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Abstract

The weighted updating model is a generalization of Bayesian updat-

ing that allows for biased beliefs by weighting the functions that constitute

Bayes’ rule with real exponents. I provide an axiomatic basis for this frame-

work and show that weighting a distribution affects the information entropy

of the resulting distribution. This result provides the interpretation that

weighted updating models biases in which individuals mistake the informa-

tion content of data. I augment the base model in two ways, allowing it to

account for additional biases. The first augmentation allows for discrimi-

nation between data. The second allows the weights to vary over time. I

also find a set of sufficient conditions for the uniqueness of parameter esti-

mation through maximum likelihood, with log-concavity playing a key role.

An application shows that self attribution bias can lead to optimism bias.
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1 Introduction

The last several decades have witnessed the accumulation of overwhelming evi-

dence suggesting that we do not have rational expectations, nor do we always form

beliefs rationally, according to Bayes’ rule. Rather, we consistently and system-

atically exhibit a number of biases that tend to distort our perception of reality.1

This paper presents an axiomatic development and analysis of the weighted up-

dating model, which generalizes Bayesian updating by exponentially weighting the

likelihood function(s) and prior distribution to allow for biased belief formation.

The weighted updating model has seen some use in the economics literature.2

Grether (1980) and Grether (1992) provide empirical evidence for the represen-

tativeness heuristic by estimating the weights on the likelihood function and the

prior distribution. In recent theoretical work, Benjamin, Rabin, and Raymond

(2011) model “non-belief in the law of large numbers” using the weighted updat-

ing model. Palfrey and Wang (2012) use weighted updating to model investors

who under- or overreact to public information regarding financial assets in a model

with speculative pricing.

I expand the weighted updating literature in several ways. I strive for general-

ity throughout, providing results that are clearly applicable to a variety of models.

A major part of this involves studying general distributions, rather than particular

families of distributions. This contrasts with the previous literature on weighted

1See Rabin (1996) and DellaVigna (2009) for surveys of the literature at the intersection of
psychology and economics, including detailed discussion of many belief perturbing biases.

2There has been some work that utilizes models similar to weighted updating outside of
economics. Ibrahim and Chen (2000) introduced power priors, a framework that allows the
statistician to consider data from previous studies by finding a weight in (0, 1) to put on that
data while maintaining a weight of 1 on current data. This can be viewed as a case of weighted
updating wherein the statistician rationally discriminates between different batches of data. In
the logic literature, Van Benthem, Gerbrandy, and Kooi (2009) define a “weighted product
updating rule” and show that Bayes’ rule and the Jeffrey updating rule are both special cases.
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updating, as Grether (1980), Grether (1992), Benjamin, Rabin, and Raymond

(2011), and Palfrey and Wang (2012) each focus exclusively on Bernoulli random

variables, thereby limiting their analyses to distributions from the beta-binomial

family.

Section 2 presents a set of three axioms that apply to pairs of beliefs that

differ only by how strong they are. In that section, I also show that the infor-

mation entropy of a distribution that models such beliefs represents the ordering

necessitated by these axioms. Section 3 establishes that weighting a distribution

and then normalizing it results in a distribution that, along with the original dis-

tribution, satisfies the axioms from Section 2. It also presents additional axioms

that necessitate transformation by weighting. Comparing the more stringent ax-

ioms from Section 3 to those from Section 2 illuminates the essential differences

between weighting and other types of transformations. Section 4 introduces the

model and discusses how it is usually the case that weights on both the likelihood

function and the prior probability distribution are generally necessary for a full

description of an agent’s beliefs within the weighted updating framework.

Section 5 details two ways in which the base model can be expanded, allowing

weighted updating to model several biases it otherwise could not. Previous studies

that utilize the weighted updating model all implicitly assume that if non-prior

information is mis-weighted then each datum is mis-weighted by the same factor.

Subsection 5.1 discusses how it is possible to relax this restriction. In particular,

this expanded version of weighted updating allows one to model those biases

that involve discrimination between non-prior pieces of information as with, for
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example, order effects3 and self-attribution bias.4 In subsection 5.2 I relax another

implicit restriction that is present in the previous literature, namely that weights

do not change over time.

Section 6 considers the problem of finding point estimates of distribution pa-

rameters by way of maximizing the weighted posterior distribution. The main

result of this section provides a set of sufficient conditions for maximization that

are satisfied by many workhorse distributions. As the implicit function theorem is

utilized in this result, this result also provides comparative static conditions. To

illustrate how the weighted updating model might be applied, Section 7 utilizes

the main result from Section 6 to show how optimism bias can be a consequence

of self-attribution bias. Section 8 provides concluding thoughts.

2 An Axiomatic Development

Throughout the paper, ht denotes an ordered history of observations (x1, . . . , xt).

A decision maker will consider ht as an outcome from a stochastic process with

density f(ht|θ), where θ is an unknown parameter from parameter space Θ.

Bayesian beliefs regarding the value of θ after observing ht are completely de-

scribed by the posterior distribution π(θ|ht). Denote the likelihood function with

f(ht|θ) and the prior distribution with π(θ), then Bayes’ rule states that

π(θ|ht) =
f(ht|θ)π(θ)

∫

Θ
f(ht|θ)π(θ) dθ

.

3Order effects are when the order of data affects the beliefs those data are based upon. For
example, the recency and primacy effect respectively describe cases where more or less recent
data have more salience in belief formation.

4Self-attribution bias involves attributing desirable events to internal factors (such as ability)
while attributing undesirable outcomes to bad luck or external factors.
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Suppose we want to model an individual whose beliefs are biased by a like-

lihood function that is too strong, in the sense that the posterior distribution is

affected too much by the data ht. Or perhaps the likelihood function is too weak.

Alternatively, the prior may be too strong or weak relative to the prior that a

rational person would have (given the prior information they have seen, if any).

The following three axioms shall be treated as necessary for modelling any such

combination of weak or strong likelihood functions and prior distributions.

Since the axioms apply to both likelihood functions and prior distributions,

we will use neutral notation that has not already been assigned to either type

of distribution. Let g and Γ denote distributions that represent beliefs based

on identical data,5 where g is stronger than Γ. Also, define the transformation

T : [0, 1] → [0, 1] by T ◦ g = Γ.

Axiom 1 (Single-Valued). T is a function (i.e. it is single-valued). Equivalently,

g(ω1) = g(ω2) ⇔ Γ(ω1) = Γ(ω2).

Axiom 2 (Monotone). T is monotonically increasing. Equivalently,

g(ω1) > g(ω2) ⇔ Γ(ω1) > Γ(ω2).

Axiom 1 necessitate that T is a function while Axiom 2 ensures that this

function is monotonically increasing. This monotonicity eliminates pairs of distri-

butions that are opposite in the sense that the maximizer of one is the minimizer

of the other (which Axiom 1 on its own does not preclude). In tandem, Axioms 1

and 2 ensure that the ordinal properties are identical. In other words, two agents

5The “data” can either be ht or prior information.
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with beliefs g and Γ that in tandem satisfy these first two axioms will agree on a

rank ordering of the ω’s according to their likelihoods as given by their respective

beliefs. This is to be expected if the only substantive difference between the two

distributions is that one is stronger than the other.

Technically, Axioms 1 and 2 partition the set of all distributions into equiv-

alence classes. There remains the task of ordering the distributions within these

equivalence classes according to how strong they are, which is the job of the next

axiom. The question is: how should these distributions be ordered? To answer

this question, we first need to precisely define what we mean by one set of beliefs

being stronger or weaker than another set of beliefs. I submit that when we say

that one set of beliefs is stronger than another set of beliefs that agree with each

other (in that they satisfy Axioms 1 and 2) that we mean that the stronger be-

liefs have higher likelihood on parameter values that both agree are more likely

and, correspondingly, lower likelihood on parameter values that they agree are less

likely. That is, the stronger beliefs have “higher highs” and “lower lows”. It will

be shown below (in Theorem 1) that the following axiom guarantees this notion

of strength.

Axiom 3 (Likelihood Concentration Order). Any random variable with density

g is larger, in the likelihood concentration order, than any random variable with

density Γ. This ordering is defined by

g(ω1) > g(ω2) ⇒
g(ω1)

g(ω2)
>

Γ(ω1)

Γ(ω2)
.

Axiom 3 introduces a new stochastic order that allows one to rank sets of

distributions that satisfy the first two axioms according to the strength of the

beliefs that the distributions represent. Note that the likelihood concentration
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order defined in Axiom 3 is not equivalent to the likelihood ratio order, which

is defined by the ratio of one likelihood to another increasing monotonically over

the union of their supports. It is also different than all of the orders described in

Shaked and Shanthikumar (2007), many of which necessitate restrictions on how

the means and variances of ordered distributions relate, restrictions that are not

necessary to the likelihood concentration order. A stochastic order that stipulates

a relation regarding the variances of distributions is undesirable for our purposes

because, for example, greater variance does not entail “weaker” beliefs for all

distributions, e.g. many distributions that are multi-peaked.6

The following definition encapsulates Axioms 1, 2, and 3.

Definition 1 (Monotone Dispersion, Monotone Concentration). For two non-

uniform probability distributions Γ and g on the same support Ω, Γ is a monotone

dispersion of g if for all pairs (ω1, ω2) ∈ Ω2 Axioms 1, 2, and 3 are satisfied. If Γ

is a monotone dispersion of g then g is a monotone concentration of Γ.7

Essentially, if a distribution g is a monotone concentration of Γ then one could

say that g is stronger than Γ, so throughout the rest of the paper we will use these

more technical terms in place of colloquial terms such as “stronger” and “weaker”.

See Figure 1 for an example of two distributions to which these terms apply.

Note that a monotone dispersion differs from a “monotone spread”, a related

concept due to Quiggin (1988) that is necessarily mean-preserving.

The following theorem shows that a monotone concentration has “higher highs”

6This is discussed further in the next subsection, as it is shown why variance does not
necessarily represent orderings described by Axioms 1, 2, and 3.

7Uniform distributions are excluded from Definition 1 because if either g or Γ were uniform
then the other would necessarily be uniform by Axiom 1, so they would be the same distri-
bution. If this is the case then Axioms 2 and 3 are only vacuously true, which is not useful
for our purposes because Axiom 3 provides an asymmetry that allows one to compare different
distributions. Another way of saying this is that such a restriction ensures that the relations “is
a monotone dispersion of” and “is a monotone concentration of” are not symmetric.
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Figure 1: Γ is a monotone dispersion of g. Equivalently, g is a monotone concen-
tration of Γ.

g

Γ

ω

g(ω),Γ(ω)

and “lower lows” than any of its monotone dispersions, characteristics that were

mentioned above as indicative of a distribution being relatively stronger than

another.

Theorem 1. Let Γ be a monotone dispersion of g. For any ω1, ω2 ∈ Ω,

g(ω1) > g(ω2) ≥ Γ(ω2) ⇒ g(ω1) > Γ(ω1).

Also,

g(ω1) < g(ω2) ≤ Γ(ω2) ⇒ g(ω1) < Γ(ω1).

The following Corollary8 to Theorem 1 is used in the proof of Theorem 2 below.

Corollary 1. Let Γ be a monotone dispersion of g and let ω∗ be a maximizer of

g and Γ. Then g(ω∗) > Γ(ω∗).

Now that the notions of monotone concentration and monotone dispersion

8The appendix contains a proof of this Corollay that is independent of Theorem 1.
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have been characterized, with a concentration having higher highs and lower lows

than a dispersion, the following subsection discusses how these notions could be

represented by a quantitative measure.

2.1 Measuring Concentration and Dispersion

As variance is a widely used measure of dispersion, one may suspect that a mono-

tone dispersion results in a distribution with greater variance and a monotone

concentration less variance than the original distribution. For many distributions

this is indeed the case. Consider the normal distribution with mean µ and vari-

ance σ2. It is straightforward to find that increasing (decreasing) the variance

leads to a monotone dispersion (concentration).

Despite being true for normal distributions, it is not the case for all families

of distributions that a monotone dispersion implies greater variance and that a

monotone concentration has less variance, which may be unsurprising to those

readers who followed the discussion of Axiom 3 above.

Consider the beta distribution B(a, b) which is proportional to xα−1(1− x)b−1

for parameters a, b > 0. Cases in which a, b ∈ (0, 1) result in a u-shaped distribu-

tion, as any such distribution would be strictly convex with peaks at the extremes

of the support, x = 0 and 1. Conversely, applying a monotone dispersion results

in a flatter distribution with less variance and applying a monotone concentration

shifts mass toward the end-points of [0, 1] resulting in greater variance. In partic-

ular, consider B(1/2, 1/2) which has a variance of 1/8 while B(3/4, 3/4) has a variance

of 1/10, despite the fact that B(1/2, 1/2) is a monotone concentration of B(3/4, 3/4).

The reason variance does not have a consistent relationship with monotone

dispersions and concentrations is because it is a measure of dispersion from the
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mean of the distribution. For a consistent representation of monotone dispersion

and concentration it is necessary to have a measure of dispersion that is indepen-

dent of reference points. As will be shown before the end of the current section, a

distribution’s information entropy, as defined in Shannon (1948), is a measure of

dispersion or uncertainty that invariably increases for monotone dispersions and

decreases for monotone concentrations.

Definition 2 (Information Entropy, (Shannon, 1948)). For any distribution g :

Ω → R++, the information entropy of g is given by

H(g) ≡ −

∫

Ω

g(ω) log g(ω) dω.

Entropy is usually introduced using a discrete distribution g, for which the

entropy is defined analogously as H(g) ≡ −
∑

Ω g(ω) logc g(ω), where the base c

determines unit of measure (e.g. bits for c = 2). The concept defined in Definition

2 is usually known as differential entropy or continuous entropy and is typically

denoted with h rather than H. The continuous version is studied because, for

our purposes, its analysis is not as straightforward and the results for discrete

distributions follow by analogy.

One reason that information theorists typically present entropy using discrete

densities is because the entropy of a discrete distribution can be interpreted as

the average length of code necessary for the efficient transmission of information

regarding outcomes from that distribution. For a coin flip the length of the average

code should be −1/2 log2(1/2) − 1/2 log2(1/2) = 1 bit per signal because it would

be efficient to let, say, 1 encode heads and 0 encode tails. However, for some

continuous distributions this interpretation of entropy is nonsensical because the

entropy could be negative or not an integer. For example, the uniform distribution
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over [0, 1/2] has entropy −
∫ 1/2

0
2 log2 2 dx = −1 bits per signal. This paper is

interested in comparing the entropies of distributions rather than interpreting

entropy as the efficient average length of a message, so the paper does not focus

on discrete densities.

For any distribution g and particular ω ∈ Ω, Tribus (1961) dubbed − log g(ω)

the surprisal of ω. Because − log g(ω) is decreasing in g(ω), surprisal is greater for

ω which (according to g) are less likely and, therefore, more surprising outcomes.

The logarithm ensures that surprisal is additive in the densities of independent

random variables, as for any two independent random variables X and Y respec-

tively distributed gX and gY , the surprisal for any particular pair of events (x, y)

is

− log gX(x)gY (y) = − log gX(x)− log gY (y).

Defining − log g(ω) as the surprisal suggests that the information entropy of a

distribution is equivalent to the expected surprisal, as entropy is equivalent to

weighting the surprisal for each ω ∈ Ω by the associated density g(ω) and ag-

gregating over Ω. Distributions with higher entropy then can be interpreted as

having higher expected surprisal. If outcomes from one distribution are, on av-

erage, more surprising than outcomes from another distribution, then the first

distribution can be thought of as containing less information than the second.

Thus, distributions with higher entropy typically generate observations that have

less information content.9

The following theorem verifies the claim that transforming a distribution by

9The interpretation of information entropy as a measure of the uninformativeness of a dis-
tribution is consistent with the idea that physical entropy, which is proportional to information
entropy by Boltzmann’s constant, is a measure of one’s ignorance of a system. See, for example,
the discussion in Sethna (2006, §5.3) for this interpretation of physical entropy along with a
discussion of its relationship with information entropy.
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monotone dispersion results in an increase in entropy and that monotone concen-

tration decreases entropy.10

Theorem 2. Let Γ be a monotone dispersion of g. Then the entropy of Γ is at

least as great as the entropy of g. That is

−

∫

Ω

Γ(ω) log Γ(ω) dω ≥ −

∫

Ω

g(ω) log g(ω) dω.

If, in addition, either of the sets {ω : g(ω) > Γ(ω)} or {ω : g(ω) < Γ(ω)} have

positive measure, then the inequality is strict.

3 Exponentially Weighting a Distribution

This section shows that weighting a distribution by a positive weight results in a

monotone dispersion (if the weight is less than one) or concentration (if the weight

is greater than one) of that distribution. Then it is shown that replacing Axiom 3

with a more restrictive axiom necessitates a weighting transformation. Afterwards,

the section provides a discussion of how, out of all possible transformations that

entail either monotone concentration or dispersion, weighting a distribution is

a particularly desirable transformation, as it is parsimonious and will typically

maintain tractability.

10The reader may be interested to know that I considered using the entropy order in Axiom
3, but I decided to go with what I felt would be the likelihood concentration order because I
felt it would be more intuitive for readers unfamiliar with information theory and because the
math within my proof of the following result involves defining the likelihood concentration order
anyway.
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3.1 Weighting, Concentration, and Dispersion

Consider how an exponent γ transforms one probability distribution g to another

proportional to gγ. As long as γ > 0 taking g to the power γ is a monotone,

increasing transformation, as is dividing by the resulting marginal distribution,

which is always positive. Thus, weighting a distribution results in a new dis-

tribution and this pair of distributions satisfies Axioms 1 and 2. Less obviously,

weighting also satisfies Axiom 3, so that it entails either a monotone concentration

or dispersion, as the following theorem shows.

Theorem 3. Let g : Ω → R be any non-uniform probability distribution. If

γ ∈ (0, 1) then the distribution Γ : Ω → R, defined as

Γ(ω) ≡
g(ω)γ

∫

Ω
g(ω)γ dω

,

is a monotone dispersion of g. If it is the case that γ > 1 then Γ is a monotone

concentration of g.

Thus, weighting a distribution is a particular method with which to generate

a monotone concentration or dispersion, allowing all of the interpretations and

results from the previous section to be applied.

3.2 Monotonicity & Proportional Elasticity

This subsection shows that exponential weighting follows from the following pair

of axioms on belief formation. Comparing these axioms to Axioms 1, 2, and 3 is

useful for understanding the differences between, on one hand, monotone concen-

trations and dispersions generally as compared to the particular transformations

given by weighting distributions, on the other.
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Note that the second of these axioms requires that g and T ◦ g are continuous

distributions.

Axiom 4 (Monotonically Increasing Function). The transformation T is a mono-

tonically increasing function.

Axiom 5 (Proportional Elasticity). For each ω ∈ Ω, the elasticity of the change

in T ◦g given a change in ω is proportional to the elasticity of a change in g. That

is, if T ◦ g and g are differentiable at ω,

d log T (g(ω))

dω
= k

d log g(ω)

dω
,

for some k ∈ R.

Axiom 4 ensures that ordinal rankings regarding the densities on Ω are identical

between g and T ◦ g. In other words if ω1 is more likely than ω2 according to g,

then ω1 is also more likely than ω2 according to T ◦ g. Note that a strict version

of Axiom 4 is equivalent to the conjunction of Axioms 1 and 2. Thus, any pair

of distributions related through a transformation that violates Axiom 4 could not

be a monotonic dispersion or concentration of one another.

While Axiom 4 imposes an ordinal restriction, Axiom 5 restricts the cardinal

properties of two distributions related through transformation, which makes sense

at it replaces Axiom 3, which plays the same role but in a less restrictive manner.

That is, Axiom 5 dictates how much densities can vary in a transformed distri-

bution relative to the variation in the original distribution. Specifically, Axiom 5

entails that degrees of belief vary proportionately across the two distributions g

and T ◦ g, so a marginal change in ω induces a relative change in g that is propor-

tional to a relative change in T ◦ g, and the factor of proportionality is constant
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for any given T .

The following theorem proves that only transformations involving exponenti-

ating with a non-negative constant and normalizing satisfy Axioms 4 and 5.

Theorem 4. Let T and g satisfy Axioms 4 and 5. Then there exists some γ ≥ 0

such that for each ω ∈ Ω

T (g(ω)) ≡
g(ω)γ

∫

Ω
g(ω)γ dω

.

3.3 Parsimony & Tractability

Putting an exponential weight on a distribution and normalizing is not the only

transformation that yields a monotone dispersion or concentration, allowing the

interpretation, via Theorem 2, that such a transformation alters the perceived

information content of observations on average. Surely there are other families of

transformations that depict certain biases in a more realistic fashion than weighted

updating. Why focus on exponential weighting? Unfortunately, we do not cur-

rently have any idea of which transformations realistically model biased belief

formation, so at this nascent stage in our understanding we should strive for char-

acteristics other than realism – characteristics such as parsimony, tractability, and

others that make a model valuable in scientific investigation.11 This subsection

provides an argument that weighted updating is typically both parsimonious and

tractable.

That exponential weighting of a distribution is a parsimonious method of trans-

formation is obvious – it involves doing one fairly basic operation with a single

11Gabaix and Laibson (2008) list seven key properties for economic models: parsimony,
tractability, conceptual insightfulness, generalizability, falsifiability, empirical consistency, and
predictive precision. Obviously, the latter two coincide with a model being realistic.
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parameter. What about other basic operations that utilize a single parameter?

It is possible to obtain transformations by adding or subtracting some positive

constant and then normalizing (and being careful to avoid negative values when

subtracting), but doing so typically results in a distribution that is not in the

same family as the original distribution and, as such, would in all likelihood be

extremely difficult to analyze. Thus, adding or subtracting a real number from

each value of a distribution is parsimonious but would often result in a loss of

tractability. Multiplying and dividing by some constant does not even result in a

transformation, since the operation will be undone by normalizing. So, multipli-

cation and division is parsimonious but entirely ineffectual.

In contrast, exponential weighting is typically both parsimonious and tractable,

since the resulting distribution is often of the same family of distributions as the

original. This is particularly important for our purposes because tractability can

be easily lost when multiplying two (or more) distributions as is done in Bayes’

rule, which is why Bayesian statisticians tend to study models wherein the prior

distribution is conjugate to the likelihood function.12

An illustration of tractability being maintained by exponential weighting is

provided by Theorem 5 in Section 6 utilizing Fact 2, that log-concavity is preserved

after exponential weighting.

4 The Weighted Updating Model

In this section, we substitute the weighted distributions suggested in Section 3

into Bayes’ rule to generate the weighted updating model. After introducing

the model, I explain why weights on both the likelihood function and the prior

12Using a conjugate prior distribution guarantees (by definition) that the resulting posterior
distribution is from the same family as that of the likelihood function.
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probability distribution are generally necessary.

Recall Bayes’ rule:

π(θ|ht) =
f(ht|θ)π(θ)

∫

Θ
f(ht|θ)π(θ) dθ

.

Weighted updating augments Bayes’ rule with real-valued parameters α and β

as exponents respectively on the likelihood function and prior probability distribu-

tion. Denoting the posterior distribution under weighted updating after observing

history ht by π̃(θ|ht), this form of weighted updating is given by13

π̃(θ|ht) =
f(ht|θ)

βπ(θ)α
∫

Θ
f(ht|θ)βπ(θ)α dθ

. (1)

Both Bayes’ rule and the weighted updating model can be stated without

mention of the marginal distribution, which is not a function of θ and serves only

as a normalization, ensuring that the posterior distribution aggregates to one over

its support. Thus, Bayes’ rule is often stated as

π(θ|ht) ∝ f(ht|θ)π(θ)

and, analogously, the weighted updating model can be displayed as

π̃(θ|ht) ∝ f(ht|θ)
βπ(θ)α. (1′)

13Note that throughout the paper it is assumed that the denominator
∫

Θ
f(ht|θ)

βπ(θ)α dθ
is finite so that π̃(θ|ht) is well-defined. For many cases this assumption is innocuous because
weighting a distribution with an exponent and rescaling results in a distribution from the original
family. However, this assumption is not always satisfied. For example, the function (1− p)x−p

represents a distribution over x ≥ 1 if and only if p > 1. Taking such a distribution to a
power α < 1/p and doing the usual normalization does not result in another distribution, as the
integral over [1,∞) of the resulting function diverges.
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4.1 Are Two Weights Necessary?

Putting more weight on the prior is qualitatively dual to putting less on the

likelihood function, and vice-versa. This duality suggests that perhaps one can

represent any given weighted posterior distribution with just one parameter, effec-

tively restricting the other to a value of one. For example, one could model a bias

that involves over-weighting prior information relative to non-prior information in

at least two possible ways with the weighted updating model. For example, one

could put a weight of one on the likelihood function and a weight greater than

one on the prior distribution, or put a weight of one on the prior distribution

and a weight less than one on the likelihood function. Could these approaches

be equivalent, in that they are capable of resulting in identical weighted posterior

distributions?

It is straightforward to see that this would not generally be the case. If it

were, then, for example, given any ht there would exist some c > 0 such that

f(ht|θ)
βπ(θ)α = cf(ht|θ)

γπ(θ) (2)

for all θ ∈ Θ. But if α, β, ht, and c are fixed then expression (2) represents γ as

an implicit function of θ. In other words γ would not necessarily be a constant.

Despite the fact that both parameters are necessary to study an entire weighted

posterior distribution π̃, it may still be useful to transform the distribution so

that there is effectively one parameter. For example, if one were to study point

estimates by maximum likelihood (the subject of Section 6), then maximizing

either π̃
1

α or π̃
1

β would yield the same estimate of θ as maximizing π̃, since taking

anything to these powers is a monotonic transformation.14

14By Theorem 3 both π̃
1

α and π̃
1

β are either monotone dispersions and concentrations both of
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5 Expanding the Framework

Expression (1′) introduced the weighted updating model

π̃(θ|ht) ∝ f(ht|θ)
βπ(θ)α.

This introductory model involves two restrictions that can be relaxed to allow for

a greater variety of biases that weighted updating can model. These restrictions

are that (i) the agent treats each datum xj as being exactly as informative as

any other datum in ht and (ii) the weights are constant over time. More general

frameworks involve discarding either (or both) of these restriction, allowing for

different weights on likelihood functions associated with different pieces of data

or allowing the weights to vary over time.

5.1 Discrimination Between Data

Relaxing the restriction that each xj is weighted by the same weight β involves

utilizing the definition of conditional distribution functions, which says that for

any t ∈ N and likelihood function f(ht|θ),

f(ht|θ) = f(xt|ht−1, θ)f(ht−1|θ).

Repeated iteration yields

f(ht|θ) =
t

∏

j=1

f(xj|hj−1, θ),

each other and of π̃.

19



which motivates setting up the weighted updating model as

π̃(θ|ht) ∝ π(θ)α
t

∏

j=1

f(xj|hj−1, θ)
βj , (3)

where α remains the weight on the prior distribution and βj, for each j ∈ {1, . . . , t},

is the weight associated with the jth datum xj. This is a generalization of the

introductory framework because (1′) is a special case of (3), the special case being

βj = β for each j ∈ {1, . . . , t}.

In light of Theorems 2 and 3, we can say that if an individual’s beliefs evolve

according to the weighted updating model in (3), then, compared to a perfect

Bayesian, the individual is subjectively treating the component distributions π(θ)α

and f(xj|hj−1, θ)
βj for j = 1, . . . , t each as containing either more or less infor-

mation depending on the levels of α, β1, . . . , βt, depending on how each of these

weights compare to one. As the prior π(θ) summarizes prior information and each

likelihood function f(xj|hj−1, θ) represents the influence of an individual datum

xj, the weighted updating model in expression (3) essentially allows the individ-

ual to treat the prior information and each datum xj at individualized levels of

information content.

Additional biases that the generalized weighted updating model (3) is capable

of modelling include anchoring; the availability heuristic; order effects, such as

primacy and recency; and self-attribution bias. The remainder of this subsection

discusses how to model these biases with weighted updating. Table 1 summarizes

this discussion.

The availability heuristic generates biases due to certain observations being

more available in memory (Tversky and Kahneman, 1973). This can be modelled

using weighted updating simply by assuming that an economic agent puts greater
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Table 1: Biases Involving Discrimination between Non-Prior Data

Cognitive Bias Weights

Availability βj high for xj that are more salient

Primacy Effect βj decreasing in j

Recency Effect βj increasing in j

Self-Attribution βj low if xj is undesirable

weights on βj’s that correspond to xj’s that are relatively memorable.

Order effects occur when the relative position of observations seems to affect

beliefs formed from those observations. Experimental subjects typically exhibit

either the primacy effect, where earlier observations are more salient than later

observations, or the recency effect, where the opposite occurs (Hogarth and Ein-

horn, 1992). To model the primacy effect with the weighted updating model would

require that βj decreases as j rises, while modelling the recency effect involves as-

suming that βj is increasing in j.

Self-attribution bias occurs when individuals credit their own ability for desir-

able outcomes but blame undesirable outcomes on external factors, such as luck.

This suggests that agents put greater weights on xj that are desirable and lower

weights on xj that are undesirable. Section 7 contains a more in-depth discussion

of self-attribution bias, before it is shown that a decision maker with such a bias

will also exhibit optimism bias.

5.2 Dynamically Inconsistent Weights

This paper has, up to this point, presented the weighted updating model as one

in which the weights are fixed. This subsection discusses relaxing this restriction
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so that weights can change over time.

To allow the weights to change over time simply involves allowing them to be

functions of time, which can be defined exogenously or endogenously depending

on the nature of the application. Denote these functions α(t) and β(t), so that

after observing ht the base weighted updating model in expression (1′) becomes

π̃(θ|ht) ∝ f(ht|θ)
β(t)π(θ)α(t).

A bias that can be modelled with weights that change over time is base-rate

neglect. As its name suggests, base-rate neglect involves ignoring prior informa-

tion. However, subjects who exhibit base-rate neglect typically do not ignore prior

information until after they have observed some non-prior information. A classic

experiment on base-rate neglect is described in Kahneman and Tversky (1973).

In this experiment, base rates differed between subjects: one group was told that

the descriptions they observed were drawn from a population of 70 lawyers and 30

engineers, while the other group was told that they were drawn from a population

with the frequencies reversed, 30 lawyers and 70 engineers. When experimental

subjects observed a purposefully uninformative description of a man and were

asked to guess whether he is an engineer or a lawyer, the average guess at the

probability that the man was an engineer was approximately 50% in both groups.

This base-rate neglect occurred even though the likelihoods participants gave were

consistent with base rates before observing the irrelevant information, suggesting

that participants utilized base rates then ignored them after observing the unin-

formative description. Such a phenomenon can be modelled by defining α(t) such

that α(0) > 0 (so that agents utilize prior information) and α(t) = 0 for t > 0 (so
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that they ignore the prior information after observing any history ht).
15

6 Maximizing the Weighted Updating Model

Although the weighted posterior distribution π̃(θ|ht) fully describes an agent’s

beliefs regarding θ, it is often useful to work with point estimates. This section

considers properties of the likelihood function and prior probability distribution

that lend themselves to obtaining point estimates through maximization of the

weighted posterior distribution. Relatively few distributions that see widespread

use are concave, so it is desirable to consider weaker properties that may be useful

for maximizing a weighted posterior distribution π̃(θ|ht). A result below provides

that, under typical conditions, log-concavity is the weakest assumption one can

make on all of the primitive distributions in Bayes’ rule and still be ensured of

obtaining unique results from the analysis of first-order conditions.

A function g is (strictly) log-concave if log g is (strictly) concave. Equivalently,

if g is (strictly) log-concave then for any λ ∈ (0, 1)

g(λω1 + (1− λ)ω2) (>) ≥ g(ω1)
λg(ω2)

(1−λ). (4)

It turns out that many densities commonly used in economics are log-concave.

Perhaps the most notable distribution that is log-concave despite not being con-

cave is the normal distribution.16

The following Theorem provides a set of sufficient conditions, an element of

15Rabin (1996) points out that weighted updating with constant weights cannot account for
base-rate neglect in light of irrelevant information. (See footnote 60 of Rabin (1996). Note that
the version of this paper published in 1998 in Journal of Economic Literature does not include
this discussion.)

16Bagnoli and Bergstrom (2005) contains an extensive classification of distributions that are
and are not log-concave. See also Boyd and Vandenberghe (2004, Chapter 3)
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which is log-concavity, for obtaining a unique maximizer of a weighted posterior

distribution. This result is a testament to how transforming distributions with

exponential weights maintains much tractability, as discussed in Section 3.

Theorem 5. Let α, β1, . . . , βt > 0, let Θ be a convex subset of R, and let the

prior distribution π(θ) and the likelihood functions f(xj|hj−1, θ), for all t ∈ N

and j ∈ {1, . . . , t}, each be positive-valued, twice continuously differentiable, and

log-concave, with at least one of these t+ 1 functions strictly log-concave. Then

θ̃(t) ≡ argmax
θ∈Θ

π̃(θ|ht)

is a continuously differentiable function. Moreover, the sign of the partial deriva-

tive of θ̃(t) with respect to α is the same as the sign of π′(θ̃(t)) and the sign of

the partial derivative with respect to βj is the same as the sign of fθ(xj|hj−1, θ̃(t))

for each j ∈ {1, . . . , t}.

With the other hypotheses given,17 if any of the likelihood functions or if

the prior distribution were not log-concave then the conclusions of Theorem 5

would not necessarily be true without imposing additional structure. As such,

as long as the other hypotheses are maintained, it would be fruitless to consider

properties weaker than log-concavity (e.g. quasiconcavity) to impose on all of the

distributions primitive to Bayes’ rule and expect to find that they are sufficient

for the conclusions obtained in Theorem 5.

The comparative static results from Theorem 5 are that θ̃α(t) has the same sign

as π′(θ̃(t)) and each θ̃βj
(t) has the same sign as fθ(xj|hj−1, θ̃(t)). Ceteris paribus, if

more weight is put on the prior π(θ) by increasing α then θ̃(t) will shift towards the

17The other hypotheses are α, β1, . . . , βt > 0; Θ a convex subset of R; and π(θ) and
f(xj |hj−1, θ), for all t ∈ N and j ∈ {1, . . . , t}, each being positive-valued and twice continu-
ously differentiable.
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Figure 2: An illustration of comparative statics for log-concave weighted updating.
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mode of π(θ). Similarly, if more weight is put on the jth datum xj by increasing

βj then θ̃(t) will shift towards the mode of fθ(xj|hj−1, θ). Thus, in either case

a distribution with greater weight will pull the maximum a posteriori estimate

towards its maximum. Figure 2 illustrates the comparative statics results using

the introductory weighted updating model (1). It compares a perfect Bayesian

(solid curves) with a weighted updater (dashed curves) who is putting a weight

of 1/2 on the likelihood function associated with ht. Notice that the maximum for

the Bayesian’s posterior distribution π(θ|ht) is at θ = 7/12 and that at this point

the slope of the likelihood function is negative: f(ht|7/12) < 0, suggesting that a

decrease in α will induce an increase in the value of θ that maximizes the posterior

distribution. This is indeed the case, as the maximum of the weighted updating

model π̃(θ|ht) is at θ = 2/3 > 7/12.
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7 Optimism Bias via Self-Attribution

This section utilizes some of the findings from previous sections of the paper in an

application of the weighted updating model. Specifically, this section illustrates

how the weighted updating model can be used to show that optimism bias can be

caused by self-attribution bias.

One of the hallmarks of optimism bias is the statistical impossibility of indi-

viduals who, on average, expect to do better than average in some realm of their

lives. A classic example is provided by Weinstein (1980), who finds that students

expect to live longer and be healthier than their peers, while believing themselves

less likely to experience negative outcomes such as divorce and heart attacks. In

regards to how optimism bias occurs, Sharot, Riccardi, Raio, and Phelps (2007)

find differences in areas of the brain activated depending on whether imagined fu-

ture events were desirable or not, and the differences suggest a heightened role for

areas of the brain associated with monitoring emotional salience when desirable

outcomes are imagined.

Evidence suggests that optimism bias has measurable effects on peoples’ beliefs

in many facets of life, including those that are economic in nature. Hoch (1985)

finds that business school students overestimate their job prospects. Weinstein

and Klein (1996) find that smokers tend to believe other smokers are more likely to

suffer from lung cancer than themselves. In a cross-country analysis, Koellinger,

Minniti, and Schade (2007) find an association between optimism and business

start-ups and a negative association between optimism and survival of new firms.

Chapin and Coleman (2009) find evidence suggesting people tend to believe they

are less likely to be the victim of a crime than others. Bain (2009) finds optimism

bias amongst private sector financiers regarding forecasts of toll road demand.
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As Hirshleifer (2001) points out, rational learning would gradually erode opti-

mism bias. Thus, for optimism bias to maintain, there must be some bias in the

learning process. One explanation of the kind of irrational learning that leads to

optimism bias is that such individuals tend to attribute undesirable outcomes to

“luck” while attributing desirable outcomes to some quality of themselves, such

as ability. If this is true, then weighted updating should be able to model such

a learning process, as attributing some outcome to luck entails treating the out-

come as relatively uninformative, in which case a low weight would be put on

the likelihood distribution associated with that outcome. This section shows that

weighted updating can capture this phenomenon and generate beliefs that exhibit

optimism bias.

Assume that higher levels of xt are in some sense desirable, so that somebody

who exhibits optimism bias expects higher levels of xt than a perfect Bayesian

who has witnessed the same history and has the same prior.18 Modelling this

requires that the parameter θ defines some sort of stochastic ordering so that

either higher or lower levels of θ are associated with higher levels of xt in each

period.19 Without loss of generality, greater θ are associated with larger xt.

The stochastic ordering utilized is the strict single crossing property defined

by Milgrom and Shannon (1994). This property is chosen over other stochastic

orders because of its generality and because it is maintained under monotone

dispersion and concentration, making it particularly useful for analyses involving

the weighted updating model. If g(y, ω) satisfies the strict single crossing property

18It may be helpful to think of xt as income.
19If one thinks of xt as income, then values of θ might represent beliefs about one’s earning

power (“ability”, in a loose sense).
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in (ω; y) then for all y′ > y and ω′ > ω it is true that

g(y, ω′) ≥ g(y, ω) ⇒ g(y′, ω′) > g(y′, ω).

We will assume that likelihood functions f satisfy the strict single crossing

property in (θ; x). The essence of this assumption is that in the case that after

witnessing some level of xt the decision maker views θ′ as more likely than θ,

where θ′ > θ, it follows that had a higher level of xt been witnessed then θ′ would

still have been deemed more likely than θ.

We will model optimism bias by assuming that an individual will put more

weight on likelihood functions associated with high levels of xt and less weight

on lower levels of xt than a perfect Bayesian. Determination of which are higher

and lower levels of xt will depend upon a reference level, which is defined as the

minimal level of xt+1 that would be sufficient for θ̃(t + 1) ≥ θ̃(t).20 That is, the

reference level immediately after observing ht is

x̃(t) ≡ inf

{

x : argmax
θ∈Θ

f(x|θ) ≥ θ̃(t)

}

.

The weights the individual who exhibits optimism bias will utilize are βt =

β(xt, t) > 0, where each function β(x, t)− 1 has a single crossing at x = x̃(t− 1).

That is, for all t ∈ N,

β(xt, t)































> 1 if xt > x̃(t− 1)

= 1 if xt = x̃(t− 1)

∈ (0, 1) if xt < x̃(t− 1).

(5)

20Recall that θ̃(t) ≡ argmaxθ π̃(θ|ht).
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Now it can be shown that under such a setup optimism bias will occur, in that

regardless of the history ht an individual who forms beliefs according to these

rules will believe θ is greater than a Bayesian who has observed the same history

and has the same prior distribution π(θ).21

Proposition 1. Let Θ be a convex subset of R, and let the prior distribution π(θ)

and the likelihood functions f(xj|hj−1, θ), for all t ∈ N and j ∈ {1, . . . , t}, each be

positive-valued, twice continuously differentiable, and strictly log-concave. Also,

let each likelihood function f satisfy the strict single crossing property in (θ; x)

and let the functions β(xt, t) for each t be consistent with (5). Then for all t ∈ N,

argmax
θ∈Θ

π(θ)
t

∏

j=1

f(xj|hj−1, θ)
β(xj ,j) ≥ argmax

θ∈Θ
π(θ)

t
∏

j=1

f(xt|hj−1, θ).

A model of optimism bias such as this one can be used in any number of

applications. A few that come to mind are (i) a job-search model where the job

hunter is overly-optimistic about future job offers and turns down offers that a

perfect Bayesian or agent with rational expectations would accept, (ii) a price-

setting firm that is overly-optimistic regarding stochastic demand and thereby

sets prices higher than would be profit-maximizing,22 and (iii) a firm that over-

estimates the expected return on an investment project from which a perfect

Bayesian would abstain.

21It may be of interest to note that the necessity that the reference level x̃(t) changes over
time stems from the fact that relatively weak assumptions were used regarding β(x, t). If β is
monotonically increasing in x then a constant reference level would be sufficient for optimism
bias to manifest.

22For example, a monopolist who optimistically under-estimates the price elasticity of demand.
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8 Concluding Remarks

This paper presents weighted updating as a generalization of Bayes’ rule that

is capable of systematically producing biased judgement in economic agents. I

provide an interpretation of weighted updating as a method by which individuals

treat information as either more or less informative than under Bayes’ rule. In

particular, it is shown that weighting the functions primitive to Bayes’ rule trans-

forms the functions by monotone dispersion or monotone concentration, and that

these transformations affect the information entropy of the resulting primitives.

These results provide the interpretation that weighted updating is a parametric

method with which to model the treatment of data as either more or less informa-

tive than with Bayesian updating. As such, weighted updating embodies a theory

of biased judgement, wherein these biases are a result of the treatment of data

as containing inaccurate levels of information content. I should emphasize that

the interpretation of weighting a distribution suggests that, on its own, weighted

updating may be appropriate to model only those biases in which individuals cor-

rectly interpret information, but for some reason do not use the information in

a rational way. Thus, for example, weighted updating may be utilized to model

biases based on self-deception23 or the cognitive limitations of utilizing correctly

interpreted data, but it may not be appropriate for modelling the type of confirma-

tion bias studied by Rabin and Schrag (1999), which involves decision makers who

misinterpret information. Still, there is no reason why there should be only one

type of bias affecting belief formation; one could, for example, model individuals

who misinterpret evidence using the framework of Rabin and Schrag (1999) and

then process the misinterpreted information irrationally using weighted updating.

23Self-deception typically involves individuals who downplay or overemphasize the importance
of certain pieces of evidence in a systematic way (Hirshleifer, 2001).
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Appendix

Proof of Theorem 1. Let

g(ω1) > g(ω2) ≥ Γ(ω2).

As Γ is a monotone dispersion of g, g(ω1) > g(ω2) implies

g(ω1)

g(ω2)
>

Γ(ω1)

Γ(ω2)
,

which can be rearranged to obtain

Γ(ω2)

g(ω2)
>

Γ(ω1)

g(ω1)
.

Now utilize g(ω2) ≥ Γ(ω2) to augment the above inequality to obtain

1 ≥
Γ(ω2)

g(ω2)
>

Γ(ω1)

g(ω1)
.

And so, g(ω1) > Γ(ω1). The other case implying the opposite conclusion is sym-

metric. Q.E.D.

Proof of Corollary 1. As

ω∗ ∈ argmax
ω∈Ω

g(ω),

we have g(ω∗) ≥ g(ω) for each ω ∈ Ω. The hypothesis that Γ is a monotone

dispersion of g implies that both Γ and g are non-uniform, so there exists some

ω0 ∈ Ω such that g(ω∗) > g(ω0). Thus,

g(ω∗)

g(ω)
≥

Γ(ω∗)

Γ(ω)
for all ω ∈ Ω.
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Note that Axiom 2 guarantees that this inequality is strict at ω = ω0. These

conditions imply

g(ω)

g(ω∗)
≤

Γ(ω)

Γ(ω∗)
for all ω ∈ Ω,

with strict in inequality for ω = ω0. As these conditions hold for all ω ∈ Ω with

strict inequality at ω0, integrating over Ω yields

∫

Ω
g(ω) dω

g(ω∗)
<

∫

Ω
Γ(ω) dω

Γ(ω∗)
.

As both g and Γ are probability distributions, they integrate to unity over their

support, so this condition is equivalent to

1

g(ω∗)
<

1

Γ(ω∗)
,

which is true only if g(ω∗) > Γ(ω∗). Q.E.D.

The proof of Theorem 2 requires the following two lemmas and a fact (Gibb’s

Inequality) from statistical physics.

Lemma 1. Let Γ be a monotone dispersion of g. Then

supΓ({ω : g(ω) < Γ(ω)}) ≤ inf Γ({ω : g(ω) > Γ(ω)})

Proof. Let b = supΓ({ω : g(ω) < Γ(ω)}) and B = inf Γ({ω : g(ω) > Γ(ω)}).

Suppose for purposes of contradiction that b > B. Then completeness of the

interval (B, b) ⊂ R++ implies that there exist ω1, ω2 ∈ Ω such that Γ(ω1) > Γ(ω2),

Γ(ω1) ∈ Γ({ω : g(ω) < Γ(ω)}),
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and

Γ(ω2) ∈ Γ({ω : g(ω) > Γ(ω)}).

By the definition of monotone dispersion and monotone concentration, Γ(ω1) >

Γ(ω2) if an only if g(ω1) > g(ω2). This, the above two conditions, and the fact

that Γ is positive on its support Ω imply

Γ(ω1) > g(ω1) > g(ω2) > Γ(ω2) > 0,

from which it follows that

Γ(ω1)

Γ(ω2)
>

g(ω1)

g(ω2)
> 1,

contradicting the fact that Γ is a monotone dispersion of g, Axiom 3 in particular.

Therefore it must be the case that b ≤ B. Q.E.D.

Note that for continuous distributions g and Γ, it will necessarily be the case

that b = B so that Lemma 1 is automatic. Also, for a discrete distribution min and

max can be respectively substituted for inf and sup, making the proof somewhat

less technical.

Lemma 2. Let Γ be a monotone dispersion of g and let there exist some ωj such

that Γ(ωj) > g(ωj). Then there exists r ∈ R such that

Γ(ω) > r ⇒ g(ω) > Γ(ω)

and

Γ(ω) < r ⇒ g(ω) < Γ(ω).

Proof. Corollary 1 guarantees the existence of some ω ∈ Ω such that g(ω) > Γ(ω).
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Define B as in the proof of Lemma 1, and it follows that Γ(ω) ≥ B. If it is the

case that Γ(ω) > B then by definition g(ω) > Γ(ω). In summary, Γ(ω) > B

implies that g(ω) > Γ(ω).

The hypothesis that there exists some ωj such that Γ(ωj) > g(ωj) establishes

the existence of ω ∈ Ω such that Γ(ω) ≤ b, where b is defined in the proof of

Lemma 1. A symmetric argument to the above guarantees that Γ(ω) > g(ω)

whenever Γ(ω) < b.

Thus, for any r ∈ [b, B], which is non-empty by Lemma 1, it follows that

Γ(ω) > r ⇒ g(ω) > Γ(ω)

and

Γ(ω) < r ⇒ g(ω) < Γ(ω). Q.E.D.

We will make use of the following fact from the field of statistical physics.

Fact 1 (Gibbs’ Inequality). For any two probability distributions p, q : X → R++

∫

X

p(x) log p(x) dx ≥

∫

X

p(x) log q(x) dx.

Proof of Theorem 2. By Gibbs’ Inequality

∫

Ω

g(ω) log g(ω) dω ≥

∫

Ω

g(ω) log Γ(ω) dω,

which implies

∫

Ω

g(ω) log g(ω)− Γ(ω) log Γ(ω) dω ≥

∫

Ω

(g(ω)− Γ(ω)) log Γ(ω) dω. (6)
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Lemma 1 asserts that [b, B] is non-empty. Consider any r ∈ [b, B]. As, g and Γ

are both distributions,

0 = − log r

∫

Ω

g(ω)− Γ(ω) dω. (7)

Adding expressions (6) and (7) gives

∫

Ω

g(ω) log g(ω)− Γ(ω) log Γ(ω) dω ≥

∫

Ω

[g(ω)− Γ(ω)](log Γ(ω)− log r) dω. (8)

By Lemma 2, r ∈ [b, B] implies that log Γ(ω)− log r has the same sign as g(ω)−

Γ(ω), so the right-hand side of expression (8) is non-negative. And so,

−

∫

Ω

Γ(ω) log Γ(ω) dω ≥ −

∫

Ω

g(ω) log g(ω) dω. (9)

If, additionally, {ω : g(ω) > Γ(ω)} or {ω : g(ω) < Γ(ω)} have positive measure

then the right-hand side of expression (8) is strictly positive, so inequality (9) is

strict. Q.E.D.

Proof of Theorem 3. Let γ ∈ (0, 1). Axioms 1 and 2 are satisfied immediately. As

g is non-uniform there exists a pair (ω1, ω2) ∈ Ω2 for which g(ω1) > g(ω2). For any

such pair, multiplying each term of the relations 0 < γ < 1 by log(g(ω1)/g(ω2))

yields

0 < γ log
g(ω1)

g(ω2)
< log

g(ω1)

g(ω2)
,

which implies that

1 <
g(ω1)

γ

g(ω2)γ
<

g(ω1)

g(ω2)
.

Dividing both the numerator and denominator of the center term by the normal-
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izing factor
∫

Ω
g(ω)γ dω > 0 yields

1 <
g(ω1)

γ/
∫

Ω
g(ω)γ dω

g(ω2)γ/
∫

Ω
g(ω)γ dω

<
g(ω1)

g(ω2)
,

which is another way of stating that

1 <
Γ(ω1)

Γ(ω2)
<

g(ω1)

g(ω2)
.

This proves that Γ is a monotone dispersion of g. The case for γ > 1 yielding a

monotone concentration is proved analogously. Q.E.D.

Proof of Theorem 4. We have from Axiom 5

d log T (g(ω))

dω
= k

d log g(ω)

dω
.

Solving this differential equation implies that

T (g(ω)) = cg(ω)k

for some c > 0 and k ∈ R. Let γ = k. The fact that γ ≥ 0 follows from Axiom

4. The value of c is determined by the fact that T ◦ g is a distribution which

necessitates c = 1/
∫

Ω
g(ω)γ dω. Q.E.D.

The following results provide properties due to log-concavity that are useful

for maximizing the weighted updating model. Note that only the strict cases are

shown in all proofs, as the non-strict cases are nearly identical.24

24Fore sake of completeness the proofs are presented even though they are almost certainly
not new.
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Fact 2. For any γ (>) ≥ 0, if a function g : Ω → R is (strictly) log-concave then

gγ : Ω → R is (strictly) log-concave.

Proof. For any (ω1, ω2) ∈ Ω2 and any λ ∈ (0, 1) it is necessary that

g(λω1 + (1− λ)ω2) > g(ω1)
λg(ω2)

(1−λ).

Taking logs, multiplying each side by γ > 0, and some rearranging yield

log g(λω1 + (1− λ)ω2)
γ > λ log g(ω1)

γ + (1− λ) log g(ω2)
γ. Q.E.D.

Fact 3. For any γ > 0, if a function g : Ω → R is (strictly) log-concave then

γg : Ω → R is (strictly) log-concave.

Proof. Multiplying each side of the strict case of expression (4) by γ and distribut-

ing on the right-hand side yield

γg(λω1 + (1− λ)ω2) > [γg(ω1)]
λ[γg(ω2)]

(1−λ). Q.E.D.

Fact 4. If f, g ⊂ Ω × R+ are both log-concave functions then their pointwise

product, denoted fg, is log-concave. If, in addition, either f or g is strictly log-

concave and both are positive then fg is strictly log-concave.

Proof. Without loss of generality, let f be strictly log-concave and g log-concave.

For any λ ∈ (0, 1) it follows that

f(λω1 + (1− λ)ω2) > f(ω1)
λf(ω2)

(1−λ)
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and

g(λω1 + (1− λ)ω2) ≥ g(ω1)
λg(ω2)

(1−λ).

All values in these expressions are positive, so multiplying left-hand sides and

right-hand sides and utilizing the fg notation yield

fg(λω1 + (1− λ)ω2) > fg(ω1)
λfg(ω2)

(1−λ) Q.E.D.

Facts 2, 3, and 4 imply the following result.

Corollary 2. For α, β1, . . . , βt ≥ 0, if the likelihood functions f(xj|hj−1, θ) and

the prior distribution π(θ) are log-concave then the weighted posterior distribution

π̃(θ|ht) is log-concave on Θ. If any one of the likelihood functions or the prior

distribution is strictly log-concave and if the weight on that function is strictly

positive then π̃(θ|ht) is strictly log-concave

Proof. Let α, β1, . . . , βt ≥ 0 and π(θ), f(x1|θ), . . . , f(xt|ht−1, θ) be log-concave and

at least one of them strictly so. By Fact 2, each of the functions

π(θ)α, f(x1|θ)
β1 , . . . , f(xt|ht−1, θ)

βt

are log concave. Moreover, the weighted version of any strictly log concave func-

tion is strictly log concave. Fact 4 ensures that the product

π(θ)α
t

∏

j=1

f(xj|hj−1, θ)
βj (10)
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is strictly log-concave. Finally, since the marginal distribution

∫

Θ

π(θ)α
t

∏

j=1

f(xj|hj−1, θ)
βj dθ (11)

is a positive constant (i.e. not a function of θ), dividing expression (10) by (11)

to obtain π̃(θ|ht) yields a strictly log-concave function by Fact 3. Q.E.D.

Corollary 2 asserts that if the prior distribution and likelihood functions prim-

itive to Bayes rule are log-concave, then any associated weighted posterior distri-

bution is log concave as long as the weights are all non-negative. Moreover, if any

one of the primitive distributions is strictly log-concave and its weight positive,

then, as long as the others are log-concave, the weighted posterior distribution is

strictly log-concave. Strict log-concavity is very useful in maximization, because

it ensures that any maximum is a unique global maximum.

The following fact of log-concavity will prove useful.

Fact 5. If g : R → R+ is log-concave and twice continuously differentiable then

g′′(x)g(x)− g′(x)2 ≤ 0. (12)

This inequality is strict if g is strictly log-concave.25

Proof. A twice continuously differentiable function f is strictly concave if f ′′ < 0.

25For g(x) > 0, rearranging expression (12) provides an illuminating implication of log-
concavity when a function is twice continuously differentiable:

g′′(x) ≤
g′(x)2

g(x)
.

Thus, the second derivative of a log-concave function can be positive, which contrasts with
the fact that a concave and twice continuously differentiable function has non-negative second
derivative on its domain. This is one way of illustrating that log-concavity is a weaker condition
than concavity.
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As a function g is strictly log-concave if and only if log g is strictly concave, or

(log g)′′ < 0 which yields expression (12). Q.E.D.

Proof of Theorem 5. Ignoring the marginal distribution and taking the natural

logarithm is a monotonic transformation, leaving the problem

max
θ∈Θ

α log π(θ) +
t

∑

j=1

βj log f(xj|hj−1, θ).

The first-order condition of maximization with respect to θ is

α
π′(θ̃(t))

π(θ̃(t))
+

t
∑

j=1

βj
fθ(xj|hj−1, θ̃(t))

f(xj|hj−1, θ̃(t))
= 0, (13)

By Corollary 2, π̃(xt|ht, θ) is strictly log-concave so θ̃(t) is a unique maximum

on Θ. To prove that (13) defines θ̃(t) as a continuously differentiable function of

(α, β1, . . . , βt, ht) one can use the implicit function theorem, a sufficient condition

of which is the derivative of the left-hand side of (13) with respect to θ is non-zero

at θ̃(t). In fact, it will be shown that this derivative is negative, which is also the

second-order condition for maximization. This derivative is

∂FOC

∂θ
≡ α

π′′(θ̃(t))π(θ̃(t))− π′(θ̃(t))2

π(θ̃(t))2

+
t

∑

j=1

βj
fθθ(xj|hj−1, θ̃(t))f(xj|hj−1, θ̃(t))− fθ(xj|hj−1, θ̃(t))

2

f(xj|hj−1, θ̃(t))2

By hypothesis, α, β1, . . . , βt > 0. The denominators of each term are also positive.

Utilizing Fact 5, log-concavity of all of the functions π(θ), f(x1|θ), . . . , f(xt|ht−1, θ)

implies that all of the numerators are non-positive and since at least one of these
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functions is strictly log-concave at least one of the numerators is negative. Thus,

∂FOC

∂θ
< 0,

establishing that the fist-order condition (13) defines θ̃(t) as a continuously dif-

ferentiable implicit function of (α, β1, . . . , βt, ht).

The comparative static results are found by solving for the appropriate deriva-

tives after finding the expressions for:

d

dα

∂FOC

∂θ
and

d

dβj

∂FOC

∂θ
,

for each j ∈ {1, . . . , t}. Respectively, these derivatives are

θ̃α(t) = −
π′(θ̃(t))

π(θ̃(t))

/

∂FOC

∂θ
and θ̃βj

(t) = −
fθ(xj|hj−1, θ̃(t))

f(xj|hj−1, θ̃(t))

/

∂FOC

∂θ
.

To determine the signs of these expressions first note that ∂FOC
∂θ

< 0, which es-

sentially cancels out the minus sign in each expression. Combining these with

the facts π(θ̃(t)) > 0 and f(xj|hj−1, θ̃(t)) > 0, for each j, implies that the

signs of these expressions are respectively the same as the signs of π′(θ̃(t)) and

fθ(xj|hj−1, θ̃(t)). Q.E.D.

Proof of Proposition 1. As,

π̃(θ|ht) ∝ π̃(θ|ht−1)f(xt|ht−1, θ)
β(xt,t)

we can write the first-order condition of maximization for the weighted updater
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as

π̃θ(θ̃(t)|ht−1)

π̃(θ̃(t)|ht−1)
+ β(xt, t)

fθ(xt|ht−1, θ̃(t))

f(xt|ht−1, θ̃(t))
= 0.

This first-order condition implies that the signs of π̃θ and fθ are either opposite

or both zero at θ̃(t). There are two cases to consider.

Case 1 : xt ≥ x̃(t−1). In this case, the single crossing property on f guarantees

argmax
θ∈Θ

f(xt|θ) ≥ θ̃(t− 1).

As both f(xt|θ) and π̃(θ|ht−1) are log-concave on Θ, this implies that fθ ≥ π̃θ at

θ̃(t). So fθ ≥ 0 since it must have sign opposite that of π̃θ. The comparative static

results from Theorem 5 implies that θ̃βj
(t) ≥ 0. Since in this case βj ≥ 1 and

θ̃βj
(t) ≥ 0, it is necessary that the weighted updater will increase their maximizing

value of θ at least as much as the perfect Bayesian.

Case 2 : xt < x̃(t− 1). Now the single crossing property on f implies

argmax
θ∈Θ

f(xt|θ) < θ̃(t− 1).

Using arguments analogous to those in Case 1 entails θ̃βj
(t) < 0. Also, as βj < 1

in this case and θ̃βj
(t) < 0, the weighted updater will decrease the maximizing

value of θ strictly less than the perfect Bayesian will.

We have determined that it is either the case that the weighted updater will

increase the maximized value of θ at least as much or will decrease the maximized

value of θ less than the perfect Bayesian will. As it is assumed that they have

identical prior distributions π(θ), which are strictly log-concave and therefore have

unique and identical maximizers, the weighted updater’s maximizing value of θ

can never be less than that of the perfect Bayesian. Q.E.D.
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