satisfied the last necessary condition. The numerical procedure

is explained in detail in the computational appendix.

23One caveat is that even when w̄ is fixed, the relationship between r̄ and A might not be monotone due to potentially prevalent
income effect on savings. On the other hand, in this class of models, it is very difficult to generate an example where this is the case.
Not surprisingly, for all my quantitative results, A(r̄) is monotonically increasing in r̄, given w̄.
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4 Model Specification and Calibration

The quantitative exercise involves the thought experiment of comparing the current system in the U.S. with

those that would be chosen by a Ramsey planner in the long run. Some of the key parameters in the model,

such as those related to the home-production technology, and the subjective discount rate, are identified

from the steady-state labor supply and savings choices of the households, who respond to the current tax

system optimally. The remaining parameters are either obtained from previous studies, or directly matched

to their counterparts in the data.

I use a CRRA-type utility function and a home-production function that induces a constant elasticity of

labor supply

u(c) =
c1−σ − 1

1− σ

H(1− n) = θ−
1
γ
1− n1+ 1

γ

1 + 1
γ

With this functional form, for an agent with efficiency e, labor supply satisfies

n(e, w̄) = min{θ(ew̄)γ , 1}

where γ > 0 represents the labor supply elasticity at an interior solution.

The production function is assumed to be of Cobb-Douglas type:

F (K,N) = K1−αNα − δK

The stochastic process for labor efficiency et follows the AR(1) process

log(et+1) = const+ ρ log(et) +
√

σ2
e(1− ρ2)ǫt

where ǫt ∼ N(0, 1).

The model period is assumed to be a year. I use δ = 0.08 for the depreciation rate and α = 0.64 for the

labor share in the production function, these are standard in the literature.

I use a coefficient of risk aversion of σ = 2 for the benchmark calibration and use a range of values σ ∈

[1.0, 4.0] for comparison. The quantitative results depend critically on the labor supply elasticity, therefore I

report results for a range of values γ ∈ [0.5, 2.0], using γ = 1.0 for the benchmark calibration. These different
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values capture a wide range of estimates provided in the literature. I assume that agents cannot borrow for

all quantitative results, i.e. a = 0.

I use the annual estimates by Chang and Kim (2006) for the labor efficiency process, ρ = 0.818 and

σe = 0.506. These are obtained from PSID data for 1971-1992. The constant term is chosen such that

E(e) = 1.0. I discretize this continuous process using 9 grid points {e1, . . . , e9} following Tauchen (1986).24

I use a capital-to-market production ratio of K/Y = 3, which is a reasonable value for the U.S. economy.

Using the constant-returns-to-scale property of the production function, this value implies a pre-tax real

interest rate and wage level of r = 0.04 and w = 1.19 respectively.

Domeij and Heathcote (2004) report average tax rates in the U.S. to be around 39.7% for capital income

and 26.9% for labor income. Following these results, I assume a 40% capital tax rate, (τk = 0.40) which

implies a post-tax rate of r̄ = 0.024. I use 27% labor tax rate, (τn = 0.27) which implies w̄ = 0.87. Given

w̄, I choose θ = 0.39 to match per-capita market hours equal to 1/3. Given the parameter values and labor

supply N , other steady-state aggregates, in particular, capital K, market production Y and home-production

H are uniquely pinned down.

Government expenditure G = 0.14 is set such that at the initial steady state, it constitutes 17% of the

market production, the annual average of post-war U.S. data.

Given post-tax prices w̄, r̄, using the household’s problem, the discount rate uniquely determines the

steady-state demand for private assets A. Using the monotonicity of the asset demand function with respect

to discount rate, a value of β = 0.9749 is chosen such that the government budget constraint balances at the

steady state.25 The steady-state government debt level is then determined from B = A−K. All parameters

values used in the benchmark calibration are summarized in table 1.

In the next section, I present and discuss the results for the benchmark calibration as well as alternative

parameterizations of the model.

5 Results and Discussion of Findings

For all calibrations of the model, I numerically computed the optimal steady state using the methods dis-

cussed in section 3 and in more detail in the appendix. To make a comparison with other steady states, I also

24Continuity of the aggregate labor elasticity is critical in establishing existence of a solution to the Ramsey problem. With discretiza-
tion, even though N(w̄) is continuous throughout the entire range of w̄, N ′(w̄) exhibits jumps at points where certain types of agents
hit the n = 1 limit. This problem is overcome by increasing the number of grid points until N ′(w̄) becomes continuous over the relevant
range for w̄.

25Comparative-statics analysis of this class of models is a challenging task, but some results are available in the recent literature.
Acemoglu and Jensen (2012) prove monotonicity of the supply of assets with respect to the discount rate.
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solved for all steady states that satisfy the modified golden-rule over a grid-point of labor tax rates.26

5.1 Long-Run Optimal Fiscal Policy

Table 2 summarizes the long-run optimal tax rates. Not surprisingly, labor income tax rate is very sensitive

to the labor supply elasticity. What is quite striking is that the magnitude of the labor tax rate is quite large

for all parameter values. Under benchmark calibration with γ = 1.0, labor tax rate is about 48%, about 22

percentage points higher than the observed average labor tax rates based on the figures reported by Domeij

and Heathcote (2004). Low labor elasticity (γ = 0.5) and high elasticity (γ = 2.0) cases generate long-run

labor tax rates of 65% and 36% respectively, both of which are significantly above the U.S. average.

An equally interesting observation is that long-run optimal capital income tax rate is very low for all

parameter values. Under benchmark calibration, the capital tax rate is about 2%, much lower than the U.S.

average of 40%. The corresponding figures for low labor elasticity (γ = 0.5) and high elasticity (γ = 2.0)

cases are 0.3% and 5.7% respectively. It is obvious that labor elasticity and steady-state capital tax rate are

positively related. In this model, high elasticity of labor supply corresponds to a high labor income risk,

consequently, the precautionary savings motive is more pronounced under high labor elasticity leading to

inefficiently high level of savings. The Ramsey planner optimally responds to suppress these incentives by

increasing capital taxes accordingly. As intertemporal elasticity of substitution goes up from 0.25 to 1.00

(under benchmark labor supply elasticity of γ = 1.0), the long-run optimal capital tax rates goes down from

4.3% to 1.0%, both of which are much lower than the current U.S. average.

For all parameter values used in the quantitative exercise, the optimal debt-to-GDP ratio (more pre-

cisely, debt-to-market production in this model) is much higher than the observed values in the U.S.27 The

benchmark calibration suggests that optimal debt-to-GDP ratio for the U.S. ought to be 4.19. Alternative

parameterizations yield values ranging from 3.34 (γ = 0.5 and σ = 1.0) to 6.83 (γ = 2.0 and σ = 1.0).

Figures 1 and 2 exhibit long-run optimal tax rates and debt-to-GDP ratios for the entire range of labor supply

elasticities and intertemporal elasticities of substitution.

To get a better sense of why the model delivers quite extreme values, we can compare the optimal steady

state to all other steady states that satisfy the modified golden-rule property. Figures 3-6 summarize all

numerical findings. For all figures, the dashed vertical line marks the labor income tax rate for the optimal

steady state.

Figure 4 gives us a clear picture of what the government would like to achieve in the long run. First,

26As discussed in section 3, I can index all steady states by post-tax wage rate w̄. Since pre-tax wage is fixed for all steady states that
satisfy the modified golden-rule, I can also use labor tax rate as an index.

27Debt-to-GDP ratio averaged 0.60 over the period 1990-2008 and has been increasing since 2008, up to around 1.00 in 2012.
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the level of government debt is maximized at the optimal steady state, conditional on satisfying the modified

golden-rule. With the given parameter values, there is a unique such point. Second, the average labor share

of income is close to being minimized.28 To gain some more insight on these incentives of the planner, we

can look at the steady state version of the budget constraint of a typical household. Defining k ≡ a − B,

adding and subtracting relevant terms to equation (14), we obtain the following equivalent formulation at

the steady state:

c+ k′ ≤ k(1 + r̄) + y(e, w̄) + r̄B

k′ ≥ −B

Issuing debt which is financed through labor income taxes plays a dual role. First, the borrowing con-

straints are effectively relaxed, an observation made very early on in the literature.29 Second, the households

are exposed to less risk since the riskless part of income goes up through the r̄B term and the risky com-

ponent y(e, w̄) goes down through taxes on labor income. The government can neither absorb all the risk,

nor relax the borrowing constraints all the way by issuing debt excessively, because the tax revenues are

bounded in this model. The efficient level of debt should induce optimal smoothing of tax-burden over time

which implies the modified golden-rule property holds in the long run.

Motivated purely by the prediction that agents save “too much” in this model vis-á-vis the complete

markets benchmark, one would expect the government to tax capital somewhat heavily depending on the

degree of market incompleteness. It is clear, however, that the scope of intervention through capital taxes

remains fairly limited quantitatively. Instead, the results point to the direction that the government provides

the necessary adjustment by suppressing the source of the problem, rather than correcting its consequences.

This is achieved by (i) alleviating the labor income risk through reduction of labor share of income, and

(ii) effectively relaxing borrowing constraints by issuing debt. The quantitatively small capital income tax

also suggests that Chamley-Judd zero-capital-tax result is not too far from optimal even under incomplete

markets.

The features of the long-run fiscal policy are independent of whether the government needs to finance ex-

28Average labor share of income is calculated as follows:

ALS(w̄) =

∫

y(e, w̄)

r̄(w̄)a+ y(e, w̄)
µ(ds; w̄)

where µ(.; w̄) is the steady-state distribution and r̄(w̄) is the post-tax interest rate that clears all markets, satisfying the modified
golden-rule when the post-tax wage level is w̄.

29This argument is exact when the government has access to lump-sum taxes, i.e. a marginal increase in debt is observationally
equivalent to a marginal relaxation of borrowing constraints. In this model, all taxes are distortionary, therefore this is only suggestive.

21



penditures, supporting the premise that inefficiencies induced by incomplete markets drive the main results.

Figures 8 and 9 represent an economy with G = 0, the same qualitative features are apparent.

Figures 11 and 13 clearly demonstrate that the qualitative results discussed above for the benchmark cal-

ibration are robust to different values for labor elasticity. In all cases, optimal steady state satisfies maximum

debt and close to minimum labor share of income.

5.2 Welfare and Inequality in the Long Run

Figure 3 illustrates a very striking fact about the steady-state welfare level. The steady state which is reached

following an optimal plan delivers a (flow) welfare level that is significantly less than that could be achieved

using alternative tax rates.30 This is also clear from the levels of per-capita consumption in figure 6. Indeed,

if we were inclined to accept the view that the steady state that maximizes flow welfare is close to being

long-run optimal, we would be led to prescribe a labor income tax rate of 9%, a capital income tax rate of

45% and a negative government debt that is 176% of GDP! This observation makes it clear that the results

provided in the quantitative literature that relies exclusively on maximizing the steady-state welfare are

potentially misleading.

Figures 10 and 12 demonstrate the flow welfare levels for low and high labor supply elasticity cases.

Welfare levels share the same comparative features with the benchmark calibration.

The model economy features non-market production as an alternative activity, therefore to facilitate

comparison with the data, I use taxable market income Gini coefficient as a measure of income inequality.31

Figures 6 and 7 exhibit consumption, income and wealth inequalities across all steady states that fea-

ture the modified golden-rule property. All long-run optimal inequality measures are slightly lower than

the model generated numbers for the U.S. economy. The long-run optimal income Gini, wealth Gini and

consumption Gini are 0.466, 0.551 and 0.053 respectively. The corresponding model-generated numbers for

the U.S. economy (initial steady state) are 0.474, 0.597 and 0.058.32

5.3 Constrained Efficiency and Optimal Fiscal Policy

The investigation of the magnitude and direction of constrained inefficiency by Davila et al. (2012) prescribes

a completely different optimal fiscal policy than that outlined above. Their benchmark quantitative findings

30I calculate steady-state welfare in utility terms as

Welfare(w̄) =

∫

u(c)µ(ds; w̄)

where µ(.; w̄) is the steady-state distribution when the post-tax wage level is w̄.
31Market income Gini coefficient measures the inequality in ra+ wn(e, w̄)e.
32Diaz-Gimenez, Glover, and Rios-Rull (2011) report income and wealth Gini of 0.58 and 0.82 using SCF data.
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suggest that capital income should be subsidized on average, a result that depends critically on the income

composition of the consumption-poor. A higher capital stock leads to an increase in marginal product of

labor. If the consumption-poor have labor-intensive income, this change in fact leads to an improvement in

an egalitarian sense, since consumption-poor have de facto higher Pareto weights.

On close inspection, we can point out three reasons why the long-run optimal policy in the model outlined

in this paper leads to a completely different outcome: First, the notion of constrained efficiency in Davila

et al. (2012) necessitates that all proceeds from taxes to be rebated back to the households. There are

no explicit transfers between households. Therefore, the improvement in their economy has to come from

price effects. Second, due to the specific structure of their model, the planner cannot smooth tax distortions

over time, whereas the government in this model can issue debt, allowing the planner to achieve dynamic

efficiency.33 Third, labor supply is inelastic in Davila et al. (2012). Although “capital intensity ought to be

higher in the U.S.” is a common finding, in the current model, the government achieves this goal by lowering

labor supply through labor income taxes. By contrast, the only way it can be achieved in Davila et al. (2012)

is through a capital subsidy.

An important and somewhat confusing distinction between the analysis by Davila et al. (2012) and Aiya-

gari (1995) (and this paper) is that the former argues whether capital income should be taxed or subsidized

is a quantitative question, whereas the latter argues that optimal capital income tax rate is always positive,

regardless of the calibration of the model. I would like to point out that Aiyagari’s (1995) positive capital

tax result hinges on the assumption that the government can issue debt. Whether or not the government can

issue debt, β(1 + r̄) < 1 holds in the long run for an economy with heterogeneous agents and incomplete

markets. However, it is the access to debt that puts discipline on the level of capital intensity K/N in the

economy. Since the marginal rate of transformation of the tax burden across time is the tax-free interest

rate 1 + FK , the modified golden-rule level of capital intensity holds in the long run. Absent government

debt, the rate at which the tax burden is transferred across periods is irrelevant for the planner and there is

no reason to expect a priori that the modified golden-rule holds. It is reasonable to conjecture that a model

without debt delivers either r̄ < FK or r̄ > FK , depending on the parameterization. In this paper, due to its

normative appeal, I only provide a quantitative analysis of the model with debt.

Aiyagari’s (1995) intuition for positive capital income tax rate was that the households in a Bewley

economy save “too much” vis-á-vis complete markets benchmark. However, as pointed out by Davila et al.

(2012) and Gottardi, Kajii, and Nakajima (2013), as long as the planner does not have the policy tools to

“complete” the financial markets, there is no good reason why one should take complete markets benchmark

33Dynamic efficiency only in the sense of achieving the first-best capital intensity. This should not be confused with the notion of
dynamic inefficiency that is standard in the overlapping-generations literature.
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as a point of reference. Whether capital should be taxed or not in the long run has nothing to do with

households saving more than they would under complete markets. Indeed, the positive capital income tax

result is most likely an artifact of the availability of debt as an instrument for the planner.

6 Transitional Dynamics

The steady-state analysis sheds light on the incentives of the Ramsey planner in the long run but it is com-

pletely silent on the magnitude and the source of welfare gains from following an optimal plan. Since initial

conditions play no role in determination of long-run optimal fiscal policy, providing a complete solution to

the Ramsey problem, i.e. characterizing the optimal transition path from any given initial condition, is left

for future research. On the other hand, it is essential that we get some insight on the way in which an

optimal plan improves welfare, especially given the result that the Ramsey planner is far from maximizing

flow welfare in the long run.

This controversial finding naturally begs the following hypothetical question: If the status quo in the

economy features fiscal policy that provides the highest achievable flow welfare level, why would the Ramsey

planner propose a reform that provides a significantly lower flow welfare in the long run? Provided that there

is convergence to the steady state, there is only one possibility: The welfare gains over the transition are

large enough to compensate for the losses in the long run.

It turns out it is straightforward to construct feasible, but not necessarily optimal fiscal policy paths,

where there are overall welfare gains moving from the steady state with the highest flow welfare, to the

optimal steady state. In all of these examples, government achieves a welfare improvement by front-loading

consumption and/or by reducing consumption inequality significantly over the transition path. This reform

necessitates a significant increase in debt over the transition.

To keep things simple, for the numerical results, I constrain the transition paths to feature an initial

jump in the post-tax wage to w̄0, followed by a linear transition to the long-run optimal level for T = 300

periods. I also assume that the government cannot confiscate assets by imposing the constraint that r̄t ≥ 0.

The government then optimally imposes a 100% capital income tax in period 0, that is, r̄0 = 0. Following

another jump in period 1 to a given r̄1, r̄t converges linearly to the long-run optimal level just like the

sequence w̄t. Using the optimal savings and consumption responses of the households that follow the tax

reform announced in period 0, I compute per-capita consumption and private assets over the transition. I use

these levels to back out aggregate capital and government debt using the government resource constraint.

With all these restrictions in place, given a value for r̄1, w̄0 is pinned down by the initial conditions of the

economy. Therefore, in this constrained transition analysis, the only free choice variable is r̄1.
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Figures 14 and 15 represent such a transition, where the economy starts from the steady state that

features the highest welfare under the benchmark calibration. In all figures, the horizontal dashed line

represents the initial steady state values for comparison. In this particular example, fiscal policy reform

effectively features a net income transfer initially, since both r̄ and w̄ go up significantly after period 1. After

an initial decline in consumption level due to 100% tax on capital income in period 0, a dominant income

effect leads to a gradual increase in consumption which surpasses the pre-reform level after a few periods.

Consumption level starts declining around period 50, as w̄ goes below the pre-reform level, and eventually

converges to the long-run optimal level. Due to discounting, the initial increase in consumption that lasts for

about 90 periods offsets, at least in part, the large decline in the long run.

A significant second source of welfare gains in this reform comes from the decline in consumption in-

equality. Since r̄ is significantly higher than the pre-reform level, the households respond by increasing their

holdings of assets. This leads to a large decline in labor share of income for all households, leading to lower

income risk. As the severity of market incompleteness diminishes through this channel, households enjoy

more consistent consumption levels, both over the transition, and in the long run. Naturally, this shows

up in the cross-section through a low Gini coefficient. Figure 15 exhibits that consumption Gini goes down

permanently in period 0 and stays lower than the pre-reform level throughout the entire transition.

7 Conclusion

Quantitative analysis of optimal dynamic fiscal policy is a difficult task since the problem is time-inconsistent

and non-stationary. The main contribution of this paper is to reveal that this problem is much easier to solve

than previously thought in Bewley-type models with idiosyncratic income risk and incomplete markets. As

illustrated, the dependence of long-run optimal fiscal policy on the initial conditions disappears asymptoti-

cally in this environment, much like life-cycle models in which there are no private wealth transfers across

generations. This leads to a long-run optimal policy that depends only on the “deep parameters” of the

model and the underlying income process. The emphasis in this paper was on the quantitative implications.

Since this property is likely to hold in a broader class of optimal fiscal policy problems, a theoretical study,

for instance, of minimal modeling assumptions that deliver this property is a promising next step.

Although a constrained transition analysis is provided in this paper, for the sake of preserving a unified

theme, the study of optimal transition path is left out for future research. However, as pointed out earlier,

a complete solution to the Ramsey problem is necessary to fully understand where the welfare gains from

a fiscal policy reform come from. The recursive version of the Ramsey problem introduced in section 2 can

be conveniently used for this task. The real challenge, however, comes from the dimensionality of the state-
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variable. An adaptation of the the “approximate aggregation” method of Krusell and Smith (1998) might

render this analysis feasible.

The quantitative results in this paper contribute to the ongoing debate on whether the current debt-to-

GDP ratio in the U.S. is too high. It is shown that a much higher debt level that is financed by taxes on the

source of income that is stochastic, could actually improve efficiency by suppressing the consequences of

missing financial markets. Research on robustness of this result with respect to alternative tax instruments

and different specifications of income process would contribute to our understanding of optimal fiscal policy.

The quantitative methods used in this paper can be adapted in a straightforward manner to models

that feature tax instruments that resemble the U.S. tax code more closely. For instance, study of optimal

progressivity of income taxes is a promising such extension.
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A Technical Appendix

A.1 Proof of Proposition 1

Proposition 1 An interior solution to the Ramsey problem satisfies the following conditions:

λ′ = h(.) : u′(c) ≥ β(1 + r̄′)E[u′(c′)|e] with equality if a′ > −a, a.e. µ (24)

a′ = g(.) : u′(c) + u′′(c)
[

λ(1 + r̄′)− λ′
]

= β(1 + r̄′)E

[

u′(c′) + u′′(c′)
[

λ′(1 + r̄′)− λ′′
]

|e

]

(25)

+ βγ′(FK(K ′, N ′)− r̄′) if a′ > −a, otherwise λ′ = 0, a.e. µ

B′(µ,B) : γ = β(1 + FK(K ′, N ′))γ′ (26)

r̄(µ,B) : γA =
∑

e

∫

u′(c)λµ(ds, e) +
∑

e

∫

a

(

u′(c) + u′′(c)
[

λ(1 + r̄)− λ′
]

)

µ(ds, e)

(27)

w̄(µ,B) : γN = γ(FN (K,N)− w̄)N ′(w̄) +
∑

e

∫

en(e, w̄)

(

u′(c) + u′′(c)
[

λ(1 + r̄)− λ′
]

)

µ(ds, e)

(28)

where γ is the multiplier for the government budget constraint.

Proof.

Let y(e, w̄) = maxn w̄en+H(1−n) be the total labor income of a household with state e and let n(e, w̄) =

argmaxn∈[0,1] w̄en+H(1− n). Applying envelope theorem, we have y′(e, w̄) = n(e, w̄)e. We can then write

the aggregate labor supply as a function of w̄ only: N(w̄) =
∑

e

∫

en(e, w̄)µ(ds, e).

We assume further that the sequential formulation of the Ramsey problem admits a stationary solution

so that the policy functions a′ = g(µ,B, s, e) and λ′ = h(µ,B, s, e) are well-defined.

Exploiting the induced Markov structure, it is straightforward to show that the sequential problem (12)

is equivalent to the following problem:

min
ht+1≥0

max
gt+1,r̄t,w̄t,Bt+1

∞
∑

t=0

βt
∑

e

∫
[

u(ct) + u′(ct)
[

λ(1 + r̄t(µt, Bt))− ht+1(µt, Bt, s, e)
]

]

µt(ds, e) (29)

subject to

Gt + (1 + r̄t(µt, Bt))Bt + r̄t(µt, Bt)Kt + w̄t(µt, Bt)N(w̄t(µt, Bt)) ≤ F (Kt, N(w̄t(µt, Bt))) +Bt+1(µt, Bt)
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ht+1(µt, Bt, s, e) = 0 if gt+1(µt, Bt, s, e) = −a a.e. µt

where

ct = a(1 + r̄t(µt, Bt)) + y(e, w̄t(µt, Bt))− gt+1(µt, Bt, s, e)

Kt =
∑

e

∫

aµt(ds, e)−Bt

µt+1(S
′, e′) =

∑

e

πee′

∫

I[(gt(.), ht(.)) ∈ S′]µt(ds, e) for each S′ ∈ Σs, each e′ ∈ E (30)

given a0, B0.

Let βtγt(µt, Bt) represent the Lagrange multiplier for the government budget constraint at period t. By

taking the derivative of the function (29) with respect to Bt+1, r̄t and w̄t, we obtain the last three necessary

conditions (26), (27),(28).

γt = βγt+1(1 + FK(Kt+1, Nt+1))

γt(Kt +Bt) = γtAt =
∑

e

∫

u′(ct)λµt(ds, e) +
∑

e

∫

a

(

u′(ct) + u′′(ct)
[

λ(1 + r̄t)− ht+1

]

)

µt(ds, e)

γtNt = γt(FN (Kt, Nt)− w̄t)N
′
t(w̄t) +

∑

e

∫

en(e, w̄t)

(

u′(ct) + u′′(ct)
[

λ(1 + r̄t)− ht+1

]

)

µt(ds, e)

For what is to follow, I use calculus of variations to prove the first-order-condition (25). Consider the part

of the objective function and government budget constraints that correspond to two subsequent periods.

For clarity of exposition, we eliminate time subscripts. Given the optimal policies for next period, a′′,λ′′,

optimal fiscal policy variables r̄, r̄′, w̄, w̄′, B,B′, and the government multipliers γ, γ′, the optimal policies

g(µ,B, s, e) and h(µ,B, s, e) would solve the following problem:

min
λ′≥0

max
a′

∑

e

∫

u(a(1 + r̄) + y(e, w̄)− a′) + u′(a(1 + r̄) + y(e, w̄)− a′)
(

λ(1 + r̄)− λ′)µ(ds, e)

+ γ

[

F (K,N) +B′ −G− (1 + r̄)B − r̄K − w̄N

]

+β
∑

e′

∫

u(a′(1 + r̄′) + y(e′, w̄′)− a′′) + u′(a′(1 + r̄′) + y(e′, w̄′)− a′′)
(

λ′(1 + r̄′)− λ′′)µ′(ds′, e′)

+ βγ′

[

F (K ′, N ′) +B′′ −G′ − (1 + r̄′)B′ − r̄′K ′ − w̄′N ′

]

where µ′(ds′, e′) = µt+1(ds
′, e′) is given by (30) and
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K =
∑

e

∫

aµ(ds, e) K ′ =
∑

∫

a′µ′(ds′, e′)

Using the transition function induced by (30) and applying Theorem 8.3 (pg. 216) in Stokey, Lucas, and

Prescott (1989), we express the above expression in a single integral:

∑

e

∫
[

u
[

a(1 + r̄) + y(e, w̄)− g(.)
]

+ u′
[

a(1 + r̄) + y(e, w̄)− g(.)
](

λ(1 + r̄)− h(.))

β
∑

e′

πee′u
[

g(.)(1 + r̄′) + y(e′, w̄′)− a′′
]

+ u′
[

g(.)(1 + r̄′) + y(e′, w̄′)− a′′
](

h(.)(1 + r̄′)− λ′′)

]

µ(ds, e)

+ γ

[

F (K,N) +B′ −G− (1 + r̄)B − r̄K − w̄N

]

+ βγ′

[

F (K ′, N ′) +B′′ −G′ − (1 + r̄′)B′ − r̄′K ′ − w̄′N ′

]

where

K =
∑

e

∫

aµ(ds, e) K ′ =
∑

e

∫

g(µ,B, s, e)µ(ds, e)

For ease of exposition, I assume that measure µ admits density m(a, λ, e) so that
∑

e

∫

m(a, λ, e)dadλ = 1,

this assumption is not necessary for the result. Also assume for the rest of the proof that the borrowing

constraint does not bind.34

For a fixed efficiency e0 and λ0, let gǫ(µ, a, λ, e) = g(µ, a, λ, e)+ǫI[e = e0, λ = λ0]δg(a) be an ǫ−perturbation

of the policy function for assets at (λ0, e0) with an arbitrary measurable function δg(a). For the policy func-

tion to be optimal, gǫ(µ, a, λ, e) must be suboptimal for any ǫ > 0. Define the perturbed objective

κ(ǫ) =
∑

e

∫
[

u
[

a(1 + r̄) + y(e, w̄)− gǫ(.)
]

+ u′
[

a(1 + r̄) + y(e, w̄)− gǫ(.)
](

λ(1 + r̄)− h(.))

β
∑

e′

πee′u
[

gǫ(.)(1 + r̄′) + y(e′, w̄′)− a′′
]

+ u′
[

gǫ(.)(1 + r̄′) + y(e′, w̄′)− a′′
](

h(.)(1 + r̄′)− λ′′)

]

m(a, λ, e)dadλ

+ γ

[

F (K,N) +B′ −G− (1 + r̄)B − r̄K − w̄N

]

+ βγ′

[

F (K ′ǫ, N ′) +B′′ −G′ − (1 + r̄′)B′ − r̄′K ′ǫ − w̄′N ′

]

where K ′ǫ =
∑

e

∫

gǫ(.)m(a, λ, e)dadλ.

Taking the derivative of κ(ǫ) and evaluating at ǫ = 0 should equal 0 since policy function is optimal.

34The case in which the borrowing constraint binds is trivial, and it is therefore omitted.
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κ′(0) =

∫
[

−

(

u′(c) + u′′(c)(λ0(1 + r̄)− h(.))

)

δg(a)

+β
∑

e′

πe0e′

(

u′(c′) + u′′(c′)(h(.)(1 + r̄)− λ′′)

)

(1 + r̄′)δg(a)

]

m(a, λ0, e0)da

+βγ′

[

(FK(K ′, N ′)− r̄)

∫

δg(ã)m(ã, λ0, e0)dã

]

= 0

Since this is true for an arbitrary function δg(a), let δg(a) = I[a ≥ a0] for some a0. Substituting this

function, we get

∫ ∞

a0

[

−

(

u′(c) + u′′(c)(λ0(1 + r̄)− h(.))

)

+β
∑

e′

πe0e′

(

u′(c′) + u′′(c′)(h(.)(1 + r̄)− λ′′)

)

(1 + r̄′)

]

m(a, λ0, e0)da

+βγ′

[

(FK(K ′, N ′)− r̄)

∫ ∞

a0

m(ã, λ0, e0)dã

]

= 0

We picked a0 arbitrarily, therefore the above expression is identically zero for all a0. Taking the derivative

with respect to a0, we get

−(u′(c)+u′′(c)(λ0(1+r̄)−h(.)))+β(1+r̄′)
∑

e′

πe0e′
(

u′(c′)+u′′(c′)(h(.)(1+r̄′)−λ′′)
)

+βγ′(FK(K ′, N ′)−r̄′) = 0

Therefore for all (a, λ, e), it must be the case that

u′(c) + u′′(c)(λ(1 + r̄)− h(.)) = β(1 + r̄′)
∑

e′

πee′
(

u′(c′) + u′′(c′)(h(.)(1 + r̄)− λ′′)
)

+ βγ′(FK(K ′, N ′)− r̄′)

This is identical to equation (25). The proof of equation (24) follows by similar arguments and is omitted.

Q.E.D.
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B Computational Appendix

B.1 Computing the Optimal Steady-States

B.1.1 Policy Functions

As described in the main text, using standard techniques described in Aiyagari (1994b), for any given w̄, we

can solve for r̄(w̄) that clears all markets and satisfies the modified golden-rule. This provides us the policy

functions c(a, e; w̄) and a′(a, e; w̄) along with the long-run stationary distribution m(a, e; w̄).

For ease of exposition, for the entire numerical exercise we will use an auxilary variable q ≡ λ/γ and

eliminate λ from the system. In particular, all policy functions and the steady-state distribution will be

defined over (a, q, e) space instead.

Using the fact that K/N ratio satisfies the modified golden-rule property, we can write β(FK − r̄) =

1− β(1 + r̄). Using this result and dividing (21) by Lagrange multiplier γ, we obtain

u′′(c)[q(1 + r̄)− q′] = β(1 + r̄)E

[

u′′(c′)[q′(1 + r̄)− q′′]|e

]

+ 1− β(1 + r̄) (31)

Since γ > 0 at the steady state, q = 0 if and only if λ = 0.

Since equation (31) is linear in q, I conjecture that the policy function for q′ is also linear in q.

q′(a, q, e; w̄) = α0(a, e; w̄)q +
α1(a, e; w̄)

(1 + r̄)u′′(c)
(32)

where α0(a, e; w̄) and α1(a, e; w̄) are potentially non-linear functions in (a, e).

Substituting this functional form into (31), we get the following expression at a steady state:

u′′(c)
[

q(1+r̄−α0)−
α1

(1 + r̄)u′′(c)

]

= β(1+r̄)E

[

u′′(c′)
[

(1+r̄−α′
0)(α0q+

α1

(1 + r̄)u′′(c)
)−

α′
1

(1 + r̄)u′′(c′)

]

|e

]

+1−β(1+r̄)

where α0 = α0(a, e; w̄), α1 = α1(a, e; w̄), α′
0 = α0(a

′, e′; w̄), α′
1 = α1(a

′, e′; w̄). For the states in which

a′(a, e) = −a, α0 = α1 = 0.

Equating the coefficients of q on each side of this equality, we obtain the following functional equation

for α0(a, e; w̄).

u′′(c)(1 + r̄ − α0) = α0β(1 + r̄)E

[

u′′(c′)(1 + r̄ − α′
0)|e

]

(33)

Similarly, equating the constants on both sides of the equation, we obtain a functional equation in α1.
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−
α1

1 + r̄
=

α1

u′′(c)
βE

[

u′′(c′)(1 + r̄ − α′
0)|e

]

− βE(α′
1|e) + 1− β(1 + r̄) (34)

Next, we solve for βE

[

u′′(c′)(1 + r̄ − α′
0)|e

]

in equation (33) and substitute into equation (34) to get

α1 = α0

[

βE(α′
1|e)− [1− β(1 + r̄)]

]

(35)

Using (33), define the mapping

T0α0 =











u′′(c)(1+r̄)

u′′(c)+β(1+r̄)E
[

u′′(c)(1+r̄−α′

0
)
] : a′(a, e) > −a

0 : a′(a, e) = −a

Mapping T0 satisfies monotonicity but does not satisfy discounting unless we impose strict assumptions

on the domain. Therefore contraction mapping theorem might not apply. It can be shown analytically that

the derivative of the policy function a′(a, e; w̄) solves the functional equation (33).35 Since policy function

is continuous and monotone, the derivative exists almost everywhere in (−a,∞).36 (See Carroll (2012) for

an extensive discussion and characterization of points at which the derivative does not exist.) I verified

quantitatively that starting from any initial function, iterating on α0 converged to the numerical derivative

of a′(a, e; w̄).

Suppose α∗
0(a, e; w̄), solves (33). Define the functional mapping

T1α1 =











α∗
0[βE(α

′
1|e)− (1− β(1 + r̄))] : a′(a, e) > −a

0 : a′(a, e) = −a

Provided that the sufficiency condition supα∗
0 < 1

β
holds, it is easy to show that mapping T1 defined

over bounded functions satisfies Blackwell’s Sufficiency Conditions, therefore iterating over α1 will yield to

a unique function α∗
1 from any starting point.37 Under the given assumptions on utility function, the savings

policy function is convex and has an upper bound of one. Convexity of savings follows from concavity of

35This is just obtained by differentiating both sides of the functional Euler equation with respect to a. Consider a state (a, e) in which
the agent is not borrowing constrained and the policy function is differentiable. The functional Euler equation reads

u′(a(1 + r̄) + y(e, w̄)− a′(a, e; w̄)) = β(1 + r̄)E

[

u′
[

a′(a, e; w̄)(1 + r̄) + y(e, w̄)− a′(a′(a, e; w̄), e′)
]

]

Differentiating both sides with respect to a, we obtain

u′′(c)(1 + r̄ −
∂a′

∂a
(a, e)) = β(1 + r̄)

∂a′

∂a
(a, e)E

[

u′′(c′)(1 + r̄ −
∂a′

∂a
(a′, e′))

]

Observe that this equation has precisely the same structure as equation (33).
36We also need µ to be absolutely continuous with respect to Lebesgue measure to be able to use this result, more precisely, the

requirement is that the set of states in which the policy function is not differentiable has measure zero with respect to µ.
37It is easy to show that this is the set of functions that take constrained values in [−(1 + r̄), 0].
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consumption function (Carroll and Kimball (1996)) and the unit upper bound follows from a variation of

the arguments provided in Carroll (2012) for the consumption policy function under CRRA preferences.38

The sufficiency condition for contraction holds, therefore there exists a unique fixed point α∗
1.

Functions α∗
0 and α∗

1 provide us the policy function q′(a, q, e; w̄).

B.1.2 Moments of the Distribution

Solving for the steady-state policy and allocation requires evaluation of certain moments of the distribution

in (22) and (23). Dividing these equations by γ and substituting the auxilary variable q = λ/γ we obtain the

following expressions:

A =
∑

e

∫

u′(c)qµ(ds, e) +
1

γ

∑

e

∫

au′(c)µ(ds, e) +
∑

e

∫

au′′(c)
[

q(1 + r̄)− q′
]

µ(ds, e) (36)

N = (FN (K,N)−w̄)N ′(w̄)+
1

γ

∑

e

∫

en(e, w̄)u′(c)µ(ds, e)+
∑

e

∫

en(e, w̄)u′′(c)
[

q(1+ r̄)−q′
]

µ(ds, e) (37)

One way to obtain the moments above is to use policy functions a′(a, e; w̄) and q′(a, q, e; w̄) to find the

limiting distribution µ(a, q, e; w̄) and evaluating these moments. Since this is computationally demanding

due to two continuous variables, I do not take this route: Due to the special structure of this problem and

the fact that we know the distribution of (a, e) at the steady state, we can iterate on the moments directly

without computing the limiting distribution.

Observe that taking the conditional expectation of (32) with respect to (a, e) and multiplying by the pdf

m(a, e; w̄), we have

E(q′|a, e)m(a, e; w̄) = α0E(q|a, e)m(a, e; w̄) +
α1m(a, e; w̄)

u′′(c)(1 + r̄)
(38)

Due to the Markovian structure, we can also show that

E(q′|a′, e′)m(a′, e′) =
∑

e

πee′
E(q′|a′−1(a′, e), e)m(a′−1(a′, e), e)

d
da
a′(a′−1(a′, e), e)

(39)

Starting from any initial guess f0(a, e) for E(q|a, e)m(a, e; w̄), we can apply (38) and (39) to revise the

guess, i.e. by letting f1(a
′, e′) = E(q′|a′, e′)m(a′, e′; w̄). This is repeated until convergence.

Now observe that once we have the expectation of q conditional on any (a, e), all moments in (36) and

(37) can be computed by straightforward numerical integration.

38To be more precise, this upper bound is [β(1+ r̄)]−1/σ where σ is the bound on the coefficient of risk aversion. Since β(1+ r̄) < 1
holds in the long run, the result follows.
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B.1.3 Main Algorithm

1. Given w̄j , solve for r̄j and policy functions c(a, e; w̄j), a′(a, e; w̄j) such that at the steady state, the

modified golden-rule and government budget constraint is satisfied. There is at most one such equilib-

rium.

2. Solve (33) and (35) using the method described above for the policy function q′(a, q, e; w̄j).

3. Using the moment iteration method described above, calculate all the moments in (36) and (37).

4. Use (36) to solve for the unique γ that satisfies the equality.

5. Check if (37) is satisfied at this γ. If it is, stop. If not, update w̄j to w̄j+1. Let j := j + 1 and move to

step 1.
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Table 1: Parameter Values-Benchmark Calibration

Parameters Value Target Moments/Source

Exogenously Calibrated Parameters

Coefficient of Risk Aversion (σ) 2.00
Labor Supply Elasticity (γ) 1.00
Labor Share in Production (α) 0.64
Depreciation Rate (δ) 0.08
Borrowing Constraint (a) 0.00
Persistence of Labor Productivity (ρ) 0.82 Chang and Kim (2006)
Standard Deviation of Labor Productivity (σe) 0.51 Chang and Kim (2006)
Labor income Tax Rate (τn) 0.27 Domeij and Heathcote (2004)
Capital income Tax Rate (τk) 0.40 Domeij and Heathcote (2004)

Jointly Calibrated Parameters

Labor Supply Constant (θ) 0.39 Market Hours=1/3
Discount Rate (β) 0.97 K/Y = 3.00
Government Expenditure (G) 0.14 G/Y = 0.17

Table 2: Long-Run Optimal Steady-States

Variables γ = 1.0, σ = 2.0 γ = 0.5, σ = 2.0 γ = 2.0, σ = 2.0 γ = 1.0, σ = 1.0 γ = 1.0, σ = 4.0

Labor Tax Rate 48.30% 65.08% 35.90% 48.30% 48.30%
Capital Tax Rate 2.04% 0.33% 5.74% 0.95% 4.29%
Debt-to-GDP 4.19 6.83 3.34 4.14 4.40
Market Hours 0.25 0.25 0.30 0.25 0.25
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Figure 1: Long-run Optimal Taxes and Debt-to-GDP Ratio for a range of labor supply elasticities.
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Figure 2: Long-Run Optimal Capital Tax and Debt-to-GDP Ratio for a range of intertemporal elasticities of
substitution.
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Figure 3: Long-Run Optimal Tax Rates and Welfare for Benchmark Calibration
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Figure 4: Long-Run Optimal Government Debt and Average Labor Share of Income for Benchmark Calibra-
tion
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Figure 5: Long-Run Optimal Capital Stock and Hours for Benchmark Calibration
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Figure 6: Long-Run Per-Capita Consumption and Consumption Inequality for Benchmark Calibration
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Figure 7: Long-Run Income and Wealth Inequality for Benchmark Calibration
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Figure 8: Long-Run Tax Rates and Welfare for Benchmark Calibration
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Figure 9: Long-Run Government Debt and Average Labor Share of Income for Benchmark Calibration
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Figure 10: Long-Run Tax Rates and Welfare for γ = 0.5, σ = 2.0
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Figure 11: Long-Run Government Debt and Average Labor Share of Income for γ = 0.5, σ = 2.0
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Figure 12: Long-Run Tax Rates and Welfare for γ = 2.0, σ = 2.0
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Figure 13: Long-Run Government Debt and Average Labor Share of Income for γ = 2.0, σ = 2.0
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Figure 14: Change in Fiscal Policy over Transition
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Figure 15: Change in Consumption and Consumption Gini Coefficient over Transition
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