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Abstract

This paper considers dynamic panel models with a factor error structure that is correlated
with the regressors. Both short panels (small T ) and long panels (large T ) are considered. With
a small T , consistent estimation requires either a suitable formulation of the reduced form or
an appropriate conditional equation for the first observation. Also needed is a suitable control
for the correlation between the effects and the regressors. Under the factor error structure, the
panel system implies parameter constraints between the mean vector and the covariance matrix.
We explore the constraints through a quasi-FIML approach.

The factor process is treated as parameters and it can have arbitrary dynamics under both
fixed and large T . The large T setting involves incidental parameters because the number of
parameters (including the time effects, the factor process, the heteroskedasticity parameters)
increases with T . Even though an increasing number of parameters are estimated, we show
that there is no incidental parameters bias to affect the limiting distributions; the estimator
is centered at zero even scaled by the fast convergence rate of root-NT . We also show that
the quasi-FIML approach is efficient under both fixed and large T , despite non-normality, het-
eroskedasticity, and incidental parameters. Finally we develop a feasible and fast algorithm for
computing the quasi-FIML estimators under interactive effects.

Key words and phrases: factor structure, interactive effects, incidental parameters, predetermined

regressors, heterogeneity and endogeneity, quasi-FIML, efficiency.
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1 Introduction

In this paper we consider consistent and efficient estimation of dynamic panel data models with a

factor error structure that is correlated with the regressors

yit = α yit−1 + x′itβ + δt + λ′ift + εit

i = 1, 2, ..., N ; t = 1, 2, ..., T

where yit is the dependent variable, and xit (p × 1) is the regressor, β (p × 1) is the unknown

coefficient, λi and ft are each r × 1 and both are unobservable, δt is the time effect, and εit is the

error term.

The model considered here has its roots in both micro and macro econometrics. In microecono-

metrics, for example, the observed wage is a function of observable variables (xit) and unobserved

innate ability (λi). The innate ability is potentially correlated with the observed individual char-

acteristics, and the effect of innate ability on wages is not constant over time, but time varying. In

macroeconometrics, ft is a vector of common shocks, and they have heterogeneous effects on each

cross-sectional unit via the individual-specific coefficient λi. In finance, ft represents a vector of

systematic risks and λi is the exposure to the risks; asset return yit is affected by both observable

and nonobservable factors. Each motivation gives rise to a factor error structure that is correlated

with the regressors. If ft ≡ 1, then δt+λ′ift = δt+λi, we have the additive effects model. An addi-

tive effects model does not allow multiple individual effects. Under interactive effects, wages can be

affected by multiple unobservable individual traits such as motivation, dedication, and perseverance

in the earnings study, and more than one common shock in the macroeconomic setting.

For the general case to be considered, we allow arbitrary correlation between xit and (δt, λi, ft).

For panel data, T is usually much smaller than N . It is desirable to treat ft as parameters. As

such, ft itself can have arbitrary dynamics (stationary or nonstationary process). Also, ft can be

a sequence of fixed constants such as linear or broken trend. We do not make any distributional

assumptions on λi, they are not required to be i.i.d. In fact, λi can be a sequence of non-random

constants. Even in the latter case, we do not estimate individual λi. The approach in this paper

is that we only need to estimate their sample covariance matrix, which is of fixed dimension. This

removes one source of incidental parameters problem.

We use data in levels as opposed to data in differences. Differencing the data tends to remove

useful information. For dynamic panel, differencing also leads to lagged error terms, which are

correlated with the lagged dependent variables. Under interactive effects, simple differencing is

ineffective in removing the individual effects. Quasi-differencing as in Holtz-Eakin et al. (1988)

introduces nonlinear transformation of parameters and the original parameters need to be recovered

from the transformation. Also, the transformation becomes less tractable with more than one factor.

We set up the problem as a simultaneous equations system with T equations and use the FIML

approach to estimate the model.
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Two sources of cross-sectional correlation are allowed in the model. One apparent source of

correlation is the sharing of the common factors ft by each cross-sectional unit. The other is implicit.

The λi’s can be correlated over i; permitting cross-sectional dependence through individual effects.

This makes the analysis of FIML more challenging, but allows model’s wider applicability.

For the case of a single factor (r = 1), Holtz-Eakin et al. (1988) suggest the quasi-difference

approach to purge the factor structure, and use GMM to consistently estimate the model param-

eters. Ahn et al. (2001) also consider the quasi-difference approach and GMM estimation. Ahn

et al. (2013) further generalize the method to the case of r > 1. These methods are consistent

under fixed T . With a moderate T , the number of moments can be large and increases rapidly

as T increases (order of O(T 2)). The likelihood approach considered here implicitly makes use

of efficient combinations of a large number of moments, and it also effectively explores many of

the restrictions implied by the model. While it has long been used, the likelihood approach to

dynamic panel models has been emphasized more recently by Alveraz and Arellano (2003, 2004),

Chamberlain and Moreira (2009), Kruiniger (2008), Moreira (2009), and Sims (2000).

Pesaran (2006) suggests adding the cross-sectional averages of the dependent and independent

variables as additional regressors. The idea is that these averages provide an estimate for ft. The

limitation of the Pesaran method is discussed by Westerlund and Urbain (2013). Bai (2009), Moon

and Weidner (2010a,b) treat both λi and ft as parameters. While the latter estimator is consistent

for (α, β) under large N and large T , these authors show that the estimator has bias, due to the

incidental parameters problem and heteroskedasticity. The FIML approach in this paper does not

estimate individual λis even if they are fixed effects.

The FIML approach treats the dynamic panel as a simultaneous equations system with T

equations. We provide a careful treatment of the initial observation, as it is key to consistent

estimation with a small T .1 We consider two quasi-FIML formulations with respect to the first

observation. One is the reduced-form formulation and the other is the conditional formulation. The

argument for conditioning on yi0 is different from the time series analysis as yi0 is also correlated

with the individual effects. Another notable feature of the model, as previously mentioned, is the

existence of correlations between the effects λi and the regressors. We use the methods of Mundlak

(1978) and Chamberlain (1982) to control for this correlation.

The FIML procedure also simultaneously estimates heteroskedasticities (σ2
1, σ

2
2, ..., σ

2
T ), where

σ2
t = E(ε2it). A changing variance over time is an important empirical fact and the estimates

for σ2
t are of economic interest (Moffitt and Gottschalk, 2002). Another important consideration

is that if heteroskedasticity exists, but is not allowed in the estimation for dynamic model, the

estimated parameters are inconsistent under fixed T . This important fact motivates the work of

Alvarez and Arellano (2004). Allowing heteroskedasticity is not a matter of efficiency as researchers

are accustomed to, but a matter of consistency for dynamic panel models. We demonstrate that

allowing heteroskedasticity does not lose asymptotic efficiency under large T even if there is no

1For example, Anderson and Hsiao (1981,1982), Blundell and Bond (1998) and Blundell and Smith (1991).
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heteroskedasticity.

Under fixed T , once the estimation problem is properly formulated under the quasi-FIML ap-

proach, consistency and asymptotically normality for the quasi-FIML estimator follow from existing

theory for extremum estimation. Difficulty arises when T is also large because of the incidental

parameters problem. The large T setting is practically relevant as many panel data sets nowdays

have nonsmall T . Also, large T analysis provides a guidance for small T setting. One of the

challenges is the consistency argument, which is nonstandard under an increasing number of pa-

rameters. Another difficulty lies in that, even scaled by the fast convergence rate
√
NT , we aim

to demonstrate that the limiting distribution is centered at zero, and there are no asymptotic bi-

ases. We further aim to show that the quasi-FIML is asymptotically efficient despite the incidental

parameters problem. We use the large dimensional factor analytical perspective to shed lights on

these problems. This perspective has been used by Bai (2013) in the analysis of additive effects

models, in which ft = 1 is known and not estimated. The interactive-effect model in this paper

has a non-degenerate factor structure, and allows multiple effects with r > 1. The analysis is very

demanding, but the final result is simple and intuitive.

This paper also provides a feasible algorithm to compute the FIML estimators. Considerable

amount of efforts have been devoted to the algorithm, which produces stable and quick estimates.

In our simulated data, it takes a fraction of a second to produce the FIML estimator. Finite sample

property of the estimator is documented by Monte Carlo simulations.

2 Dynamic panel with strictly exogenous regressors

We consider the following dynamic panel model with T + 1 observations

yit = δt + αyi,t−1 + x′itβ + f ′tλi + εit (1)

t = 0, 1, 2, ..., T ; i = 1, 2, ..., N

Strict exogeneity of xit with respect to εit means

E(εit|xi1, ..., xiT , λi) = 0,

so that xis is uncorrelated with εit but xit is allowed to be correlated with λi or ft, or both.

It is important to note that we do not assume ft to have zero mean. We treat ft as parameters

so that it can have arbitrary dynamics, either deterministic or random. For example, ft can be a

linear trend or broken trend, appropriately normalized so that 1
T

∑T
t=1 ftf

′
t converges to a positive

matrix (e.g., in case of linear trend, ft represents t/T ).

The stability condition of |α| < 1 is maintained throughout, while stationarity of the model is

not assumed. In particular, the first observation yi0 is not necessarily originated from a stationary

distribution. We follow Bhargava and Sargan (1983) to view the model as a simultaneous equations

system with T + 1 equations. For dynamic panel data, modeling the first observation is crucial for
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consistent estimation. Different assumptions on the initial conditions give rise to different likelihood

functions, see Hsiao (2003, Chapter 4), although the impact of the initial condition diminishes to

zero as T goes to infinity. When α is close to 1, the first observation is still important for large T .

Throughout the paper, we use the following notation:

yi =



yi1
...
yiT


 , xi =



x′i1
...
x′iT


 , δ =



δ1
...
δT


 , F =



f ′1
...
f ′T


 , εi =



εi1
...
εiT


 (2)

2.1 Regressors uncorrelated with the effects

When the effects are uncorrelated with the exogenous regressors (still correlated with the lagged

dependent variables), it is easier to motivate and formulate the likelihood function by assuming

that λi are random variables and are independent of xi. First note that in the presence of time

effects δt, it is without loss of generality to assume E(λi) = 0. If µ = E(λi) 6= 0, we can write

λ′ift = (λi − µ)′ft + µ′ft, and we can absorb µ′ft into δt.

The initial observation yi0 may or may not follow the dynamic process (1). In either case, yi0

requires a special consideration for dynamic models. Write the reduced form for yi0, similar to

Bhargava and Sargan (1983):

yi0 = δ∗0 +
T∑

s=1

x′i,sψ0,s + f∗′0 λi + ε∗i,0 = δ∗0 + w′
iψ0 + f∗′0 λi + ε∗i,0

where2

wi = vec(x′i), ψ0 = (ψ′
0,1, ..., ψ

′
0,T )′

In general, we regard the reduced form as a projection of yi0 on [1, wi, λi]. It will not affect the

analysis by removing the asterisk from (δ∗0 , f
∗
0 , ε

∗
i0); 3 the asterisk indicates that these variables are

different from (δ0, f0, εi0) that appears in the yi0 equation should yi0 also follow (1). For t ≥ 1,

yit = αyi,t−1 + δt + x′itβ + f ′tλi + εit, t = 1, 2, ..., T

Again, let xi = (xi1, ..., xiT )′. Since xiβ = (IT ⊗ β′)vec(x′i) = (IT ⊗ β′)wi, the system of T + 1

equations can be written as

B+y+
i = Cwi + δ+ + F+λi + ε+i (3)

where

y+
i =

[
yi0
yi

]
, δ+ =

[
δ∗0
δ

]
, F+ =

[
f ′∗0
F

]
, ε+i =

[
ε∗i0
εi

]

2If xi0 is observable, we should also include xi0 as a predictor.
3This is because we treat δt and ft (for all t) as free parameters; δ∗0 and f∗

0 are also free parameters, thus can be
denoted as (δ0, f0). Similarly, we allow εit to be heteroskedastic we can use εi0 for ε∗it (or σ2

0 for σ∗2

0 ).
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B+ =




1 0 · · · 0
−α 1 · · · 0

...
. . .

. . .
...

0 · · · −α 1


 , C =

[
ψ ′

0

IT ⊗ β′

]
(4)

and yi, δ, F and εi are defined in (2). We normalize the first r×r block of the factors as an identity

matrix, F+ = (Ir, F
′
2)′ to remove the rotational indeterminacy. Introduce

Ω+ = F+ΨλF
+′ +D+

where Ψλ = E(λiλ
′
i), and D+ = E(ε+i ε

+′
i ) = diag(σ∗20 , σ

2
1, ..., σ

2
T ), and let

u+
i = B+y+

i − Cwi − δ+

the quasi log-likelihood function for (yi0, yi1, ..., yiT ), conditional on wi, is

−N
2

ln |Ω+| − 1

2

N∑

i=1

u+′
i (Ω+)−1u+

i (5)

Because the determinant of B+ is equal to 1 the Jacobian term does not enter. With the factor

structure, assuming D+ is diagonal (εit are uncorrelated over t), the model is identifiable if T ≥
2r + 1.

This likelihood function generalizes the classical likelihood function to include interactive effects.

Anderson and Hsiao (1982), Bhargava and Sargan (1983), and Arellano and Alveraz (2004) are

examples of classical likelihood analysis. The first two papers assume homoskedasticity.

Remark 1 Although the likelihood function is motivated by assuming λi being random variables,

it is still valid when λi is a sequence of constants. In this case, we interpret Ψλ as Ψn = 1
n

∑N
i=1(λi−

λ̄)(λi − λ̄)′, which is the sample variance of λi (n = N − 1). This is a matter of recentering and

rescaling the parameters (δ, F,Ψλ). To see this, if we concentrate out δ+ from (5), the likelihood

function involves u̇+
i = F+λ̇i + ε̇+i , where λ̇i = λi − λ̄ and ε̇+i = ε+i − ε̄+. Then the expected value

E( 1
n

∑N
i=1 u̇

+
i u̇

+′
i ) = F+ΨnF

+′ + D+, where the expectation is taken assuming that λi are fixed

constants. We then interpret the likelihood function as a distance measure between 1
n

∑N
i=1 u̇

+
i u̇

+′
i

and F+ΨnF
+′ + D+ (other distance can also be used). Note that the recentering does not affect

the key parameters (α, β,D+). Recentering is used in classical factor analysis for non-random λi,

but it works regardless of λi being random, see Amemiya et al. (1987) and Dahm and Fuller (1986).

Recentering simplifies the statistical analysis and permits weaker conditions for asymptotic theory

(Anderson and Amemiya, 1988). Also, the resulting likelihood function can be motivated from

a decision theoretical framework (Chamberlain and Moreira, 2009, and Moreira, 2009) with an

appropriate choice of prior information and loss function. ✷

The rest of the paper considers the general situation in which xit is correlated with λi or ft or

both. This correlation is fundamental for panel data econometrics.
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2.2 Regressors correlated with the effects

Projecting λi on wi = vec(x′i),

λi = λ+ φ1 xi1 + · · · + φT xiT + ηi (6)

or write it more compactly as

λi = λ+ φwi + ηi

where λ is the intercept and ηi is the projection residual, and φi are matrices (r × p) of projection

coefficients. This is known as the Mundlak-Chamberlain projection (Mundlak, 1978, and Cham-

berlain, 1982). By definition, E(ηi) = 0 and E(xitηi) = 0 for all t. This means that the factor

errors Fηi + εi will be uncorrelated with the regressors xi.

Substitute the preceding projection into (1) and absorb f ′tλ into δt, we have, for t ≥ 1,

yit = αyit−1 + x′itβ + f ′tφwi + δt + f ′tηi + εit, t ≥ 1.

The yi0 equation has the same form (by renaming the parameters since all are free parameters).

That is, we can write yi0 as

yi0 = δ∗0 + w′
iψ0 + f∗′0 ηi + ε∗i,0

Stacking these equations, the model has the same form as (2.1), namely

B+y+
i = Cwi + δ+ + F+ηi + ε+i

but here

C =

[
ψ ′

0

IT ⊗ β′ + Fφ

]

The likelihood function for the (T + 1) simultaneous equations system has the same form as (5),

with Ω+ = FΨηF
′ +D, where we replace Ψλ by Ψη = E(ηiη

′
i).

A special case of the Mundlak-Chamberlain projection is to assume φ1 = φ2 = · · · = φT . We

then write the projection as λi = λ+φ x̄i + ηi with x̄i = 1
T

∑T
s=1 xis. Because f ′tφ x̄i = f ′tφ

1
T x

′
iιT =

(ι′T ⊗ f ′tφ
1
T )wi with wi = vec(x′i) and ιT = (1, 1, ..., 1)′, the model is the same as above, but the

coefficient matrix C becomes

C =

[
ψ ′

0

IT ⊗ β′ + ι′T ⊗ Fφ 1
T

]

Here we use the same notation φ, but its dimension is different in the special case. In general, this

restricted projection may not lead to consistent estimation.

If we interpret the linear projection (6) as the conditional mean, the likelihood function can be in-

terpreted as the conditional likelihood function, conditional on the regressors. But the quasi-FIML,

which is based on the second moments of the data, still works under the projection interpretation.
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Remark 2 When the projection (6) is considered as the population projection, the projection error

ηi is uncorrelated with the predictor xit, and we have E(ηi) = 0 and E(xitηi) = 0 for each t. We

can also consider ηi as the least squares residuals and (λ, φ1, ..., φT ) as the least squares estimated

coefficients (so they depend on N). As the least squares residuals, the ηi’s satisfy
∑N

i=1 ηi = 0,

and
∑N

i=1 xitηi = 0 for t = 1, 2, ..., T . The different interpretation is a matter of recentering the

nuisance parameters λ, φ1, ..., φT (and also ηi). These parameters are not the parameters of interest.

The estimator for the key parameters (α, β, σ2
0, σ

2
1, ..., σ

2
T ) is not affected by the recentering of the

nuisance parameters. The least squares interpretation is useful when λi is (or is treated as) a

sequence of fixed constants. In this case, we interpret Ψη as Ψn = 1
n

∑N
i=1(ηi − η̄)(ηi − η̄)′ (with

n = N − 1), the sample covariance of ηi. Also see Remark 1. ✷

2.3 Likelihood conditional on yi0

An alternative approach to the full likelihood for the entire sequence (yi0, yi1, ..., yiT ) is the condi-

tional likelihood, conditional on the initial observation. The conditional likelihood is less sensitive

to the specification of initial conditions. The analysis is different from the conditional estimation in

the pure time series context owing to the presence of individual effects. Since λi can be correlated

with yi0, we project λi on yi0 in addition to wi such that

λi = λ+ φ0 yi0 + φwi + ηi (7)

where ηi denotes the projection residual. The model can be written as (t = 1, 2, ..., T )

yit = αyit−1 + x′itβ + ftφ0yi0 + f ′tφwi + δt + f ′tηi + εit

In matrix form,

Byi = αyi0e1 + xiβ + Fφ0yi0 + Fφwi + δ + Fηi + εi

where B is equal to B+ with the first row and first column deleted, and e1 = (1, 0, ..., 0)′. Since the

determinant of B is 1, the likelihood for Fηi + εi is the same as the likelihood for yi conditional on

yi0 and xi. Thus

ℓ(yi|yi0, xi) = −N
2

ln |Ω| − 1

2

N∑

i=1

u′iΩ
−1ui (8)

where Ω = FΨF ′ +D with Ψ = var(ηi),

ui = (ui1, ..., uiT )′

with

uit = yit − αyit−1 − x′itβ − f ′tφ0 yi0 − f ′tφwi − δt.

The first observation yi0 appears in every equation (every t).

The conditional likelihood here is robust to assumptions made on the initial observations yi0,

whether it is from the stationary distribution, whether it is correlated with regressors or the effects.

Again, λi can be a sequence of fixed constants as noted in the earlier remarks.
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3 Dynamic panel with predetermined regressors

This section considers the model

yit = α yi,t−1 + x′itβ + f ′tλi + εit (9)

under the assumption that

E(εit|yt−1
i , xti, λi) = 0

where yti = (yi0, ..., yit)
′ and xti = (xi1, ..., xit)

′. Under this assumption, xit is allowed to be correlated

with past εit, thus predetermined. This assumption also allows feedback from past y to current x.

The model extends that of Arellano (2003, Chapter 8) to interactive effects and to the maximum

likelihood estimation.

3.1 Weakly exogenous dynamic regressors

The concept of weak exogeneity is examined by Engle et al (1983). The basic idea is that inference

for the parameter of interest can be performed conditional on weakly exogenous regressors with-

out affecting efficiency. In this case, we show that the Mundlak-Chamberlain projection will not

be necessary. The objective function given in (11) below is sufficient for consistent and efficient

estimation. Under weak exogeneity the joint density for (yit, xit) (conditional on past data) can

be written as the conditional density of yit, (conditional on xit) multiplied by the marginal density

of xit (all conditional on past data), where the latter is uninformative about the parameters of

interest. To be concrete, we consider the following process

xit = αxxi,t−1 + βxyi,t−1 + g′tτi + ξit (10)

where αx (p × p) and βx (p × 1) are unknown parameters (not necessarily the parameters of the

interest). In addition, τi and λi are conditionally independent (conditional on the initial observation

(yi0, xi0)); εit is independent of ξit; ft and gt are free parameters. The regressor xit is correlated

with past εit, thus predetermined; xit is also correlated with λi and past ft through yi,t−1. Arbitrary

correlation between λi and (xi0, yi0) (initial endowment) is also allowed.

Note that for the y equation, the regressor xit is correlated with λi, even conditional on the

included regressor yit−1. This correlation originates from the correlation between xi0 and λi.

We next argue that xit in (10) is weakly exogenous with respect to the parameters in the y

equation. The part of joint density function4 of (yi, xi) that involves the parameter of interest is

given by

ℓ1(yi, xi|yi0, xi0) = −N
2

ln |Ω∗| − 1

2

N∑

i=1

u′iΩ
∗−1ui (11)

4More specifically, the conditional joint density, conditional on the initial observation.
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where Ω∗ = FΨ∗F ′ +D with Ψ∗ = var(η∗i ) and η∗i = λi − φ0yi0 − ψ0xi0,

yi = (yi1, yi2, ..., yiT )′, xi = (xi1, xi2, ..., xiT )′, ui = (ui1, ..., uiT )′

uit = yit − αyit−1 − x′itβ − f ′tφ0yi0 − f ′tψ0xi0

(t = 1, 2, ..., T ). The likelihood function is similar to that of Section 2.3, here the individual effects

λi are projected onto the initial value of xi0 instead of the entire path (xi0, xi1, ..., xiT ). Again, the

factor process F occurs in both the mean and variance.

The preceding likelihood function is simple. There is no need to estimate the parameters in the

x equation, so the computation is relatively easy. The parameters can be easily estimated by the

algorithm in Section 5.

To verify (11), let wi = vec(x′i), a vector that stacks up xit (t = 1, 2, ..., T ). Then
[
B −(IT ⊗ β′)
C1 C2

] [
yi
wi

]
= d1yi0 + d2xi0 +

[
Fλi + εi
Gτi + ξi

]

where B has the same form as B+ but with dimension T × T , and

C1 =




0 0 · · · 0
−βx 0 · · · 0

...
. . .

. . .
...

0 · · · −βx 0


 , C2 =




Ip 0 · · · 0
−αx Ip · · · 0

...
. . .

. . .
...

0 · · · −αx Ip


 , d1 =




α
0
...
βx
0
...




, d2 =




0
...
αx
0
...




G = (g1, g2, ..., gT )′ and ξi = (ξi1, ..., xiT )′. All elements of d1 and d2 are zero except those displayed.

It can be easily shown that

B† =

[
B −(IT ⊗ β′)
C1 C2

]

has a determinant equal to one, the joint density of (yi, wi) is equal to the joint density of B†(y′i, w
′
i)
′.

The latter is equal to, apart from a mean adjustment, the joint density of ((Fλi + εi)
′, (Gτi + ξi)

′)′,

where all densities are conditional on the initial observation (yi0, xi0). Assuming λi and τi are

conditionally independent (conditional on yi0 and xi0), then Fλi + εi is conditionally independent

of Gτi + ξi. Thus we have

f(yi, xi|yi0, xi0) = f(Fλi + εi|yi0, xi0) · f(Gτi + ξi|yi0, xi0) (12)

where f denotes a density function. Equation (11) is equal to log f(Fλi+εi|yi0, xi0). The logarithm

of the second term does not depend on the parameters of interest.

Remark 3 Equation (11) is neither the (log-valued) joint density of (yi, xi), nor the conditional

density f(yi|xi, yi0, xi0). It is the term in the joint density that depends on the parameters of

interest. When y does not Granger cause x (i.e., βx = 0), then (11) is the conditional density. See

Engle et al (1983). ✷
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Remark 4 The likelihood function (11) is simpler than that of Section 2. This is because under

strict exogeneity of Section 2, the process of xit is unspecified, and to account for the arbitrary

correlation between the effects and the regressors, full path projection of λi on xi is required.

Under weak exogeneity together with a dynamically generated xit, it is sufficient to account for the

correlation between the effects (λi) and the initial observations yi0 and xi0 only. ✷

3.2 Non-weakly exogenous dynamic regressors

We consider a similar process for xit. However, we now permit arbitrary correlation between λi and

τi and arbitrary correlation between εit and ξit. Solely for notional simplicity, we assume τi and λi

are identical. We also allow arbitrary correlation between ft and gt. We rewrite the y equation by

lagging the x by one period (also for notational simplicity) so that

yit = αyi,t−1 + β′xi,t−1 + δyt + f ′tλi + εit

and

xit = αxxi,t−1 + βxyi,t−1 + δxt + g′tλi + ξit

Because of the correlation between εit and ξit, and the common λi cross equations, the regressor

xit is no longer weakly exogenous, although predetermined with respect to {εit}. The x and y

equations should be modeled jointly even though the parameters of interest are those in the y

equation only. The VAR approach is most suitable for this setup. Let

zit =

[
yit
xit

]
, A =

[
α β′

βx αx

]
, δt =

[
δyt
δxt,

]
π′t =

[
f ′t
g′t

]
, ζit =

[
εit
ξit

]

Then

zit = Azit−1 + δt + π′tλi + ζit (13)

This formulation extends the model of Holtz-Eakin et al. (1988) to multiple factors. Let zi be the

T (p+1)×1 vector that stacks up zit (t = 1, 2, ..., T ) and Π be the T (p+1)×r matrix that stacks up

the expanded factors π′t. Under the assumption that ζit are independent normal over t, N(0,Σt),

the conditional likelihood function, conditional on zi0, is given by

ℓ(zi|zi0) = −N
2

ln |Ω∗| − 1

2

N∑

i=1

e′iΩ
∗−1ei

where Ω∗ = ΠΨ∗Π′+Σ with Ψ∗ = var(η∗i ), with η∗i being the projection residual in λi = λ+φ0zi0 +

η∗i ; Σ is block diagonal such that Σ = diag(Σ1, ...,ΣT ), and ei = (e′i1, e
′
i2, ..., e

′
iT )′ with

eit = zit −Azit−1 − δt − π′t φ0 zi0, (t = 1, 2, ..., T )

where δt absorbs π′tλ (λ is the intercept in the projection of λi onto [1, zi0]). Note that zi0 appears

as a regressor in every equation (i.e., each t) and appears twice for the first equation (t = 1).

11



The expanded factor matrix Π = (π1, π2, ..., πT )′ appears in both the mean and variance. This

conditional likelihood (conditional on zi0) is the simplest, at least in form, among those discussed

so far in this paper. The restricted aspect is that we need to model the x equation, in comparison

with the weakly exogenous case. This will, of course, be desirable when the parameters of the x

equations are also of interest.

In addition to the conditional likelihood, we can also work with the reduced form for the first

observation by projecting zi0 on [1, λi] such that zi0 = δ0 + ψ0λi + εi0. The joint likelihood of

z+
i = (zi0, zi1, ..., ziT )′ is easy to obtain. In either form, the Mundlak-Chamberlain projection is

not required. The maximum likelihood estimation can be easily implemented by the algorithm in

Section 5.

4 Inferential theory

4.1 Fixed T inferential theory

Despite the factor error structure, because we do not estimate individual heterogeneities (the factor

loadings) but only their sample variance, this eliminates the incidental parameters problem. Under

fixed T , there are only a fixed number of parameters so that the standard theory of the quasi-

maximum likelihood applies. In particular, consistency and asymptotic normality hold. Let θ

denote the vector of free and unknown parameters, that is, α, β, the lower triangular of Ψ (due

to symmetry), the unknown elements in F , and the unknown elements in D. Let θ̂ denote the

quasi-FIML estimator. Standard theory implies the following result:

√
N(θ̂ − θ)

d−→ N(0, V )

where

V = plimN

(
∂2ℓ

∂θ∂θ′

)−1 (
E
∂ℓ

∂θ

∂ℓ

∂θ′

) (
∂2ℓ

∂θ∂θ′

)−1

and the derivatives are evaluated at θ0. So the estimator is consistent and asymptotically normal

under fixed T . This result contrasts with the within-group estimator under fixed T (for additive

effects) or the principal components estimator (for interactive effects). The latter estimators can

be inconsistent under fixed T . Despite the sandwich formula for the covariance, we argue that the

estimator is efficient in a later subsection.

4.2 Large T inferential theory

The large T analysis is quite different and is enormously difficult, though the final limiting results

are simple. There are an infinite number of parameters in the limit. The usual argument of con-

sistency as in Amemiya (1985) and Newey and McFadden (1994) no longer applies. The incidental

parameters problem occurs because of time effects δ (T parameters), the factor process F (T × r

parameters), and heteroskedasticity D (T parameters). We examine how the incidental parameters
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problem in the T dimension affects the limiting behavior of the estimators. One interesting ques-

tion is whether higher order biases exist. Existing theory on incidental parameter problem, e.g.,

Neyman and Scott (1948), Nickell (1981), Kiviet (1995), Lancaster (2000, 2002), and Alvarez and

Arellano (2003), suggests potential biases.

We consider the case without additional regressors other than the lag of the dependent variable:

yit = α yit−1 + δt + λ′ift + εit

The theory to be developed is applicable for the vector autoregressive model (13), in which α is

replaced by matrix A, assuming that the eigenvalues of A are less than unity in absolute values.

Under large T , we shall assume yi0 = 0 for notational simplicity. A single observation will

not affect the consistency and the limiting distribution under large T . Writing in vector-matrix

notation

Byi = δ + Fλi + εi

where B (T × T ) has the form of B+ in (4); yi, δ, F , and εi are defined in (2). Rewrite the above

as

yi = Γδ + ΓFλi + Γεi

where

Γ = B−1 =




1 0 · · · 0

α 1
. . . 0

...
. . .

. . .
...

αT−1 · · · α 1




The idiosyncratic error Γεi has covariance matrix ΓDΓ′, which is not diagonal. Since Γδ is a

vector of free parameter, the MLE of Γδ is equal to the sample mean ȳ = 1
N

∑N
i=1 yi. Let Sn =

1
n

∑N
i=1(yi − ȳ)(yi − ȳ)′ be the sample variance of yi, and let

Ψn =
1

n

N∑

i=1

(λi − λ̄)(λi − λ̄)′

be the sample variance of λi, with n = N −1. We consider the fixed effects setup so that λi and Ψn

are nonrandom. Despite the fixed effects setup, we do not estimate the individual λi but only its

sample covariance matrix Ψn. It is common in the factor literature to estimate the sample moments

of the effects, whether they are random or deterministic, see, for instance, Amemiya et al. (1987),

Anderson and Amemiya (1988). Estimating the sample moment instead of the effects themselves

eliminates the incidental parameters problem in the cross-section. But under large T , we have

new incidental parameters due to the increasing dimension of δ, F and D. Taking expectation, we

obtain

E(Sn) = Σ(θ) = ΓFΨnF
′Γ′ + ΓDΓ′ = ΓΩΓ′
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where θ denotes the parameter vector consisting of α, the non-repetitive and free elements of Ψn, the

free elements of F , and the diagonal elements of D. It is convenient to simply put θ = (α,Ψn, F,D).

In the above, Ω = Ω(θ) = FΨnF
′ +D.

The likelihood function after concentrating out δ becomes

ℓ(θ) = −n
2

log |Σ(θ)| − n

2
tr[SnΣ(θ)−1] (14)

where n = N − 1. We make the following assumptions:

Assumption 1: εi are iid over i; E(εit) = 0, var(εit) = σ2
t > 0, and εit are independent over t;

Eε4it ≤M <∞ for all i and t; E(εit|λ1, ..., λN , F ) = 0, for t ≥ 1; |α| < 1.

Assumption 2: The λi are either random or fixed constants with Ψn → Ψ > 0, as N → ∞.

Assumption 3: There exist constants a and b such that 0 < a < σ2
t < b < ∞ for all t;

1
T F

′D−1F = 1
T

∑T
t=1 σ

−2
t ftf

′
t → Q and 1

T

∑T
t=1 σ

−4
t (ftf

′
t ⊗ ftf

′
t) → Ξ, as T → ∞, for some positive

definite matrices Q and Ξ.

As explained in the previous sections, we need r2 restrictions to remove the rotational indeter-

minacy for factor models. We consider two different sets of restrictions, referred to as IC1 and IC2.

They are stated below:

IC1: Ψn is unrestricted, F = (Ir, F
′
2)′

IC2: Ψn is diagonal, and T−1F ′D−1F = Ir.

Remark 5 A variation to IC2 is Ψn = Ir and 1
T F

′D−1F = Ir. IC2 or its variation is often used

in the classical maximum likelihood estimation of pure factor models (e.g., Anderson and Rubin,

1956; Lawley and Maxwell, 1971). Whether IC1 or IC2 (or its variation) is used, the estimated

parameters α and σ2
t (t = 1, 2, ..., T ) are numerically identical. ✷

Remark 6 Similar to classical factor analysis (e.g., Lawley and Maxwell, 1971), If IC1 or IC2 holds

for the underlying parameters, we will be able to estimate the true parameters (F,Ψn) instead of

rotations of them. If IC1 and IC2 are merely considered as a device to uniquely determine the

estimates, then the estimated F̂ is a rotation of the true F and Ψ̂ is a rotation of true Ψn. In this

paper, we regard the restrictions hold for the true parameters so we are directly estimating the true

F and true Ψn without rotations. This interpretation in fact makes the analysis more challenging

because we need to show that the rotation matrix is an identity matrix. Under either interpretation

of the restrictions, the estimated parameters α and (σ2
1, ..., σ

2
T ) are identical. ✷

If we let Ψ0
n denote the true sample variance of λi, it is a maintained assumption that Ψ0

n > 0

(positive definite). As a variable (an argument) of the likelihood function, Ψn is only required to be

semi-positive definite. Assuming the diagonal matrix D is invertible, then Σ(θ)−1 exists provided

that Ψn ≥ 0.

The likelihood function is nonlinear. Like any nonlinear maximization, we need some restrictions

on the parameter space. For technical reasons, we shall assume the maximization with respect to σ2
t
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(for all t) is taken over the set [a, b] with a and b positive, although arbitrary such that σ2
t ∈ (a, b).

We assume a stable dynamic process, that is, α ∈ [−ᾱ, ᾱ], a compact subset of (−1, 1). We put no

restrictions on F and Ψn other than the normalization restrictions. The consistency theory does

require that the determinant |Ir + F ′D−1FΨn| be bounded by Op(T
k) for some k ≥ 1. But this

imposes essentially no restriction since k is arbitrarily given. Indeed, in actual computation, no

restriction is imposed other than the normalization restrictions.

Let Θ denote the parameter space as just described. That is, α ∈ [−ᾱ, ᾱ] a compact subset of

(−1, 1); σ2
t ∈ [a, b] for each t, Ψn is semi-positive definite, and the elements of F and those of Ψn

are unrestricted except that |Ir + F ′D−1FΨn| is bounded by O(T k) for some k ≥ 1.

Let θ̂ be the maximum likelihood estimator over the parameter space Θ under a given set of

identification restrictions (IC1 or IC2). That is, θ̂ = argmaxθ∈Θ ℓ(θ). To establish consistency, we

need to make a distinction between the true parameters and the variables in the likelihood function.

Let θ0 = (α0,Ψ0
n, F

0, D0) denote the true parameter, an interior point of Θ. Let G0 = Γ0F 0, where

Γ0 is Γ evaluated at α0. Also introduce two T × T matrices:

JT =




0 0 · · · 0
1 0 · · · 0
...

. . .
. . .

...
0 · · · 1 0


 , L =




0 0 · · · 0 0
1 0 · · · 0 0

α 1
. . . 0 0

...
. . .

. . .
. . .

...
αT−2 · · · α 1 0




(15)

Note L = JTΓ = JTB
−1; both JT and L are T × T .

Before preceding, we emphasize that under fixed T , it is easy to obtain consistency and asymp-

totic normality. Classical factor analysis relies crucially on the assumption that
√
N(Sn − Σ(θ0))

is asymptotically normal, as N → ∞. This assumption combined with the delta method (Taylor

expansion of the objection function) is sufficient for asymptotic normality. Under large T , however,

the dimension of Sn increases, so the limit of
√
N(Sn − Σ(θ0)) is not well defined as N,T → ∞.

In addition, we have infinite number of parameters in the limit. So the classical approach fails to

work. A new framework is needed. The analysis is extremely demanding primarily because we

need to handle large dimensional matrices and an infinite number of parameters. Our analysis of

consistency and asymptotic normality is inevitably different from the classical analysis.

We start with the following lemma.

Lemma 1 Under Assumptions 1-3 and under either IC1 or IC2, as N,T → ∞, we have uniformly

for θ = (α, F,Ψn, D) ∈ Θ,

1

nT
ℓ(θ) = − 1

2T

[ T∑

t=1

log(σ2
t ) +

σ02
t

σ2
t

]
− 1

2
(α− α0)2

1

T
tr

[
L0D0L0′D−1

]

− 1

2T
tr

[
G0Ψ0

nG
0′Σ(θ)−1

]
+ op(1).
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where D = diag(σ2
1, ..., σ

2
T ), Σ(θ) = Γ(FΨnF

′ +D)Γ′, L0 = JTΓ0; G0 = Γ0F 0; op(1) is uniform in

θ ∈ Θ.

Evaluate the the likelihood function at θ0 = (α0, F 0,Ψ0
n, D

0), we have

1

nT
ℓ(θ0) = − 1

2T

[ T∑

t=1

log(σ02
t ) + 1

]
− 1

2T
tr

[
G0Ψ0

nG
0′Σ(θ0)−1

]
+ op(1)

= − 1

2T

[ T∑

t=1

log(σ02
t ) + 1

]
+ op(1)

the second equality follows from T−1tr[G0Ψ0
nG

0′Σ(θ0)−1] = Op(T
−1) = op(1), which is easy to show

as it does not involve any estimated parameters. Consider the centered-likelihood function

1

nT
ℓ(θ) − 1

nT
ℓ(θ0) = − 1

2T

[ T∑

t=1

log(σ2
t ) +

σ02
t

σ2
t

− log(σ02
t ) − 1

]

−1

2
(α− α0)2

1

T
tr

[
L0D0L0′D−1

]

− 1

2T
tr

[
G0Ψ0

nG
0′Σ(θ)−1

]
+ op(1)

A key observation is that the three terms on the right hand side are all non-positive for all values

θ ∈ Θ. In particular, they are non-positive when evaluated at θ̂. On the other hand, ℓ(θ̂)−ℓ(θ0) ≥ 0.

This can only be possible if

(α̂− α0)2
1

T
tr

[
L0D0L0′D̂−1

]
= op(1)

1

T

[ T∑

t=1

log(σ̂2
t ) +

σ02
t

σ̂2
t

− log(σ02
t ) − 1

]
= op(1)

1

T
tr

[
G0Ψ0

nG
0′Σ( θ̂ )−1

]
= op(1) (16)

The first equation implies the consistency of α̂ because it can be shown that 1
T tr(L0D0L0′D̂−1) ≥

c > 0 for some c, not depending on T and N . So α̂ = α0 + op(1). The second equation implies an

average consistency in the sense that

1

T

T∑

t=1

(
σ̂2
t − σ02

t

)2
= op(1). (17)

This follows from the fact that the function h(x) = log(x) + log(ai
x ) − log(ai) − 1 satisfies h(x) ≥

c(x − ai)
2 for all x, ai ∈ [a, b], where 0 < a < b < ∞, for some c > 0 only depending on a and b;

also see Bai (2013). The consistency of α̂ and the average consistency of σ̂2
t in (17) together with

(16) imply that Ψ̂ = Ψ0
n + op(1), and σ̂2

t = σ02
t + op(1) and f̂t = f0

t + op(1) for each t, under either

IC1 or IC2. The proof is given in the appendix. Therefore, we have
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Proposition 1 Under Assumptions 1-3 and under either IC1 or IC2, we have α̂ = α0 + op(1),

Ψ̂ = Ψ0
n + op(1); and for each t, f̂t = f0

t + op(1) and σ̂2
t = σ02

t + op(1).

We next investigate the asymptotic representations for the estimators and derive their limiting

distributions. Given consistency, it is no longer necessary to put a superscript “0” for the true

parameters. We shall drop the superscript. Thus all parameters or variables without a “hat”

represent the true values.

From the first order conditions, we can show that the estimator α̂ is given by

α̂ =
[
tr

(
JTSnJ

′
TΩ(θ̂)−1

)]−1
tr

(
JTSnΩ(θ̂)−1

)

and the time series heteroskedasticity is estimated by

D̂ = diag
[
B̂SnB̂

′ − F̂ Ψ̂F̂ ′
]
.

Remark 7 The above expression says that to estimate σ2
t , there is no need to estimate the indi-

vidual residuals εit. If the individuals εit were to estimated, it would invariably need to estimate

both F and Λ = (λ1, ..., λN )′. This would lead to the incidental parameter problem, and thus biases

and loss of efficiency. In fact, if T is fixed, λi cannot be consistently estimated, this means that

individuals εit cannot be consistently estimated. This further implies that error variance σ2
t cannot

be consistently estimated using the residuals ε̂it. This is similar to the bias of Neyman and Scott

(1948), though the latter paper assumes homoskedasticity. The FIML approach avoids estimating

individuals λi, and permits consistent estimation of σ2
t . ✷

Whether IC1 or IC2 is used, the product F̂ Ψ̂F̂ ′ is identical, and D̂ is also identical. So the

matrix Ω(θ̂) = F̂ Ψ̂F̂ ′ + D̂ is identical under IC1 or IC2. This further implies that α̂ is the same in

view of the expression for α̂.

The asymptotic representation of α̂ is given in the following theorem:

Theorem 1 Under Assumptions 1-3, and with either IC1 or IC2,

√
NT (α̂− α) =

( 1

T
tr(LDL′D−1)

)−1

×
[ 1√

NT

N∑

i=1

ε′iD
−1Lεi

]
+ op(1) (18)

where op(1) holds if N,T → ∞ with T/N2 → 0 and N/T 3 → 0.

The interpretation of Theorem 1 is simple. Suppose that the dynamic panel model is such that

there are no time effects and no factor structure: yit = α yit−1+εit, and that the heteroskedasticities

σ2
t are known. Then the generalized least squares method for α has the asymptotic representation

given by Theorem 1. So the quasi-FIML method eliminates all these incidental parameters and as

if σ2
t were known. The derivation of Theorem 1 is very demanding. In the appendix, we provide
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the key insights as to why the result holds, along with the necessary technical details. Note that α̂

is consistent under fixed T . The requirement of N/T 3 → 0 is for the representation to be as simple

as above.

To derive the limiting distribution, notice that the variance of 1√
NT

∑N
i=1 ε

′
iD

−1Lεi is equal to
1
T tr(LDL′D−1), and

1

T
tr(LDL′D−1) =

1

T

T∑

t=2

1

σ2
t

(
σ2
t−1 + α2σ2

t−2 + · · · + α2(t−2)σ2
1

)
−→ γ > 0 (19)

where we assume the above limit exists. The representation of α̂ implies
√
NT (α̂ − α)

d−→
N

(
0, 1/γ

)
. The asymptotic representation of σ̂2

t is found to be

σ̂2
t − σ2

t =
1

N

N∑

i=1

(ε2it − σ2
t ) + op(N

−1/2) +Op(1/T ). (20)

Summarizing the above results, we have

Theorem 2 Under the assumptions of Theorem 1, we have

√
NT (α̂− α)

d−→ N
(

0, 1/γ
)
,

and for each t, let κt be the excess kurtosis of εit, then

√
N(σ̂2

t − σ2
t )

d−→ N
(
0, (2 + κt)σ

4
t

)
.

The estimator is centered at zero despite incidental parameters in the time effects, in the factor

structure, and in the heteroskedasticity. For additive effects models, the within group estimator of

α has a bias of order 1/T and the GMM estimator has a bias of order 1/N (Alveraz and Arellano,

2003). Thus the FIML method has desirable theoretical properties.

Under homoskedasticity, (19) implies γ = 1/(1 − α2) so 1/γ = 1 − α2. Theorem 2 implies that√
NT (α̂ − α) → N(0, 1 − α2). This is obtained without enforcing homoskedasticity. Thus there is

no loss of asymptotic efficiency even under homoskedasticity. Enforcing homoskedasticity does not

increase efficiency under large T , and will be inconsistent under fixed T when homoskedasticity

does not hold. The FIML estimator is consistent under both fixed and large T .

4.3 Inference on F̂ and Ψ̂

The rate of convergence and the limiting distributions for F̂ and Ψ̂ are of independent interest

as they can be useful for analysis such as diffusion index forecasting and factor-augmented vec-

tor autoregression (FAVAR). The estimators Ψ̂ and F̂ and their distributions depend on which

restrictions are used. Under IC1, it can be shown that

Ψ̂ = (F̂ ′D̂−1F̂ )−1(F̂ ′D̂−1B̂SnB̂
′D̂−1F̂ )(F̂ ′D̂−1F̂ )−1 − (F̂ ′D̂−1F̂ )−1
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F̂ ′ = (Ir + F̂ ′D̂−1F̂ Ψ̂)−1F̂ ′D̂−1B̂SnB̂
′

subject to the restriction that the first (r × r) block of F̂ is Ir. Under IC2,

Ψ̂ = diag
(
T−2[F̂ ′D̂−1B̂SnB̂

′D̂−1F̂ ] − T−1Ir

)

F̂ ′ = (Ir + T Ψ̂)−1F̂ ′D̂−1B̂SnB̂
′

and subject to the normalization T−1F̂ ′D̂−1F̂ = Ir.

The rate of convergence for f̂t is N1/2, the best rate possible even when the factor loadings λi

(i = 1, 2, ..., N) are observable. However, the rate for Ψ̂ depends on the identification restrictions.

Under IC1, the rate is N1/2, and under IC2, the rate is (NT )1/2. The underlying reason is the

following. The matrix Ψn contains a small number of parameters. Under IC2, the entire cross

sections are used to identify and to estimate Ψn, so the convergence rate is faster. Under IC1, the

first r × r block of F is restricted to be Ir in order to identify Ψn, we effectively redistribute the

first block of F to Ψn. The rate for the newly defined Ψ̂ is dominated by the rate of f̂t, which is

N1/2.

Under IC1, the asymptotic representation of Ψ̂ is found to be

√
N(Ψ̂ − Ψn) =

1√
N

N∑

i=1

(λi − λ̄)ξ′i +
1√
N

N∑

i=1

ξi(λi − λ̄)′ + op(1) (21)

where ξi = (εi1, ..., εir)
′ and for t = r + 1, r + 2, ..., T ,

√
N(f̂t − ft) = −Ψ−1

n

( 1√
N

N∑

i=1

(λi − λ̄)ξ′i

)
ft + Ψ−1

n

( 1√
N

N∑

i=1

(λi − λ̄)εit

)
+ op(1). (22)

From the asymptotic representations, we find the limiting distributions:

Proposition 2 Under Assumptions 1-3 and IC1, as N,T → ∞, we have, for each t > r,

√
N(f̂t − ft)

d−→ N
(

0,Ψ−1[f ′tDrft + σ2
t ]

)
,

√
N vech(Ψ̂ − Ψn)

d−→ N
(

0, 4D+
r (Dr ⊗ Ψ)D+′

r

)

where Dr = diag(σ2
1, ..., σ

2
r ), Ψ is the limit of Ψn, and D+

r is the Moore-Penrose generalized inverse

of the duplication matrix Dr associated with an r × r matrix.

Under IC2, the estimated factors has the following representation,

√
N(f̂t − ft) = Ψ−1

n

1√
N

N∑

i=1

(λi − λ̄)εit + op(1) (23)

for t = 1, 2, ..., T . The estimator has a simple interpretation. Since Ψn = 1
N−1

∑N
i=1(λi−λ̄)(λ̂i−λ̄)′,

the estimator f̂t is the least squares regression of yi − α yi,−1 (T × 1) on Λ and a constant, as if
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Λ were known even though we never estimate Λ itself other than its sample variance. It is thus

an interesting result. The central limit theorem (CLT) implies that
√
N(f̂t − ft)

d−→ N(0,Ψ−1σ2
t ).

The asymptotic variance of f̂t is consistently estimable because both Ψ̂n and σ̂2
t are consistent.

Under IC2, the convergence rate for Ψ̂ is much faster. However, there is a bias of order O(1/N)

arising from the estimation of ft and σ2
t . When scaled by the convergence rate (NT )1/2, the bias

is non-negligible unless T/N → 0. The asymptotic representation for Ψ̂ is found to be

Lemma 2 Under Assumptions 1-3 and IC2 and T/N → 0,

√
NT diag(Ψ̂ − Ψn) = −2

√
NT (α̂− α) diag

[
Ψn

1

T
(F ′L′D−1F )

]

− diag
[
Ψn

1√
NT

N∑

i=1

T∑

t=1

1

σ4
t

(ε2it − σ2
t )ftf

′
t

]

+ 2 diag
[ 1√

NT

N∑

i=1

T∑

t=1

1

σ2
t

(λi − λ̄)f ′t εit
]

+ op(1)

(24)

where diag(A) denotes the vector formed from the diagonal elements of A.

Let Υ denote the limit of 1
T (F ′L′D−1F ) as T → ∞. Let h denote the r× 1 vector of diag(ΨΥ).

Let Pr be a diagonal selection matrix (r × r2) such that diag(C) = Prvec(C) for any r × r matrix

C. The representations for f̂t and Ψ̂n imply

Proposition 3 Under Assumptions 1-3 and IC2, as N,T → ∞, we have, for each t,

√
N(f̂t − ft)

d−→ N(0,Ψ−1σ2
t ).

And if T/N → 0 and εit are normal, then

√
NT diag(Ψ̂ − Ψn)

d−→ N
(

0, 4hh′/γ + Pr
[
2(Ir ⊗ Ψ)Ξ(Ir ⊗ Ψ) + 4(Q× Ψ)

]
P ′
r

)

where Q and Ξ are given in Assumption 3, and Pr is a diagonal selection matrix (r × r2).

The normality assumption of εit is only used for deriving the limiting variance of Ψ̂. It is also

easy to find the limiting distribution of
√
NT (Ψ̂−Ψn) under non-normality given its representation

in (24). Here the condition T/N going to zero is needed under the fast scaling rate
√
NT . This

condition is not needed for all other estimated parameters, and especially not needed for α̂.

4.4 Efficiency

Efficiency of θ̂ under fixed T . The objective is to show that the estimator θ̂ = (α̂, D̂, F̂ , Ψ̂n)

is efficient among all estimators that are based on the second moments of the data, regardless of

normality. Let sn = vech(Sn) and g(θ) = vech(Σ(θ)). It is well known that the estimator θ̂ based

on the objection function (14) is asymptotically equivalent to the generalized method moments

(GMM) estimator

min
θ

n[sn − g(θ)]′W−1[sn − g(θ)]
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where W = 2D+[Σ(θ0)⊗Σ(θ0)]D+′

and D+, a matrix of T (T+1)/2×T 2, is the generalized inverse of

a duplication matrix D, e.g., Chamberlain (1984) and Magnus and Neudecker (1999). The optimal

GMM uses the inverse of Wopt = var(
√
n[sn − g(θ0)]) as the weight matrix. Let G = ∂g/∂θ′, then

the optimal GMM has the limiting distribution

√
n(θ̂opt − θ0)

d−→ N
(
0,plim(G′W−1

optG)−1
)

In comparison, the asymptotic variance of θ̂ is the probability limit of

(G′W−1G)−1(G′W−1WoptW
−1G)(G′W−1G)−1

However, we will show that the preceding expression coincides with (G′W−1
optG)−1. Thus we have

Theorem 3 Under Assumptions 1-3, the quasi-FIML is asymptotically equivalent to the optimal

GMM estimator based on the moments E[sn − g(θ)] = 0, and

√
n(θ̂ − θ0)

d−→ N
(
0,plim(G′W−1

optG)−1
)
.

It is interesting to note that the FIML does not explicitly estimate the optimal weighting matrix

Wopt, but still achieves the efficiency. Estimation of Wopt would involve the fourth moments of

the data. The number of elements in the optimal weighting matrix is large even with a moderate

T (order of T 2 by T 2). Thus the estimate for Wopt can be unreliable. Also note that, we prove

this proposition under the fixed effects setup without assuming λi to be iid random variables and

without assuming εit to be normal. Moreover, FIML remains to be efficient under large T , as

discussed in Theorem 4 below.

To prove Theorem 3, we first derive the analytical expression for Wopt under the fixed effects

setup (λi are nonrandom)

√
n[sn − g(θ0)] =

√
n vech[H +H ′ + Γ(Sεε −D)Γ′]

where

H = Γ
1

n

N∑

i=1

(εi − ε̄)(λi − λ̄)′F ′Γ′, Sεε =
1

n

N∑

i=1

(εi − ε̄)(εi − ε̄)′

It is easy to show that

var[
√
n vech(H +H ′)] = 4D+Γ(FΨnF

′ ⊗D)Γ′D+′

It can also be shown that

var[
√
n vech(ΓSεεΓ

′)] = D+(Γ ⊗ Γ)P ′V P(Γ′ ⊗ Γ′)D+′

+ 2D+(ΓDΓ′ ⊗ ΓDΓ′)D+′

where P (T × T 2) is a diagonal selection matrix such that Pvec(A) gives the diagonal elements of

A for a T -dimensional square matrix A, and V is a T -dimensional diagonal matrix with elements
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being E(ε4it) − 3σ4
t (t = 1, 2, ..., T ). The optimal weighting matrix Wopt is given by the sum of the

two preceding equations.

Next, from Σ(θ0) = Γ(FΨnF
′ +D)Γ′ and W = 2D+[Σ(θ0) ⊗ Σ(θ0)]D+′

, it follows that

W = 2D+(ΓF ⊗ ΓF )(Ψn ⊗ Ψn)(F ′Γ′ ⊗ F ′Γ)D+′

+ 4D+Γ(FΨnF
′ ⊗D)Γ′D+′

+ 2D+(ΓDΓ′ ⊗ ΓDΓ′)D+′

Thus

W = Wopt + 2D+(ΓF ⊗ ΓF )(Ψn ⊗ Ψn)(F ′Γ′ ⊗ F ′Γ)D+′ −D+(Γ ⊗ Γ)P ′V P(Γ′ ⊗ Γ′)D+′

(25)

Let ψ denote the free parameters in Ψn, and let φ denote the diagonal elements of D. Then

Gψ =
∂g

∂ψ′ = D+(ΓF ⊗ ΓF )Dr, under IC1

Gφ =
∂g

∂φ′
= D+(Γ ⊗ Γ)P ′

The second term on the right-hand side of (25) is GψD+
r (Ψn ⊗ Ψn)D+′

r G
′
ψ because Ψn ⊗ Ψn =

DrD+
r (Ψn ⊗ Ψn)D+′

r D′
r. The last term of (25) is equal to GφV G

′
φ. This means that

W = Wopt +GRG′ (26)

where R is a block diagonal matrix R = diag(0,D+(ΨN ⊗ Ψn)D+′

,−V ); G = ∂g
∂θ′ . From this

relationship between W and Wopt, we can verify

(G′W−1G)−1(G′W−1WoptW
−1G)(G′W−1G)−1 ≡ (G′W−1

optG)−1

In fact, the above holds for an arbitrary symmetric R provided that Wopt+GRG
′ is positive definite;

see Shapiro (1986) and Rao and Mitra (1971, Chapter 8). This proves Theorem 3. It follows that

the quasi-FIML estimator with interactive effects is not only consistent but also efficient despite

non-normality and despite the fixed effects setup.

Efficiency under large T . The estimator α̂ is efficient under large T in the sense that

it achieves the semiparametric efficiency bound. In the supplementary material, we derive the

semiparametric efficiency bound in the sense of Hahn and Kuersteiner (2002) under normality of

εit. The nonparametric components of the model include the time effects, the factor process ft and

the factor loadings λi and the heteroskedasticities σ2
t . The bound is derived in the presence of a

large number of incidental parameters.

Theorem 4 Suppose that Assumptions 1-3 hold. Then we have: (i) under normality of εit, the

semiparametric efficiency bound for regular estimators of α is 1/γ, where γ is defined in (19); (ii)

under the additional assumption that λi are iid normal and independent of εit, the semiparametric

efficiency bound is also 1/γ. Furthermore, the quasi-FIML approach achieves the semiparametric

efficiency bound.
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For additive effects models (non-interactive) and under homoskedasticity, Hahn and Kuersteiner

(2002) derive the semiparametric efficiency bound. They show that the within-group estimator

achieves the semiparametric efficiency bound after a bias correction. The quasi-FIML estimator

here achieves the semiparametric efficiency bound without the need of bias correction and without

the need of homoskedasticity assumption. FIML achieves the efficiency bound under the more

general setup of interactive effects.

Regular estimators rule out the superefficient ones, see Hahn and Kuersteiner (2002) and van

der Vaart and Wellner (1996). The estimated variance σ̂2
t is also efficient since it has an asymptotic

representation as if 1
n

∑N
i=1 ε

2
it were observable. That is, even if all individuals εit (for all i and t)

were observable, the estimated variance based on the second moment would have the same repre-

sentation. Throughout the process, we never estimate the individual εit (the residuals). Estimating

individual residuals would entail estimating individual λi, in addition to ft. That would lead to the

incidental parameters biases and efficiency loss. A key to efficiency is the estimation of the sum of

the squares, i.e., the whole term 1
n

∑N
i=1 ε

2
it.

5 Computing the quasi-FIML estimator

We implement the FIML procedure by the ECM (expectation and conditional maximization) al-

gorithm of Meng and Rubin (1993). The E-step in the ECM algorithm is identical to that of the

EM algorithm of Dempter et al (1977), but the M-step is broken into a sequence of maximizations

instead of simultaneously maximization over the full parameter space. Sequential maximization

involves low dimensional parameters and often has closed-form solutions, as in our case. We elab-

orate the ECM procedure for the conditional likelihood, conditional on yi0 in (8). Other likelihood

functions discussed earlier are also applicable with minor changes.

The complete data likelihood under normality is (assuming ηi is observable)

L(θ) = −N
2

ln |D| − 1

2

N∑

i=1

(ui − Fηi)
′D−1(ui − Fηi)

−N
2

ln |Ψ| − 1

2

N∑

i=1

tr(Ψ−1ηiη
′
i)

= −N
2

ln |D| − 1

2

N∑

i=1

[
u′iD

−1ui − 2u′iD
−1Fηi + tr(F ′D−1Fηiη

′
i)

]

−N
2

ln |Ψ| − 1

2

N∑

i=1

tr(Ψ−1ηiη
′
i)

where ui = yi − δ −Xiγ − FψWi, with

Xi = [yi,−1, xi], γ =

[
α
β

]
, Wi =

[
yi0
wi

]
, ψ = (φ0, φ).
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Here yi,−1 = (yi0, yi1, ..., yiT−1)′ and θ collects all the unknown parameters, θ = (F, δ,D, α, β, ψ).

For non-dynamic panels, ui is defined as ui = yi − δ − xiβ − Fφwi. And if the usual Mundlak

projection is used, we replace wi by x̄i.

The EM algorithm is an iterative procedure. The expectation step of the algorithm finds the

condition expectation Q(θ|θ̄) = E(L(θ)|data, θ̄), conditional on the data and assuming θ̄ is the true

parameter. The M step maximizes Q(θ|θ̄) with respect to θ. The procedure iterates by replacing

θ̄ with the newly obtained optimal value of θ. By solving the first order conditions, the optimal

value of θ satisfies (the supplementary document contains the detailed derivation)

F =
N∑

i=1

vi(W
′
iψ

′ + η̂′i)
[ N∑

i=1

(
ψWiW

′
iψ

′ + η̂iW
′
iψ

′ + ψWiη̂
′
i + η̂iη′i

)]−1

δ =
1

N

N∑

i=1

(yi −Xiγ − FψWi − F η̂i)

D = diag
[ 1

N

N∑

i=1

(
uiu

′
i − 2F η̂iu

′
i + F η̂iη′iF

′
)]

Ψ =
1

N

N∑

i=1

η̂iη′i

and

θ1 =
[ N∑

i=1

X′
iD

−1Xi

]−1
N∑

i=1

[
X′
iD

−1
(
yi − δ − F η̂i

)]

where vi = yi − δ − Xiγ, θ1 = (γ′, vec(ψ)′)′ and Xi = [yi,−1, xi, (W
′
i ⊗ F )]; η̂i and η̂iη′i are the

conditional mean and the conditional second moment of ηi.

The solutions for θ = (F,D,Ψ, δ, α, β, ψ) from the first order conditions are intertwined and

they are functions of each other. In other words, there are no closed-form solutions. Therefore,

maximization for the expected complete data likelihood itself requires iteration, in addition to the

usual EM iterations. To avoid this iteration, the ECM of Meng and Rubin (1993) is pertinent

because the sequential conditional maximizations have closed form solutions.

Conditional Maximization. Suppose the parameters are divided into two groups θ = (θ1, θ2).

The expected complete likelihood function is

Q(θ1, θ2|θ(k)
1 , θ

(k)
2 )

where the expectation is taken assuming θ(k) is the true parameter. The sequential maximization

sets θ1 at θ
(k)
1 so that the objective function is a function of θ2 alone. The problem becomes a

conditional/constrained maximization (CM)

CM1 : max
θ2

Q(θ
(k)
1 , θ2|θ(k)

1 , θ
(k)
2 )
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Denote the optimal solution by θ
(k+1)
2 . The second step fixes θ2 at θ

(k+1)
2 so that the objective

function is that of θ1 alone. This is again a conditional/constrained maximization

CM2 : max
θ1

Q(θ1, θ
(k+1)
2 |θ(k)

1 , θ
(k)
2 )

Denote the solution by θ
(k+1)
1 . Combining the solutions from the two steps, we obtain θ(k+1) =

(θ
(k+1)
1 , θ

(k+1)
2 ), which is used as input for computing the conditional expectations for the next

round of iteration. Prior to the CM2 step, an expectation step can be taken so that the maximiza-

tion problem becomes Q(θ1, θ
(k+1)
2 |θ(k)

1 , θ
(k+1)
2 ). Meng and Rubin (1993) reported that this extra

expectation step does not necessarily accelerate the convergence. A further extension to the ECM

algorithm is given by Liu and Rubin (1994), called ECME, which for some of the CM steps, the

maximization is taken with respect to the actual likelihood function ℓ(θ) rather than the expected

complete data likelihood function Q(θ|θ(k)). Both ECM and ECME share with the standard EM

the monotone convergence property, and ECME can have substantially faster rate of convergence.

The main advantage is that ECM and ECME in general have closed-form solutions.

In our application, we divide the parameters into three groups θ3 = (F,Ψ), θ2 = (δ,D), and

θ1 = (γ′, vec(ψ)′)′. The expected likelihood Q is maximized with respect to θ3 first, followed by θ2

and then by θ1. Closed-form solutions exist with this division of the parameter space.

Given the kth step solution θ(k), the ECM solution for θ(k+1) can now be stated:

F (k+1) =
N∑

i=1

v
(k)
i

(
W ′
iψ

(k)′ + η̂′i

)[ N∑

i=1

(
ψ(k)WiW

′
iψ

(k)′ + η̂iW
′
iψ

(k)′ + ψ(k)Wiη̂
′
i + η̂iη′i

)]−1

Ψ(k+1) =
1

N

N∑

i=1

η̂iη′i

δ(k+1) =
1

N

N∑

i=1

(
yi −Xiγ

(k) − F (k+1)ψ(k)Wi − F (k+1)η̂i

)

D(k+1) = diag
[ 1

N

N∑

i=1

(
u

(k+1/2)
i u

(k+1/2)′
i − 2F (k+1)η̂iu

(k+1/2)′
i + F (k+1)(η̂iη′i)F

(k+1)′
)]

where v
(k)
i = yi − δ(k) −Xiγ

(k), and u
(k+1/2)
i is the updated residual after the CM1 step,

u
(k+1/2)
i = yi − δ(k+1) −Xiγ

(k) − F (k+1)ψ(k)Wi

The above gives the solutions for the first two CM steps. The third CM step maximizes the Q

function with respect to θ1 only. The closed-from solution is

θ
(k+1)
1 =

[ N∑

i=1

X
(k+1)′
i (D(k+1))−1X

(k+1)
i

]−1
N∑

i=1

[
X

(k+1)′
i (D(k+1))−1

(
yi − δ(k+1) − F (k+1)η̂i

)]
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where

X
(k+1)
i = [Xi,W

′
i ⊗ F (k+1)].

The conditional expectations η̂i and η̂iη′i are taken assuming θ(k) being the true parameter:

η̂i = E(ηi|u(k)
i , θ(k)) = Ψ(k)F (k)′(Ω(k))−1u

(k)
i ,

η̂iη′i = η̂i η̂
′
i + Ψ(k) − Ψ(k)F (k)′(Ω(k))−1F (k)Ψ(k),

with Ω(k) = F (k)Ψ(k)F (k)′ +D(k) and

u
(k)
i = yi − δ(k) −Xiγ

(k) − F (k)ψ(k)Wi.

Having obtained θ(k+1), we can compute u
(k+1)
i and the conditional expectations E(ηi|u(k+1)

i , θ(k+1))

and E(ηiη
′
i|u(k+1), θ(k+1)), and then θ(k+2). The process is continued until convergence. The choice

of starting values is discussed in the supplementary document.

Remark 8 If we replace the CM3 step by the ECME of Liu and Rubin (1994) by directly maxi-

mizing the actual likelihood function, a standard GLS problem, the solution is

θ
(k+1)
1 =

[ N∑

i=1

X
(k+1)′
i (Ω(k+1))−1X

(k+1)
i

]−1
N∑

i=1

[
X

(k+1)′
i (Ω(k+1))−1

(
yi − δ(k+1)

)]
.

Our computer program allows this choice. ✷

Remark 9 We can also divide the parameters into two groups by combining θ3 and θ2. This

requires the joint maximization over F and δ (note D will also be obtained given F and δ; Ψ does

not depend on F and δ). Joint maximization is achieved by expanding the factor space and factor

loadings, F † = (δ, F ), and η†i = (1, η′i)
′. We can easily solve for F † from the original first order

conditions for F and δ. The solution for F † depends on the conditional mean and the conditional

second moments of η†i , which are η̂†i = (1, η̂′i)
′ and

̂
η†i η

†′
i =

[
1 η̂′i
η̂i η̂iη′i

]

respectively. ✷

Remark 10 (Speeding up the computation). To be concrete, consider computing θ
(k+1)
1 ,

which involves the matrix
∑N

i=1 X
(k+1)′
i (D(k+1))−1X

(k+1)
i , where X

(k+1)
i = [Xi, (W ′

i ⊗ F (k+1))]. Let

A(k) denote this matrix for a moment. It is important not to compute matrix A(k) in brute

force. By vectorizing A(k), we can see that A(k) depends on components such as
∑N

i=1(Xi ⊗Xi),∑N
i=1(Xi⊗Wi), etc. These components do not vary with k (do not depend on iterations). Dramatic

computational savings is achieved by computing these non-updating components only once and store

their values outside the iteration loops. This is especially important for large N (our program can

handle very large N , for example, hundreds of thousands). Matrix A(k) is then easily constructed

from these non-updating components and D(k+1) and F (k+1). A similar treatment is applied to

terms wherever applicable. This is chiefly responsible for the fast speed of our algorithm. ✷
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Table 1: Estimated coefficients for the non-dynamic panel

T N Within-Group MLE

β1 = 1 SD β2 = 2 SD β1 = 1 SD β2 = 2 SD

5 100 1.382 0.088 2.382 0.088 1.046 0.144 2.045 0.141
5 200 1.385 0.071 2.382 0.070 1.017 0.089 2.016 0.090
5 500 1.383 0.060 2.383 0.060 1.004 0.049 2.003 0.050
10 100 1.393 0.071 2.391 0.072 1.029 0.104 2.030 0.102
10 200 1.391 0.054 2.392 0.056 1.007 0.058 2.006 0.057
10 500 1.393 0.040 2.392 0.041 1.001 0.033 2.000 0.033

6 Simulation results

Non-dynamic panel. Data are generated according to (r = 2):

yit = δt + β1xit,1 + β2xit,2 + λ′ift + εit

xit,k = ι′λi + ι′ft + λ′ift + ξit,k, k = 1, 2

where εit ∼ N(0, σ2
t ) with σ2

t = t, independent over t and i; ξit,k and the components of λi and ft

are all iid N(0,1); ι′ = (1, 1); β1 = 1, β2 = 2. So the regressors are correlated with the loadings, the

factors, and the their product. We consider heavy heteroskedasticity such that

D = diag(1, 2, ..., T )

We set δt to zero, but time effects are allowed in the estimation.

While the usual within-group estimator is consistent under additive effects for non-dynamic

models, it is inconsistent under interactive effects. To see the extent of bias, we also report the

within-group estimator. The simulation results are reported in Table 1.

The columns are either the sample means (under the β coefficients) or the standard deviations

(under SD) from 5000 repetitions. The within-group estimator is inconsistent since it cannot remove

the correlation between the factor errors and the regressors. The MLE is consistent and becomes

more precise as either N or T increases. The data generating process for xit (also admits a factor

structure) requires the projection of λi onto the entire path of xi. The usual Mundlak projection

on x̄i is inconsistent. Not reported is the widely used Pesaran’s estimator, which does not perform

well. This corroborates the theory in Westerlund and Urbain (2013), who show that Pesaran’s

estimator becomes inconsistent when the factor loadings in the y equation are correlated with the

factor loadings in the x equation. Our data generating process allows this correlation.

Dynamic panel. The y process is generated as (r = 2)

yit = δt + α yit−1 + β1xit,1 + β2xit,2 + λ′ift + εit

all other variables are generated the same way as in the non-dynamic case. We again set δt to zero

but allow time effects in the estimation. For each T , we simulate 2T observations and then discard
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Table 2: Estimated coefficients for dynamic panels (α = 0.5 and α = 1.0)

Within-Group MLE

T N α SD β1 = 1 SD β2 = 2 SD α SD β1 = 1 SD β2 = 2 SD

5 100 0.466 0.031 1.363 0.092 2.349 0.097 0.488 0.051 1.050 0.141 2.047 0.142
5 200 0.465 0.029 1.361 0.076 2.351 0.083 0.496 0.037 1.017 0.087 2.016 0.088
5 500 0.465 0.027 1.360 0.068 2.349 0.071 0.499 0.023 1.004 0.049 2.003 0.050
10 100 0.476 0.019 1.384 0.072 2.378 0.072 0.495 0.033 1.037 0.105 2.034 0.103
10 200 0.476 0.017 1.384 0.057 2.378 0.056 0.499 0.021 1.007 0.059 2.007 0.059
10 500 0.476 0.015 1.384 0.043 2.379 0.045 0.500 0.012 1.002 0.033 2.001 0.034

5 100 0.974 0.028 1.357 0.096 2.340 0.101 0.983 0.043 1.051 0.145 2.045 0.148
5 200 0.975 0.026 1.355 0.079 2.343 0.086 0.990 0.032 1.016 0.087 2.012 0.089
5 500 0.974 0.025 1.355 0.070 2.342 0.076 0.996 0.019 1.005 0.051 2.003 0.053
10 100 0.988 0.011 1.381 0.073 2.373 0.073 0.991 0.022 1.037 0.110 2.032 0.109
10 200 0.988 0.010 1.381 0.058 2.374 0.058 0.995 0.015 1.007 0.059 2.005 0.059
10 500 0.988 0.010 1.381 0.044 2.374 0.047 0.998 0.008 1.002 0.034 2.001 0.035

the first half (we could generate only T observations with an arbitrary yi0). The variance of εit is

set to 1 for the first half, and for the second half, its variance is set to

var(εit) = t; t = 1, 2, ..., T

So the retained sample is heteroskedastic. Two different values of α are considered: α = 0.5 and

α = 1.0. Table 2 reports the sample means and the standard deviations of the estimated slope

coefficients from 5000 repetitions. The top panel is for α = 0.5 and the bottom panel is for α = 1.

For dynamic models, we project λi onto the entire path of the regressors xit plus the initial

value of yi0. The FIML jointly estimates all coefficients, although only the slope coefficients are

reported. Again, the within-group estimator is inconsistent and the FIML performs well. While

our theoretical analysis focuses on the stable case |α| < 1, simulations show that FIML also works

for the case of α = 1.

Estimated heteroskedasticities for the dynamic panel. The maximum likelihood ap-

proach also produces good estimates of heteroskedasticities for the idiosyncratic errors. Table 3

reports the estimates for the case of T = 10. The actual values are σ2
t = t (t = 1, 2, ..., 10). The

estimates have some downward biases (reported are the sample means without adjustment for the

degrees of freedom). The precision increases as N increases, as expected. The standard errors

become larger as t increases, also as expected, because the standard error is proportional to σ2
t = t

(according to the limiting distribution), The precision does not depend on the value of α. This is

consistent with the theory.

A note on computation. For each (N,T ) combination in the tables, the average time it

takes to obtain the final FIML estimator is 0.74 seconds of real time on a desktop PC with an Intel

E6400 processor. It should take even less time on an up-to-date computer. The average number of

EM iterations is 291; more iterations are required to achieve convergence for smaller sample sizes

(e.g., the average number is 354 for N=100,T=5, and 203 for N=500, T=10).
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Table 3: Estimated heteroskedasticities for the dynamic panel (T = 10)

α = 0.5 α = 1

N = 100 N = 200 N = 500 N = 100 N = 200 N = 500

σ2

t = t Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

1 0.851 0.200 0.916 0.129 0.951 0.082 0.853 0.198 0.920 0.130 0.961 0.080
2 1.782 0.359 1.883 0.236 1.938 0.144 1.780 0.360 1.887 0.233 1.947 0.144
3 2.732 0.505 2.855 0.328 2.925 0.207 2.732 0.503 2.855 0.328 2.933 0.206
4 3.684 0.657 3.833 0.422 3.913 0.265 3.694 0.640 3.829 0.423 3.921 0.264
5 4.641 0.796 4.813 0.520 4.908 0.328 4.623 0.790 4.807 0.525 4.913 0.326
6 5.571 0.929 5.784 0.631 5.897 0.399 5.551 0.931 5.773 0.628 5.902 0.400
7 6.575 1.065 6.780 0.735 6.888 0.459 6.541 1.062 6.764 0.737 6.892 0.460
8 7.507 1.234 7.741 0.838 7.876 0.521 7.469 1.236 7.717 0.846 7.875 0.524
9 8.470 1.372 8.720 0.931 8.876 0.579 8.421 1.374 8.692 0.933 8.875 0.581
10 9.410 1.515 9.718 1.025 9.861 0.645 9.344 1.521 9.687 1.026 9.860 0.645

7 Conclusion

This paper considers dynamic panel models with a factor analytic error structure, which is cor-

related with the regressors. A dynamic panel model constitutes a simultaneous equations system

with T equations. We show how the FIML procedure can be used to estimate the system, and how

to derive the likelihood function for dynamic panels with exogenous and predetermined regressors

that are correlated with the factors and factor loadings or both. We examine consistency, limiting

distribution, and efficiency of the FIML estimators.

Under fixed T, despite the interactive effects, consistency and asymptotic normality are a conse-

quence of the standard theory for the quasi-FIML procedure because there are only a fixed number

of parameters; the FIML estimator is also efficient. These results do not depend on the normality

of errors, and hold whether λi and ft are fixed constants or random variables.

We also consider the large T setting, establishing consistency, asymptotic normality, and effi-

ciency. Under large T , an infinite number of parameters exist in the limit. Classical argument of

consistency does not apply. Our analysis of consistency and the inferential theory is inevitably dif-

ferent from the existing literature. Moreover, even scaled by the fast rate of convergence
√
NT , the

estimator exhibits no asymptotic bias and is asymptotically efficient despite incidental parameters.

Much efforts have also been devoted to the implementation of the FIML under interactive

effects. A stable and fast algorithm has been developed to compute the FIML estimators.

There exists a large literature on factor models. Interested readers are referred to the recent

survey paper of Stock and Watson (2011). This strand of literature focuses on consistent extraction

of the common components and forecasting instead of consistent and efficient estimation of model

parameters. The present paper, with a different focus and analysis, is a careful treatment of

interactive effects more from a microeconometric perspective (e.g., Arellano, 2003; Baltagi, 2005;

and Hsiao, 2003) than from a macroeconometric one. The microeconometric perspective of panel
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analysis has had tremendous impact on empirical research and remains immensely popular with

applied researchers. The interactive-effect models enrich the tools for analyzing dynamic panel data

sets. The proposed estimator is shown to have desirable theoretical properties under both fixed

and large T .
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Appendix: Technical details

Proof of Lemma 1. From yi − ȳ = ΓF (λi − λ̄) + Γ(εi − ε̄), and let G = ΓF , we have

Sn = GΨnG
′ + ΓDΓ′ +G

1

n

N∑

i=1

(λi − λ̄)(εi − ε̄)′Γ′

+ Γ
1

n

N∑

i=1

(εi − ε̄)(λi − λ̄)′G′ + Γ
1

n

N∑

i=1

[(εi − ε̄)(εi − ε̄)′ −D]Γ′

For consistency proof, we put superscript “0” for parameter matrices on the right hand side above

(but no need for individual λi since it is not estimated), we have

tr[SnΣ(θ)−1] = tr[Σ(θ0)Σ(θ)−1] + 2tr
[
G0′Σ(θ)−1Γ0 1

n

N∑

i=1

(εi − ε̄)(λi − λ̄)′
]

+tr
[
Γ0′Σ(θ)−1Γ0 1

n

N∑

i=1

(
(εi − ε̄)(εi − ε̄)′ −D0

)]

Lemma A.1 Under Assumptions B1-B3, as N → ∞, regardless of T

(i) supθ∈Θ
1
T tr

[
G0′Σ(θ)−1Γ0 1

n

∑N
i=1(εi − ε̄)(λi − λ̄)′

]
= op(1),

(ii) supθ∈Θ
1
T tr

[
Γ0′Σ(θ)−1Γ0 1

n

∑N
i=1

(
(εi − ε̄)(εi − ε̄)′ −D0

)]
= op(1),

where Θ is the parameter space, θ = (Γ, F,Ψn, D), and Σ(θ) = Γ(FΨnF
′ +D)Γ′.

The proof of this lemma is elementary, thus omitted. Bai and Li (2012) prove a similar result for

the case Γ = Γ0 = IT . ✷

By Lemma A.1, we have

1

nT
ℓ(θ) = − 1

2T
log |Σ(θ)| − 1

2T
tr[Σ(θ0)Σ(θ)−1] + op(1). (27)

From Σ(θ0) = G0Ψ0
nG

0′ + Γ0D0Γ0′ , we have

Σ(θ0)Σ(θ)−1 = G0Ψ0
nG

0′Σ(θ)−1 + Γ0D0Γ0′Σ(θ)−1 (28)

Lemma A.2

1

T
tr[Γ0D0Γ0′Σ(θ)−1] =

1

T
tr(D0D−1) + (α− α0)2

1

T
tr[L0D0L0′D−1] + o(1)

where o(1) is in fact O(T−1) and is uniform on Θ.

Proof: Let V = ΓDΓ′. Using Σ(θ)−1 = V −1 − V −1G(Ψ−1
n +G′V −1G)−1G′V −1,

tr[Γ0D0Γ0′Σ(θ)−1] = tr[Γ0D0Γ0′V −1] − tr[(Ψ−1
n +G′V −1G)−1(G′V −1Γ0D0Γ0′V −1G)]
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From V −1 = Γ−1D−1Γ−1,

tr[Γ0D0Γ0′V −1] = tr[Γ−1Γ0D0Γ0′Γ−1D−1]

From Γ−1Γ0 = IT + (α0 − α)L0, we have

tr[Γ−1Γ0D0Γ0′Γ−1D−1] ≡ tr(D0D−1) + (α0 − α)2tr(L0D0L0′D−1)

we have used the fact that tr(L0D0D−1) = 0 because L0 is lower triangular and D0 and D−1 are

diagonal. We next show, uniformly on Θ,

tr[(Ψ−1
n +G′V −1G)−1(G′V −1Γ0D0Γ0′V −1G)] = O(1) (29)

We shall use the fact that for semi-positive matrices A,B,C, and D, if A ≤ C and B ≤ D, then

tr(AB) ≤ tr(CD). Note

(Ψ−1
n +G′V −1G)−1 ≤ (G′V −1G)−1 = (F ′D−1F )−1

We next shows

tr(G′V −1Γ0D0Γ0′V −1G) ≤ b

a

8

(1 − |α0|)(F ′D−1F ) (30)

The preceding two inequalities imply that (29) is bounded by 8(b/a)/(1−|α0|)tr(Ir) = 8r(b/a)/(1−
|α0|). To prove (30), first D0 ≤ bIT , thus L0D0L0′ ≤ bL0L0′ . Since the largest eigenvalue of a

symmetric matrix is bounded by the maximum of row sums (of absolute values), and for each row,

the sum of absolute values in L0L0′ is bounded by 2/(1−|α0|), it follows that L0L0′ ≤ 2/(1−|α0|)IT .

Thus tr(G′V −1Γ0D0Γ0′V −1G) ≤ 2b/(1 − |α0|)tr(G′V −1V −1G). Next G′V −1 = F ′D−1Γ−1. But

F ′D−1Γ−1Γ
′−1D−1F ≤ (4/a)F ′D−1F because Γ−1Γ

′−1 = BB′ ≤ 4IT and D−1 ≤ (1/a)IT . This

proves (30) and thus (29). Combing results we obtain Lemma A.2. ✷

By Lemma A.2 and (28) we have

1

T
tr[Σ(θ0)Σ(θ)−1] =

1

T
tr[G0Ψ0

nG
0′Σ(θ)−1]

+
1

T
tr(D0D−1) + (α− α0)2

1

T
tr[L0D0L0′D−1] + o(1)

(31)

Next, |Σ(θ)| = |D| · |Ir + F ′D−1FΨn|. Also, |Ir + F ′D−1FΨn| = O(T k) on Θ, we have

1

T
log |Σ(θ)| =

1

T
log |D| +O(

log T

T
) =

1

T

T∑

t=1

log(σ2
t ) + o(1) (32)

Combining (27), (31), (32), and tr(D0D−1) =
∑T

t=1 σ
02
t /σ

2
t , we obtain Lemma 1. ✷

Proof of Proposition 1. The consistency of α̂ and the average consistency of σ̂2
t in the sense

of (17) are already given in the main text. Using α̂− α0 = op(1), we show that (16) implies

1

T
tr

(
F 0Ψ0

nF
0′Ω(θ̂)−1

)
= op(1) (33)
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where Ω(θ̂) = F̂ Ψ̂F̂ ′ + D̂. Notice

1

T
tr[G0Ψ0

nG
0′Σ(θ̂)−1] =

1

T
tr[Γ̂−1Γ0F 0Ψ0

nF
0′Γ0′Γ̂−1Ω(θ̂)−1]

From Γ̂−1Γ0 = IT + (α0 − α̂)L0, and let A0 = F 0Ψ0
nF

0′ for the moment, then

1

T
tr[G0Ψ0

nG
0′Σ(θ̂)−1] =

1

T
tr[A0Ω(θ̂)−1]+2(α0−α̂)

1

T
tr[L0A0Ω(θ̂)−1]+(α0−α̂)2

1

T
tr[L0A0L0′Ω(θ̂)−1]

However, it is easy to show that

1

T
tr[L0A0Ω(θ)] = O(1), and

1

T
tr[L0A0L0′Ω(θ)] = O(1)

uniformly on Θ, and so they are Op(1) when evaluated at θ = θ̂. Since α̂− α0 = op(1), we have

1

T
tr[G0Ψ0

nG
0′Σ(θ̂)−1] =

1

T
tr[A0Ω(θ̂)−1] + op(1)

The left hand side is op(1) by (16), so 1
T tr[A0Ω(θ̂)−1] = op(1), proving (33). Note that Ω(θ) has a

standard factor structure with diagonal idiosyncratic covariance matrix. Bai and Li (2012) show

that, for factor models with diagonal idiosyncratic covariance matrix, (17) and (33) imply that

Ψ̂ = Ψ0
n + op(1), and σ̂2

t = σ02
t + op(1) and f̂t = f0

t + op(1) for each t, under either IC1 or IC2. This

completes the proof of Proposition 1. ✷.

Proof of Theorem 1. The technique details are involved. We first provide the key insights

of the proof and then move on to the details. Even the details here only contain the key steps; a

complete proof would require a much lengthy argument because of the complexity of the problem.

The approach taken here should help readers see the key ideas.

The first order condition for α̂ implies

tr
(
JTSnJ

′
TΩ(θ̂)−1

)
α̂ = tr

(
JTSnΩ(θ̂)−1

)

where Ω(θ̂) = F̂ F̂ ′ + D̂. Here we use the normalization Ψn = Ir and T−1F ′D−1F being diagonal.

This is a variation to IC2. It does not affect the estimator of α̂ (see Remark 5), but simplifies our

analysis. From IT = B′ + αJ ′
T , we have

tr
(
JTSnΩ(θ̂)−1

)
= α tr

(
JTSnJ

′
TΩ(θ̂)−1

)
+ tr

(
JTSnB

′Ω(θ̂)−1
)
.

Thus we can rewrite the estimator as

tr
( 1

T
JTSnJ

′
TΩ(θ̂)−1

)
(α̂− α) = tr

( 1

T
JTSnB

′Ω(θ̂)−1
)

(34)

Here we divide each side by T ; Though not occurring explicitly, the right hand side also depends on

α̂−α due to the estimation of F and D. Their estimation affects the limiting distribution of α̂−α.

While the term on the left tr
(

1
T JTSnJ

′
TΩ(θ̂)−1

)
also implicitly depends on α̂−α, the components
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that depend on α̂−α do not affect the limiting distribution because their multiplication with (α̂−α)

already on the left is Op((α̂− α)2) = op(α̂− α). The key is to analyze the right hand side.

The idea of the analysis is the following. Multiplying
√
NT on both sides of (34) gives

tr
( 1

T
JTSnJ

′
TΩ(θ̂)−1

)√
NT (α̂− α) =

√
N

T
tr

(
JTSnB

′Ω(θ̂)−1
)

(35)

We shall decompose the right hand side term (N/T )1/2tr(JTSnB
′Ω(θ̂)−1) into three groups. The

first group has an asymptotic distribution. The second group is asymptotically negligible. The

third group is of (C1 + op(1))
√
NT (α̂− α), and C1 6= 0, and must be combined with the left hand

side (canceling out with the corresponding term on the left hand side). The resulting outcome is

Theorem 1. The following contains the technical details.

Rewrite the right hand side term as

tr
(
JTSnB

′Ω(θ̂)−1
)

= tr
(
JTSnB

′Ω(θ)−1
)

+ tr
(
JTSnB

′[Ω(θ̂)−1 − Ω(θ)−1]
)

(36)

and notice

JTSnB
′ = LΩ(θ) + LF

1

n

N∑

i=1

(λi − λ̄)(εi − ε̄)′

+ L
1

n

N∑

i=1

(εi − ε̄)(λi − λ̄)′F ′ + L
1

n

N∑

i=1

[(εi − ε̄)(εi − ε̄)′ −D]. (37)

Right multiply the preceding equation by Ω(θ)−1 and noting tr(L) = 0, it is not difficult to show

(since there are no estimated parameters),
√
N

T
tr(JTSnB

′Ω(θ)−1) =
1√
NT

N∑

i=1

(εi − ε̄)′D−1L(εi − ε̄)

+
1√
NT

N∑

i=1

(εi − ε̄)′D−1LF (λi − λ̄) (38)

− 1√
NT

N∑

i=1

(εi − ε̄)′D−1FH−1(F ′D−1LF )(λi − λ̄) + op(1)

where H = Ir + F ′D−1F . The analysis of the second term of (36) is quite involved, we state the

result as a proposition.

Proposition A.1 The second term of (36), multiplied by
√
N/T , satisfy

√
N

T
tr

(
JTSnB

′[Ω(θ̂)−1−Ω(θ)−1]
)

= − 1√
NT

N∑

i=1

(εi − ε̄)′D−1LF (λi − λ̄)

+
1√
NT

N∑

i=1

(εi − ε̄)′D−1FH−1(F ′D−1LF )(λi − λ̄) (39)

+
1

T
tr

(
F ′L′Ω(θ̂)−1LF

)√
NT (α̂− α) + op(1)
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The proof will be given later. The right hand side of (35) is the sum of (38) and (39):

√
N

T
tr

(
JTSnB

′Ω(θ̂)−1
)

=
1√
NT

N∑

i=1

(εi − ε̄)′D−1L(εi − ε̄) (40a)

+
1

T
tr

(
F ′L′Ω(θ̂)−1LF

)√
NT (α̂− α) + op(1) (40b)

We will show that expression (40b ) also appears on the left hand side of (35).

Proposition A.2 The left hand side of (35) is

tr
( 1

T
JTSnJ

′
TΩ(θ̂)−1

)√
NT (α̂− α) =

1

T
tr

(
LDL′D−1

)√
NT (α̂− α) (41a)

+
1

T
tr

(
F ′L′Ω(θ̂)−1LF

)√
NT (α̂− α) + op(1) (41b)

Given the two propositions, Theorem 1 follows from (35), (40), and (41), noting that (40b) and

(41b) cancel each other. The remaining task is to prove the two propositions.

Proof of Proposition A.1. Consider the second term of (36) without taking the trace. By (37),

JTSnB
′[Ω(θ̂)−1 − Ω(θ)−1]

= LΩ(θ)[Ω(θ̂)−1 − Ω(θ)−1] (42a)

+ LF
1

n

N∑

i=1

(λi − λ̄)(εi − ε̄)′[Ω(θ̂)−1 − Ω(θ)−1] (42b)

+ L
1

n

N∑

i=1

(εi − ε̄)(λi − λ̄)′F ′[Ω(θ̂)−1 − Ω(θ)−1] (42c)

+ L
1

n

N∑

i=1

[(εi − ε̄)(εi − ε̄)′ −D][Ω(θ̂)−1 − Ω(θ)−1] (42d)

It can be shown that the trace of (42b)-(42d) multiplied by
√
N/T is negligible.

Lemma A.3 Under Assumptions 1-3,

1.
√
N/T tr

(
LF 1

n

∑N
i=1(λi − λ̄)(εi − ε̄)′[Ω(θ̂)−1 − Ω(θ)−1]

)
= op(1)

2.
√
N/T tr

(
L 1
n

∑N
i=1(εi − ε̄)(λi − λ̄)′F ′[Ω(θ̂)−1 − Ω(θ)−1]

)
= op(1)

3.
√
N/T tr

(
L 1
n

∑N
i=1[(εi − ε̄)(εi − ε̄)′ −D][Ω(θ̂)−1 − Ω(θ)−1]

)
= op(1)

The proof of this lemma will be omitted. We focus on (42a).

Using Ω(θ̂)−1 − Ω(θ)−1 = Ω(θ)−1[Ω(θ) − Ω(θ̂)]Ω(θ̂)−1 and

Ω(θ) − Ω(θ̂) = FF ′ +D − (F̂ F̂ ′ + D̂) = F (F − F̂ )′ + (F − F̂ )F̂ ′ +D − D̂
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we have

Ω(θ̂)−1 − Ω(θ)−1 = Ω(θ)−1[F (F − F̂ )′ + (F − F̂ )F̂ ′ +D − D̂]Ω(θ̂)−1

Thus

tr
(
LΩ(θ)[Ω(θ̂)−1 − Ω(θ)−1]

)
= tr

([
LF (F − F̂ )′ + L(F − F̂ )F̂ ′ + L(D − D̂)

]
Ω(θ̂)−1

)

= tr
(

(F − F̂ )′Ω(θ̂)−1LF
)

+ tr
(
F̂ ′Ω(θ̂)−1L(F − F̂ )

)
+ tr

(
L(D − D̂)Ω(θ̂)−1

)

Using Ω(θ̂)−1 = D̂−1 − D̂−1F̂ Ĥ−1F̂ ′D̂−1 with Ĥ = Ir + F̂ ′D̂−1F̂ , we expand the first exression

into two, and from F̂ ′Ω(θ̂)−1 = Ĥ−1F̂ ′D̂−1 we can simplify the second expression, and using

tr(L(D − D̂)D̂−1) = 0, we can simplify the third expression. These steps give

tr
[
LΩ(θ)[Ω(θ̂)−1 − Ω(θ)−1]

]

= tr
[
(F − F̂ )′D̂−1LF

]
(43a)

− tr
[
[(F − F̂ )′D̂−1F̂ ](Ĥ−1F̂ ′D̂−1LF )

]
(43b)

+ tr
[
F̂ ′D̂−1L(F − F̂ )Ĥ−1

]
(43c)

− tr
[
F̂ ′L(D − D̂)D̂−1F̂ Ĥ−1)

]
(43d)

The last two terms can be shown to be negligible because they are weighted average of f̂t − ft and

(σ̂2
t −σ2

t ) (note Ĥ−1 = Op(1/T )). The first two terms also involves the weighted sum of f̂t−ft, but

without the 1/T factor, thus dominating the last two terms. Note that (F̂ ′D̂−1LFĤ−1) = Op(1).

We next derive the representation of F̂ . The first order condition for F̂ satisfies

F̂ ′ = Ĥ−1F̂ ′D̂−1B̂SnB̂
′

From B̂ = B − (α̂− α)JT , we can rewrite

F̂ = Ĥ−1F̂ ′D̂−1BSnB
′ − (α̂− α)Ĥ−1F̂ ′D̂−1JTSnB

′ − (α̂− α)Ĥ−1F̂ ′D̂−1BSnJ
′
T

and here we ignore the term involving (α̂− α)2. Denote

BSnB
′ = (FF ′ +D) + Υ

where Υ represents the random part of BSnB
′, that is,

Υ = F
1

n

N∑

i=1

(λi − λ̄)(εi − ε̄)′

+
1

n

N∑

i=1

(εi − ε̄)(λi − λ̄)′F ′ +
1

n

N∑

i=1

[(εi − ε̄)(εi − ε̄)′ −D] (44)
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then

F̂ ′ = Ĥ−1F̂ ′D̂−1(FF ′ +D) + Ĥ−1F̂ ′D̂−1Υ

− (α̂− α)Ĥ−1F̂ ′D̂−1JTSnB
′ − (α̂− α)Ĥ−1F̂ ′D̂−1BSnJ

′
T

But the first term on the right hand side is

Ĥ−1(F̂ ′D̂−1F )F ′ + Ĥ−1F̂ ′D̂−1D

= Ĥ−1F̂ ′D̂−1(F − F̂ )F ′ + Ĥ−1(F̂ ′D̂−1F̂ )F ′ + Ĥ−1F̂ ′D̂−1D

= Ĥ−1F̂ ′D̂−1(F − F̂ )F ′ + F ′ − Ĥ−1F ′ + Ĥ−1F̂ ′D̂−1D

= F ′ + Ĥ−1F̂ ′D̂−1(F − F̂ )F ′ + Ĥ−1F̂ ′(D̂−1 −D−1)D

We can rewrite the representation of F̂ as

(F̂ − F )′ = Ĥ−1F̂ ′D̂−1(F − F̂ )F ′

+ Ĥ−1F̂ ′(D̂−1 −D−1)D

+ Ĥ−1F̂ ′D̂−1Υ (45)

− (α̂− α)Ĥ−1F̂ ′D̂−1JTSnB
′

− (α̂− α)Ĥ−1F̂ ′D̂−1BSnJ
′
T

Using the above representation, term (43a) can be written as (before taking trace),

−(F̂ − F )′D̂−1LF = −Ĥ−1F̂ ′D̂−1(F − F̂ )F ′D̂−1LF

− Ĥ−1F̂ ′(D̂−1 −D−1)DD̂−1LF

− Ĥ−1F̂ ′D̂−1ΥD̂−1LF (46)

+ (α̂− α)Ĥ−1F̂ ′D̂−1JTSnB
′D̂−1LF

+ (α̂− α)Ĥ−1F̂ ′D̂−1BSnJ
′
T D̂

−1LF

Term (43b) can be written as (before taking the trace)

[(F̂ − F )′D̂−1F̂ ](Ĥ−1F̂ ′D̂−1LF ) =

+ Ĥ−1F̂ ′D̂−1(F − F̂ )F ′D̂−1F̂ (Ĥ−1F̂ ′D̂−1LF )

+ Ĥ−1F̂ ′(D̂−1 −D−1)DD̂−1F̂ (Ĥ−1F̂ ′D̂−1LF )

+ Ĥ−1F̂ ′D̂−1ΥD̂−1F̂ (Ĥ−1F̂ ′D̂−1LF ) (47)

− (α̂− α)Ĥ−1F̂ ′D̂−1JTSnB
′D̂−1F̂ (Ĥ−1F̂ ′D̂−1LF )

− (α̂− α)Ĥ−1F̂ ′D̂−1BSnJ
′
T F̂ (Ĥ−1F̂ ′D̂−1LF )

The first term of (46) and that of (47) are canceled out. To see this, consider the first term of each

equation. Their sum is

Ĥ−1F̂ ′D̂−1(F − F̂ )[F ′D̂−1F̂ Ĥ−1 − Ir](F̂
′D̂−1LF ) (48)
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But

F ′D̂−1F̂ Ĥ−1 − Ir = (F − F̂ )′D̂−1F̂ Ĥ−1 + Ĥ−1

Thus if we let A = (F − F̂ )′D̂−1F̂ Ĥ−1, then (48) is

A′A(F̂ ′D̂−1LF ) +A′Ĥ−1(F̂ ′D̂−1LF )

which is bounded by ‖A‖2Op(T )+‖A‖Op(1). Note that Ĥ−1 = Op(1/T ), we can show that (similar

to Lemma A.3 of Bai, 2009, note that H denotes a different object there)

A = (F − F̂ )′D̂−1F̂ Ĥ−1 = Op(
1

N
) +Op(

1

T
) +Op(α̂− α) (49)

This means that (48) is bounded by

[Op(N
−2) +Op(T

−2) +Op((α̂− α)2)]T +Op(N
−1) +Op(T

−1) +Op(α̂− α)

Multiplied by
√
N/T , the above is ofOp(

√
T/N3/2)+Op(

√
N/T 3/2)+Op((NT )−1/2) plus

√
NTOp((α̂−

α)2) +
√
N/T (α̂−α). For former is negligible if T/N3 → 0 and N/T 3 → 0. The latter is of smaller

order than
√
NT (α̂ − α), thus also negligible. It can be shown that the second term of (46) and

the second term of (47) are each Op((NT )−1/2). Thus, after multiplying by
√
N/T , they are each

Op(1/T ) = op(1), not influencing the limiting distribution.

We next study the third term of (46) and that of (47). Using (44), the third term of (46) is

−Ĥ−1F̂ ′D̂−1ΥD̂−1LF = −Ĥ−1(F̂ ′D̂−1F )
1

n

N∑

i=1

(λi − λ̄)(εi − ε̄)′D̂−1LF

− Ĥ−1F̂ ′D̂−1 1

n

N∑

i=1

(εi − ε̄)(λi − λ̄)′(F ′D̂−1LF ) (50)

− Ĥ−1F̂ ′D̂−1 1

n

N∑

i=1

[(εi − ε̄)(εi − ε̄)′ −D]D̂−1LF

and the third term of (47) is

Ĥ−1F̂ ′D̂−1ΥD̂−1F̂ (Ĥ−1F̂ ′D̂−1LF )

= Ĥ−1(F̂ ′D̂−1F )
1

n

N∑

i=1

(λi − λ̄)(εi − ε̄)′D̂−1F̂ Ĥ−1F̂ ′D̂−1LF

+ Ĥ−1F̂ ′D̂−1 1

n

N∑

i=1

(εi − ε̄)(λi − λ̄)′(F ′D̂−1F̂ )Ĥ−1(F̂ ′D̂−1LF ) (51)

+ Ĥ−1F̂ ′D̂−1 1

n

N∑

i=1

[(εi − ε̄)(εi − ε̄)′ −D]D̂−1F̂ (Ĥ−1F̂ ′D̂−1LF )
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It can be shown that the third term of (50) and the third term of (51) do not affect the limiting

distribution. Next, consider the second term of (50) and that of (51). Notice

(F ′D̂−1F̂ )Ĥ−1 = Ir +Op(1/N) +Op(1/T ) +Op(α̂− α) (52)

That is, (F ′D̂−1F̂ )Ĥ−1 is essentially an identity matrix. To see this,

(F ′D̂−1F̂ )Ĥ−1 = (F − F̂ )′D̂−1F̂ Ĥ−1 + F̂ ′D̂−1F̂ Ĥ−1 = (F − F̂ )′D̂−1F̂ Ĥ−1 + Ir − Ĥ−1.

Thus, (52) follows from (49) and Ĥ−1 = Op(1/T ). Thus the sum of the second term in (50) and

that in (51) becomes

Ĥ−1F̂ ′D̂−1 1

n

N∑

i=1

(εi − ε̄)(λi − λ̄)′
[
Op(1)[

1

N
+

1

T
] +Op(α̂− α)

]
(F̂ ′D̂−1LF )

which is negligible after multiplying
√
N/T .

This means that the sum of (50) and (51) is equal to the sum of their first terms. Again, using

(52), the sum of them is

− 1

n

N∑

i=1

(λi − λ̄)(εi − ε̄)′D̂−1LF +
1

n

N∑

i=1

(λi − λ̄)(εi − ε̄)′D̂−1F̂ Ĥ−1F̂ ′D̂−1LF + op(
√
T/N)

Multiplying by
√
N/T and taking trace, the previous equation becomes

− 1√
NT

N∑

i=1

(εi − ε̄)′D̂−1LF (λi − λ̄) +
1√
NT

N∑

i=1

(εi − ε̄)′D̂−1F̂ Ĥ−1F̂ ′D̂−1LF (λi − λ̄) + op(1) (53)

The above is also equal to the sum of the first three terms in (46) and those in (47), multiplied

by (N/T )1/2. Most importantly, the above is canceled out with the second and third term of (38).

This result is stated in the following lemma:

Lemma A.4 (i) 1√
NT

∑N
i=1(εi − ε̄)′(D−1 − D̂−1)LF (λi − λ̄) = op(1)

(ii) 1√
NT

∑N
i=1(εi − ε̄)′

[
D−1F (H−1F ′D−1LF ) − D̂−1F̂ (Ĥ−1F̂ ′D̂−1LF )

]
(λi − λ̄) = op(1)

Proof of (i). Let gt denote the t-th row of LF . From D−1 − D̂−1 = D−1(D̂ −D)D̂−1, the left side

of (i) is

1√
NT

T∑

t=1

N∑

i=1

(εit − ε̄i)(σ̂
2
t − σ2

t )g
′
t(λi − λ̄)/(σ2

t σ̂
2
t )

Using the representation for σ̂2
t − σ2

t in (20), ignore smaller order terms (also ignore ε̄i), the above

can be written as

1√
NT

1

N

T∑

t=1

N∑

i=1

N∑

k=1

εit(ε
2
kt − σ2

t )g
′
t(λi − λ̄)/(σ4

t )
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This expression is Op(N
−1/2). To see this, For i 6= k, the expected value of the above is zero. For i =

k, let νt = E(ε3it), not necessarily being zero. The expected value of the above
∑T

t=1

∑N
i=1 νtg

′
t(λi−

λ̄)/σ4
t = 0 because

∑N
i=1(λi − λ̄) = 0. Thus if we let at = 1√

N

∑N
i=1 εitg

′
t(λi − λ̄)/σ4

t , and bt =
1√
N

∑N
k=1(ε2kt−σ2

t ), the above isN−1/2T−1/2
∑T

t=1 atbt with E(atbt) = 0. We have T−1/2
∑T

t=1 atbt =

Op(1). Thus the whole expression is Op(N
−1/2), proving (i). In the preceding proof, we have used

(20), which holds for pure factor models, see Bai and Li (2012). Now yit − αyit−1 is a pure factor

model. The convergence rate for σ̂2
t − σ2

t is only
√
N , much slower then α̂. Thus the estimation of

α does not affect the limiting representation of σ̂2
t − σ2

t , that is, the representation for pure factor

models holds. A rigorous proof can also be given, but we shall not pursue that here.

Proof of (ii). Write

D−1F (H−1F ′D−1LF ) − D̂−1F̂ (Ĥ−1F̂ ′D̂−1LF ) = (D−1 − D̂−1)F (H−1F ′D−1LF )

+D̂−1(F − F̂ )(H−1F ′D−1LF ) + D̂−1F̂−1
[
(H−1F ′D−1LF ) − (Ĥ−1F̂ ′D̂−1LF )

]

The left hand side of (ii) can be written as the sum of three expressions corresponding to the above

decomposition. The first expression being op(1) can be proved in the same way as (i), we simply

replace LF by F , also noting that H−1F ′D−1LF = Op(1). For the second expression, replace D̂−1

by D does not affect the analysis because (D̂−1 −D−1)(F − F̂ )(H−1F ′D−1LF ) will be a smaller

quantity. Now using the expression for F − F̂ in (45), we can show term by term that the second

expression is also op(1). Finally, consider the third expression. For this, we use the negligibility of

R = (H−1F ′D−1LF ) − (Ĥ−1F̂ ′D̂−1LF ) = Op(1/N) +Op(1/T ) +Op(α̂− α) = op(1)

The third expression is 1√
NT

∑N
i=1(εi − ε̄)′D̂−1F̂R(λi − λ̄), where R is defined as above. We can

replace D̂−1F̂ by D−1F without affecting the analysis. But then

1√
NT

N∑

i=1

[(λi − λ̄)′ ⊗ (εi − ε̄)′D−1F ] =
1√
NT

N∑

i=1

T∑

t=1

(λi − λ̄)′ ⊗ ft(εit − ε̄i)/σ
2
t = Op(1)

Because each element of R is op(1), the third expression is op(1), proving (ii). ✷

It remains to study the last two terms of (46) and (47). They depend on (α̂ − α). Upon

multiplied by
√
N/T , terms that are Op(1)

√
NT (α̂ − α) will affect the limiting distribution, and

terms that are op(1)
√
NT (α̂ − α) are dominated by the left hand side of (35) and will not affect

the limiting distribution.

Lemma A.5 The last two expressions in (46), multiplied by
√
N/T , satisfy

√
N

T
(α̂−α)Ĥ−1F̂ ′D̂−1JTSnB

′D̂−1LF =
√
NT (α̂−α)

1

T
Ĥ−1(F̂ ′D̂−1LF )(F ′D̂−1LF )+op(1). (54)

√
N

T
(α̂−α)Ĥ−1F̂ ′D̂−1JTBSnJ

′
T D̂

−1LF =
√
NT (α̂−α)

1

T
Ĥ−1(F̂ ′D̂−1F )F ′L′D̂−1LF+op(1). (55)
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Proof: Rewrite (37) as JTSnB
′ = LΩ(θ) + Υ1, where Υ1 represents its last three terms. Then

√
N

T
(α̂− α)Ĥ−1F̂ ′D̂−1JTSnB

′D̂−1LF

=
√
NT (α̂− α)

1

T
Ĥ−1F̂ ′D̂−1LΩ(θ)D̂−1LF +

√
NT (α̂− α)

1

T
Ĥ−1F̂ ′D̂−1Υ1D̂

−1LF (56)

It can be shown that
1

T
tr[Ĥ−1F̂ ′D̂−1Υ1D̂

−1LF ] = op(1)

thus the second term is op(1). Consider the first term of (56), omitting (α̂− α) for a moment,

1

T
Ĥ−1F̂ ′D̂−1LΩ(θ)D̂−1LF =

1

T
Ĥ−1F̂ ′D̂−1LFF ′D̂−1LF +

1

T
Ĥ−1F̂ ′D̂−1LDD̂−1LF

The second term is Op(1/T ), thus negligible. This proves (54).

For (55), write BSnJ
′
T = Ω(θ)L′ + Υ′

1,

√
N

T
(α̂− α)Ĥ−1F̂ ′D̂−1JTBSnJ

′
T D̂

−1LF

=
√
NT (α̂− α)

1

T
Ĥ−1F̂ ′D̂−1Ω(θ)L′D̂−1LF +

√
NT (α̂− α)

1

T
Ĥ−1F̂ ′D̂−1Υ′

1D̂
−1LF

The second term can be shown to be op(1), thus negligible. Consider the first term, omitting (α̂−α)

for a moment,

1

T
Ĥ−1F̂ ′D̂−1Ω(θ)L′D̂−1LF =

1

T
Ĥ−1(F̂ ′D̂−1F )F ′L′D̂−1LF +

1

T
Ĥ−1F̂ ′D̂−1DL′D̂−1LF.

The second term is Op(1/T ), thus negligible. This gives (55). ✷

Lemma A.6 The last two expressions of (47), multiplied by
√
N/T , satisfy

−
√
N

T
(α̂− α)Ĥ−1F̂ ′D̂−1JTSnB

′D̂−1F̂ (Ĥ−1F̂ ′D̂−1LF )

= −
√
NT (α̂− α)

1

T
Ĥ−1F̂ ′D̂−1LF (F ′D̂−1F̂ )Ĥ−1(F̂ ′D̂−1LF ) + op(1) (57)

−
√
N

T
(α̂− α)

1

T
Ĥ−1F̂ ′D̂−1BSnJ

′
T D̂

−1F̂ (Ĥ−1F̂ ′D̂−1LF )

= −
√
NT (α̂− α)

1

T
Ĥ−1(F̂ ′D̂−1F )(F ′L′D̂−1F̂ )(Ĥ−1F̂ ′D̂−1LF ) + op(1) (58)

Proof: The proof of (57) is similar to (54). The only difference is the replacement of D̂−1LF by

D̂−1F̂ (Ĥ−1F̂ ′D̂−1LF ) and noting Ĥ−1F̂ ′D̂−1LF = Op(1). The proof of (58) is similar to (55). ✷

Corollary A.1 The sum of (54), (55), (57), and (58) is given by

√
NT (α̂− α)

1

T
(LF )′Ω(θ̂)−1(LF ) + op(1) (59)
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Proof: The right hand side of (54) and that of (57) are canceled each other; their sum is op(1). This

follows from (52), that is, (F ′D̂−1F̂ )Ĥ−1 is essentially an identify matrix. The right hand side of

(55) is equal to
√
NT (α̂− α)

1

T
F ′L′D̂−1LF + op(1)

this is due to (52). And the right hand side of (58) is

−
√
NT (α̂− α)

1

T
(F ′L′D̂−1F̂ )(Ĥ−1F̂ ′D̂−1LF ) + op(1)(1)

again due to (52). The sum of the preceding two expressions gives the corollary. ✷

The final proof of Proposition A.1. Our entire analysis thus far shows that the left hand side of

(39) is composed of the terms in (53) and in Corollary A.1, all other terms are negligible. Lemma

A.4 shows that the terms in (53) are asymptotically equivalent to the last two terms on the right

hand side of (38). This completes the proof of Proposition A.1. ✷

Proof of Proposition A.2. Notice

JTSnJ
′
T = LΩ(θ)L′ + LF

1

n

N∑

i=1

(λi − λ̄)(εi − ε̄)′L′

+ L
1

n

N∑

i=1

(εi − ε̄)(λi − λ̄)′F ′L′ + L
1

n

N∑

i=1

[(εi − ε̄)(εi − ε̄)′ −D]L′

Let Υ2 represents the last three terms. The left hand side of (35), omitting (α̂− α), is

1

T
tr

(
JTSnJ

′
TΩ(θ̂)−1

)
=

1

T
tr

(
LΩ(θ)L′Ω(θ̂)−1

)
+

1

T
tr

(
Υ2Ω(θ̂)−1

)

It is easy to show that the second term on the right is dominated by the first. But

LΩ(θ)L′Ω(θ̂)−1 = L(FF ′ +D)L′Ω(θ̂)−1 = LFF ′L′Ω(θ̂)−1 + LDL′Ω(θ̂)−1

= LFF ′L′Ω(θ̂)−1 + LDL′D̂−1 − LDL′F̂ Ĥ−1F̂ ′D̂−1

Taking trace and dividing by T , we have

1

T
tr(LΩ(θ)L′Ω(θ̂)−1) =

1

T
tr(F ′L′Ω(θ̂)−1LF ) +

1

T
tr(LDL′D̂−1) +Op(

1

T
)

where we have used

1

T
tr(LDL′F̂ Ĥ−1F̂ ′D̂−1) =

1

T
tr[(F̂ ′D̂−1LDL′F̂ )H−1] = Op(1/T ).

Note that 1
T tr(LDL′D̂−1) = 1

T tr(LDL′D−1) + op(1). This proves the proposition. ✷

Proof of Theorem 2 The limit of
√
NT (α̂−α) follows from representation (18). The expected

value of 1√
NT

∑N
i=1 ε

′
iD

−1Lεi is equal to (NT )−1/2tr(D−1LD) = (NT )−1/2tr(L) = 0 since L is lower
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triangular. The variance is the second moment, which is equal to T−1tr(LDL′D−1) and its limit is

γ in (19). The theorem is a result of the central limit theorem.

The limiting distribution of
√
N(σ̂2

t − σ2
t ) follows from the representation (20) and the Central

Limit Theorem for the cross-section sequence ε2it − σ2
t by Assumption B1. Note the variance of

ε2it − σ2
t is σ4

t (2 + κt). ✷.

Proof of (21), (22), and (23). These representations hold for pure factor models (no lagged

dependent variable and with diagonal idiosyncratic covariance matrix), and they are derived in

Bai and Li (2012). Noting that the residual yit − αyit−1 follows a pure factor model. So if α is

known, these representations hold. Since the convergence rate for α̂− α is much faster than those

of σ̂2
t − σ2

t , f̂t − ft and Ψ̂ − Ψn, the estimation of α does not affect these representations. ✷

Proof of Proposition 2. We use representations (21) and (22). For t ≤ r, ft is known

thus not estimated under IC1. For t > r, εit is independent of ξi, so the two terms on the right

hand side of (22) are independent. The asymptotic variance of
√
N(f̂t − ft) is the sum of the two

asymptotic variances. From ξi = (εi1, ..., εir)
′, the variance of [ 1√

N

∑N
i=1(λi − λ̄)ξ′i]ft is equal to

Ψnf
′
tDrft, where Dr = diag(σ2

1, ..., σ
2
r ). Thus the variance of the first term on the right of (22) is

Ψ−1
n f ′tDrft. The variance of the second term is Ψ−1

n σ2
t . Noting that Ψn → Ψ, the limiting variance

of
√
N(f̂t − ft) is the sum of the two terms.

Next, let A be the first term on the right hand side of (21), the second term is A′. Using

vech(A+A′) = D+
r vec(A+A′) = 2D+

r vec(A) since D+
r vec(A) = D+

r vec(A′), we have
√
N vech(Ψ̂−

Ψn) = 2D+
r vec(A)+op(1). But vec[(λi− λ̄)ξ′i] = [Ir⊗ (λi− λ̄)]ξi and the limiting covariance matrix

of N−1/2
∑N

i=1[Ir ⊗ (λi − λ̄)]ξi is Dr ⊗ Ψ. This obtains the limiting distribution for
√
N(Ψ̂ − Ψn)

as stated. ✷

Proof of Lemma 2. Recall that Ψ̂ = diag[T−2F̂ ′D̂−1B̂SnB̂
′D̂−1F̂ − T−1Ir] under IC2. Here

we shall provide the key insight instead of an elaborate proof, which is very lengthy. The last two

terms on the right hand side of (24) are identical to the representations in Bai and Li (2012) for a

pure factor model. The first term is due to the estimation of α. That is, if α, or equivalently B, is

known, and if we define

Ψ̃ = diag[T−2F̂ ′D̂−1BSnB
′D̂−1F̂ − T−1Ir]

then
√
NT (Ψ̃ − Ψn) will be given by the last two terms of (24). It remains to argue that if B is

replaced by B̂, we obtain the first term on the right side of (24). That is, we shall show

diag
[
T−2F̂ ′D̂−1

(
B̂SnB̂

′ −BSnB
′)D̂−1F̂

]
= −2(α̂− α) diag[Ψn(

1

T
F ′L′D−1F )] + (α̂− α)op(1).

Write B̂ = B̂ −B +B = −(α̂− α)JT +B and use diag(A) = diag(A′), we have

diag
[
T−2F̂ ′D̂−1

(
B̂SnB̂

′ −BSnB
′)D̂−1F̂

]
= −2(α̂− α) diag[T−2F̂ ′D̂−1BSnJ

′
T D̂

−1F̂ ]

+(α̂− α)2 diag[T−2F̂ D̂−1JTSnJ
′
T D̂

−1F̂ ]
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The last expression is negligible since it involves (α̂− α)2. Replacing F̂ and D̂ by F and D on the

right hand side does not affect the analysis. So we need to show

T−2F ′D−1BSnJ
′
TD

−1F = T−1ΨnF
′L′D−1F + op(1)

The above equality does not involve any estimated quantity and can be verified with algebraic

operation together with Γ′J ′
T = L′ and F ′D−1F/T = Ir (identification restriction). This completes

the proof of Lemma 2. ✷.

Proof of Proposition 3 . The limit for f̂t is already discussed in the main text. Consider the

limit of Ψ̂. Under normality, the three terms on the right of (24) are asymptotically independent,

so we only need to find out the limiting covariance matrix for each term. The limiting variance

of the first term is 4hh′/γ by Theorem 2 and the definition of h. For the second term, by the

definition of Pr, diag(A) = Prvec(A) for all A, so diag(Ψnftf
′
t/σ

2
t ) = Pr(I ⊗ Ψn)(ft ⊗ ft)

1
σ2

t
.

Also, the variance of (ε2it − σ2
t )/σ

2
t is equal to 2 under normality. So the covariance matrix of the

second term is 2Pr(I ⊗ Ψn)[ 1
T

∑T
t=1 σ

−4
t (ftf

′
t ⊗ ftf

′
t)](I ⊗ Ψn)P ′

r. The third term is similar. From

vec[(λi − λ̄)f ′t/σt] = σ−1
t ft ⊗ (λi − λ̄) and unit variance for εit/σt, the covariance matrix of the

third term is 4Pr[( 1
T

∑T
t=1 σ

−2
t ftf

′
t)⊗Ψn]P ′

r. Taking limits and using Assumption 3, we obtain the

limiting covariance matrix in Proposition 3. ✷

Proof of Theorem 3. The proof is contained in the main text.

Proof of Theorem 4. The proof is lengthy and is given in the supplementary document.
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Supplementary Document: Related Results and Proofs

1. Additional results on computation

First order conditions. From the complete data likelihood function, the conditional expected

likelihood is

Q(θ|θ̄) = −N
2

ln |D| − 1

2

N∑

i=1

[
u′iD

−1ui − 2u′iD
−1F η̂i + tr[F ′D−1F η̂iη′i]

]

−N
2

ln |Ψ| − 1

2

N∑

i=1

tr[Ψ−1η̂iη′i]

where ui = yi − δ − Xiγ − FψWi, and η̂i = E(ηi|ūi, θ̄) and η̂iη′i = E(ηiη
′
i|ūi, θ̄). The conditional

expectation is taken assuming θ̄ is the true parameter, and ūi is the same as ui but evaluated at θ̄.

We point out that normality is not crucial, the EM algorithm is a method to compute the MLE.

Note that

u′iD
−1ui = v′iD

−1vi − 2v′iD
−1FψWi + tr(F ′D−1FψWiW

′
iψ

′)

where

vi = yi − δ −Xiγ

Thus
∂u′iD

−1ui
∂F

= −2D−1viW
′
iψ

′ + 2D−1F (ψWiW
′
iψ

′)

−2
∂u′iD

−1F η̂i
∂F

= 2D−1F η̂iW
′
iψ

′ − 2D−1uiη̂
′
i

= 2D−1F
(
η̂iW

′
iψ

′ + ψWiη̂
′
i

)
− 2D−1viη̂

′
i

∂tr(F ′D−1F η̂iη′i)

∂F
= 2D−1F η̂iη′i

This gives

∂Q

∂F
=

N∑

i=1

D−1
[
vi(W

′
iψ

′ + η̂′i) − F
(
ψWiW

′
iψ

′ + η̂iW
′
iψ

′ + ψWiη̂
′
i + η̂iη′i

)]

∂Q

∂D−1
=
N

2
D − 1

2

N∑

i=1

[
uiu

′
i − 2F η̂iu

′
i + F (η̂iη′i)F

′
]

∂Q

∂Ψ−1
=
N

2
Ψ − 1

2

N∑

i=1

η̂iη′i

1



∂Q

∂δ
= D−1

N∑

i=1

(ui − F η̂i)

Rewrite

FψWi = (W ′
i ⊗ F )vec(ψ)

Let

θ1 = (γ′, vec(ψ)′)′

we have

ui = yi − δ −Xiγ − FψWi = yi − δ − [Xi, (W ′
i ⊗ F )]θ1 = yi − δ − Xiθ1

where

Xi = [Xi, (W ′
i ⊗ F )]

This implies

∂Q

∂θ1
=

N∑

i=1

[
X′
iD

−1(yi − δ − Xiθ1) − X′
iD

−1F η̂i

]

Setting the first order conditions to zero, we obtain

F =

N∑

i=1

vi(W
′
iψ

′ + η̂′i)
[ N∑

i=1

(
ψWiW

′
iψ

′ + η̂iW
′
iψ

′ + ψWiη̂
′
i + η̂iη′i

)]−1

δ =
1

N

N∑

i=1

(yi −Xiγ − FψWi − F η̂i)

D = diag
[ 1

N

N∑

i=1

(
uiu

′
i − 2F η̂iu

′
i + F η̂iη′iF

′
)]

Ψ =
1

N

N∑

i=1

η̂iη′i

and

θ1 =
[ N∑

i=1

X′
iD

−1Xi

]−1
N∑

i=1

[
X′
iD

−1
(
yi − δ − F η̂i

)]
.

These are the solutions in the main text. But these solutions are not closed-form as they depend

on each other. This motivates the conditional maximization (ECM) discussed in the text. ECM

provides closed-form solutions.

Starting values for iterations. There are many ways of starting the ECM iteration. We

consider three different sets of starting values. The final FIML estimate is chosen as the one that

gives the highest likelihood value among the three converged estimates. In our simulation, for

N ≥ 200, all three starting values give almost identical converged estimates. But for N = 100, the

2



three estimates can be different, indicating potential local maxima. Local maxima are possible even

for pure factor models due to the nonlinearity of the objective function. Using multiple starting

values reduces the chance of local maxima. The starting values for the ECM algorithm are not

required to be consistent estimators to begin with, it is the iteration that leads to consistency. The

starting values are:

Method 1. (a) Ignore the factor structure, use OLS with time effects to obtain the regression

coefficient and the residuals vit = yit − δ̂t −X ′
itγ̂OLS . Estimate F using the principal components

method based on the residuals vit.

(b) Given F , apply OLS to the following regression yit = δt +X ′
itγ + f ′tψWi + error. This will

give an initial estimate for δt, γ, ψ, along with the previous estimated F . For each t, we use the

sum of squared residuals over i (divided by N) as an initial estimate for σ2
t .

Method 2. Ignore the regressors, use the principal components method based on yit to obtain

an estimate of F . Given F , the rest follows Method 1(b).

Method 3. Apply the principal components method to the regressors xit to obtain an initial

estimate F , then follows Method 1(b).

These staring values are easy to obtain as they use either OLS or principal components. The

EM algorithm (Dempster et al, 1977) has been widely used for estimating factor models, e.g.,

Rubin and Thayer (1982), Watson and Engle (1983), and Quah and Sargent (1993). Also see the

monograph by McLachlan and Krishnan (1997). Most recent applications of the EM algorithm

for factor models include Doz et al (2008), Proietti (2008), and Jungbacker and Koopman (2008).

Most of these studies either do not consider the presence of regressors or do not consider potential

correlations between the regressors and the effects. These studies focus on consistent extraction of

common components instead of parameter estimation (macroeconometric perspective). All these

studies treat factor loadings as parameters. For dynamic panel models, when the factor loadings

are considered as parameters, the incidental parameter problem will occur. The method will not

be consistent under fixed T and has bias under large T . The framework of this paper works for

both small and large T . We also allow arbitrary dynamic process for ft.
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2. Proof of Theorem 4.

The semi-parametric efficiency bound under part (i) assumes that both λi and ft are parameters to

be estimated. When λi and ft are parameters (the usual treatment of fixed effects), the likelihood

function is,

ℓ(θ) = −N
2

T∑

t=1

σ2
t −

1

2

N∑

i=1

T∑

t=1

(yit − αyi,t−1 − δt − λ′ift)
2/σ2

t (60)

The bound has been studied by Iwakura and Okui (2012) under homoskedasticity (σ2
t = σ2 for all

t) and under stationarity. The bound with ft ≡ 1 and homoskedasticity is obtained by Hahn and

Kuersteiner (2002); the bound with ft ≡ 1 but heteroskedasticity is obtained by Bai (2013). The

derivation of efficiency bound involves the analysis of local likelihood ratios. Using the argument in

Hahn and Kuersteiner and in Bai, it is not difficult to obtain the efficiency bound with the likelihood

function in (60). It turns out that it is much more involved to derive the efficiency bound under

part (ii) of Theorem 4, when λi are also iid normal. Under the latter assumption, the likelihood

function is no-longer given by (60), but has the same form as our quasi-likelihood function. We

thus focus on part (ii) of Theorem 4. The fact that part (ii) is more difficult to analyze provides

another reason for our focusing on part (ii). For notational simplicity, we assume a single factor,

so that both ft and λi are scalars, and λi ∼ N(0, 1). Under the setup of Section 4, with matrix B

defined in the main text, the model is

Byi = δ + Fλi + εi

The assumption implies that Fλi + εi are iid normal, N(0, FF ′ +D). The likelihood function is

ℓ(θ) = −N
2

log |FF ′ +D| − 1

2

N∑

i=1

(Byi − δ)′(FF ′ +D)−1(Byi − δ)

where the Jacobian does not enter since the determinant of B is 1. We shall analyze the local

likelihood ratio as in Hahn and Kuersteiner (2002) and show that the likelihood ratio has the form

ℓ(θ0 +
1√
NT

θ̃) − ℓ(θ0) = ∆NT (θ̃) − 1

2
E[∆NT (θ̃)]2 + op(1).

To simplify the analysis, we assume D is known and there is no time effects δ. We can rigorously

show that these simplifying assumptions do not affect the efficiency bound for α, but reduce the

complexity of the derivation. Let θ0 = (α, F ) and θ̃ = (α̃, F̃ ) with F̃ ′F̃ /T = O(1) and F ′F/T =

O(1). Our analysis focuses on insights instead of rigor. A rigorous analysis would involve a refined

parameter space and random elements in a Banach space, as in Iwakura and Okui (2012). In fact,

our analysis can be viewed as an alternative approach. We first obtain the variance of the efficient

scores and then take the limit. And the limit is well defined and is free from any reference to a

Banach space. One could take the limit of scores first, and then obtain the efficient score of the

limiting random elements. This approach would require the existence of a limit in the first place,

which further requires a refined parameter space and a reference to random elements in a Banach

4



space, as in Iwakura and Okui (2012). Nevertheless, our focus is not on these technical details, but

rather the efficiency bound under a different likelihood function.

Let G = F + 1√
NT

F̃ . We have

ℓ(θ0) = −N
2

log |FF ′ +D| − 1

2

N∑

i=1

(Fλi + εi)
′(FF ′ +D)−1(Fλi + εi)

ℓ(θ0+
1√
NT

θ̃) = −N
2

log |GG′+D|−1

2

N∑

i=1

(
yi−(α+

1√
NT

α̃)yi,−1

)′
(GG′+D)−1

(
yi−(α+

1√
NT

α̃)yi,−1

)

= −N
2

log |GG′ +D| − 1

2

N∑

i=1

(
Fλi + εi − α̃

1√
NT

yi,−1

)′
(GG′ +D)−1

(
Fλi + εi − α̃

1√
NT

yi,−1

)

Thus,

ℓ(θ0 +
1√
NT

θ̃) − ℓ(θ0) =

−N
2

[
log |GG′ +D| − log |FF ′ +D|

]

−1

2

N∑

i=1

(Fλi + εi)
′
[
(GG′ +D)−1 − (FF ′ +D)−1

]
(Fλi + εi)

+α̃
1√
NT

N∑

i=1

y′i,−1(GG′ +D)−1(Fλi + εi)

−1

2
α̃2 1

NT

N∑

i=1

y′i,−1(GG′ +D)−1yi,−1

(61)

Throughout, we use the matrix inversion formula

(FF ′ +D)−1 = D−1 −D−1F (1 + F ′D−1F )−1F ′D−1

and the matrix determinant lemma

|FF ′ +D| = |D||1 + F ′D−1F |.

We define ω2
F as

ω2
F =

1

T
F ′D−1F

Notice

|GG′ +D| =|(F +
1√
NT

F̃ )(F +
1√
NT

F̃ )′ +D|

=|D|[1 + (F +
1√
NT

F̃ )′D−1(F +
1√
NT

F̃ )]

=|D|
(

1 + F ′D−1F + 2
1√
NT

F ′D−1F̃ +
1

NT
F̃ ′D−1F̃

)

=|D|(1 + F ′D−1F )
[
1 + 2

1

T

1√
NT

F ′D−1F̃
1

ω2
F

+
1

NT 2
F̃ ′D−1F̃

1

ω2
F

]
+RNT
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where RNT is negligible. From log(1 + x) ≈ x,

log |GG′ +D| − log |FF ′ +D| = log
[
1 + 2

1

T

1√
NT

F ′D−1F̃ /ω2
F +

1

NT 2
F̃ ′D−1F̃ /ω2

F

]

= 2
1

T

1√
NT

F ′D−1F̃ /ω2
F +

1

NT 2
F̃ ′D−1F̃ /ω2

F +RNT1

where RNT1 is a higher order remainder term. Thus

−N
2

[
log |GG′ +D| − log |FF ′ +D|

]

= −N
T

1√
NT

F ′D−1F̃ /ω2
F − 1

2T 2
F̃ ′D−1F̃ /ω2

F + o(1)

The second term on the right is negligible. Thus,

−N
2

[
log |GG′ +D| − log |FF ′ +D|

]
= −

√
N

T
(F ′D−1F̃ /T )

1

ω2
F

+ o(1) (62)

Next,

(GG′ +D)−1 = D−1 −D−1G(1 +G′D−1G)−1G′D−1

(1 +G′D−1G) =
(

1 + F ′D−1F + 2
1√
NT

F ′D−1F̃ +
1

NT
F̃ ′D−1F̃

)

= (1 + F ′D−1F )
(

1 +
2 1√

NT
F ′D−1F̃ + 1

NT F̃
′D−1F̃

1 + F ′D−1F

)

(1 +G′D−1G)−1 = (1 + F ′D−1F )−1
(

1 +
2 1√

NT
F ′D−1F̃ + 1

NT F̃
′D−1F̃

1 + F ′D−1F

)−1

Let A = 2 1√
NT

F ′D−1F̃ + 1
NT F̃

′D−1F̃ and use the expansion 1/(1 + x) = 1 − x+ x2, we have

(1 +G′D−1G)−1

≈ (1 + F ′D−1F )−1
(

1 − A

1 + F ′D−1F
+

A2

(1 + F ′D−1F )2

)

= (1 + F ′D−1F )−1 − A

(1 + F ′D−1F )2
+

A2

(1 + F ′D−1F )3

= (1 + F ′D−1F )−1 − A

T 2ω4
F (1 + 1

Tω2

F
)2

+
A2

(1 + F ′D−1F )3

≈ (1 + F ′D−1F )−1 − A

T 2ω4
F

(1 − 2
1

Tω2
F

) +
A2

(1 + F ′D−1F )3

= (1 + F ′D−1F )−1 − A

T 2ω4
F

+ 2
A

T 3ω6
F

+
A2

(1 + F ′D−1F )3
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The above can be further approximated. For the third expression, we keep the first term of A,

and for the last expression, we keep the first term of A2 and treat the denominator as T 3ω6
F . This

implies that

(1 +G′D−1G)−1 = (1 + F ′D−1F )−1 +H

where

H = − 2
1

T 2

1√
NT

F ′D−1F̃
1

ω4
F

− 1

NT 3
F̃ ′D−1F̃

1

ω4
F

(63)

+ 4
1

T 3

1√
NT

F ′D−1F̃
1

ω6
F

+ 4(
F ′D−1F̃

T
)2

1

NT 2ω6
F

+R1

where R1 is negligible. Although the expansion itself is nothing new, it is crucial to realize that

this order of expansion is what it takes to obtain the correct results. We can write

G(1 +G′D−1G)−1G′ = (1 + F ′D−1F )−1GG′ +HGG′ (64)

The first term on the right hand side above is

(1 + F ′D−1F )GG′ = (1 + F ′D−1F )−1
(
FF ′ +

1√
NT

FF̃ ′ +
1√
NT

F̃F ′ +
1

NT
F̃ F̃ ′

)

= (1 + F ′D−1F )−1FF ′

+ (1 + F ′D−1F )−1
( 1√

NT
FF̃ ′ +

1√
NT

F̃F ′ +
1

NT
F̃ F̃ ′

)

Use

(1 + F ′D−1F )−1 =
1

T

1

ω2
F

− 1

T 2

1

ω4
F

+R2

where R2 is negligible, we have

(1 + F ′D−1F )−1GG− (1 + F ′D−1F )−1FF ′

=
( 1

Tω2
F

− 1

T 2ω4
F

)[ 1√
NT

FF̃ ′ +
1√
NT

F̃F ′ +
1

NT
F̃ F̃ ′

]
+R3 (65)

=
( 1

Tω2
F

− 1

T 2ω4
F

)[ 1√
NT

FF̃ ′ +
1√
NT

F̃F ′
]

+
1

ω2
F

1

NT 2
F̃ F̃ ′ +R4

The last equality follows by ignoring higher order terms; R3 and R4 are negligible.

To analyze HGG′ in (64), we use GG′ = FF ′ + 1√
NT

FF̃ ′ + 1√
NT

F̃F ′ + 1
NT F̃ F̃

′, but we can

ignore 1
NT F̃ F̃

′ because its product with H is a higher order term. Thus

HGG′ = HFF ′ +H
1√
NT

FF̃ ′ +H
1√
NT

F̃F ′ +R5 (66)

where H is defined in (63). All of the four terms in H are non-negligible for the matrix HFF ′;

only the first term in H is non-negligible for H 1√
NT

FF̃ ′ and H 1√
NT

F̃F ′. Taking this into account
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and combining (65) and (66) and pre and post multiplying D−1, we have

D−1G(1+G′D−1G)−1G′D−1 −D−1F (1 + F ′D−1F )F ′D−1 =

+HD−1FF ′D−1 (67a)

+
[ 1√

NT

( 1

Tω2
F

− 1

T 2ω4
F

)
− 2

1

NT 3
F ′D−1F̃

1

ω4
F

]
D−1FF̃ ′D−1 (67b)

+
[ 1√

NT

( 1

Tω2
F

− 1

T 2ω4
F

)
− 2

1

NT 3
F ′D−1F̃

1

ω4
F

]
D−1F̃F ′D−1 (67c)

+
1

NT 2

1

ω2
F

D−1F̃ F̃ ′D−1 (67d)

Note that the above is equal to the negative of (GG′ +D)−1 − (FF ′ +D)−1. Let Ξ be defined as

the negative of the right hand side of (67), that is, Ξ = −[(67a) + · · · (67d)], then

(GG′ +D)−1 − (FF ′ +D)−1 = Ξ

thus Ξ is a weighted combination of the four matrices D−1FF ′D−1, D−1FF̃ ′D−1, D−1F̃F ′D−1

and D−1F̃ F̃ ′D−1. We put Ξ = Ξa + Ξb + Ξc + Ξd.

We next compute
∑N

i=1(Fλ′i)
′Ξk(Fλi) (k = a, b, c, d). For Ξa, the coefficient of D−1FF ′D−1 is

equal to −H, which is a scalar under a single factor. We have

N∑

i=1

(Fλ′i)
′Ξa(Fλi) = −H

N∑

i=1

(Fλi)
′D−1FF ′D−1(Fλi)

=2
√
NT (F ′D−1F̃ /T )

+ (F̃ ′D−1F̃ /T )

− 4

√
N

T
(F ′D−1F̃ /T )

1

ω2
F

− 4(F ′D−1F̃ /T )2
1

ω2
F

+ op(1)

(68)

We have used the fact that 1
N

∑N
i=1 λ

2
i = 1 + op(1). Next,

N∑

i=1

(Fλ′i)
′(Ξb+Ξc)(Fλi) = −2

√
NT (F̃ ′D−1F/T )+2

√
N

T
(F̃ ′D−1F/T )

1

ω2
F

+4(F ′D−1F̃ /T )2
1

ω2
F

+op(1)

and
N∑

i=1

(Fλ′i)
′Ξd(Fλi) = (F ′D−1F̃ /T )2

1

ω2
F

+ op(1).

Summing up terms gives

−1

2

N∑

i=1

(Fλi)
′
[
(GG′ +D)−1 − (FF ′ +D)−1

]
Fλi
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=

√
N

T
(F ′D−1F̃ /T )

1

ω2
F

− 1

2
(F̃ ′D−1F̃ /T ) +

1

2
(F ′D−1F̃ /T )2

1

ω2
F

+ op(1)

=

√
N

T
(F ′D−1F̃ /T )

1

ω2
F

− 1

2

1

T
F̃ ′D−1/2MD−1/2FD

−1/2F̃ + op(1)

where D−1/2MD−1/2FD
−1/2 = D−1−D−1F (F ′D−1F )−1F ′D−1. Note the first term has an opposite

sign with (62).

We next examine
∑N

i=1 ε
′
iΞεi. Again, Ξ consists of four parts. For this term, it is sufficient to

approximate Ξ by

Ξ ≈
(

2
1

T 2

1√
NT

F ′D−1F̃
1

ω4
F

)
D−1FF ′D−1−

( 1√
NT

1

T

1

ω2
F

)
D−1FF̃ ′D−1−

( 1√
NT

1

T

1

ω2
F

)
D−1F̃F ′D−1

Rewrite the above as

Ξ ≈ Ξ1 + Ξ2 + Ξ3. (69)

In the above approximation, we kept the first term of H in (67a) (H has four terms), and kept

the very first term inside the brackets in (67b) and (67c). All other terms are negligible in the

evaluation of
∑N

i=1 ε
′
iΞεi. It is easy to show

E

N∑

i=1

ε′iΞ1εi = 2

√
N

T
(F ′D−1F̃ /T )

1

ω2
F

And

E

N∑

i=1

ε′i(Ξ1 + Ξ2)εi = −2

√
N

T
(F ′D−1F̃ /T )

1

ω2
F

Thus the sum of the expected values is zero. Also, the deviation of each term from its expected

value is op(1). Summarizing result, we have

−1

2

N∑

i=1

ε′iΞεi = op(1) (70)

We next compute
∑N

i=1(Fλi)
′Ξεi. This term appears twice, but there is also a scaling of 1/2

in (61). Again, the preceding approximation of Ξ is sufficient (other terms are negligible). We

compute
∑N

i=1(Fλi)
′Ξεi for each of the three parts. For the first part relating to Ξ1,

N∑

i=1

(Fλi)
′Ξ1εi = 2(F ′D−1F̃ /T )(F ′D−1F/T )

1√
NT

N∑

i=1

F ′D−1εiλi
1

ω4
F

= 2
1

ω2
F

(F ′D−1F̃ /T )
1√
NT

N∑

i=1

F ′D−1εiλi

For the second part,

N∑

i=1

(Fλi)
′Ξ2 εi = − 1

ω2
F

(F ′D−1F/T )
1√
NT

N∑

i=1

F̃ ′D−1εiλi = − 1√
NT

N∑

i=1

F̃ ′D−1εiλi
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For the third part,

N∑

i=1

(Fλi)
′Ξ3 εi = − 1

ω2
F

(F ′D−1F̃ /T )
1√
NT

N∑

i=1

F ′D−1εiλi

Combining the three parts,

N∑

i=1

(Fλi)
′Ξεi = − 1√

NT

N∑

i=1

F̃ ′D−1εi +
1

ω2
F

(F ′D−1F̃ /T )
1√
NT

N∑

i=1

F ′D−1εiλi + op(1)

= − 1√
NT

N∑

i=1

λ′iF̃
′D−1/2MD−1/2FD

−1/2εi + op(1)

In summary, we have proved that

−1

2

N∑

i=1

(Fλi + εi)
′Ξ(Fλi + εi) =

√
N

T
(F ′D−1F̃ /T )

1

ω2
F

+
1√
NT

N∑

i=1

λ′iF̃
′D−1/2MD−1/2FD

−1/2εi

− 1

2

1

T
F̃ ′D−1/2MD−1/2FD

−1/2F̃ + op(1)

Combined with (62), we have

−N
2

[
log |GG′ +D| − log |FF ′ +D|

]
− 1

2

N∑

i=1

(Fλi + εi)
′Ξ(Fλi + εi)

=
1√
NT

N∑

i=1

λ′iF̃
′D−1/2MD−1/2FD

−1/2εi −
1

2

1

T
F̃ ′D−1/2MD−1/2FD

−1/2F̃ + op(1)

(71)

The second term on the right is the negative one-half of the variance of the first term.

We next analyze

α̃
1√
NT

N∑

i=1

y′i,−1(GG′ +D)−1(Fλi + εi)

=
1√
NT

N∑

i=1

y′i,−1(FF ′ +D)−1(Fλi + εi) +
1√
NT

N∑

i=1

y′i,−1Ξ(Fλi + εi)

where, by definition, Ξ = (GG′ +D)−1 − (FF ′ +D)−1. Notice

(FF ′ +D)−1F = D−1F [
1

1 + F ′D−1F
] = D−1F [

1

Tω2
F

+O(
1

T 2
)]

1√
NT

N∑

i=1

y′i,−1(F ′F +D)−1Fλi =
1

ω2
F

1

T

1√
NT

N∑

i=1

y′i,−1D
−1Fλi + op(1)
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Using yi,−1 = LFλi + Lεi, we have

1

ω2
F

1

T

1√
NT

N∑

i=1

y′i,−1D
−1Fλi =

1

ω2
F

(
1

N

N∑

i=1

λ2
i )(F

′L′D−1F/T )

√
N

T
+

1

ω2
F

1

T

1√
NT

N∑

i=1

ε′iL
′D−1Fλi

The second term is negligible. Thus,

1√
NT

N∑

i=1

y′i,−1(F ′F +D)−1Fλi =
1

ω2
F

(F ′L′D−1F/T )

√
N

T
+ op(1) (72)

where we have used 1
N

∑N
i=1 λ

2
i = 1 + op(1).

Using (FF ′ +D)−1 = D−1 −D−1F (1 + F ′D−1F )−1F ′D−1 we have

1√
NT

N∑

i=1

y′i,−1(F ′F+D)−1εi =
1√
NT

N∑

i=1

y′i,−1D
−1εi−

1

(1 + F ′D−1F )

1√
NT

N∑

i=1

y′i,−1D
−1FF ′D−1εi

Again from yi,−1 = LFλi + Lεi, the two terms on the right can be written, respectively, as

1√
NT

N∑

i=1

y′i,−1D
−1εi =

1√
NT

N∑

i=1

λiF
′L′D−1εi +

1√
NT

N∑

i=1

(Lεi)
′D−1εi

and

− 1

(1 + F ′D−1F )

1√
NT

N∑

i=1

(LFλi + Lεi)
′D−1FF ′D−1εi

= − 1√
NT

N∑

i=1

λ′iF
′L′D−1F

(1 + F ′D−1F )
F ′D−1εiλi −

1

(1 + F ′D−1F )

1√
NT

N∑

i=1

ε′iL
′D−1FF ′D−1εi

Note the expected value of the second term in the preceding equation is

− F ′L′D−1F

1 + F ′D−1F

√
N

T
= − 1

ω2
F

(F ′L′D−1F/T )
√
N/T + o(N1/2/T 3/2)

and the deviation from its expected value is negligible. The above expected value cancels out with

(72).
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In summary,

1√
NT

N∑

i=1

y′i,−1(FF ′ +D)−1(Fλi + εi)

=
1√
NT

N∑

i=1

λiF
′L′D−1εi +

1√
NT

N∑

i=1

(Lεi)
′D−1εi

− 1

Tω2
F

1√
NT

N∑

i=1

λ′i(F
′L′D−1F )F ′D−1εi + op(1)

=
1√
NT

N∑

i=1

(Lεi)
′D−1εi

+
1√
NT

N∑

i=1

λ′i(LF )′[D−1/2MD−1/2FD
−1/2]εi + op(1) (73)

We next study

1√
NT

N∑

i=1

y′i,−1Ξ(Fλi + εi)

It is easy to show

1√
NT

N∑

i=1

y′i,−1Ξεi = op(1)

we thus focus on

1√
NT

N∑

i=1

y′i,−1ΞFλi.

Approximating Ξ by (69) is sufficient. Using yi,−1 = LFλi + Lεi, we have

1√
NT

N∑

i=1

y′i,−1Ξ1Fλi =
1√
NT

N∑

i=1

(LFλi +  Lεi)
′
(

2
1

T 2

1√
NT

(F ′D−1F̃ )
1

ω4
F

)
D−1(FF ′)D−1Fλi

= 2(F ′D−1F̃ /T )(F ′L′D−1F/T )
1

ω2
F

+ op(1)

where the term involves εi is negligible, and we have used F ′D−1F = Tω2
F and 1

N

∑N
i=1 λ

2
i =

1 + op(1). And,

1√
NT

N∑

i=1

y′i,−1Ξ2Fλi = − 1√
NT

N∑

i=1

(LFλi +  Lεi)
′
( 1√

NT

1

T

1

ω2
F

)
D−1(FF̃ ′)FD−1λi

= − 1

ω2
F

(F ′L′D−1F/T )(F̃ ′D−1F/T ) + op(1),
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1√
NT

N∑

i=1

y′i,−1Ξ3Fλi = − 1√
NT

N∑

i=1

(LFλi +  Lεi)
′
( 1√

NT

1

T

1

ω2
F

)
D−1(F̃F ′)D−1Fλi

= −(F ′L′D−1F̃ /T ) + op(1)

which follows from the same reasoning as given for the term involving Ξ1. Summing up,

1√
NT

N∑

i=1

y′i,−1Ξ(Fλi + εi) =
1

ω2
F

(F ′L′D−1F/T )(F̃ ′D−1F/T ) − (F ′L′D−1F̃ /T ) + op(1)

= − 1

T
(LF )′[D−1/2MD−1/2FD

−1/2]F̃ + op(1) (74)

Combining (73) and (74), we have

α̃
1√
NT

N∑

i=1

y′i,−1(GG′ +D)−1(Fλi + εi)

= α̃
1√
NT

N∑

i=1

(Lεi)
′D−1εi

+ α̃
1√
NT

N∑

i=1

λ′i(LF )′[D−1/2MD−1/2FD
−1/2]εi

− α̃
1

T
(LF )′[D−1/2MD−1/2FD

−1/2]F̃ + op(1)

(75)

The last term is the covariance between the second term here on the right and the first term on

the right in (71).

We next analyze

−1

2
α̃2 1

NT

N∑

i=1

y′i,−1(GG′ +D)−1yi,−1.

We shall demonstrate that the limit of this term is equal to -1/2 times the variance of the first two

terms on right hand side (75). Here it is sufficient to approximate (GG′ + D)−1 by (FF ′ + D)−1

(the term Ξ is ignorable). Now

1

NT

N∑

i=1

y′i,−1(FF ′ +D)−1yi,−1

=
1

NT

N∑

i=1

y′i,−1D
−1yi,−1 −

1

(1 + F ′D−1F )

1

NT

N∑

i=1

y′i,−1D
−1FF ′D−1yi,−1

For the first term, using yi,−1 = LFλi + Lεi,

1

NT

N∑

i=1

y′i,−1D
−1yi,−1 =

1

NT

N∑

i=1

(LFλi + Lεi)
′D−1(LFλi + Lεi)
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=
F ′L′D−1LF

T
+ tr(L′D−1LD)/T + op(1) (76)

where we have used E(ε′iL
′D−1Lεi/σ

2) = tr(L′D−1LD) and 1
N

∑N
i=1 λ

2
i = 1 + op(1). The cross

product terms are negligible. Next

1

NT 2

N∑

i=1

y′i,−1D
−1FF ′D−1yi,−1 =

1

NT 2

N∑

i=1

(F ′L′λi + ε′iL
′)(D−1FF ′D−1)(LFλi + Lεi)

=
(F ′L′D−1F

T

)2
+

1

T

(F ′D−1LDL′D−1F

T

)
+ op(1) =

(F ′L′D−1F

T

)2
+ op(1)

This implies, using T/(1 + F ′D−1F ) = 1/ω2
F + o(1),

− 1

(1 + F ′D−1F )

1

NT

N∑

i=1

y′i,−1D
−1FF ′D−1yi,−1 = − 1

ω2
F

(F ′L′D−1F

T

)2
+ op(1). (77)

Adding (76) and (77) together, we have

−1

2
α̃2 1

NT

N∑

i=1

y′i,−1(GG′ +D)−1yi,−1

= −1

2
α̃2

[ 1

T
tr(L′D−1LD) +

F ′L′D−1LF

T
− 1

ω2
F

(F ′L′D−1F

T

)2
+ op(1)

]

= −1

2
α̃2

[ 1

T
tr(L′D−1LD) +

1

T
(LF )′[D−1/2MD−1/2FD

−1/2](LF ) + op(1)
]

(78)

which is equal to the variance of the first two terms on the right of (75).

The sum of (71), (75), and (78) gives the log-likelihood ratio in (61). That is,

ℓ(θ0 +
1√
NT

θ̃) − ℓ(θ0) =
1√
NT

N∑

i=1

λ′iF̃
′D−1/2MD−1/2FD

−1/2εi

+ α̃
1√
NT

N∑

i=1

(Lεi)
′D−1εi

+ α̃
1√
NT

N∑

i=1

λ′i(LF )′[D−1/2MD−1/2FD
−1/2]εi

− 1

2

1

T
F̃ ′D−1/2MD−1/2FD

−1/2F̃

− 1

2
α̃2

[ 1

T
tr(L′D−1LD)

]

− 1

2
α̃2

[ 1

T
(LF )′[D−1/2MD−1/2FD

−1/2](LF )
]

− α̃
1

T
(LF )′[D−1/2MD−1/2FD

−1/2]F̃ + op(1)

(79)

where D−1/2MD−1/2FD
−1/2 = D−1 − D−1F (F ′D−1F )−1F ′D−1. The fourth to the sixth terms

on the right hand side are the variances of the first to the third random variables (times -1/2),
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respectively. The last term is the covariance between the first and the third term. The second

term is uncorrelated with the other two random variables. If we let ∆NT (θ̃) denote the first three

random variables, then we have proved that

ℓ(θ0 +
1√
NT

θ̃) − ℓ(θ0) = ∆NT (θ̃) − 1

2
E[∆NT (θ̃)]2 + op(1)

Further write

∆NT (θ̃) = ∆NT1 + α̃ [∆NT2 + ∆NT3]

where ∆NT1 is the first term on the right hand side of (79), and ∆NT2 and ∆NT3 are the second

and third term (the random coefficients of α̃). To find the efficiency bound, we need to project

∆NT2 and ∆NT3 onto ∆NT1 and find the optimal projection residual. The inverse of the residual

variance is the efficiency bound. Note that ∆NT2 is uncorrelated with ∆NT1, thus the projection

residual is still ∆NT2; ∆NT3 is “perfectly” correlated with ∆NT1 by choosing F̃ to be LF so that

the projection residual is zero. Thus the combined optimal projection residual is ∆NT2. But

var(∆NT2) = 1
T tr(L′D−1LD), its limit is γ. Thus 1/γ is the asymptotic efficiency bound. This

proves part (ii) of Theorem 4.
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